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γ α β1 x1 β2 x2 ... βn xn ε

  Recently, a number of authors have broken up the period of analysis into various sub-periods1

and have estimated the same type of regressions using panel techniques. See for example, Islam
(1995), Caselli, Esquivel, and Laffort (1996) or Barro and Sala-i-Martin (1995).

2

(1)

1.- INTRODUCTION

Following the seminal work of Barro (1991), the recent empirical literature on economic

growth has identified a substantial number of variables that are partially correlated with the rate

of economic growth.  The basic methodology consists of running cross-country regressions of the

form1

where γ is the vector of rates of economic growth, and x ...,x  are vectors of explanatory variables1, n

which vary across researchers and across papers.  Each paper typically reports a (possibly non-

random) sample of the regressions actually run by the researcher. Variables like the initial level

of income, the investment rate, various measures of education, some policy indicators and many

other variables have been found to be significantly correlated with growth in regressions like (1). 

The problem faced by empirical growth economists is that growth theories are not explicit

enough about what variables x  belong in the “true” regression.  That is, even if we know that thej

“true” model looks like (1), we do not know exactly what variables x  we should use.  One reasonj

is that economic growth theory is not explicit about what variables matter for growth.  For

example, almost all growth theories say that the “level of technology” [the constant “A” in the

typical production function, Y=F(K,L,A)] is an important determinant of growth, at least along a



  Theories of endogenous growth suggest that such constant is a determinant of the steady-state2

growth rate while neoclassical models argue that this is true along the transition only.  Our
argument is completely independent of such disputes. 

3

transition towards the steady state.    From a macroeconomic perspective, there are many things2

other than the “engineering” level of technology which can be thought of as “the level of

technology,” A.  In other words, a lot of factors may affect the aggregate amount of output, given

the aggregate amount of inputs.  These may include market distortions, distortionary taxes,

maintenance of property rights, degree of monopoly, weather, attitudes toward work, and so on.

Hence, creative theorizing will generate models that “predict” that any of these or other variables

should be included in the growth regression.

The multiplicity of possible regressors is one of  the major difficulties faced by

researchers trying to make sense of the empirical evidence on economic growth.  However, the

problem is hardly unique to the growth literature: artistic economic theory is often capable of

suggesting an enormous number of potential explanatory variables in any economic field.  In

principle,  this is strictly a small-sample problem since, as the number of observations becomes

large, all of the variables which do not belong in the regression will have coefficients that

converge to zero.  Thus, classical statistics offers us little help: we should simply include all of

the suggested regressors and let the data sort through them.  When questions can be addressed

with very large datasets it is routine practice to include every regressor that comes to mind and

then report those that have  significant coefficients.  Often, however, we do not have the luxury

of having a sample size that allows us to include all potential regressors.  Cross-country growth

regressions provide perhaps the most extreme example: the number of proposed regressors



γ αj βy j y βz j z βx j xj ε

xj

  We say “modified” because they limited the number of regressors to be included in each3

regression as opposed to the original Leamer technique which allows all potential combinations
of regressors.

4

(2)

exceeds the number of countries in the world, rendering the all-inclusive regression

computationally impossible.

The methodology usually used by empirical economists consists on simply “trying” the

variables which are thought to be potentially important determinants of growth.   However, as

soon as one starts running regressions combining the various variables, one finds that variable x1

is significant when the regression includes variables x  and x , but it becomes insignificant when2  3

x  is included. Since one does not know a priori the “true” variables to be included, one is left4

with the question: what variables are “truly” correlated with growth? 

An initial answer to this question was given by Levine and Renelt (1992). They applied a

modified  version of Leamer’s (1983, 1985) extreme bounds analysis to identify “robust”3

empirical relations for economic growth.  In short, the extreme bounds test works as follows:

imagine that we have a pool of K variables previously identified as related to growth and are

interested in knowing whether variable z is “robust.”   We would estimate regressions of the

form:

where y is a vector of fixed variables that always appear in the regressions (in the Levine and

Renelt paper, these variables are the initial level of income, the investment rate, the secondary

school enrollment rate and the rate of population growth), z is the variable of interest and  is



xj

β̂zj σ̂zj

β̂zj 2σ̂zj

β̂zj 2σ̂zj

 There are other criticisms of extreme bounds analysis; see for example Durlauf and Quah4

(1999).

 See Doppelhofer (2000) for an application of Granger-Uhlig’s reasonable extreme bounds to5

cross-country growth regressions. 

5

a vector of up to three variables taken from the pool of the K variables available.  One needs to

estimate this regression or model for all possible combinations.  For each model,  j, one

finds an estimate, , and the corresponding standard deviation, .   The lower extreme

bound is defined to be the lowest value of  over all possible models j, and the upper

extreme bound is defined to be the largest value of .  The extreme bounds test for

variable z says that if the lower extreme bound is negative and the upper extreme bound is

positive, then variable z is fragile. 

Not surprisingly, Levine and Renelt’s conclusion is that very few (or no) variables are

robust.  One possible reason for finding few or no robust variables is, of course, that very few

variables can be identified as correlated systematically with growth.  Hence, some researchers

have been tempted to conclude that “nothing can be learned from this empirical growth

literature because no variables are robustly correlated with growth.”  Another interpretation,

however, is that the test is too strong for any variable to pass: if there is one regression for which

the sign of the coefficient β  changes, or becomes insignificant, then the variable is labeled asz

“fragile.”  This is independent of how poorly the regression fits: all regressions are treated

equally and the statement of any one of them carries a veto.   This problem is well recognized4

and some solutions have been proposed such as the reasonable extreme bounds of Granger and

Uhlig (1990).5



β̂zj σ̂zj

  The fixed regressors in Sala-i-Martin are the initial level of income per capita, the life6

expectancy and primary school enrollment in 1960.  Even though he checks the significance of
these three variables, the computed “model averages” all include these three variables, which
may be problematic, especially if some of the variables tested are highly correlated with the
variables that are always included.

6

Sala-i-Martin (1997a and b) proposes to depart from this “extreme” test and, instead of

assigning a label of “fragile” or not to a particular variable, he decides to assign some “level of

confidence” to each variable.  To this end, he constructs weighted averages of all the estimates of

 and its corresponding standard deviations, ,  using weights proportional to the 

likelihoods of each of the models.  As a measure of significance Sala-i-Martin calculates a

likelihood-weighted sum of normal cumulative distribution functions. He finds that Levine and

Renelt’s pessimistic conclusion is not warranted and that a number of variables are significantly

correlated with growth.  In order to maintain comparability, Sala-i-Martin follows Levine and

Renelt in assuming that there is a set of “fixed regressors” which belong in all models ,  and he6

restricts all the regressions to have the same size of seven regressors.  

A natural way to think about model uncertainty, related to Sala-i-Martin’s approach, is to

admit that we do not know which model is “true” and, instead, attach probabilities to different

possible models.  While intuitively appealing, this requires a departure from the classical

framework in which conditioning on a model is essential.  This approach has recently come to be

known as “Bayesian Model Averaging”.  The procedure does not differ from the most basic

Bayesian reasoning: the idea dates at least to Jeffreys (1961) although fleshed out by Leamer



2K

 Although the computational burden of our procedure is not insignificant it can be executed on a7

current PC.

A summary of much of the recent work can be found in Hoeting, Madigan, Raftery and8

Volinsky (1999).

 For readers unfamiliar with Bayesian language, the prior distribution, is a summary of the9

researchers beliefs concerning the parameters, prior to seeing the data.

7

(1978).   In this paper, we show that this approach can be used in a way that is well grounded in

statistical theory, intuitively appealing, easy to understand, and easy to implement.  7

The fully Bayesian approach is entirely feasible and has been applied to various problems

by a number of authors.  Examples include Raftery, Madigan and Hoeting (1997) and York,

Madigan, Heuch and Lie (1995).    In the growth context, Fernandez, Ley and Steel (2000) apply8

techniques from the Bayesian statistics literature to the dataset of Sala-i-Martin (1997a).  A pure

Bayesian approach requires specification of the prior distributions of all of the relevant

parameters conditional on each possible model.    Under ideal conditions, elicitation of prior9

parameters is difficult and is indeed one of the major reasons for Bayesian approaches remaining

relatively unpopular.  But when the number of possible regressors is K, the number of possible

linear models is  so with K large, fully specifying priors is infeasible.  Thus, authors

implementing the fully Bayesian approach have used priors which are essentially arbitrary.  This

makes the ultimate estimates dependent on arbitrarily chosen prior parameters in a manner which

is extremely difficult to interpret.  In existing applications of this approach, the impact of these

prior parameters has been neither examined nor explained.

In this paper we will use the Bayesian approach to averaging across models, while

following the classical spirit of Sala-i-Martin (1997a and b). We propose a model-averaging



k̄

k̄

In the standard Bayesian sense that we can calculate estimates for a range of different values of10

.  Thus we can make statements of the form, “whether you think a good model size is three
regressors or 12 regressors, this one particular variable is important”.

