NBER WORKING PAPER SERIES

LIQUIDITY CONSTRAINTS AND IMPERFECT INFORMATION IN SUBPRIME LENDING

William Adams

Liran Einav
Jonathan Levin
Working Paper 13067
http://www.nber.org/papers/w13067

NATIONAL BUREAU OF ECONOMIC RESEARCH

1050 Massachusetts Avenue
Cambridge, MA 02138
April 2007

We thank Raj Chetty, Amy Finkelstein, Robert Hall, Richard Levin, and many seminar participants for suggestions and encouragement. Mark Jenkins provided stellar research assistance and Ricky Townsend greatly assisted our early data analysis. Einav and Levin acknowledge the support of the National Science Foundation and the Stanford Institute for Economic Policy Research, and Levin acknowledges the support of the Alfred P. Sloan Foundation. The views expressed herein are those of the author(s) and do not necessarily reflect the views of the National Bureau of Economic Research.
© 2007 by William Adams, Liran Einav, and Jonathan Levin. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

Liquidity Constraints and Imperfect Information in Subprime Lending
William Adams, Liran Einav, and Jonathan Levin
NBER Working Paper No. 13067
April 2007
JEL No. D14,G14

Abstract

We present new evidence on consumer liquidity constraints and the credit market conditions that might give rise to them. Our analysis is based on unique data from a large auto sales company that serves the subprime market. We first document the role of short-term liquidity in driving purchasing behavior, including sharp increases in demand during tax rebate season and a high sensitivity to minimum down payment requirements. We then explore the informational problems facing subprime lenders. We find that default rates rise significantly with loan size, providing a rationale for lenders to impose loan caps because of moral hazard. We also find that borrowers at the highest risk of default demand the largest loans, but the degree of adverse selection is mitigated substantially by effective risk-based pricing.

William Adams Citigroup william.adams@citigroup.com Liran Einav Stanford University Department of Economics 579 Serra Mall Stanford, CA 94305-6072 and NBER leinav@stanford.edu

Jonathan Levin Stanford University Department of Economics 579 Serra Mall Stanford, CA 94305-6072 and NBER jdlevin@stanford.edu

1 Introduction

Access to credit markets is generally considered a hallmark of developed economies. In the United States, most households appear to have substantial ability to borrow; indeed, the average household in the United States has over 23,000 dollars in non-mortgage debt alone. Nevertheless, economists often point to limited borrowing opportunities, or liquidity constraints, to explain anomalous findings about consumption behavior, labor supply, and the demand for credit. Despite a sizeable theoretical literature that explains why some borrowers might have trouble obtaining credit even in competitive markets (e.g., Jaffee and Stiglitz, 1990), there has been relatively little work relating the consumer behavior indicative of liquidity constraints to the actual functioning of the credit market.

In this paper, we use unique data from a large auto sales company to study liquidity constraints and credit market conditions for precisely the population that is most likely to have a difficult time obtaining credit, those with low incomes and poor credit histories. These consumers, who typically cannot qualify for regular bank loans, comprise the so-called subprime market. Because the company we study originates subprime loans, its loan applications and transaction records provide an unusual window into the consumption and borrowing behavior of households that are rationed in primary credit markets. Moreover, we track loan repayments allowing us to analyze the difficulties in lending to the subprime population and explain why their supply of credit may be limited.

We begin by documenting the importance of short-term liquidity constraints for individuals in our sample. We present two pieces of evidence. Both are based on purchasing behavior and indicate a high sensitivity to cash-on-hand. First, we document a dramatic degree of demand seasonality associated with tax rebates. Overall demand is almost 50 percent higher during tax rebate season than during other parts of the year. This seasonal effect substantially varies with household income and with the number of dependents, closely mirroring the federal earned income tax credit schedule. Second, we find that demand is highly responsive to changes in minimum down payment requirements. A 100 dollar increase in the required down payment, holding car prices fixed, reduces demand by 7 percent. In contrast, generating the same reduction in demand requires an increase in car prices of close to 1,000 dollars. We calculate that in the absence of liquidity constraints these effects would imply an annual discount rate of 427 percent. ${ }^{1}$

[^0]Taken together, these findings point to the conclusion that this population does not have ready access to credit that allows them to shift wealth across time. This raises the question of whether consumer liquidity constraints can be tied to underlying credit market conditions. One possibility is that high default rates, coupled with legal caps on interest rates, simply rule out some forms of lending. A second possibility is that fundamental features of the consumer credit market are responsible for credit constraints. To investigate this possibility, we turn to the information economics view of credit markets, as developed by Jaffee and Russell (1976) and Stiglitz and Weiss (1981).

Modern information economics emphasizes that credit constraints can arise in equilibrium even if financing terms can adjust freely and lenders are fully competitive. Its explanation lies in the twin problems of moral hazard and adverse selection. In the moral hazard version of the story, individual borrowers are more likely to default on larger loans. This leads to problems in the loan market because borrowers do not internalize the full increase in default costs that come with larger loan sizes. As a result, lenders may need to cap loan sizes to prevent over-borrowing. In contrast, adverse selection problems arise if borrowers at high risk of default also desire large loans, as might be expected given that they view repayment as less likely. As the theoretical literature has pointed out, adverse selection can give rise not only to loan caps, but to some worthy borrowers being denied credit because they cannot distinguish themselves from the less worthy. ${ }^{2}$

The second half of the paper explores these ideas, first from the standpoint of theory and then empirically. In Section 4 we develop a simple model of consumer demand for credit and competitive lending, along the lines of Jaffee and Russell (1976). We show that such a model can explain many of the institutional features we observe on the lender side of the market, such as the adoption of credit scoring and risk-based pricing, and the use of interest rates that increase with loan size. We also explain why informational problems, compounded by interest rate caps, create a rationale for lenders to limit access to credit. The model therefore provides a simple credit market based explanation for why purchasing behavior might reflect liquidity constraints.

Having outlined the theoretical framework, we investigate the empirical importance of moral hazard and adverse selection for subprime lending. Separately identifying these two forces is often
discount factor, equal to $1 /(1+s)$, of less than 0.2 . Such an individual is indiferent between paying 1,000 dollars today and 5,270 dollars in a year.
${ }^{2}$ The fact that imperfect information in the credit market leads to limits on lending is analogous to Rothschild and Stiglitz's (1976) famous observation that imperfect information in an insurance market may lead to under-insurance relative to the full-information optimum.
a challenge because they have similar implications: both moral hazard and adverse selection imply a positive correlation between loan size and default. A useful feature of our data is that we can exploit exogenous (to the individual) variation in car price to isolate the pure moral hazard effect of increased loan size on default. This in turn allows us to back out a quantitative estimate of self-selection from the cross-sectional correlation between loan size and default. We explain the econometric strategy in detail in Section 5.2.

We find compelling evidence for both moral hazard and adverse selection. We estimate that for a given borrower, a 1,000 dollar increase in loan size increases the rate of default by over 16 percent. This alone provides a rationale for limiting loan sizes because the expected revenue from a loan is not monotonically increasing in the size of the loan. Regarding adverse selection, we find that borrowers who are observably at high risk of default are precisely the borrowers who desire the largest loans. The company we study assigns buyers to a small number of credit categories. We estimate that all else equal, a buyer in the worst category wants to borrow around 200 dollars more than a buyer in the best category, and is more than twice more likely to default given equally-sized loans.

This strong force toward adverse selection is mitigated substantially by the use of risk-based pricing. In practice, observably risky buyers end up with smaller rather than larger loans because they face higher down payment requirements. The finding is notable because it is often suggested that the development of sophisticated credit scoring has had a major impact on consumer credit markets, but there is relatively little empirical evidence on exactly what it accomplishes. Here we document its marked effect in matching high-risk borrowers with smaller loans. Of course, riskbased pricing only mitigates selection across observably different risk groups. We also look for, and find, evidence of adverse selection within risk groups, driven by unobservable characteristics. Specifically, we estimate that a buyer who pays an extra 1,000 dollars down for unobservable reasons will be eight percent less likely to default than one who does not given identical cars and equivalent loan liabilities. This adverse selection on unobservables is both statistically and economically significant, but smaller in magnitude than our estimates of moral hazard.

We view these findings as broadly supportive of the information economics view of consumer lending and its explanation for the presence of credit constraints. Overall our evidence supports: (1) the underlying forces of informational models of lending, namely moral hazard and adverse selection; (2) the supply-side responses these models predict, specifically loan caps, variable interest rates, and
risk-based pricing; and (3) the predicted consequences, specifically liquidity effects in purchasing behavior. So while there are limits to what we can conclude with data from a single lender, we think that our results highlight the empirical relevance of informational models of consumer credit markets. ${ }^{3}$

Our paper ties into a large empirical literature documenting liquidity-constrained consumer behavior and a much smaller literature on its causes. Much of the accumulated evidence on the former comes from consumption studies that document relatively high propensities to consume out of transitory income, particularly for households with low wealth. ${ }^{4}$ Some of the sharpest evidence in this regard comes from analyzing consumption following predictable tax rebates. For instance, Johnson, Parker and Souleles (2006) find that households immediately consumed 20-40 percent of the 2001 tax rebate, with the effect biggest for low-wealth households (see also Souleles, 1999, and Parker, 1999). A common explanation for these findings is that households with low wealth are unable to effectively access credit (Deaton, 1991; Zeldes, 1989). ${ }^{5}$

Further evidence on credit constraints comes from Gross and Souleles (2001), who use detailed data from a credit card company to look at what happens when credit limits are raised. They find that a hundred dollar increase in a card holder's limit raises spending by ten to fourteen dollars. Based on this, they argue that a substantial fraction of borrowers in their sample appear to be credit constrained. As will be apparent below, the population in our data is most likely in a substantially worse position to access credit than the typical credit card holder.