8

technique which we call Bayesian Averaging of Classical Estimates or BACE, to determine the

“importance” of variables in cross-country growth regressions.  We show that the weighting

method can be derived as a limiting case of a standard Bayesian analysis as the prior information

becomes “dominated” by the data.  BACE combines the averaging of estimates across models,

which is a Bayesian concept, with Classical OLS estimation which comes from the assumption of

diffuse priors.  This name is chosen to highlight the fact that while averaging across models is an

inherently Bayesian idea, BACE limits the effect of prior information and uses an approach

otherwise familiar to classical econometricians. 

Our BACE approach has several important advantages over previously used model-

averaging and robustness-checking methods: firstly, in contrast to a standard Bayesian approach

that requires the specification of a prior distribution for all parameters, BACE requires the

specification of only one prior hyper-parameter, the expected model size.   This parameter is

easy to interpret, easy to specify, and easy to check for robustness.   Secondly, the interpretation10

of the estimates is straightforward for economists not trained in Bayesian inference.  The weights

applied to different models are proportional to the logarithm of the likelihood function corrected

for degrees of freedom (analogous to the Schwarz model selection criterion).  Thirdly, our

estimates can be calculated using only repeated applications of OLS.  Fourthly, in contrast to

Levine and Renelt and Sala-i-Martin, we consider models of all sizes and no variables are held

“fixed” and therefore “untested.”



g(β|y) f(y|β)g(β)
f(y)

9

(3)

When we examine the cross-country data usually used by growth empiricists using this

approach we find striking and surprisingly clear conclusions.  The data identify a set of four

variables which have a great deal of explanatory power and are very precisely estimated.  A

second group, with seven variables, has somewhat weaker explanatory power, but have

coefficient which are still quite precisely estimated.  Another five variables are marginal: they

would be reasonable regressors if a researcher had a strong prior belief in their relevance.  The

remaining sixteen variables have weak explanatory power and are imprecisely estimated.

The rest of the paper is organized as follows.  In Section 2 we outline the statistical theory

in which our estimates tests are based. In Section 3 we describe the data set used. Section 4

presents the main empirical results of the paper. The final section concludes. 

2.- STATISTICAL THEORY

2.1. Statistical Basics

Following is a quick exposition of the basic reasoning and the language needed for

understanding our approach.  An extremely clear and more detailed presentation of these ideas

can be found in Poirier (1995).  We begin with Bayes’ rule. This is simply a theorem, a basic

consequence of conditional probability.  Bayes’ rule in densities is:

This is true for any random variables y and β.  In classical statistics a parameter has a true, though

unknown, value, so it cannot have a density because it is not random. In the Bayesian framework



g(β|y) P(M0|y)
f(y|β)g(β|M0)

f(y|M0)
P(M1|y)

f(y|β)g(β|M1)
f(y|M1)

g(β|y)

g(β|y) P(M0)
f(y|β)g(β|M0)

f(y)
P(M1)

f(y|β)g(β|M1)
f(y)

P(Mi |y)

10

(4)

parameters are considered to be uncertain.  In (3) above, g(β) is the prior density of a parameter

vector β, interpreted as the researcher’s information about β prior to seeing the data.  The vector

y is the observed data and f(y) is its density.  The left-hand side of (3), , is the density of β

conditional on the data and is called the posterior density: it fully describes what a Bayesian

researcher knows about the parameters after seeing the data.  Thus, in a Bayesian interpretation,

Bayes’ rule tells us how to combine prior information with new data in order to get our final

opinions, or posterior beliefs.

“Model averaging” is a special case of Bayes’ rule.   Suppose we divide the parameter

space into two regions and label them M  and M .  These regions could be what we would0  1

usually call hypotheses (e.g., β >0 versus β 0) or something we would usually call models (e.g., 

β = 0, β  0 versus β 0, β =0).  Each of these has a prior probability specified by the1    2     1  2

researcher as P(M ).  These prior probabilities summarize the researcher’s beliefs concerning thei

relative likelihood of the two regions (models).  Given the two regions, Bayes’ rule implies

.  Rewriting this in terms of the posterior

probabilities conditional on the two regions (models) we get:

where    is the posterior probability of the i’th region, the probability of that region

conditional on the data.  In words, equation (4) says that the posterior distribution of the

parameters is the weighted average of the two possible conditional posterior densities with the

weights given by the posterior probabilities of the two regions.  In this paper we will be



11

considering linear regression models for which each model is a list of included variables, with

the slope coefficients for all of the other possible regressors set equal to zero.

Much of the Bayesian statistics literature consists of formulae and methods for

calculating the various quantities in equation (4) for different statistical models.  For the linear

regressions models examined here we will be able to refer to textbook derivations.  The difficult

part lies in deriving the posterior model probabilities.

2.2. Diffuse Priors

As noted, fully specifying priors is infeasible when the set of possible regressors is large. 

In applications of Bayesian theory, if a researcher is incapable or unwilling to specify prior

beliefs a standard remedy is to apply diffuse priors.  Though there are some difficulties with this

notion, it is one way to represent initial ignorance.  If the parameter space is bounded then a

diffuse prior is a uniform distribution.  When the parameter space is unbounded, as in the usual

multiple linear regression model, a uniform distribution cannot be directly imposed and instead

we must take a limit as the prior distribution becomes flat.  In many contexts, imposing diffuse

priors generates classical results: in the linear regression model standard diffuse priors and

Bayesian regression yields posterior distributions identical to the classical sampling distribution

of OLS. 

We would like to work with diffuse priors but they create a problem when different

regression models contain different sets of variables.  As noted above, when the parameter space

is unbounded we must get results for diffuse priors by taking a limit of informative priors.  The

informative prior must specify prior information concerning both β, the vector of slope



P(M0|y)
P(M1|y)

P(M0)
P(M1)

|A| / |A X X|
|B| / |B Z Z|

1/2 SSE0 Q0

SSE1 Q1

T/2

 Leamer (1978) provides some intuition for why such problems occur but argues, in Bayesian11

spirit, that one should not be interested in diffuse priors.

12

(5)

coefficients, and σ, the error standard deviation.  There are no difficulties taking the limit as our

prior information concerning σ becomes uninformative so the equations below all reflect a

diffuse prior with respect to σ.   Equation (5) below gives the ratio of the posterior probabilities

of two regression models (called the posterior odds ratio) with different sets of included

variables, X for M  and Z for M . 0    1

where P(M ) is the prior probability of model i as specified by the researcher. This expressioni

assumes that the marginal prior density for β is multivariate normal with variance-covariance

matrices given by A under M , and by B under M  SSE  is the OLS sum of squared errors-1     -1 
0     1. i

under model i,  T is the sample size and Q  is a quadratic form in the OLS estimated parametersi

that need not concern us here. This is a textbook expression (e.g., Zellner (1971)).  Making the

priors diffuse requires taking the limit of (5) as A and B approach zero so that the variance of our

prior density goes to infinity.  The mathematical difficulty with this is the factor in (5) with the

ratio of the determinants of A and B.   Both determinants approach zero as the variance goes to

infinity, so their ratio depends on the rate at which each goes to zero.  Depending on precisely

how one parameterizes the matrices one gets different answers when evaluating this limit.    One11

limit is the likelihood-weighting method of Sala-i-Martin (1997a).  If we specify the prior



P(M0|y)
P(M1|y)

P(M0)
P(M1)

SSE0

SSE1

T/2

A gX X B gZ Z

  See Leamer (1978) for a similar expression.12

13

(6)

precision matrices as  and  (Zellner’s (1986) g-prior) and take the limit of (5)

as g goes to zero we get:

The second factor on the right-hand side is equal to the likelihood ratio of the two models.  This

weighting is troublesome because models with more variables have lower SSE’s; the posterior

mean model size (average of the different model sizes weighted by their posterior probabilities)

will be bigger than the prior, whatever the data that is actually seen.  Thus it is not sensible to use

this approach when considering models of different sizes.

The indeterminacy of the limit in (5) suggests that for fairly diffuse priors the exact

specification of the prior precision matrix, which will in practice be arbitrary, may generate large

differences in the results.  There is, however, another limit one can take: the limit of (5) as the

information in the data, X X, becomes large.  The idea here is we are taking the limit as the prior

becomes “dominated” by the data.  Instead of taking the limit as the prior becomes flat we are

taking the limit as the data becomes very informative relative to the prior information.  If we

assume that the variance-covariance matrix of the X’s exists and take the limit of (5) as X X goes

to infinity we get:  12



P(M0|y)
P(M1|y)

P(M0)
P(M1)

T (k1 k0)/2 SSE0

SSE1

T/2

P(Mj|y)
P(Mj ) T kj/2SSEj

T/2

2K

i 1
P(Mi ) T ki /2SSEi

T/2

ki Mi

This precise expression arises only if we take the limit using g-priors.  For other sorts of priors13

it is an approximation.
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(7)

(8)

where  is the number of included regressors in model .  This provides an approximation to13

the odds ratios generated by a wide range of reasonably diffuse prior distributions.  The degrees-

of-freedom correction should be familiar, since it is the ratio of the Schwarz criteria for the two

models, exponentiated.  The similarity to the Schwarz criterion is not coincidental: Schwarz

(1978) used the same approximation to the odds ratio to justify the criterion.   In our empirical

work we will use the approximation in equation (7).

In order to get weights for different models we need the posterior probabilities of each

model, not the odds ratio. However, using the odds ratio given by (7), to get an approximate

posterior model probability we simply need to normalize the weight of a given model by the sum

of the weights of all possible models, i.e., with K possible regressors:

Once the model weights have been calculated, Bayes’ rule says that the posterior density of a

parameter is the average of the posterior densities conditional on the models as shown in (4) for
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  The difficulty with making the prior diffuse applies only to the comparison, or averaging, of14

different models.  Conditional on one particular set of included variables the mean of the
Bayesian regression posterior is simply the OLS estimate.
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(9)

(10)

two models.  A posterior mean is defined to be the expectation of a posterior distribution. 

Taking expectations with respect to β across (4) (with  terms instead of only two) gives: 

where  is the OLS estimate for β with the regressor set that defines model j.  In

Bayesian terms, is the posterior mean conditional on model J.   Note that any variable14

excluded from a particular model has a slope coefficient with degenerate posterior distribution at

zero.  The posterior variance of β is given by:

Leamer (1978) provides a simple derivation for (10).  Inspection of (10) demonstrates that the

posterior variance incorporates both the estimated variances in individual models as well as the

variance in estimates of the β’s across different models.  

While posterior means and variances are certainly of interest, there are other ways to

summarize the large amount of information supplied by the full posterior distribution.  In

particular we would like to know the posterior  probability that a particular variable is in the

regression (i.e., has a non-zero coefficient).  We will call this the posterior inclusion probability
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 In most applications the prior probability of including a particular variable is not, for most15

researchers, independent of the probability of including any other variable.  For example, in a
growth regression if a variable proxying political instability is included, such as a count of
revolutions, many researchers would be think it less likely that another measure such as the
number of assassinations be included.  While this sort of interdependence can be readily
incorporated into our framework, we do not presently pursue this avenue.
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for the variable and it is calculated as the sum of the posterior model probabilities for all of the

models including that variable.  We will also report the posterior mean and variance conditional

on the inclusion of the variable.

2.3. Issues in Implementation

2.3.1. Model Size

We have not yet discussed the specification of the 's, the prior probabilities

attached to the different models.  One common approach to this problem in the statistical

literature has been to assign equal prior probability to each possible model.  While this is sensible

for some applications, for linear regression with a large number of potential regressors it has odd

and troubling implications.  In particular it implies a very strong prior belief that the number of

included variables should be large.  We will instead specify our model prior probabilities by

choosing a prior mean model size, , with each variable having a prior probability  of being

included, independent of the inclusion of any other variables, where K is total number of

potential regressors.   Equal probability for each possible model is the special case in which15

.  In our empirical work we focus on a relatively small  on the grounds that most

researchers prefer relatively modest parameterizations.  We  examine the robustness of our

conclusions with respect to this hyper-parameter in Section 4.2.
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In order to illustrate further this

issue the two figures shown graph the prior

probability distribution by model size for

our baseline model with =7 and with

equal probabilities for all models, =16,

given the 32 potential regressors we

consider in our empirical work.  Note that in

the second chart, the great majority of the

prior probability is focused on models with

many included variables: more than 99% of

the prior probability is located in models

with ten or more included variables.  It is our strong opinion that few researchers actually have

such prior beliefs.  Thus while we will calculate results for the equal model probability case

below, we do not choose to focus attention on this case.

2.3.2. Sampling

Equations (8), (9) and (10) all face the problem that they include sums running over 

terms: for many problems for which model averaging is attractive this is an infeasibly large

number even though each term only requires the computation of an OLS regression.  For our

baseline estimation, with k = 32, this is around 4.3 billion regressions.  As a result, only a

relatively small subset of the total number of possible regressions can be run.
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 This is just the Law of Large Numbers at work.16
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Several stochastic algorithms have been proposed for dealing with this issue, including

the Markov-Chain Monte-Carlo Model Composition (MC ) technique (Madigan and York3

(1995)), SSVS (George and McCulloch (1993)) and the Gibb’s sampler-based method of

Geweke (1994). These algorithms all move randomly through the different models as a Markov

chain approach and use results from the theory of Markov chain Monte Carlo’s to derive

theoretical convergence results.  There are no analytic results concerning the relative

computational efficiency of these algorithms.  

In contrast we will take a simpler approach that matches the form of the prior distribution. 

We select models to evaluate by randomly including each variable with independent sampling

probability .  So long as the sampling probabilities are strictly greater than zero and strictly

less than one, any values will work in the sense that, as the number of random draws grows with

the sampled versions of (8), (9) and (10) will approach their true values.   Clyde, Desimone and16

Parmigiani (1996) have shown that this procedure, when implemented with  equal to the

prior inclusion probability, (called by the authors “random sampling”) has computational

efficiency not importantly lower than that of the MC  and SVSS algorithms (for at least one3

particular data set).  For the present application, we found that sampling models using their prior

probabilities produced unacceptably slow convergence.  Instead, we sampled one set of

regressions using the prior probability sampling weights and then used the approximate posterior

inclusion probabilities calculated from those regressions for the subsequent sampling

probabilities.  This results in “oversampling” well-fitting regressions and accelerates
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convergence.  Appendix 1 discusses computational and convergence issues in detail and may be

of interest to researchers looking to apply these techniques. 

3.-  DATA

Hundreds of variables have been found to be significantly correlated with growth in the

literature.  Some of these variables are used systematically by most researchers.  Others have

been used only once.  From all of these we selected 32 variables by using the following criteria.  

First, we kept the variables that can, in some ways, represent “state variables” of a

dynamic optimization problem.  Hence, we choose variables measured as closely as possible to

the beginning of the sample period (which is 1960) and eliminate all those variables that were

computed for the later years only.  For example, of all the education variables computed by Barro

and Lee (1995), we only use the values for 1960.  We also neglect some of the political variables

that were published for the late 1980s, even though these variables have been put forward by a

number of researchers (in this category, for example, we neglect Knack and Keefer’s bureaucracy

and corruption variables, which were computed for 1985 only; corruption and bad bureaucracy

could very well be the endogenous response to a poor economic performance between 1960 and

1985).  

Second, we also kept some variables, not because they are good proxies for some initial

state variable but because they are proxies for “parameters” of some theoretical models, such as

the rate of population growth for its role in the Solow model. 

The third selection criterion derives from our need for a “balanced” data set.  By

balanced, we mean an equal number of observations for all regressions.  Since different variables



 The probability mass at zero is split into ten bins around zero to make the area of the mass17

comparable with areas under the conditional density.  Also the maximum height of the lump at
zero is limited to 0.08 meaning that for some of the variables with very low inclusion probability
the rectangle shows slightly less probability mass than it actually has.  All of the figures are
plotted with the same vertical axis scaling.
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miss observations for different countries, we selected the 32 variables that maximized the

product of the number of countries with observations for all variables and the number of

variables.   

With these restrictions, the total size of the data set becomes 32 variables plus the growth

rate of GDP per capita between 1960 and 1992 for 98 countries. The variables, their means and

standard deviations are depicted in Table 1.  Appendix 2 provides a list of the included countries.

4.- RESULTS

We are now ready to conduct our BACE estimation.  We will calculate the posterior

distributions for all of the β’s as well as the posterior means and variances given by equations (9)

to (10), using the posterior model weights from equation (8).  We also calculate the posterior

inclusion probability, discussed in section 2.2, which provides a summary measure of how much

the data favor the inclusion of a particular variable in the growth regressions.  Figure 1 shows the

posterior densities (approximated by histograms) of the coefficient estimates.  Note that each

distribution consists of two parts: first, a continuous part that is the posterior density conditional

on inclusion in the model, and second, a discrete mass at zero representing the probability that

the variable does not belong in the model; this is given by one minus the posterior inclusion

probability .  As described in section 2, these densities are weighted averages of the posterior17

densities conditional on each particular model with the weights given by the posterior model
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 That is a prior in which the marginal prior for the slope coefficients is multivariate normal and18

the marginal prior for the regression error standard deviation is Student.