A distinct set of evidence on credit constraints comes from studying household preferences over different types of loan contracts. An early survey by Juster and Shay (1964) found striking differences between households in their willingness to pay higher interest rates for a longer loan with lower monthly payments. In particular, households likely to be credit constrained, e.g. those with lower incomes, were much more willing to pay higher interest rates to reduce their monthly payment. More recently, Attanasio, Goldberg and Kyriazidou (2006) use Survey of Consumer Finances data on auto loans to show that for most households, and particularly for low-income ones, the demand

[^1]for loans is much more sensitive to loan maturity than to interest rate. ${ }^{6}$ Their interpretation is that because of their limited access to credit, many consumers will pay a substantial premium to smooth payments over a longer period.

The purpose of the above studies is to document that a significant set of households has a limited ability to borrow at desirable rates. There is much less empirical work that addresses the causes of credit constraints. Ausubel $(1991,1999)$ argues that the high interest rates charged by credit card issuers are a market failure caused by adverse selection, a view that is supported by direct marketing experiments. Edelberg $(2003,2004)$ also finds evidence for adverse selection in both mortgage lending and automobile loans, and documents an increasing trend toward risk-based interest rates. We view it as a virtue of our data that we can tie together demand-side evidence for credit constrained behavior with evidence on the informational problems that might give rise to these constraints. Some of our ongoing work explores more deeply how lenders respond to informational problems by looking at the introduction of credit scoring and the problem of optimal loan pricing in the presence of moral hazard and adverse selection.

2 Data and Environment

Our data come from an auto sales company that operates used car dealerships in the United States. Each potential customer fills out a loan application and is assigned a credit category that determines the possible financing terms. Almost all buyers finance a large fraction of their purchase with a loan that extends over a period of several years. What makes the company an unusual window into consumer borrowing is its customer population. Customers are primarily low-income workers and a great majority are subprime borrowers. In the U.S., Fair Isaac (FICO) scores are the most-used measure of creditworthiness. They range from 350 to 800 , with the national median between 700 and 750. Less than half of the company's applicants have a FICO score above 500, the second percentile of the national FICO score distribution. This kind of low credit score indicates either a sparse or, more often, checkered credit record.

The principal characteristics of subprime lending are high interest rates and high default rates. A typical loan in our data has an annual interest rate on the order of $25-30$ percent. The flip side

[^2]of high interest rates is high default rates. Over half of the company's loans end in default. With such a high probability of default, screening the good risks from the bad, and monitoring loan payments, is extremely important. The company has invested significantly in proprietary credit scoring technology.

Having described the institutional setting, we now turn to our specific data. We have company data on all applications and sales from June 2001 through December 2004. We combined this with records of loan payments, defaults and recoveries through April 2006. This gives us information on the characteristics of potential customers, the terms of the consummated transactions, and the resulting loan outcomes. We have additional data on the loan terms being offered at any given time as a function of credit score, and inventory data that allows us to observe the acquisition cost of each car, the amount spent to recondition it, and its list price on the lot.

The top panel of Table 1 contains summary statistics on the applicant population. There are well over 50,000 applications in our sample period (to preserve confidentiality, we do not report the exact number of applications). The median applicant is in his or her mid-thirties and has a monthly household income of 2,411 dollars. We do not have a direct measure of household assets or debt, but we observe a variety of indirect measures. A small fraction of applicants are homeowners, but the majority are renters and more live with their parents than own their own home. Nearly a third report having neither a savings nor a checking account. The typical credit history is spotty: more than half of the applicants have had a delinquent balance within six months prior to their loan application. In short, these applicants represent a segment of the population for whom access to credit is potentially problematic.

Just over one third of the applicants purchase a car. The average buyer has a somewhat higher income and somewhat better credit characteristics than the average applicant. In particular, the company assigns each applicant a credit category, which we partition into "high", "medium" and "low" risk. The applicant pool is 26 percent low risk and 29 percent high risk, while the corresponding percentages for the pool of buyers are 35 and 17 .

The sales terms, summarized in the second panel of Table 1, reflect the presumably limited options of this population. A typical car, and most are around 3-5 years old, costs around 6,000 dollars to bring to the lot. The average sale price is just under 11,000 dollars. ${ }^{7}$ The average down

[^3]payment is a bit less than 1000 dollars, so after taxes and fees, the average loan size is similar to the sales price.

Despite the large loans and small down payments, it appears that many buyers would prefer to put down even less money. Forty-four percent make exactly the minimum down payment, which varies with the buyer's credit category but is typically between 400 and 1,000 dollars. Some buyers do make down payments that are substantially above the required minimum, but the number is small. Less than ten percent of buyers make down payments that exceed the required down payment by a thousand dollars.

In a financed purchase, the monthly payment depends on the sale price, the interest rate and the loan term. ${ }^{8}$ Much of the relevant variation in our data is due to the former rather than the latter. Over eighty-five percent of the loans have an annual interest rate over 20 percent, and around half the loans appear to be at the state-mandated maximum annual interest rate. ${ }^{9}$ Most states in our data have a uniform 30 percent cap. ${ }^{10}$ These rates mean that finance charges are significant. For instance, a borrower who takes an 11,000 dollar loan at a 30 percent APR and repays it over 42 months will make interest payments totalling 6,000 dollars.

The main reason for the high finance charges is evident in the third panel of Table 1. Most loans end in default. Our data ends before the last payments are due on some loans, but of the loans with uncensored payment periods, only 39 percent are repaid in full. ${ }^{11}$ Moreover, loans that do default tend to default quickly. Figure 1(a) plots a kernel density of the fraction of payments made by borrowers who defaulted. Nearly half the defaults occur before a quarter of the payments have been made, that is, within ten months. This leads to a highly bimodal distribution of per-sale profits. To capture this, we calculated the present value of payments received for each uncensored loan in our data, including both the down payment and the amount recovered in the event of default, using an annual interest rate of 10 percent to value the payment stream. We then divide this by the firm's reported costs of purchasing and reconditioning the car to obtain a rate of return on capital for

[^4]each transaction. Figure 1(b) plots the distribution of returns, showing the clear bimodal pattern.
It is also interesting to isolate the value of each stream of loan repayments and compare it to the size of each loan. When we do this for each uncensored loan in our data (and use annual discount rates of 0 to 10 percent), we find an average repayment to loan ratio of $0.72-0.82$. Moreover, a substantial majority of loans in the data, 58-62 percent, have a repayment to loan ratio below one. This calculation provides a simple explanation for why a large fraction of buyers would maximize their loan size. In the majority of cases, the present value of payments on an extra dollar borrowed is significantly less than a dollar paid up front. ${ }^{12}$

3 Evidence of Liquidity Constraints: Purchasing Behavior

A consumer is liquidity constrained if he cannot finance present purchases using resources that will accrue to him in the future. Subprime borrowers are obvious candidates to find themselves in this position. While we cannot directly observe individual household balance sheets and credit options, our data does permit us to investigate the behavioral implications of liquidity constraints. We consider two such implications in this section.

The first concerns purchasing sensitivity with respect to current and predictable future cash flow. For an individual who can borrow freely against future resources, the response should be equal. In contrast, a high purchase response to a predictable temporary spike in cash flow, such as a tax rebate, suggests an inability to shift resources over time. The first piece of evidence we present is a striking seasonal increase in applications and sales at precisely tax rebate time. Moreover, we show that there is a remarkably clear correlation between the seasonal effects we observe and the amount of the earned income tax credit, which is likely to be a significant portion of the tax rebate for many households in our data.

The second empirical implication is the mirror image of the first. An individual who is not liquidity constrained should evaluate the cost of a given payment schedule based on its present value. In contrast, a liquidity constrained individual values the opportunity to defer payments to the future, and therefore views current payments as more costly than the present value of future

[^5]payments. This is consistent with the second piece of evidence we present: individuals' purchase elasticity with respect to current payment (down payment) is an order of magnitude higher than with respect to future payments.

Can we rationalize these findings in the absence of borrowing constraints? Explaining our seasonality finding is difficult. It seems unlikely that members of the population we study have a particular need for cars in the month of February. An alternative is that consumers view their purchase as a form of savings rather than consumption. But given the price margins and very low down payments, the immediate post-purchase equity share is negligible. ${ }^{13}$ Moreover, given the high default rate, viewing the transaction as a form of saving seems implausible unless consumers are greatly over-optimistic about their likelihood of making payments, which in turn would make it even harder to rationalize our second finding.

If consumers are realistic about the possibility of default, our second finding can be explained without reference to borrowing constraints if individuals highly discount the future. In particular, we calculate that our estimated purchase sensitivity with respect to present and future payments is consistent with consumers equating a 1,000 dollar cost today with a 5,270 dollar cost in one year. This number will only be higher if consumers were over optimistic about their default behavior and viewed their car purchase as a form of saving. For this reason, we view the combination of our two findings as particularly convincing evidence that liquidity plays a key role in driving consumer purchasing behavior.