 The total number of possible regression models equals 2 , which is approximately equal to 4.319         32

billion models. However, convergence of the estimates is attained relatively quickly; after 2
million draws the maximum change of coefficient estimates normalized by the standard deviation
of the regressors relative to the dependent variable is smaller than 10 per 10,000 draws, and-5 

after 20 million draws the maximum change is smaller than 10 .  The latter tolerance was used as-6

a convergence criterion for the reported estimates.  See Appendix 1 for further details.
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(11)

probabilities.  A standard result from Bayesian theory (see, e.g., Leamer (1978) or Poirier (1995))

is that if prior are taken as diffuse by taking the limit of a Normal-Student prior  then the18

posterior can be represented by:

where s is the usual OLS estimate of the standard deviation of the regression residual.  In other

words, with the appropriate diffuse prior, the posterior distribution conditional on the model is

identical to the classical sampling distribution.  Thus the marginal posterior distribution for each

coefficient is a mixture-t distribution.  In principle these distributions could be of almost any

form, but most of the densities in Figure 1 look reasonably Gaussian.

4.1. Baseline Estimation

This section presents the baseline estimation results with a prior model size, , of seven

regressors.  In Section 4.2 we examine the results with other values of .  The results are based

on approximately 21 million randomly drawn regressions .19



 This “sign certainty probability” is analogous to the area under the normal CDF(0) calculated20

by Sala-i-Martin (1997 a,b).
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Table 2 shows the results:  Column (1) reports the posterior inclusion probability of a

variable in the growth regression.  Columns (2) and (3) show the posterior mean and standard

deviation of the distributions shown in figure 1, including the probability mass at zero.  In

contrast, columns (4) and (5) report the conditional posterior mean and standard deviation; that

is, conditional on being included in the model.  From the posterior density we can also calculate

the posterior probability, conditional on inclusion, that a coefficient has the same sign as its

posterior mean ; this “sign certainty probability” is contained in column (6).   Finally, column20

(7) contains the (unweighted) fraction of regressions in which a coefficient is significantly

different from zero in the classical sense of having a t-statistic with an absolute value greater than

two.

In Table 2 the variables are sorted in descending order of their posterior inclusion

probabilities.  We can divide the variables according to whether seeing the data causes us to

increase or decrease our inclusion probability relative to the prior probability: for the baseline

estimation the prior inclusion probability is 7/32 = 0.219.  There are 12 variables for which the

data provide support in this sense.  For these variables, after seeing the data our belief that the

variable belongs in the regression is strengthened.  Among these 12 variables there is a natural

division: (1) “top” variables that are strongly supported by the data with posterior inclusion

probability above 0.95, (2) variables with some support by the data with inclusion probability

below 0.95 but above the prior probability 0.219.   The remaining 20 variables have little or no
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support for inclusion: seeing the data further reduces our already modest initial assessment of

their inclusion probability.   

Recall that the posterior model probabilities are given by equation (8) with prior model

probability given by the assumption that each variable has inclusion probability equal to 7/32. 

The posterior inclusion probability is the sum of the posterior probabilities of all of the

regressions including that model.  Thus, computationally, the posterior inclusion probability is a

measure of the weighted average goodness of fit of models including a particular variable,

relative to models not including the variable.  The goodness of fit measure is adjusted to penalize

highly parameterized models in the fashion of the Schwarz criterion.  Thus, variables with high

inclusion probabilities are variables which have high marginal contribution to the goodness-of-fit

of the regression model.  Readers uncomfortable with the Bayesian interpretation of the posterior

inclusion probability may still regard this measure as a meaningful summary of the importance of

a variable.

The posterior mean in column (2) is computed according to equation (9) while the

posterior standard deviation is the square root of the variance formula in equation (10).  The

posterior mean is a weighted average of the OLS estimates for all regressions, including

regressions in which the variable does not appear and thus has a coefficient of zero.  The

conditional mean in column (4) includes only the regressions in which the variable actually

occurs and thus is equal to the posterior mean divided by the posterior inclusion probability.  If

one has the prior with which we began the estimation then the unconditional posterior mean is

the “right” estimate of the marginal effect of the variable in the sense that it is the coefficient that



 In a pure Bayesian approach there is not really a notion of a single estimate.  However for21

many purposes the posterior mean is reasonable, and it is what would be used for constructing
unbiased, minimum mean-squared-error predictions.

 Note that one cannot interpret the ratio of the posterior mean to the posterior standard deviation22

as a t-statistic for two reasons.  Firstly the posterior is a mixture t-distribution and secondly it is
not a sampling distribution.  However, for most of the variables which we consider the posterior
distributions are not too far from being normal.  To the extent to which these are approximately
normal, having a ratio of posterior conditional mean to standard deviation around two in absolute
value indicates an approximate 95% Bayesian coverage region that excludes zero. 
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would be used for forecasting.   The conditional mean and variance are also of interest however. 21

From a Bayesian point of view these have the interpretation of the posterior mean and variance

for a researcher who has a prior inclusion probability equal to one for the particular variable

while maintaining the 7/32 inclusion probability for all the other variables. In other words, if one

is certain that the variable belongs in the regression, this is the estimate to consider.  It is also

comparable to coefficient estimates in standard regressions not accounting for model uncertainty.

The conditional standard deviation provides one measure of how well estimated the variable is

conditional on its inclusion.  It averages both the standard errors of each possible regression as

well as the dispersion of estimates across models.22

Examination of figure 1 and of the conditional means and standard deviations indicate

that all of the 12 variables which are supported by the data are also conditionally well estimated. 

We will call these variables robust.  While there may be combinations of conditioning variables

which lead to very different estimates for these coefficients, those regressions do not fit well and

receive low posterior weight.  Further, on average these coefficients are well-estimated within

individual models.  Note that there is in principle no reason why a variable could not have a very



 This would occur if, for example, a variable contributed a great deal to the fit of the model but23

switched signs in the presence of another important variable.

 This column was calculated based on a run of 31 million regression.  It was calculated24

separately so that the sampling could be based solely on the prior inclusion probabilities.  The
other baseline estimates were calculated by oversampling “good” variables for inclusion and thus
produce misleading results for this statistic.
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high posterior inclusion probability and still be non-robust, it just happens that in our dataset

there are no such variables.23

The “sign certainty probability” in column (6) is another measure of the significance of

the variables.  This is the posterior probability on the same side of zero as the posterior mean of

the coefficient, conditional on the variable’s inclusion.  As noted above, for each individual

regression the posterior density is equal to the classical sampling distribution of the coefficient. 

In classical terms, a coefficient would be 5% significant in a two-sided test if 97.5% of the

probability in the sampling distribution were on the same side of zero as the coefficient estimate. 

So if, for example, it just happened that a coefficient were exactly 5% significant in every single

regression its sign certainty probability would be 97.5%.  Interestingly, applying a 0.975 cutoff to

this quantity identifies exactly the same set of 12 variables as the examination of posterior

probabilities (assuming we give the benefit of the doubt to the real exchange rate distortions

variable at 0.974.)  This reinforces our conclusion that these variables are robust.

The final column in table 2 reports the (unweighted) fraction of regressions in which the 

variable is classically significant at the 95% level.  This is separated from the rest of the table

because it was calculated separately from the other estimates.     This is calculated partly for24

sake of comparison with extreme bounds analysis results.  Note that for all but two of the



(1 e βT)/T The coefficient of convergence is given by  (see Barro and Sala-i-Martin 1992).25

26

variables, many individual regressions can be found in which the variable is not significant, but

even the two favored variables would still be labeled fragile by an extreme bounds test. 

Another interesting statistic is the posterior mean model size.  For this baseline estimation

the prior model size was seven.  But the data appear to favor somewhat larger models: the

posterior mean model size is 9.9.  This number is, of course, sensitive to the specification of the

prior mean model size, as we will discuss below.

We are now ready to analyze the results from an economic point of view: what variables

do we find to be “strongly” related to growth?

Variables Strongly and Robustly Related to Growth

The Level of income in 1960 has an inclusion probability extremely close to one.  The

first panel in Figure 1 shows the posterior distribution of the coefficient estimates for initial

income.  Its inclusion probability is so high that in Figure 1, the mass at zero showing the

probability that the variable does not belong in the model, is invisible.  The posterior mean

coefficient is  -0.013 (with a standard deviation of 0.003); this is very precisely estimated.  The

implied speed of convergence  of 1.07% per year is somewhat smaller than 2% estimate given in25

Barro and Sala-i-Martin (1992).  Due to the high inclusion probability the posterior mean is very

close to the posterior mean conditional on inclusion.  The sign certainty probability in column (6)

shows that the probability mass of the density to the left of zero equals one to three decimal

places: this can be seen in Figure 1 by the fact that almost all of the continuous density lies below



 Rodriguez and Rodrik (1999) have recently criticized the Sachs-Warner index because it is26

mostly driven by the measure of the existence of state monopolies in major exports and by real
exchange rate distortions whereas the other components add little explanatory power to the
index.  The Sachs-Warner index might therefore act as a catch-all variable for various
macroeconomic difficulties and instability and Rodriguez and Rodrik warn to draw strong
inferences about the effect of trade openness on growth from the coefficient.
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zero.  Notice that the fraction of regressions in which the coefficient for initial income has t-

statistic greater than two in absolute value is only 59%, so that an extreme bounds test very easily

labels the variable not robust.  Nonetheless, the extremely well estimated coefficient and the very

high sign certainty statistic show that initial income is indeed robustly partially correlated with

growth.  The explanation is that the regressions in which the coefficient on initial income is

poorly estimated are regressions with very poor fit: thus they receive little weight in the

averaging process.  Furthermore, the extremely high inclusion probability suggests that

regressions that omit initial income are likely to perform poorly.

The Fraction of GDP in Mining has a positive relationship with growth and a very high

inclusion probability.  This variable captures the success of countries with a large endowment of

natural resources, although one might expect that large rents could also induce more political

instability or rent-seeking.  

The Sachs and Warner index of the Number of Years an economy has been open between

1950 and 1994 has a strong positive association with growth.  The openness index captures

various aspects of the openness of a country to trade (tariff and non-tariff barriers, black market

premium, degree of socialism and monopolization of exports by the government) .26
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The fractions of Confucians in the population enter positively in growth regressions. 

Note that the Confucian variable can be interpreted as a dummy for Hong Kong and some East

Asian Tigers, which may explain the very high inclusion probability.  

Variables Robustly Related to Growth

The following variables are supported by the data and are well-estimated.  As will be

discussed below however, the evaluation of their importance is more sensitive to prior beliefs

than that of the variables above.  Nonetheless, if one had a strong prior belief that any of these

variables should belong in the model it would be judged to be statistically important.

Life expectancy in 1960 has a high inclusion probability and is positively related to

subsequent growth of income per capita.  Note that life expectancy may capture a whole set of

factors (including nutrition, health care, social security, literacy rates) that are associated with

high growth.

The primary schooling enrolment rate in 1960 is  positively related to growth and the

inclusion probability is 0.63.  Notice that when we consider larger prior model sizes in table 3,

the inclusion probability of primary schooling increases dramatically (up to 0.95 with prior

model size equal to 16) and falls for small prior model sizes.  This suggests that primary

schooling performs better in explaining growth when several other variables are included to

capture steady state conditions.

Dummies for Sub-Saharan Africa and Latin America are negatively related to income

growth.  The posterior means are of comparable size, implying that Latin American and Sub-

Saharan African countries had 0.6 and 0.7 percentage points lower income per capita growth
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rates between 1960 and 1992, reducing the growth rate importantly from the sample average of

1.77.

The fraction of Protestants and growth are negatively related which may be explained by

the relatively larger share of Protestants in OECD countries, which are closer to their steady

states. For a country with 100% Protestants this effect is quite large at -0.6%. 

The fraction of primary exports in total exports has a negative relationship with income

growth with an economically large coefficient estimate. Given that almost all posterior weight is

allocated to regressions containing the fraction of GDP in mining variable, the marginal effect of

this variable is more focused on primary exports from non-mineral sources.

The Real exchange rate distortions variable is negatively related to income growth, but

just barely make it into this category.  Seeing the data only increases the inclusion probability by

around 1% from the prior. The 11 variables ranked above this do much better.  That said the

variable is still quite robust and well-estimated with 97.4% of its conditional posterior density

falling below zero.  

Variables Marginally Related to Growth

The following four variables: fraction of the population Buddhist, measure of outward

orientation, war dummy and the index of political rights all have posterior probabilities

somewhat lower than their prior probabilities, but nonetheless are fairly robust if they are

included in the growth regression.  They all have sign certainty greater than 0.95, so that, very

loosely speaking, they are on average 90% significant.  As we will discuss below the exact

importance of these variables is somewhat subject to the specific prior beliefs.   The  measure of
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outward orientation has a somewhat surprising negative partial correlation with growth.  Note

that the very high inclusion probability for the years of openness variable means that there is

already one openness measure in the regression.

Variables Not Robustly Related to Growth

The remaining sixteen variables show little evidence of any sort of robust partial

correlation with growth.  They neither contribute importantly to the goodness-of-fit of growth

regressions, as measured by their posterior inclusion probabilities, nor have estimates that are

robust across different sets of conditioning variables.  Notice that some political variables such as

the number of revolutions and coups or the index of political rights are not robustly related to

economic growth.  Similarly the degree of capitalism measure has no positive correlation with

growth.  This could be due to the fact that other variables which capture political or economic

instability such as real exchange rate distortions, the number of years an economy has been open

and life expectancy or regional dummies capture most of the variation in those variables.

Overall, we can conclude that the data support the hypothesis that there is a set of

variables that are robustly partially correlated with economic growth.  This strongly contradicts

the extreme bounds test which would reject the significance of every single variable.  Further

note that the list of robust variables is similar to that reported by Sala-i-Martin (1997), but that

several of the variables that Sala-i-Martin identified as significantly related to growth have low

inclusion probabilities.  This can be reconciled by the fact that the weighting method used by

Sala-i-Martin (1997), weighting by the model likelihood, assigns a lot of weight to a very few
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regressions.  By contrast, the weighting method derived in this paper puts less extreme emphasis

on small groups of regressions and incorporates the estimates from a much larger set of models.

  

4.2. Robustness of Results

Up until now we have concentrated on results derived for a prior model size .  As

discussed earlier, while we feel that this is a reasonable expected model size it is in some sense

arbitrary.  We need to explore the effects of the prior on our conclusions.  Tables 3, 4 and 5 do

precisely this, reporting the posterior inclusion probabilities and conditional posterior means,

respectively,  for  equal to 5, 9, 11 and 16 as well as repeating the benchmark numbers for easy

comparison. 

First note that the results for the four strongest variables show almost no sensitivity

whatsoever to the choice of prior model size, either in terms of their inclusion probabilities or

their coefficient estimates.  On the other end of the scale, the sixteen variables that showed little

partial correlation in the baseline estimation are not helped by alternative priors.  Their posterior

inclusion probabilities rise as  increases, which is hardly surprising as their prior inclusion

probabilities are rising.  But even the best in this group always have posterior inclusion

probabilities far lower than their prior inclusion probabilities.  For example, one of the best in a

poor lot is the civil liberties index (civlibb) which has a posterior probability of around 25%

when .  But with  the prior inclusion probability is 50% so that the data halve our

prior probability.   For some of the variables in this group the coefficient estimates are not very

stable across different model specifications but since they are not robust in the first place this is

of little importance.
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More interesting are the in-between variables, some of which display interesting

systematic patterns when  is varied. One of these is primary school enrolment rate in the initial

period (P60): here the posterior inclusion probability rises from 49% with  to 95% with

.  This suggests that the primary school enrolment rate is a variable which requires other

conditioning variables in order to display its full importance.  Interestingly, the conditional

estimate of its slope coefficient is quite stable across specifications.  Both the fraction protestant

and the primary commodity export share are also variables which appear to do better with more

conditioning variables and also have stable coefficient estimates.  Unsurprisingly, the coefficients

on the two regional dummies (Latin America and Sub-Saharan Africa) decline in absolute value

as more conditioning variables are included.  Only one variable in the list of 12 that are robust in

the baseline regressions would drop out when priors indicate larger model sizes: real exchange

rate distortions (RERD).  For the posterior probability is lower than the prior and the

coefficient is falling.  This suggests that this variable is acting more as a catchall for various

other effects than in its own right.  All of the other 11 variables that were robust in the baseline

model also appear to be robust to different prior specifications as can be seen by examining the

sign certainty probabilities in Table 5.

Finally there are the four marginally important variables from the baseline.  Of these, two,

fraction Buddhist and the political rights index, show little change: there is still marginal

evidence for their inclusion.   The other two, the index of outward orientation, and the war

dummy have posterior inclusion probabilities strongly increasing with the prior model size.  For

both, in the somewhat extreme  case the posterior probability is above the prior inclusion

probability.
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Unsurprisingly the posterior mean model size is strongly affected by the choice of prior

mean model size.  Recall that for the baseline  the posterior model size was 9.9.  For prior

model sizes of five through 11 the posterior model size is greater than the prior, indicating that

the data prefer larger models.  With a prior model size of 16 the data reduce our opinion of the

size of the model.  The posterior model size is quite sensitive to the prior specification.

The overall conclusions are at most mildly affected by considering different prior model

sizes.   Including robustness to different prior specifications we still find 11 variables importantly 

and robustly correlated with growth and five variables with marginal correlation.