3.1 The Effect of Tax Rebate Season

We start by examining seasonal patterns in demand. Figure 2(a) displays the average number of applications and sales, by calendar week, over the 2002-2005 period. Both are markedly higher from late January to early March. Applications are 23 percent higher in February than in the other months, and the close rate (sales to applications ratio) is 40 percent compared to 33 percent over the rest of the year. These seasonal patterns cannot be attributed to sales or other changes in the firm's offers. In fact, required down payments are almost 150 dollars higher in February, averaging across applicants in our data, than in the other months of the year. Indeed we initially thought these patterns indicated a data problem until the company pointed out that prospective buyers

[^6]receive their tax rebates at precisely this time of year.
But can tax rebates be large enough to explain such a dramatic spike in demand? All loan applicants must hold a job to be eligible for a loan, and most are relatively low earners, making them eligible for the earned income tax credit (EITC). The associated rebate, which varies with income and the number of dependents, can be as high as 4,500 dollars. To assess whether purchasing patterns might reflect EITC rebates, we classified applicants into twelve groups depending on their monthly household income and their number of dependents. For each group, we calculated the earned income tax credit for the average household in the group, ${ }^{14}$ and also the percent increase in applications, close rate and sales in February relative to the other months. Figure 2(b) plots the relationship between the calculated EITC rebate and the seasonal spike in demand for each group. There is a sharp correlation. For households with monthly incomes below 1,500 dollars and at least two dependents, for whom the EITC rebate could be around 4,000 dollars, the number of applications doubles in February and the number of purchases more than triples. In contrast, for households with monthly incomes above 3,500 dollars and no dependents, for whom the EITC rebate is likely zero, the number of applications and purchases exhibits virtually no increase in tax rebate season.

Because minimum down payment requirements are raised during tax season, it is interesting to isolate the seasonal effect in demand holding all else constant. Our demand estimates in the next section, which control for the relevant offer terms as well as individual characteristics such as credit score and household income, indicate that the demand of applicants who arrive on the lot is 30 percent higher in the month of February than in other months. There are also positive but less pronounced demand effects for January and March. Consistent with the liquidity story, we also find that the seasonal pattern reported above is mainly driven by cash transactions, while purchases that involve trade-ins, which are less likely to be affected by tax rebates, do not exhibit noticeable seasonal variation.

Our estimates of loan demand, discussed in Section 5, are also consistent with the hypothesis that tax rebates represent a substantial liquidity shock that significantly affects behavior. In particular, down payments are substantially higher in tax season even after factoring in the higher minimum requirements. About 65 percent of February purchasers make a down payment above the

[^7]required (higher) minimum compared to 54 percent in the rest of the year. Moreover, we estimate that after controlling for transaction characteristics the desired down payment of a February buyer is about 300 dollar higher than that of the average buyer. This is an enormous effect given that the average down payment is under 1,000 dollars.

3.2 Estimating Purchasing Demand

Additional evidence on the role of short-term liquidity in purchasing comes from looking at the responsiveness of demand to changes in different components of the car/financing package. To study this, we use our data on applications and purchases to estimate a model of consumer demand. Specifically, we consider a probit model for the purchase decision, estimated at the level of the individual applicant. Let q_{i} denote a dummy variable equal to one if applicant i purchases a car. We assume that

$$
\begin{equation*}
q_{i}=1 \quad \Leftrightarrow \quad q_{i}^{*}=x_{i}^{\prime} \alpha+\varepsilon_{i} \geq 0, \tag{1}
\end{equation*}
$$

where each $x_{i}=\left(x_{i}^{o}, x_{i}^{c}, x_{i}^{a}\right)$ is a vector of transaction characteristics for applicant i and ε_{i} is an i.i.d normally-distributed error term. Here, x_{i}^{o} denotes the offer characteristics: car price, baseline interest rate, loan term and minimum down payment. The vector x_{i}^{c} denotes car characteristics including the car's acquisition cost, the amount spent on reconditioning the car, the mileage, car age and, as a useful proxy for any unobserved quality, the time the car has spent on the lot. Finally, x_{i}^{a} denotes applicant characteristics including the applicant's credit category and monthly income, as well as city, month and year dummies.

Before discussing our estimates, several points deserve attention. The first is our use of individual-level data. The use of individual level data to estimate demand, particularly for unique goods such as used cars, is vastly preferable to the use of aggregate data. To take advantage of this, however, we have to address a missing data problem. We observe applicant characteristics for non-purchasers, but not the car and offer they considered. Our solution is imputation. For each non-purchaser, we randomly select a purchaser with the same credit category in the same city and week, and assume the non-purchaser faced the same car and price. ${ }^{15}$

[^8]The second point is our decision to model purchasing as an up or down decision made after the consumer arrives on the lot. By considering only the pool of applicants, we neglect the possibility that pricing might affect applications. By focusing on an up or down decision, we neglect the possibility that consumers might choose among cars taking into account all of their prices. ${ }^{16}$ Both concerns are mitigated by the fact that prices are negotiated at the individual level and often no price is listed on the car. Therefore, it seems reasonable to model consumers as learning what specific terms apply only after they arrive on the lot and fill in the loan application (and, by that, enter our data). Once an application is filled, a credit category is obtained, and the associated offer terms guide the salesperson as to which car to show the applicant. This modelling approach has the additional benefit of greatly simplifying demand estimation.

The third point concerns identification. From the company's perspective, the central decision variables are car prices and required down payments. To identify their effect on purchasing, we need to understand how they are set and why they vary in the data. The typical concern here is endogeneity - the firm's pricing choices may reflect information about demand that is not available in the data. In our case, we observe the same information as company headquarters so we feel comfortable making the assumption that with sufficient controls decisions made at the company level are exogenous to individual applicants, i.e. uncorrelated with unobservable individual characteristics (the ε_{i} 's).

Minimum down payments indeed are set at the company level. There are separate requirements for each credit category, with some regional adjustment, and these requirements are adjusted periodically. Moreover, because minimum payment requirements are set for groups, two identical (or near-identical) applicants can face different down payment requirements due to variation in the characteristics of other applicants in their pool. Our data, therefore, contain three sources of identifying variation in minimum down payments: variation over time, variation across credit categories, and regional variation. In our baseline specification, we include city and category dummies, meaning that we focus on changes over time and on differential changes across categories and regions. We have also performed a wide range of robustness checks where we separately isolate each source of variation in the data, for instance by focusing on short time windows around a price change, or by focusing on applicants whose credit scores place them on the margin between two adjacent

[^9]credit categories. The results show that the estimated coefficient on minimum down payment is remarkably stable across alternative specifications. ${ }^{17}$

Identifying the demand response to changes in car prices is more difficult because the actual transaction price is negotiated individually. Individual salespeople start with a "list" price for each car, that is set centrally, but may incorporate further information into the negotiation. This additional information creates a possible endogeneity problem. Our solution is to use the centrally set list price as an instrument for the negotiated price. The list price derives from a mechanical formula used to mark prices up over cost. We again have three separate sources of identifying variation in the mark-up formula. The first is variation over time (we observe one large and one small change in the formula); the second is regional variation, which is substantial; the third arises from the fact that margins are different for different priced cars and the formula is highly discontinuous. Our baseline specification contains city dummies, so it combines the time variation, the non-linearity of the mark-up formula and differential changes across region. As with minimum down payment, we performed a wide range of robustness checks, separately isolating each source of variation. The estimated coefficient on price is less stable than that on minimum down payment, but all of our conclusions are highly robust across specifications.

3.3 Purchase Demand and Liquidity

Table 2 reports our demand estimates. The three specifications vary only in their treatment of car price. The first two columns contain ordinary least squares and instrumental variable estimates of the effect of negotiated price on the purchase decision. The third column reports the effect of the company's list price on demand. We focus on the second column, which most naturally captures the decisions made by individual applicants. The specification of the third column more closely resembles work on automobile demand in which attention is devoted to the suggested retail price, ignoring individual price negotiations.

In addition to the offer terms, our demand specification includes detailed buyer and car characteristics, including dealer, month and year dummies. Because the realized interest rate can depend on the size of the down payment, we do not include it as part of the offer. Instead, we include the interest rate that the buyer would have paid if they made the minimum down payment. As an

[^10]empirical matter, the differences are relatively small (see later), and using the realized interest rate has no effect on the other coefficients.

Our main interest is the effect of car price and minimum down payment on purchasing decisions. Changes in these offer terms are not identical from a buyer's perspective. The down payment is made immediately as a lump-sum, while changes in car price can be spread over time (as we will see below, changes in car price in fact translate almost one-for-one into larger loans rather than larger down payments). As a result, an applicant who is relatively impatient or liquidity constrained should be more sensitive to changes in the down payment, holding the loan amount fixed. Moreover, the high probability of default means that a purchaser often will not bear the full cost of a price increase. This should also reduce the sensitivity of demand to car price relative to the down payment requirement. At the same time, a higher down payment holding car price fixed implies a smaller loan, weakening the effect of a change in the required down payment.

Despite these various forces, it is still straightforward to look for evidence of liquidity constraints. If applicants are not liquidity constrained, they care about the present value of future payments. For a purchaser who agrees to a price p, makes a down payment D, and borrows the balance at a monthly interest rate r over a T-month term, the expected payment is

$$
\begin{equation*}
\mathbb{E}[\text { Payment }]=D+(p-D) \cdot \frac{\sum_{t=1}^{T}(1+s)^{-t} S_{t}}{\sum_{t=1}^{T}(1+r)^{-t}}=D+(p-D) \phi, \tag{2}
\end{equation*}
$$

where s is the purchaser's subjective monthly discount rate and S_{t} is the probability that the loan will not be in default before the end of month t.

The value ϕ represents the expected present value of payment that will be made for each dollar that is borrowed. It is exactly analogous to the repayment to loan ratio introduced in Section 2, the difference being that the relevant rate of discount is the customer's rather than the firm's. To construct a plausible estimate of ϕ, therefore, we again calculate the average repayment to loan ratio for uncensored loans in the data using a broader range of discount rates. ${ }^{18}$ Using this approach, an applicant who is not liquidity constrained, plans to make the minimum down payment and has an annual discount rate of 5 percent should view a one hundred dollar increase in the required down payment as equivalent to a 30 dollar increase in the car price. If the agent is more impatient, a

[^11]down payment increase matters more. For annual discount rates of 10,20 and 50 percent, the agent views a 100 dollar increase in the down payment as equivalent to 38,55 and 108 dollar increases in the car price.