5.-  CONCLUSIONS

In this paper we propose a Bayesian Averaging of Classical Estimates method to

determine what variables are strongly related to growth in a broad cross section of countries. The

method introduces a number of improvements relative to the previous literature. For example, we

improve upon Sala-i-Martin (1997) because we use an averaging method which is a

(approximately) fully justified Bayesian estimators and because we do not restrict the number

regressors in the averaged models.   Our approach provides an alternative to a standard Bayesian

Model Averaging since BACE does not require the specification of the prior distribution of the

parameters, but has only one hyper-parameter, the expected model size, . This parameter is easy

to interpret, easy to specify, and easy to check for robustness.  The interpretation of the BACE 

estimates is straightforward for economists not trained in Bayesian inference, since the weights

are analogous to the Schwarz model selection criterion.  Finally, our estimates can be calculated

using only repeated applications of OLS which makes the approach transparent and
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straightforward to implement.  In contrast to extreme bounds tests, models that fit poorly are not

given equal weight with those that fit well and no variables are held “fixed” and therefore

“untested.”

Our main results support Sala-i-Martin rather than Levine and Renelt: we find that a good

number of economic variables have robust partial correlation with long-run growth.  In fact, we

find that about one third of the 32 variables used in the analysis can be said to be robustly related

to growth while several more are marginally related.  Interestingly, the strongest variable is the

initial level of income which reflects the concept of conditional convergence discussed in Barro

and Sala-i-Martin (1992).  Other important variables include regional dummies (such as Africa or

Latin America), some measures of human capital (such as life expectancy or primary schooling)

and some sectoral variables such as measures of openness, primary exports or real exchange

distortions. 

There are three lines of research that we would like to pursue from here. First we would

like to apply a version of our BACE method to panel data estimates, which have become quite

popular in the recent empirical economic growth literature.  Secondly, we plan to allow the

inclusion of nonlinear terms in the regressions.  The literature has identified some variables

which may affect growth in a highly nonlinear way: for example, it has been argued that inflation

has important negative effects on growth, but only for very high levels of inflation. Our analysis

forces all variables to enter the regressions in a linear fashion and, therefore, does not allow for

such nonlinearities.  Finally, we would like to expand our theoretical and empirical analysis to

allow for unbalanced data sets.  The lack of data is an important problem for many fields, but it is

an especially important problem for the field of cross-country comparisons of long-term data like
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the one required by the growth literature.  Our analysis so far has required that the number of

observations be identical for each of the regressions and, as a result, we have been forced to

neglect many of the potentially important variables simply because they were missing too many

observations. 
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(A1)

(A2)

APPENDIX 1 

This appendix includes some more precise details about computational aspects of the

BACE procedure with particular emphasis on the sampling algorithm and convergence.  Given

the form of our prior distribution, the prior inclusion probability for each variable is  as

described in the main text.  Represent a model, , as a length  binary vector in which a one

indicates that a variable is included in the model and a zero indicates that it is not.  Then:

where is the number of included variables in model j and  is the i’th element of the

vector.  The second equality in (A1) holds only in the case of equal prior inclusion probabilities

for each variable, but the first equality is easily adapted to the case in which the prior inclusion

probabilities may differ across variables.  If the set of possible regressions is small enough to

allow exhaustive calculation, one may substitute (A1) into (8) to calculate the posterior model

probabilities and then use (9) and (10) to calculate the posterior mean and variance.  For each

term of the sum one calculates the appropriate OLS regression, gets the OLS parameter estimates

for the β’s and σ and the sum of squared errors.  These allow the computation of the individual

term in (9) and (10).  Also the posterior probabilities allow the calculation of any other features

of the posterior distribution which may be of interest based on the -term version of (4).   As

for the other quantities cited in this paper, the “sign-certainty statistic” is given by:
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(A3)

The histograms for the posterior densities are calculated as follows.  An initial run established the

important range of the distribution of the estimates for each β.  This was then split into 100 equal

size bins for the histogram.  Since for each regression the ratio of  to the estimated standard

deviation of the error term is distributed t(T-k-1) we can use a t-CDF to evaluate the amount of

probability contained in each bin.  This is then weighted by the posterior probability of the

regression.  Note that the calculation of these histograms is quite computationally intensive as

with each regression we must make 100 times k calls to a t-CDF.  

When we are sampling randomly from the space of possible models we want the limits of

all of our quantities of interest to approach their true values as the number of sampled models

approaches infinity.  If we let the probability of sampling  be given by  then the weight

attached to each regression must be adjusted by the inverse of the sampling probability.  This is

because as the number of sampled regressions approaches infinity the fraction of times a

particular regression is run approaches its sampling probability, when in sums such as (9) and

(10) each regression gets equal weight.  Thus, with sampling the analog of (8) becomes:

where  represents the model index associated with the i’th randomly sampled model and N is

the number of models sampled.  This version of the weights can then be used to calculate

sampling analogs of (9) and (10).  The intuition for (A3) is that we are over-sampling some
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models so as usual we have to deflate observations by their sampling probabilities.  (A3) is

particularly easy to calculate when the sampling probabilities are equal to the prior probabilities

in which case they cancel and need not even be computed.  This is the sampling strategy

discussed in the text of randomly selecting models by randomly including variables with their

initial inclusion probability.  So long as the sampling probabilities of all models are greater than

zero all of the numerical approximations will be consistent.

Trial-and-error calculation indicated that for the present problem the prior-weight

sampling was leading to slow convergence of the parameter estimates.  This is because it samples

many, many poorly fitting regressions which receive little weight in the averages.  Instead we

used the following procedure which we refer to as the stratified sampler: we ran 100,000

regressions using the prior weight sampler and then adjusted the sampling inclusion probabilities

to be equal to the posterior inclusion probabilities estimated from the initial sample.  In order to

guard against too much impact from errors made in the first 100,000 regressions we limited the

sampling probabilities to lie in the interval [0.1, 0.85].   Some experimentation suggested that

moderate changes in these bounds has little effect on the behavior of the algorithm.  Again, since

any set of sample inclusion probabilities will work asymptotically the choice of these parameters

is not critical.  Thus our stratified sampler over-samples “good” regressions.

We then need some way of judging whether or not the sampled analogs of (9) and (10)

are approaching their limits.   As always, convergence criteria are somewhat arbitrary.  For the

estimates reported in the paper we examined changes in the posterior means of the β’s.  First we

normalized the coefficient estimates by the ratio of the standard deviation of y to the standard

deviation of x.  The standardization with respect to y is only to make the size of the convergence
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criterion easy to interpret.  This transformation standardizes the β’s into units of standard

deviations of y per standard deviation of x.  Then in order to declare that the estimates

“converged” we looked at the change in the estimates of the normalized β’s generated by

sampling a further 10,000 regressions.  When this change fell below 10E-06 for ten consecutive

sets of 10,000 regressions the algorithm declared convergence.  For our stratified sampling

technique these parameter changes fall smoothly as a function of the number of regressions so

that this criterion is reasonable.  For the prior probability sampler this change is much less

reliable with the occasional set of 10,000 having a large impact: we would not recommend the

use of this sampler with this particular convergence criterion.  For our baseline estimation with

 we also investigated the performance of the sampler and convergence criterion by

performing a number of further runs with the same convergence criterion: these all converged

with between 15 and 30 million regressions.  Results were very similar: they suggest that the

posterior inclusion probabilities in table 2 are accurate to at least two decimal places, while the

conditional β estimates are even more accurate.  Estimates based on only two million or so

regressions are even quite close to the 20 million regression baseline.  This suggests that our

methodology will create quite accurate approximations in reasonable computing times even with

very large model spaces.

In the Bayesian Model Averaging statistics literature, which has used fully Bayesian

estimates of individual models, the most popular sampling algorithm appears to be the MC3

algorithm mentioned in the main text.  We were resistant to using this algorithm because its

mechanism, based on the Metropolis-Hastings criterion, is quite difficult to understand

intuitively.  In order, however, to both try to ensure that our stratified sampler is generating



(X X) 1

40

correct answers and to compare it to procedures in other work we created a test data set.  This

used all of the observations in our main data set but with only 20 variables rather than the full set

of 32.  This reduces the set of possible regressions to around one million which easily allows the

precise calculation of the sums in (8), (9) and (10).   We then performed sampling runs with

50,000 regressions each and calculated a weighted mean-squared error criterion for the posterior

means of the β’s with the weighting matrix being .  By this criterion the stratified

sampling algorithm was about four times as accurate as MC3, but for both accuracy was quite

reasonable.
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APPENDIX 2

Countries included in the regressions:

Algeria El Salvador Cyprus
Benin Guatemala Denmark
Botswana Haiti Finland
Burundi Honduras France
Cameroon Jamaica Germany, West
Cent'l Afr. Rep. Mexico Greece
Chad Nicaragua Ireland
Congo Panama Italy
Egypt Trinidad & Tobago Netherlands
Ethiopia United States Norway
Gabon Argentina Portugal
Gambia Bolivia Spain
Ghana Brazil Sweden
Guinea-Bissau Chile Switzerland
Kenya Colombia Turkey
Lesotho Ecuador United Kingdom
Liberia Guyana Australia
Madagascar Paraguay Fiji
Malawi Peru New Zealand
Mali Uruguay Papua New Guinea
Mauritania Venezuela
Mauritius Hong Kong
Morocco India
Niger Indonesia
Nigeria Israel
Rwanda Japan
Senegal Jordan
Somalia Korea
South africa Malaysia
Tanzania Nepal
Togo Pakistan
Tunisia Philippines
Uganda Singapore
Zaire Sri Lanka
Zambia Syria
Zimbabwe Taiwan
Canada Thailand
Costa Rica Austria
Dominican Rep. Belgium
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Table 1: Description of Data and Sources of Variables
Name Variable Description and Source Mean S.D.

 Growth Growth of GDP per capita between 1960 and 1992.  Barro and Lee (1993) 
[henceforth BL93] 0.0177 0.0180

1  GDPSH60 log(GDP per capita 1960). Log of Summers-Heston GDP per capita in
1960.  BL93. 7.3273 0.9046

2  LIFEE060 Life Expectancy in 1960.  BL93. 53.4173 12.2979
3  P60 Primary School Enrollment Rate in 1960.  BL93. 0.7143 0.3064
4  safrica Sub-Sahara African Dummy. Dummy for Sub-Sahara African Countries. 0.3265 0.4714
5  laam Latin American Dummy. Dummy for Latin American countries. 0.2245 0.4194
6  OECD OECD Dummy. Dummy for OECD countries. 0.2245 0.4194

7  SCOUT Outward Orientation.  Dummy for outward orientation.  Levine and Renelt
(1992). 0.3673 0.4846

8  dpop6090 Growth Rate of Population between 1960 and 1990.   BL93. 0.0213 0.0094
9  h60 Higher Education Enrollment Rate in 1960.   BL93. 0.0348 0.0486

10  YrsOpen Number of Years economy has been Open between 1950 and 1994.
Index computed by Sachs and Warner (1995). 0.3616 0.3504

11  revcoup Revolutions and Coups. Number of military coups and revolutions.  BL93. 0.1844 0.2290

12  wardum War Dummy. Dummy for countries that have been involved in war 
any time between 1960 and 1990.  BL93 0.3878 0.4897

13  prightsb Political Rights.  See Barro (1996). Larger index values indicate fewer
rights. [henceforth B96] 3.8801 2.0197

14  civlibb Civil Liberties.  Index of civil liberties.  Knack and Keefer (1995).  Larger
values indicate fewer civil liberties. 3.8362 1.8183

15  ABSLATIT Absolute Latitude.  B96. 22.7228 16.4984

16  AVELF 0.3617 0.3037Index of Ethnolinguistic Fractionalization.  Probability two random people
in a country do not speak same language.  From Easterly and Levine (1997).

17  PRIEXP70 Primary Exports in 1970. Fraction of primary exports in total exports in
1970.  Sachs and Warner (1996) 0.7330 0.2826

18  RERD Real Exchange Rate Distortions.  Levine and Renelt (1992). 125.4694 40.7523
19  BRIT British Colony.  Dummy variable for former British colonies.  See B96. 0.3367 0.4750
20  FRENCH French Colony.  Dummy variable for former French colonies.  See B96. 0.1837 0.3892
21  SPAIN Spanish Colony. Dummy variable for former Spanish colonies.  See B96. 0.1633 0.3715
22  BUDDHA Fraction of Buddhists. See B96. 0.0418 0.1594
23  CATH Fraction of Catholics. See B96. 0.3554 0.3691

24  CONFUC Fraction of Confucians.  Fraction of population that follows Confucian
Religion.  See B96. 0.0140 0.0753

25  HINDU Fraction  Hindu.  See B96. 0.0379 0.1437
26  JEW Fraction  Jewish.  See B96. 0.0093 0.0828
27  MUSLIM Fraction  Muslim.  See B96. 0.2033 0.3345
28  PROT Fraction  Protestant.  See B96. 0.1688 0.2312
29  Mining Fraction of GDP in Mining.  From Hall and Jones (1996). 0.0479 0.0735

30  EcOrg 3.4388 1.4436Degree of Capitalism.  Index of degree in which economies favor 
capitalist forms of production.  Hall and Jones (1996).

31  OthFrac Fraction of Population Speaking Foreign Language.  Hall and Jones (1996). 0.3123 0.4051

32  EngFrac 0.0841 0.2517Fraction of Population Speaking English. Fraction of the population able to
speak English.  Hall and Jones (1996).
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Table 2: Baseline Estimation
Posterior Posterior “Sign Fraction of
Inclusion Standard Certainty Regressions 

Probability Deviation Probability” with Abs(t)>2

Posterior Mean Posterior
Mean Conditional Standard

Posterior Conditional

on Inclusion Deviation 
1 GDPSH60 -0.012761.000 -0.01276 0.00274 0.00273 1.000 0.59

29  Mining 0.064900.998 0.06475 0.01490 0.01458 1.000 0.54
10  YrsOpen 0.018240.997 0.01819 0.00447 0.00436 1.000 1.00
24  CONFUC 0.059830.971 0.05808 0.01861 0.01588 1.000 1.00
2 LIFEE060 0.000880.887 0.00079 0.00039 0.00028 0.999 0.71
3 P60 0.019380.627 0.01214 0.01107 0.00744 0.995 0.89
4 safrica -0.012090.596 -0.00720 0.00682 0.00436 0.994 0.85

27  MUSLIM 0.013950.580 0.00809 0.00779 0.00480 0.994 0.26
5  laam -0.011430.514 -0.00588 0.00642 0.00409 0.992 0.62

28  PROT -0.013510.474 -0.00641 0.00781 0.00571 0.991 0.71
17  PRIEXP70 -0.013770.430 -0.00592 0.00776 0.00564 0.989 0.76
18  RERD -0.000070.239 -0.00002 0.00003 0.00003 0.974 0.52
22  BUDDHA 0.013980.194 0.00271 0.00638 0.00724 0.967 0.96

7  SCOUT -0.003920.151 -0.00059 0.00164 0.00218 0.956 0.01
12  wardum -0.003960.145 -0.00058 0.00164 0.00227 0.955 0.23
13  prightsb -0.001650.138 -0.00023 0.00068 0.00099 0.950 0.40
32  EngFrac -0.007190.107 -0.00077 0.00268 0.00464 0.933 0.35
14  civlibb -0.001640.104 -0.00017 0.00064 0.00123 0.917 0.26
23  CATH -0.007590.096 -0.00073 0.00304 0.00660 0.855 0.45
11  revcoup -0.006630.078 -0.00052 0.00225 0.00491 0.905 0.08
31  OthFrac 0.004290.076 0.00032 0.00149 0.00352 0.882 0.30
15  ABSLATIT 0.000150.073 0.00001 0.00005 0.00013 0.874 0.40
30  EcOrg 0.000810.054 0.00004 0.00025 0.00075 0.855 0.15
16  AVELF -0.004860.054 -0.00026 0.00156 0.00478 0.843 0.30
8  dpop6090 0.159200.045 0.00719 0.05220 0.19000 0.796 0.15
6  OECD 0.003240.044 0.00014 0.00135 0.00557 0.716 0.21

25  HINDU -0.003610.044 -0.00016 0.00212 0.00943 0.644 0.02
21  SPAIN -0.001990.044 -0.00009 0.00123 0.00551 0.647 0.36
19  BRIT 0.000330.034 0.00001 0.00048 0.00257 0.544 0.12
26  JEW 0.005940.033 0.00020 0.00256 0.01277 0.677 0.00
20  FRENCH 0.000070.032 0.00000 0.00058 0.00323 0.502 0.20
9  h60 0.000470.031 0.00001 0.00559 0.03176 0.503 0.06

Notes: The left hand side variable in all regressions is the growth rate from 1960-1992 across 98 countries. Apart from the final
column all statistics come from a random sample of approximately 21 million of the possible regressions including any
combination of the 32 variables.  Prior mean model size is seven.  Variables are ranked by the first column, the posterior
inclusion probability.  This is the sum of the posterior probabilities of all models containing the variable.  The next two columns
reflect the posterior mean and standard deviations for the linear marginal effect of the variable: the posterior mean has the usual
interpretation of a regression β.  The conditional mean and standard deviation are conditional on inclusion in the model.  The
“sign certainty probability” is the posterior probability that the coefficient is on the same side of zero as its mean conditional on
inclusion.  It is a measure of our posterior confidence in the sign of the coefficient.  The final column is the fraction of
regressions in which the coefficient has a classical t-test greater than two, with all regressions having equal sampling probability. 
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Table 3: Posterior Inclusion Probabilities with Different Prior Model Sizes 

Prior Inclusion
Probability 0.156 0.219 0.281 0.344 0.500

1 GDPSH60 0.999 1.000 1.000 1.000 1.000
29  Mining 0.996 0.998 0.999 0.999 1.000
10  YrsOpen 0.996 0.997 0.997 0.997 0.997
24  CONFUC 0.974 0.971 0.970 0.971 0.977