Our demand estimates, however, imply that applicants are far more sensitive to minimum down payment requirements than these calculations would suggest. We estimate that a 100 dollar increase in the minimum down payment reduces the probability that an applicant will purchase by 0.0301 , while a 100 dollar increase in the car price reduces the purchase probability by only 0.0034 . That is, a 100 dollar increase in the minimum down payment has the same effect as a 900 dollar increase in car price. This can still be explained in the absence of liquidity constraints, but it requires a much higher annual discount rate of 427 percent.

These calculations focus on the relative sensitivity of demand to car price and minimum down payment. The absolute sensitivity to minimum down payment is itself large. Our estimate implies that a 100 dollar increase in the minimum down payment reduces sales by nine percent. This number appears to be consistent with the company's own view of pricing responsiveness, but it is still notable given that subsequent monthly payments are on average 400 dollars. This, too, suggests that applicants face a high cost of coming up with extra cash.

Table 2 also reports estimates of how buyer and car characteristics affect demand. As might be expected, conditional on price, cars that cost more, have lower mileage, and have spent less time on the lot, are more likely to sell. Similarly, applicants with higher incomes, and with bank accounts, are more likely to purchase. Both effects make particular sense from a liquidity standpoint; these applicants are likely to have greater resources to make a down payment. A somewhat surprising result is that a buyer's credit category does not systematically influence the probability of purchase. One possible explanation is that although lower risk buyers may have greater resources and access to immediate cash, they also have better alternatives. Our finding that applicants who own their own homes are less likely to buy than renters is consistent with this hypothesis.

4 Information Asymmetries and Liquidity Constraints: Theory

In this section, we develop a simple credit market model along the lines of Jaffee and Russell (1976), and show how moral hazard and adverse selection can lead to credit constraints being imposed in equilibrium. We also explain the effect of interest rate caps and how risk-based pricing mitigates
adverse selection. The theory developed in this section will guide our empirical analysis in the next section. Because the basic ideas are familiar from the general theory of credit and insurance markets, we confine ourselves to a largely graphical analysis.

We consider a two-period model with a large number of firms and consumers. We assume that firms are integrated and the sales and finance market is perfectly competitive. Neither assumption is essential for the points we make. To begin, we also assume that customers are ex ante homogenous although we will relax this below.

In the first period, each consumer decides whether or not to buy a car, and if so, how large a loan to take. In the second period, the consumer decides whether or not to repay the loan. For expositional purposes, it is useful to think of a contract between a consumer and a firm as specifying a first period down payment D, equal to the price p minus the loan size L, and a second period payment M. The second period payment will equal to the loan size L times the contractual interest rate R. The borrower may or may not repay the loan. We make the natural assumption that the probability of repayment $\lambda(M)$ is decreasing in loan liability $M .{ }^{19}$ In other words, there is a moral hazard problem in repayment. ${ }^{20}$

Let $U(D, M)$ denote the expected utility of a consumer who agrees to a contract (D, M). We assume that U is decreasing in both arguments. Let $\Pi(D, M)$ denote the firm's expected profit from the same contract. We assume that Π is increasing in D because holding fixed the second period payment, a larger down payment is clearly advantageous for the firm. Firm profits, however, need not be increasing in M because a large loan size increases the probability of default. We assume instead that Π first increases and then decreases in M. We assess this below in our empirical work.

Figure 3(a) depicts the iso-profit line $\Pi(D, M)=0$, where c denotes the firm's cost of acquiring the car so that $\Pi(c, 0)$ is on the zero-profit curve. An immediate observation is that moral hazard may imply loan limits. As we have illustrated the situation, no firm would write a contract that involves a down payment below d^{\prime} regardless of the required second period payment. Therefore, given a car price $p \geq c$, loans will certainly be capped at $p-d^{\prime}$.

The competitive outcome in this setting is the contract that maximizes customer utility subject to firms making non-negative profits. This contract is denoted by the point E in Figure 3(a).

[^12]An interesting question is how this outcome might arise in practice. One possibility is that firms allow customers to choose any point on the zero-profit locus (i.e. the curve $A E B$), with customers choosing the optimal point E. The interest rate on small changes in loan size is described by the tangents of $A E B$, so this outcome involves firms pricing cars at cost, requiring a minimum down payment d^{\prime}, and charging lower interest rates to customers who make larger down payments and take smaller loans.

We noted earlier that interest rate caps appear to constrain subprime lenders. In the current setting, interest rate caps may not affect the competitive allocation, but they can have a dramatic effect on its implementation. If the seller sets $p=c$ and offers the competitive contract E, the contractual interest rate is given by the slope of the line between A and E. The seller can also offer E by charging $p>c$ and lowering the interest rate. Such an offer is depicted in Figure 3(b) by the line $E F$. This offer necessarily leads to a higher minimum payment requirement, equal to d. If customers were allowed to borrow more than $p-d$ at the capped rate, they would, and firms would lose money.

So far we have seen that even if consumers are homogeneous and lending is competitive, moral hazard can give rise to minimum down payments and interest rate caps can tighten these requirements. We now show that consumer heterogeneity and adverse selection can lead to still tighter restrictions. To introduce heterogeneity in the simplest way, suppose there are two types of customers, low and high risks. Denote their utility functions by $U_{L}(D, M)$ and $U_{H}(D, M)$. We assume that high risk consumers are more likely to default for any given loan size, and because of this have a greater desire to backload payments.

This is depicted in Figure 3(c). Following the discussion, we have drawn the utility iso-quants so that the high-risk customers have a higher marginal rate of substitution between future and present payments - their iso-quants are steeper than those of low risk customers. The result is adverse selection: given a set of financing choices, high-risk customers select smaller down payments and larger loans. In the figure, we have drawn the offer curve as the set of contracts (D, M) that would yield zero profit to a firm if the contract were to attract a representative mix of high and low risks. These contracts are not, however, offered in equilibrium.

Figure 3(d) depicts a separating equilibrium with heterogenous customers. ${ }^{21}$ The two iso-profit

[^13]lines depict the locus of points that give firms zero profits assuming their customers are either all low-risk or all high-risk. The zero profit curve for high risk types lies to the right of that for low risk types because fixing a loan liability M, a high risk consumer will be less likely to repay. Just as no firm would contract with a low risk consumer without requiring at least a down payment d^{\prime}, no firm would transact with a high risk customer without requiring at least a down payment $d^{\prime \prime}$.

In the absence of credit scoring, firms must offer the same options to low and high risk types, who self-select into different contracts in equilibrium. High risk customers get their preferred allocation subject to the constraint that firms make zero profits. This point is denoted by H. Low risk customers get their preferred allocation subject to the constraint that firms break even and also that high risk customers prefer the allocation H to the contract intended for low-risk types. We denote this point by G. Note that in equilibrium, self-selection leads to a negative correlation between down payment and default rate. We examine this prediction below in our empirical analysis.

There are many financing offers that support the separating allocation, but a natural possibility in the presence of interest rate caps is that firms price cars at $p>c$ and require a down payment of at least d_{H}. The minimum down payment allows a customer to borrow at the capped interest rate; a customer who makes a larger down payment receives a lower interest rate, so that both G and H are possible. Note that the possibility of adverse selection substantially constrains the equilibrium loan size for low-risk buyers. Rather than being able to purchase with only a down payment d, low-risk customers must make down payments of $d_{L}>d$ to distinguish themselves from high-risk customers.

The development of credit scoring has important consequences when customers are heterogenous in their underlying default risk. Suppose that firms can distinguish between risk types and price accordingly. The resulting allocation for high risks is the same, but low risks receive their optimal allocation E, i.e. they are allowed to take larger loans. As we have drawn it, low risk customers actually take larger loans than high risk customers once credit scoring is in effect, in direct contrast to self-selection that occurs given a common set of choices. More robustly, in the presence of credit scoring, the correlation between loan size and default rate will be lower if one doesn't condition on risk group than if one does. We return to this point in our empirical analysis.
framework of Rothschild and Stiglitz (1976).

5 Information Asymmetries and Liquidity Constraints: Evidence

The preceding section developed a simple equilibrium model of the credit market we study. The model relies on certain assumptions regarding consumer behavior, specifically moral hazard and adverse selection, and generates several qualitative predictions. Our goal in this section is to assess the empirical validity of the assumptions and predictions of the theory and to quantify the relative magnitude of various forces. To this end, we document the following:
A. Moral hazard: For a given individual, the probability of default increases substantially with loan size. As a result, expected loan payments are not monotone in loan size.
B. Adverse selection: Individuals who are more likely to default demand larger loans. This effect operates through both predictable default risk and idiosyncratic default risk that is known to the individuals but cannot be predicted using characteristics observed by the firm. ${ }^{22}$
C. Lender response: Loan sizes are capped using minimum down requirements, which are tighter for individuals with higher default risk. Interest rates are more favorable for individuals who are observably lower risks or who signal their lower risk by making a larger down payment.
D. Effect of credit scoring: Risk-based pricing mitigates some of the adverse selection problem described above, and reduces the positive correlation between loan size and default.

We address these points somewhat out of order. We start by estimating a simple down payment (equivalently, loan demand) model for a customer who has decided to purchase a car. Our estimates indicate a force toward adverse selection: high risk buyers systematically prefer to make smaller down payments. Having established this pattern, we specify a model of default behavior and explain how such a model, in conjunction with the loan demand model, can be used to separately quantify the effects of moral hazard and adverse selection. Such a separation is not immediate because the main empirical implication of moral hazard and adverse selection is the same: a positive relationship between loan size and default. Nevertheless, we are able to show that moral hazard is responsible for around sixty percent of the (large) within credit category correlation between loan size and default. Finally, we document the lender responses described above and show that adverse selection would

[^14]be substantially worse if risk-based pricing did not force the highest risk buyers to make the largest down payments.

5.1 Adverse Selection and the Demand for Loans

We begin by studying the financing decisions of car buyers. Consider a buyer who faces a minimum down payment d_{i}. By making a larger down payment, the buyer reduces her loan size and, as we discuss below, may receive a lower interest rate. So she faces a trade-off between a lower immediate payment and higher future payments. We want to understand how this trade-off is resolved depending on the buyer's risk characteristics, as well as her liquidity characteristics, the value of the car, and so on.

Because many buyers make the minimum down payment, we specify a tobit model of the down payment decision, where

$$
D_{i}=\left\{\begin{array}{cc}
D_{i}^{*}=x_{i}^{\prime} \beta+\varepsilon_{i} & \text { if } D_{i}^{*} \geq d_{i} \tag{3}\\
d_{i} & \text { if } D_{i}^{*}<d_{i}
\end{array}\right.
$$

This model equivalently characterizes the choice of loan size $L_{i}=\min \left\{p_{i}-d_{i}, p_{i}-\left(x_{i}^{\prime} \beta+\varepsilon_{i}\right)\right\}$, so we will speak of loan demand and down payment choice interchangeably.

For obvious reasons, we observe only the down payments, and later loan repayments, of purchasers. For our present purpose, however, we don't think that selection is a major concern. First, we have extremely detailed individual data and sufficient observations to include controls for city, year and month of purchase, so we can control for most factors that affect both purchasing and borrowing behavior. Second, we are primarily interested in the effect of price rather than of minimum down payment. In light of the extremely low sensitivity of purchasing to price, as documented in Section 3, we believe that the main effect of price is on the financing terms of purchasers rather than their composition.

In estimating the down payment model, we include as controls all of the variables in our model of purchasing - car characteristics, individual characteristics including credit category and controls for city, year and month of purchase. We also include the minimum down payment as a control variable, so that it enters both as a driver of down payment and as a constraint. In a textbook consumption-savings model, the minimum down payment would affect D_{i} but not D_{i}^{*}. In our setting, however, there are two reasons it might have a direct effect. One is selection: a higher required down payment may cause some liquidity-constrained buyers not to purchase. The other
is that the minimum down payment may "anchor" the buyer's decision process by providing a starting point for thinking about how much to pay down and how much to borrow.

Table 3 presents our estimates, which are consistent with both common sense and the importance of liquidity constraints. Notably, a price increase of 100 dollars has a relatively small effect on the desired down payment (between 4 to 20 dollars depending on the exact specification). That is, the primary response to a higher price is to take a larger loan. A higher minimum down payment and a higher starting interest rate are also associated with larger desired down payments. Although they are not reported in the table, the monthly dummies for tax season are large and highly significant. As noted earlier, desired down payments are 301 dollars higher in February than in the other eleven months.

The most striking results in Table 3 concern the relationship between desired down payments and observable risk characteristics. High risk buyers systematically prefer to make smaller down payments. Our estimates imply that, all else equal, the ideal down payment of a buyer in the worst credit category is 28 percent less than that of a buyer in the best credit category. The same relationship holds to some extent within credit categories. For instance, among the buyers with a given credit category, those with lower raw credit scores choose larger loans. There is also a similar pattern across cars. Buyers who have selected newer and more valuable cars, which are presumably less likely to break down, make larger down payments. These findings all indicate a tendency for adverse selection, our point B above. A key point we address below is that these estimates need not translate directly into realized adverse selection because, just as in the theory, observably high risk buyers face higher minimum down requirements.

5.2 Identifying Moral Hazard and Adverse Selection from Default Behavior

We now turn our attention to loan repayment, or default behavior. We start by specifying an empirical model of default. For this purpose, we use a Cox proportional hazard model. The model is convenient both because it allows for a flexible default pattern over time and because it allows us to work with our full sample of loans despite some observations being censored. Recall that in the Cox model, the probability of default at t given that the loan is still active is

$$
\begin{equation*}
h\left(t \mid x_{i}\right)=\exp \left(x_{i}^{\prime} \delta\right) h_{0}(t) . \tag{4}
\end{equation*}
$$

In the usual formulation, t is time, but here we specify t as the fraction of the loan payments made, extending from $t=0$ when the loan initiates to $t=1$ when the loan is fully repaid. This transformation provides a simple way to account for the fact that the term of the loan varies somewhat across borrowers in our sample. The remainder of the model is straightforward: x_{i} is a vector of individual and car characteristics, as well as financing terms such as loan size, interest rate and loan term, δ is a vector of parameters to be estimated, and the baseline hazard $h_{0}(t)$ is an arbitrary function. The model's main assumption is that changes in covariates shift the hazard rate proportionally without otherwise affecting the pattern of default. This is a strong assumption, but in our case appears to be fairly innocuous; we have experimented extensively with alternative specifications, always with similar conclusions. ${ }^{23}$

We use the default model to address the central empirical implication of the theory, the relationship between default and loan size. Both moral hazard and adverse selection imply a positive cross-sectional correlation between these variables conditional on priced characteristics. Moral hazard yields a correlation because an individual buyer's probability of default increases with loan size. Adverse selection does so because buyers who anticipate default take larger loans. We saw earlier that it is precisely the positive correlation between loan size and default that leads to credit limits. For this reason, identifying a correlation is itself a useful goal. Ideally, however, one wants to disentangle the effects of moral hazard and adverse selection, in part because the institutions for overcoming them are so different. Credit scoring and risk-based pricing can mitigate adverse selection, while tools such as improved collection or dynamic incentives are needed to address moral hazard.

How does one separately identify moral hazard and adverse selection in our setting? The most obvious specification of the default model is to view the probability of default as a function of loan size and other observable default drivers, such as the interest rate, the loan term and individual and car characteristics. The estimated coefficient on loan size will then pool the causal effect of having a larger loan on the probability of default (i.e. moral hazard) with the correlation induced by observably equivalent borrowers, who nevertheless face different risks, taking different loans (i.e.

[^15]adverse selection). To isolate moral hazard, therefore, we need to fully control for factors that affect both loan size and default. And despite our rich individual level controls, buyers may have private information at the time of purchase that affects both their down payment and their later default behavior. Our solution is to use the estimated residual from the down payment model as a control variable in estimating the default model.

We first construct the down payment residual from the Tobit model in the last section. We define the residual for individual i as:

$$
\xi_{i}=\left\{\begin{array}{cc}
D_{i}-x_{i}^{\prime} \hat{\beta} & \text { if } D_{i}>d_{i} \tag{5}\\
\mathbb{E}\left[\varepsilon_{i} \mid \varepsilon_{i} \leq d_{i}-x_{i}^{\prime} \hat{\beta}\right] & \text { if } D_{i}=d_{i}
\end{array}\right.
$$

For buyers who pay more than the required minimum, we observe the residual $d_{i}-x_{i}^{\prime} \hat{\beta}$ exactly. For buyers who pay the minimum, we have an upper bound and take the conditional expectation. The constructed residual ξ_{i} contains the buyer's private information as pertains to her choice of down payment and hence loan size.

To identify moral hazard, we include the down payment residual in the default model along with the relevant observed individual characteristics. Recall that loan size is equal to the car price (plus taxes and fees) minus the down payment. Once we control for the determinants of down payment, the remaining variation in loan size is driven entirely by variation in car price. Therefore, under the assumption that car price is independent of default risk conditional on all of the observed individual characteristics and the unobserved characteristics reflected in the down payment, the estimated coefficient on loan size will represent the causal effect of loan size on default.

Note that the logic of the approach is simply to isolate variation in loan size that is independent of default risk conditional on our controls. While the idea is straightforward, we can think of several potential concerns. One is that the variation in car price may not translate into sufficient variation in loan size. This concern is mitigated by our earlier estimate that changes in price translate almost directly into changes in loan size. A second concern is that the negotiated price may incorporate information about default risk that we do not observe directly and that is not reflected in the choice of down payment. Presumably, this would be information available to the salesperson but not to headquarters or the borrower herself. This concern does not seem to be empirically important. ${ }^{24} \mathrm{~A}$

[^16]final concern is that binding minimum down payments will prevent us from accurately recovering borrower's private information. To address this, we used the fact that a fraction of buyers who make the minimum down payment also choose to defer a fraction of it. We estimated a probit model for this deferral decision and constructed a second residual using the same method as above. Our idea here was that if the truncation prevented us from recovering all of the relevant private information, the deferral decision would contain additional information. It turns out, however, that including this additional residual has essentially no effect on our estimate of moral hazard.

Our control variable approach also provides a simple test for whether there is adverse selection on characteristics about which the parties are asymmetrically informed at the time of purchase. The argument is the following. Conditional on loan size, a borrower's down payment is sunk; it should not directly affect default. But it should also reflect all the buyer's relevant information about default at the time of purchase. Therefore, a negative correlation between the down payment residual and the probability of default, conditional on loan size and observed characteristics, indicates that buyers who made higher down payments for unobservable reasons are also those who are more likely to default for unobservable reasons. This is precisely the notion of adverse selection arising from asymmetric information about default risk.