2 LIFEE060 0.898 0.887 0.880 0.875 0.868
3 P60 0.488 0.627 0.740 0.825 0.947
4 safrica 0.589 0.596 0.606 0.624 0.715

27  MUSLIM 0.534 0.580 0.630 0.679 0.774
5  laam 0.511 0.514 0.526 0.552 0.668

28  PROT 0.390 0.474 0.544 0.605 0.740
17  PRIEXP70 0.318 0.430 0.526 0.615 0.788
18  RERD 0.223 0.239 0.250 0.256 0.271
22  BUDDHA 0.137 0.194 0.254 0.316 0.469

7  SCOUT 0.086 0.151 0.235 0.331 0.596
12  wardum 0.084 0.145 0.220 0.307 0.555
13  prightsb 0.103 0.138 0.178 0.212 0.293
32  EngFrac 0.084 0.107 0.127 0.146 0.198
14  civlibb 0.069 0.104 0.139 0.175 0.257
23  CATH 0.065 0.096 0.129 0.162 0.248
11  revcoup 0.056 0.078 0.099 0.119 0.167
31  OthFrac 0.064 0.076 0.088 0.101 0.143
15  ABSLATIT 0.054 0.073 0.093 0.108 0.149
30  EcOrg 0.036 0.054 0.075 0.099 0.183
16  AVELF 0.038 0.054 0.073 0.092 0.149

8  dpop6090 0.031 0.045 0.063 0.084 0.159
6  OECD 0.030 0.044 0.061 0.078 0.131

25  HINDU 0.027 0.044 0.064 0.088 0.178
21  SPAIN 0.032 0.044 0.057 0.073 0.136
19  BRIT 0.023 0.034 0.047 0.063 0.116
26  JEW 0.023 0.033 0.046 0.060 0.107
20  FRENCH 0.021 0.032 0.044 0.060 0.116

9  h60 0.020 0.031 0.043 0.056 0.102

Notes:   The left hand side variable in all regressions is the growth rate from 1960-1992 across 98 countries.  Each
column contains the posterior probability of all models including the given variable.  These are calculated with the
same data but which different prior mean model sizes as labeled in the column headings.  They are based on
different random samples of all possible regressions using the same convergence criterion for stopping sampling. 
Samples range from around 4 million regressions for to around 30 million for .
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Table 4: Posterior Conditional Means with Different Prior Model Sizes 

Prior Inclusion
Probability Posterior Mean Conditional on Inclusion

1 GDPSH60 -0.01274 -0.01276 -0.01281 -0.01285 -0.01291
29  Mining 0.06502 0.06490 0.06479 0.06481 0.06513
10  YrsOpen 0.01876 0.01824 0.01776 0.01728 0.01604
24  CONFUC 0.06153 0.05983 0.05846 0.05718 0.05437

2 LIFEE060 0.00095 0.00088 0.00083 0.00078 0.00068
3 P60 0.01933 0.01938 0.01958 0.01990 0.02080
4 safrica -0.01281 -0.01209 -0.01142 -0.01083 -0.00980

27  MUSLIM 0.01409 0.01395 0.01372 0.01344 0.01264
5  laam -0.01176 -0.01143 -0.01097 -0.01046 -0.00957

28  PROT -0.01354 -0.01351 -0.01344 -0.01338 -0.01325
17  PRIEXP70 -0.01383 -0.01377 -0.01370 -0.01361 -0.01341
18  RERD -0.00007 -0.00007 -0.00006 -0.00006 -0.00005
22  BUDDHA 0.01412 0.01398 0.01392 0.01384 0.01350

7  SCOUT -0.00372 -0.00392 -0.00408 -0.00421 -0.00449
12  wardum -0.00380 -0.00396 -0.00406 -0.00416 -0.00438
13  prightsb -0.00171 -0.00165 -0.00160 -0.00155 -0.00143
32  EngFrac -0.00761 -0.00719 -0.00678 -0.00636 -0.00539
14  civlibb -0.00165 -0.00164 -0.00162 -0.00159 -0.00146
23  CATH -0.00784 -0.00759 -0.00724 -0.00686 -0.00603
11  revcoup -0.00688 -0.00663 -0.00634 -0.00599 -0.00495
31  OthFrac 0.00477 0.00429 0.00383 0.00339 0.00257
15  ABSLATIT 0.00016 0.00015 0.00014 0.00013 0.00009
30  EcOrg 0.00082 0.00081 0.00081 0.00080 0.00080
16  AVELF -0.00504 -0.00486 -0.00467 -0.00449 -0.00399

8  dpop6090 0.16213 0.15920 0.15926 0.16122 0.17161
6  OECD 0.00300 0.00324 0.00330 0.00318 0.00267

25  HINDU -0.00200 -0.00361 -0.00452 -0.00558 -0.00768
21  SPAIN -0.00293 -0.00199 -0.00117 -0.00035 0.00162
19  BRIT 0.00028 0.00033 0.00037 0.00043 0.00071
26  JEW 0.00663 0.00594 0.00541 0.00483 0.00306
20  FRENCH 0.00046 0.00007 -0.00024 -0.00062 -0.00134

9  h60 -0.00229 0.00047 0.00198 0.00365 0.00605

Notes:   The left hand side variable in all regressions is the growth rate from 1960-1992 across 98 countries.  Each
column contains the posterior mean of the regression slope coefficient for the given variable conditional on the
variables inclusion in the model.  These are calculated with the same data but which different prior mean model
sizes as labeled in the column headings.  They are based on different random samples of all possible regressions
using the same convergence criterion for stopping sampling.  Samples range from around 4 million regressions for

to around 30 million for .
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Table 5: Sign Certainty Probabilities 
with Different Prior Model Sizes 

1 GDPSH60 1.000 1.000 1.000 1.000 1.000
29  Mining 1.000 1.000 1.000 1.000 1.000
10  YrsOpen 1.000 1.000 1.000 1.000 0.999
24  CONFUC 1.000 1.000 0.999 0.999 0.999
2 LIFEE060 1.000 0.999 0.998 0.997 0.994
3 P60 0.992 0.995 0.996 0.995 0.997
4 safrica 0.999 0.994 0.987 0.991 0.986

27  MUSLIM 0.996 0.994 0.992 0.993 0.990
5  laam 0.996 0.992 0.988 0.986 0.983

28  PROT 0.993 0.991 0.986 0.989 0.986
17  PRIEXP70 0.992 0.989 0.990 0.990 0.990
18  RERD 0.966 0.974 0.962 0.958 0.922
22  BUDDHA 0.973 0.967 0.966 0.965 0.965
7  SCOUT 0.925 0.956 0.952 0.964 0.976

12  wardum 0.962 0.955 0.959 0.965 0.974
13  prightsb 0.977 0.950 0.943 0.942 0.923
32  EngFrac 0.860 0.933 0.919 0.908 0.874
14  civlibb 0.898 0.917 0.922 0.907 0.897
23  CATH 0.884 0.855 0.855 0.841 0.807
11  revcoup 0.871 0.905 0.905 0.874 0.834
31  OthFrac 0.979 0.882 0.875 0.831 0.766
15  ABSLATIT 0.914 0.874 0.821 0.851 0.743
16  AVELF 0.851 0.843 0.853 0.819 0.817
30  EcOrg 0.787 0.855 0.849 0.856 0.859
8  dpop6090 0.735 0.796 0.795 0.797 0.832

25  HINDU 0.869 0.716 0.729 0.716 0.681
6  OECD 0.828 0.647 0.579 0.518 0.618

21  SPAIN 0.878 0.644 0.586 0.701 0.794
19  BRIT 0.600 0.544 0.566 0.516 0.579
26  JEW 0.813 0.677 0.670 0.641 0.586
20  FRENCH 0.641 0.502 0.512 0.537 0.651
9  h60 0.527 0.503 0.544 0.524 0.580
Posterior Mean 

Model Size 9.00 9.89 10.68 11.73 14.19

Note:  The left hand side variable in all regressions is the growth rate from 1960-1992 across 98 countries.  Each
column contains the sign-certainty probability of the regression slope coefficient for the given variable.  This
measures our posterior degree of confidence that the signs of the conditional means in Table 4 are correct. These are
calculated with the same data but which different prior mean model sizes as labeled in the column headings.  They
are based on different random samples of all possible regressions using the same convergence criterion for stopping
sampling.  Samples range from around 4 million regressions for to around 30 million for .
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Figure 1: Posterior Distributions
These figures show the posterior distributions of the marginal effects of each independent variable on long-run
economic growth.  The rectangle centered on zero represents the probability mass at zero, the posterior probability
that the variable is not contained in the model. 
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Figure 1 (continued): Posterior Distributions
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Figure 1 (continued): Posterior Distributions
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Figure 1 (continued): Posterior Distributions