Finally, a straightforward extension of our approach allows us not just to test for adverse selection but to quantify the degree of self-selection on different dimensions. To do this, we use the proportional hazard model to estimate correlations between loan size and default rate conditioning on increasingly sparse subsets of individual characteristics. When we include the full set of controls, the coefficient on loan size gives the pure moral hazard effect of loan size on default. Omitting the down payment residual ξ from the set of controls, the estimated coefficient on loan size pools the moral hazard effect and the correlation between loan size and default that is driven by observably identical buyers self-selecting into different loan sizes. By subtracting off the estimated moral hazard effect, we obtain an estimate of the latter.

This idea extends further. If we omit observed buyer characteristics that are not directly priced, the estimated loan coefficient pools in the correlation that is driven by buyers who are observably different but face the same prices selecting different loan sizes. This allows us to assess the amount of adverse selection that is present under the existing pricing scheme. Finally, by dropping even
variables in a Cox hazard model is complex, and would involve additional assumptions, we rely in this robustness analysis on linear and tobit duration models.
controls for credit category, we can assess a key prediction of the theoretical model, that the use of risk-based pricing lowers the cross-sectional correlation between loan size and default.

Some readers may find it useful to relate our approach to the empirical literature on insurance markets, which recently has focused on similar issues. This literature uses the observed correlation between insurance coverage and insurance claims (the insurance analogues of loan size and default) to provide evidence that a market is or isn't characterized by some combination of moral hazard and adverse selection (e.g., Chiappori and Salanie, 2001). Often, however, the argument is made that the two forces cannot be separately identified. The reason we can separate moral hazard from adverse selection in our setting is that we have two sources of variation in the loan size. The first, which accounts for adverse selection, is the buyer's endogenous choice of down payment. The second, which accounts for moral hazard, is exogenous price variation. In the insurance setting, the corresponding variation would come from observing both endogenous choices of coverage and exogenous changes in the menu of coverage options.

5.3 Estimates of Moral Hazard and Adverse Selection

We report our estimates of the proportional hazard default model in Table 4. The first column reports the richest specification, including the full set of observable characteristics and the estimated down payment residual as controls. This specification isolates the effect of moral hazard in the coefficient on loan size and also contains our test for adverse selection arising from asymmetric information. The other columns report simpler specifications as discussed above. All display a large and significant positive relationship between loan size and default.

Our estimate of the causal effect of loan size on default indicates that a 1,000 dollar larger loan leads to a 16 percent higher default rate. This estimate is robust to using richer specifications. In particular, the estimated coefficient on loan size varies by less than one percent when we include higher order polynomials of the estimated residual or the additional control variable constructed from the choice of whether to defer part of the down payment.

The estimated model implies that the expected revenue from loan payments does not increase monotonically in loan size. To capture this, we fix all variables other than loan size and credit category at their sample means and use the default model to calculate expected loan revenue as a function of loan size for each credit category. We plot the relationship in Figure 4(a). Depending on the risk group, expected loan payments peak at loan sizes of between ten and twelve thousand
dollars. Though it may not be immediately apparent, this figure (rotated 90 degrees) is essentially the empirical analogue to the iso-profit lines for lending to different risk groups that are depicted in Figure 3(d). The main point in both figures is that marginal dollars loaned eventually become unprofitable and this occurs sooner for high risk borrowers.

While we focus primarily on loan size, we also find interesting effects arising from variation in the other financing terms. Both loans with higher interest rates and those with longer terms are more likely to default. The former is easy to understand. A higher interest rate implies that for a given loan size, monthly payments are higher. Consistent with moral hazard, we estimate that a one point increase in the annual interest rate increases default by 2.3 percent, a substantial effect. A longer loan term need not have an obvious effect on default. On the one hand, a longer loan term lowers the size of each monthly payment. On the other hand, it stretches the repayment period, potentially allowing more default-generating events to happen within the duration of the loan. Our estimates suggest that the latter is the more relevant. In particular, a one month increase in loan term increases the default rate by 1.5 percent.

Observable buyer characteristics also significantly affect default rates. Credit categories in particular have remarkable power in predicting default. Buyers classified as high risks are more than twice more likely to default than buyers classified as low risks, with medium risk buyers in between. Within credit category, buyers who have higher incomes, have bank accounts, do not live with their parents and have higher raw credit scores are all less likely to default. As we discuss below, however, the fact that these characteristics predict default and are not directly priced does not necessarily imply a serious adverse selection problem in financing choices. Indeed, self-selection on some observed characteristics is advantageous rather than adverse. For example, buyers who live with their parents tend to make larger down payments but have a greater likelihood of default later on.

The last variable of interest is the down payment residual. As discussed above, our test for adverse selection due to asymmetric information is based on the conditional correlation between this constructed variable and the default rate. The estimated correlation is negative and highly significant, consistent with the presence of adverse selection.

The second column of Table 4 drops the down payment residual, our control for privately known borrower characteristics. Without this control, the coefficient on loan size combines both the moral hazard effect of loan size on default and the cross-sectional correlation due to borrowers who are
at higher risk of default for privately known reasons taking larger loans. Here we find that a 1,000 dollar larger loan is associated with a 24 percent higher rate of default. We estimated that 16 percentage points were due to moral hazard, leaving adverse selection on unobservables to explain the other eight. Roughly speaking, this implies that moral hazard is nearly twice as important from the lender's perspective than ex ante asymmetric information about default risk.

In the third column of Table 4, we omit the individual characteristics that are not directly priced, so that the coefficient on loan size pools the moral hazard effect with self-selection on both unobserved and observed but unpriced individual characteristics. Our estimate of the relationship between loan size and default differs minimally from the prior column. This indicates that to the extent that financing choices within credit category are characterized by adverse selection, the effect is almost totally due to selection on unobservables. It also suggests that credit categories, despite being coarse indicator of individual risk, nevertheless capture much of the predictable variation in default risk, or at least much of the predictable correlation between loan demand and default risk.

The final column of Table 4 does not control even for credit category so that the coefficient on loan size includes the correlation across credit categories as well as within credit categories. This change leads to a significant decline in the coefficient on loan size: the unconditional effect of loan size on default is 19 percent, compared to 23 percent when credit categories are included. This is evidence of point D from the beginning of this section: risk-based pricing forces riskier individuals, who given the same options would make smaller down payments, to pay more down, mitigating the potential for adverse selection. We explore this point in detail next.

5.4 Minimum Down Payments and Risk-Based Pricing

Our theoretical model emphasized several equilibrium responses to moral hazard and adverse selection. One was minimum down payment requirements, meaning that sufficiently risky buyers would not be allowed to finance their entire car purchase. This pattern is clear in our data. Even buyers with the highest possible credit category face a positive down payment requirement. And risky buyers can face minimum down payments on the order of 1,500 to 2,000 dollars - i.e., $25-30$ percent of the cost of the car.

The remaining equilibrium predictions concern risk-based pricing. Risk-based pricing can take two forms: better financing terms for observably lower risks and better financing terms for buyers who effectively signal their lower risk. We observe both in our data. To display them graphically,

Figure 4(b) plots empirical "offer curves" at a particular set of dealerships during a particular period in our data (the choice is somewhat arbitrary). The horizontal axis represents the down payment and the vertical axis the loan liability, that is loan principal plus future interest payments. There are four curves, corresponding to different buyer categories and different car prices. As the picture shows, interest rates decrease with the down payment - each offer curve is convex rather than linear. The decrease, however, is fairly small and made smaller in practice because few buyers make down payments far above the minimum. The more substantive form of risk-based pricing is therefore differences in minimum payments across categories. In Figure 4(b) for instance, buyers classified as high risk cannot put down less than 1,400 dollars, while buyers classified as low risk can put down as little as 400 .

We have already suggested that risk-based minimum payments play a substantial role in mitigating adverse selection in financing choices, exactly as predicted by the theory. To crystallize this point, we re-estimated both default rates and desired loan sizes as a function of credit category, controlling for car and contract characteristics but omitting the remaining buyer characteristics such as income and age. These estimates imply that for an average car priced at an average price, buyers classified as the best risk category desire to make a 723 dollar down payment while buyers classified as the worst credit category desire to make a 517 dollar down payment, a difference of 206 dollars (29 percent). Moreover, conditional on both groups making an average down payment, 24 percent of the buyers in the lowest risk category will default compared to 64 percent of the buyers in the highest credit category.

Figure 5(a) plots the results of these calculations, with the size of each dot representing the frequency of each credit category in the borrower population. What the figure indicates is a strong propensity for risky borrowers to self-select into smaller down payments. In the model, one effect of risk-based minimum payments is to prevent this, which is precisely what we observe in the data. In particular, Figure 5(b) plots the same default rates against the minimum of the desired loan size and the average loan limit for each category. As the picture makes clear, high risk buyers are heavily constrained by loan caps relative to low risk buyers. Indeed, once risk-based loan caps are factored in, the overall correlation between loan size and default is negative (the picture makes it clear that the relationship is in fact non-monotone). Consistent with the model, and our results above, the effective use of credit scoring forces riskier buyers to make larger up-front payments, mitigating adverse selection.

We have focused on the role that risk-based pricing plays in financing decisions, but it plays another role as well. Because purchase decisions are sensitive to required down payments, raising the minimum down payment screens out some applicants. To the extent that these applicants are ex post more likely to default, the effect of risk-based pricing on the purchasing dimension may be at least as large as on the financing dimension. This effect, however, is more difficult to quantify because it requires one to estimate a joint distribution of purchase and default probabilities, and to overcome the fact that the financing and repayment are not observed for non-purchasers. We tackle these problems in ongoing work.

6 Conclusion

The notion that consumers may be liquidity constrained is an important theme in recent research on consumption, taxation, and social insurance. Our results provide fresh evidence on the role of liquidity in driving purchasing behavior, at least for people at the lower end of the income distribution. We view our primary contribution, however, as providing a snapshot of low-income credit markets, and especially of the informational problems that might characterize these markets and give rise to liquidity constraints. In particular, we have highlighted the substantial moral hazard and adverse selection problems faced by lenders serving the subprime population. Interestingly, it appears that modern credit scoring can go a significant distance toward mitigating adverse selection problems in the credit market, suggesting that innovations in this area may be an important cause of the rise of subprime lending that has occurred over the last decade. Such credit scoring is less likely to mitigate moral hazard problems, still restricting credit to subprime borrowers.

References

Attanasio, Orazio, Pinelopi Goldberg and Ekaterini Kyriazidou, "Credit Constraints in the Market for Consumer Durables: Evidence from Micro Data of Car Loans," Yale University Working Paper, 2006.

Ausubel, Larry, "The Failure of Competition in the Credit Card Market," American Economic Review, 91, 1991, 50-81.

Ausubel, Larry, "Adverse Selection in the Credit Card Market," University of Maryland Working Paper, 1999.

Card, David, Raj Chetty and Andrea Weber, "Does Cash-in-Hand Matter? New Evidence from the Labor Market," Quarterly Journal of Economics, forthcoming.

Carroll, Christopher, "A Theory of the Consumption Function, with and without Liquidity Constraints," Journal of Economic Perspectives, 15(3), Summer 2001, 23-45.

Chetty, Raj, "Why Do Unemployment Benefits Raise Unemployment Durations? Moral Hazard vs. Liquidity," U.C. Berkeley Working Paper, 2006.

Chiappori, Pierre-Andre and Bernard Salanie, "Testing for Asymmetric Information in Automobile Insurance," Journal of Political Economy, 108(1), February 2001, 56-78.

Deaton, Angus, "Savings and Liquidity Constraints," Econometrica, 59(5), September 1991, 1221-1248.

Edelberg, Wendy, "Risk-Based Pricing of Interest Rates in Household Loan Markets," Federal Reserve Working Paper, 2003.

Edelberg, Wendy, "Testing for Adverse Selection and Moral Hazard in Consumer Loan Markets," Federal Reserve Working Paper, 2004.

Gross, David B. and Nicholas S. Souleles, "Do Liquidity Constraints and Interest Rates Matter for Consumer Behavior? Evidence from Credit Card Data?" Quarterly Journal of Economics, February 2002, 149-185.

Jaffee, Dwight and Thomas Russell, "Imperfect Information, Uncertainty, and Credit Rationing," Quarterly Journal of Economics, 90, November 1976, 651-666.

Jaffee, Dwight and Joseph E. Stiglitz, "Credit Rationing," Handbook of Monetary Economics, Vol. 2, ed. Benjamin Friedman and Frank Hahn, Elsevier, 1990, 837-888.

Jappelli, Tullio, "Who is Credit Constrained in the U.S. Economy?" Quarterly Journal of Economics, 105, 1990, 219-234.

Johnson, David, Jonathan Parker and Nicholas Souleles, "Household Expenditure and the Income Tax Rebates of 2001," American Economic Review, 96(5), December 2006, 1589-1610.

Juster, F. Thomas and R. P. Shay, "Consumer Sensitivity to Finance Rates: An Empirical and Analytical Investigation," NBER Occasional Paper no. 88, 1964.

Karlan, Dean and Jonathan Zinman, "Credit Elasticities in Less Developed Countries: Implications for Microfinance," Yale University Working Paper, 2006a.

Karlan, Dean and Jonathan Zinman, "Observing Unobservables: Identifying Information Asymmetries with a Consumer Credit Field Experiment," Yale University Working Paper, 2006b.

Laibson, David, Andrea Repetto and Jeremy Tobacman, "A Debt Puzzle," in Knowledge, Information and Expectations in Modern Economics: In Honor of Edmund S. Phelps, eds. Phillipe Aghion, Roman Frydman, Joseph Stiglitz, Michael Woodford, Princeton: Princeton University Press, 2003, 228-266.

Parker, Jonathan, "The Reaction of Household Consumption to Predictable Changes in Social Security Taxes," American Economic Review, 89, 1999, 959-973.

Rothschild, Michael, and Joseph E. Stiglitz, "Equilibrium in Competitive Insurance Markets: An Essay on the Economics of Imperfect Information," Quarterly Journal of Economics, 90, 1976, 630-649.

Souleles, Nicholas, "The Response of Household Consumption to Income Tax Refunds," American Economic Review, 90, 1999, 947-958.

Stiglitz, Joseph and Andrew Weiss, "Credit Rationing in Markets with Imperfect Information," American Economic Review, 71(3), June 1981, 393-410.

Zeldes, Stephen, "Consumption and Liquidity Constraints: An Empirical Investigation," Journal of Political Economy, 97(2), April 1989, 305-346.

Table 1: Summary Statistics

	Mean	Std. Dev.	5%	95%
Applicant Characteristics $(N \gg 50,000)^{*}$				
Age	32.8	10.7	19	53
Monthly Income	2,414	1,074	1,299	4,500
Home Owner	0.15	-	-	-
Live With Parents	0.18	-	-	-
Bank Account	0.72	-	-	-
Car Purchased	0.34	-	-	-
Car Characteristics				
Acquisition Cost	5,090	1,329	3,140	7,075
Total Cost	6,096	1,372	4,096	8,212
Car Age (years)	4.3	1.9	2.0	8.0
Odometer	68,775	22,091	31,179	102,299
Lot Age (days)	33	44	1	122
Car Price	10,777	1,797	8,095	13,595
Transaction Characteristics				
Min. Down Payment (buyers)	648	276	400	1,200
Min. Down Payment (applicants)	750	335	400	1,400
Interest Rate (APR)	26.2	4.4	17.7	29.9
Loan Term (months)	40.5	3.7	35.0	45.0
Down Payment	942	599	400	2,000
Loan Amount	10,740	1,801	7,982	13,559
Monthly Payment	398	78	309	470
Default (uncensored obs. only)	0.61	-	-	-
Recovery Amount (all defaults)	1,870	1,697	0	4,818
Low Risk	Med Risk	High Risk		
Applicant and Buyer Credit Grades				
Applicants		0.26	0.45	0.29
Buyers		0.35	0.47	0.17

* To preserve the confidentiality of the company that provided the data, we do not report the exact number of applications.

Table 2: Probit Estimates of Individual-Level Purchasing
Dependent Variable: Dummy equal to one if sale

	(1)		(2)		(3)	
	dF/dx	Std. Err.	dF/dx	Std. Err.	dF/dx	Std. Err.
Offer Variables						
List Price (\$100s)	-	-	-	-	-0.0016	(0.0002)
Negotiated Price (\$100s)	-0.0008	(0.0001)	-0.0034	(0.0005)	-	-
Minimum Down (\$100s)	-0.0305	(0.0006)	-0.0301	(0.0005)	-0.0305	(0.0006)
Maximum Interest Rate (APR)	-0.0011	(0.0004)	-0.0019	(0.0005)	-0.0009	(0.0004)
Term (months)	0.0007	(0.0003)	0.0024	(0.0008)	0.0007	(0.0003)
Car Characteristics						
Car Cost (\$100s)	0.0005	(0.0002)	0.0031	(0.0012)	0.0014	(0.0002)
Premium (Cost > \$7,500)	0.0047	(0.0031)	0.0043	(0.0031)	0.0069	(0.0032)
Car Age (years)	0.0001	(0.0006)	0.0001	(0.0006)	0.0000	(0.0006)
Odometer ($10,000 \mathrm{~s}$)	-0.0008	(0.0004)	-0.0008	(0.0004)	-0.0008	(0.0004)
Lot Age (months)	-0.0011	(0.0006)	-0.0058	(0.0018)	-0.0007	(0.0005)
Individual Characteristics						
Income (\$1,000s/month)	0.0255	(0.0007)	0.0261	(0.0008)	0.0253	(0.0007)
Age	0.0083	(0.0004)	0.0084	(0.0005)	0.0083	(0.0004)
Age squared	-0.0001	(4.7E-06)	-0.0001	(4.2E-06)	-0.0001	(4.7E-06)
Bank Account	0.0260	(0.0017)	0.0257	(0.0017)	0.0261	(0.0017)
House Owner	-0.0323	(0.0021)	-0.0325	(0.0021)	-0.0324	(0.0021)
Lives with Parents	0.0091	(0.0020)	0.0091	(0.0020)	0.0090	(0.0020)
Credit Score (100s)	0.0088	(0.0021)	0.0090	(0.0021)	0.0087	(0.0021)
Credit Category Fixed Effects						
Representative Low Risk	0.0474	(0.0077)	0.0475	(0.0074)	0.0479	(0.0077)
Representative Medium Risk	0.0605	(0.0062)	0.0629	(0.0062)	0.0603	(0.0062)
Representative High Risk	0.0280	(0.0047)	0.0299	(0.0047)	0.0280	(0.0047)
Other Fixed Effects	Year, M Credit	nth, City, ategory	Year, M Credit	nth, City, ategory	Year, M Credit	nth, City, ategory
Instrument for Price				Price		
	$\mathrm{R}^{2}=0.061$		-		$\mathrm{R}^{2}=0.061$	

Notes

1. Sample is all applications; sample size is $\mathrm{N} \gg 50,0000$ (see Table 1).
2. In Column (2), instruments are list price (equal to zero if not available) and indicator equal to one if list price is not available. List prices are available for approximately 80 percent of the observations.
3. In Column (3), regressors are list price (equal to zero if not available) and negotiated price (equal to zero if list price is available). Negotiated price coefficient not reported.

Table 3: Tobit Estimates of Down Payment

Dependent Variable: Down Payment (\$100s) Conditional on Purchase

	(1)		(2)	
	Coeff.	Std. Err.	Coeff.	Std. Err.
Offer Variables				
Negotiated Price (\$100s)	0.040	(0.004)	0.202	(0.024)
Minimum Down (\$100s)	0.427	(0.018)	0.403	(0.018)
Maximum Interest Rate (APR)	0.207	(0.011)	0.257	(0.013)
Term (months)	-0.391	(0.009)	-0.505	(0.019)
Car Characteristics				
Car Cost (\$100s)	0.237	(0.004)	0.076	(0.024)
Premium (Cost > \$7,500)	3.657	(0.078)	3.641	(0.079)
Car Age (years)	0.046	(0.016)	0.050	(0.016)
Odometer (10,000s)	-0.032	(0.012)	-0.028	(0.012)
Lot Age (months)	-0.584	(0.016)	-0.296	(0.044)
Individual Characteristics				
Income (\$1,000s/month)	-0.152	(0.019)	-0.271	(0.026)
Age	-0.169	(0.010)	-0.190	(0.010)
Age squared	0.002	(1E-04)	0.002	(1E-04)
Bank Account	0.295	(0.047)	0.344	(0.048)
House Owner	0.248	(0.055)	0.272	(0.056)
Lives with Parents	0.256	(0.056)	0.260	(0.056)
Credit Score (100s)	0.225	(0.057)	0.177	(0.057)
Credit Category Fixed Effects				
Representative Low Risk	1.464	(0.227)	1.504	(0.228)
Representative Medium Risk	1.101	(0.194)	0.968	(0.196)
Representative High Risk	0.380	(0.167)	0.269	(0.168)
Other Fixed Effects	Year, M Credit	th, City, ategory	Year, Credit	th, City, ategory
Instrument for Price				rice
	$\mathrm{R}^{2}=0.078$			

Notes

1. Sample is all sales; sample size is $\sim 0.34 \mathrm{~N}$, where $\mathrm{N} \gg 50,0000$ (see Table 1).
2. All results are based on a Tobit regression with actual down payment minus minimum down payment as the dependent variable and left-censoring at zero.

Table 4: Proportional Hazard Model Estimates of Default

Dependent Variable: Fraction of loan payments made

	(1)		(2)		(3)		(4)	
	Haz. Rat.	Std. Err.						
Transaction characteristics								
Amount Financed (\$100s)	1.016	(0.001)	1.024	(0.001)	1.023	(0.001)	1.019	(0.001)
Maximum Interest Rate (APR)	1.023	(0.002)	1.027	(0.002)	1.026	(0.002)	1.023	(0.002)
Term (months)	1.015	(0.002)	1.006	(0.002)	1.007	(0.002)	1.008	(0.002)
Down Payment Residual	0.980	(0.001)	-	-	-	-	-	-
Car Characteristics								
Car Cost (\$100s)	0.981	(0.001)	0.974	(0.001)	0.973	(0.001)	0.976	(0.001)
Premium (Cost > \$7,500)	0.866	(0.015)	0.888	(0.015)	0.889	(0.015)	0.819	(0.014)
Car Age (years)	1.027	(0.003)	1.027	(0.003)	1.026	(0.003)	1.020	(0.003)
Odometer (10,000s)	1.012	(0.002)	1.012	(0.002)	1.012	(0.002)	1.015	(0.002)
Lot Age (months)	1.056	(0.003)	1.066	(0.003)	1.069	(0.003)	1.063	(0.003)
Individual Characteristics								
Income (\$1,000s/month)	0.956	(0.004)	0.949	(0.004)	-	-	-	-
Age	0.996	(0.002)	0.994	(0.002)	-	-	-	-
Age squared	1.000	(2E-05)	1.000	(7E-03)	-	-	-	-
Bank Account	0.821	(0.007)	0.826	(0.007)	-	-	-	-
House Owner	0.999	(0.011)	1.005	(0.011)	-	-	-	-
Lives with Parents	1.061	(0.011)	1.061	(0.011)	-	-	-	-
Credit Score (100s)	0.978	(0.011)	0.981	(0.011)	-	-	-	-
Credit Category Fixed Effects								
Representative Low Risk	0.575	(0.014)	0.553	(0.014)	0.476	(0.011)	-	-
Representative Medium Risk	0.894	(0.019)	0.862	(0.018)	0.779	(0.015)	-	-
Representative High Risk	1.099	(0.024)	1.074	(0.023)	0.997	(0.021)	-	-
Other Fixed Effects	Year, Mo Credit	th, City, ategory	Year, Mo Credit	th, City, ategory	Year, M Credit	th, City, ategory	Year, M Credit	nth, City, ategory

Notes

1. Sample is all sales; sample size is $\sim 0.34 N$, where $N \gg 50,0000$ (see Table 1).

Figure 1(a): Kernel Density of Fraction of Loan Paid Conditional on Default

Figure 1(b): Rate of Return Histogram

Figure 2(a): Seasonality in Applications and Sales

Figure 2(b): Tax Credit Effects on Applications and Sales

Sales

Close Rate

Dependents	
0	No dependents
1	1 dependent
2	2 or more dependents

	Monthly Income
VL	Less than $\$ 1,500$
L	$\$ 1,500$ to $\$ 2,000$
M	$\$ 2,000$ to $\$ 3,000$
H	More than $\$ 3,000$

Figure 4(a): Expected Loan Payments vs. Loan Amount

Figure 4(b): Offer Curves

Figure 5(a): Scatter Plot of Desired Down Payment vs. Default Probability by Credit Category

Figure 5(b): Scatter Plot of Actual Down Payment vs. Default Probability by Credit Category

[^0]: ${ }^{1}$ Throughout, we use s to denote the subjective discount rate. A discount rate of 427 percent implies a subjective

[^1]: ${ }^{3}$ Our analysis is positive rather than normative and agnostic about the exact model of consumer behavior, on which welfare analysis would depend.
 ${ }^{4}$ Studies of the effects of unemployment insurance also provide evidence for credit constraints (e.g., Chetty, 2006; Card, Chetty and Weber, 2006).
 ${ }^{5}$ There is no clear consensus, however, on the exact story. For instance, Carroll (2001) argues that much of the evidence on consumption behavior can be explained by a buffer stock model where all agents can borrow freely at relatively low interest rates. Jappelli (1990) provides some limited evidence supporting rationing at a fixed interest rate, based on the fact that nineteen percent of the households in the 1983 Survey of Consumer Finances report having had a credit application rejected or not applying for a loan for fear of being rejected.

[^2]: ${ }^{6}$ Karlan and Zinman (2006a) report a similar finding, that loan demand is more sensitive to maturity than to interest rate, based on a pricing experiment carried out by a South African lender. Their experiment also provides some evidence for moral hazard and adverse selection (Karlan and Zinman, 2006b).

[^3]: ${ }^{7}$ Car prices are subject to some degree of negotiation, which we discuss in Section 3. The price we report here is the negotiated transaction price rather than the "list" price, which is slightly higher.

[^4]: ${ }^{8}$ Letting p denote the car price, d the down payment, T the loan term in months and $R=1+r$ the monthly interest rate, the monthly payment is given by $m=(p-d) \cdot(R-1) /\left(1-R^{-T}\right)$.
 ${ }^{9}$ The company does offer lower rates to some buyers who have either particularly good credit records or make down payments above the minimum. Although we do not have direct data on the offers of competing lenders, it seems unlikely that this population has access to better rates. Fair Isaac's web page indicates that borrowers with FICO scores in the 500-600 range (that is, better than the majority of the applicants in our sample) should expect to pay close to 20 percent annual interest for standard used car loans in most states, and in some states will not qualify at all for "standard" loans.
 ${ }^{10} \mathrm{~A}$ few states have lower caps that depend on characteristics of the car.
 ${ }^{11}$ We have limited data on the causes of default. The company reports that most defaults are triggered by personal problems such as job loss. Car accidents or breakdowns can also trigger a default.

[^5]: ${ }^{12}$ Our calculations are most informative for small changes in loan size. As we show below, smaller loans decrease the probability of default, which generates a non-convexity in loan demand. This effect is not reflected in our calculation, which takes the default process as fixed. It is also worth noting that the incentive to borrow on the margin increases with buyers' subjective discount rates. Some researchers (e.g., Laibson, Repetto and Tobacman, 2003) have argued that borrowing behavior reflects a much higher degree of impatience than we assume here.

[^6]: ${ }^{13}$ This would not be the case for a non-financed car purchase, which is presumably the reason that studies of the marginal propensity to consume out of tax rebates focus on expenditure on non-durables.

[^7]: ${ }^{14}$ The details of the EITC schedule did not change much over our observation period (2001-2005). The particular numbers we report are based on the the 2003 schedule.

[^8]: ${ }^{15}$ An obvious concern with this imputation is identifying the effect of price changes. Because prices are individually negotiated, it seems plausible that non-purchasers might have faced somewhat higher prices. Even if the difference in offers arises for random exogenous reasons, a straight demand regression would underestimate the effect of price changes. We address this problem, as well as the concern that negotiated prices may incorporate information not available to us as analysts, with the instrumental variables strategy described below.

[^9]: ${ }^{16}$ If this were the case, we would still obtain accurate estimates of the effect of a change in price on latent utility, but we would not be able to extrapolate from this to a change in the firm's overall sales.

[^10]: ${ }^{17}$ An Appendix showing the results from a wide range of alternative samples and specifications is available on request from the authors.

[^11]: ${ }^{18}$ One could potentially be more sophisticated here and, for instance, account for changes in loan size affecting the default process, or differences between marginal applicants and the broader distribution of buyers. We think that our approach is a good enough approximation for the task at hand, however.

[^12]: ${ }^{19}$ There are many ways to motivate this assumption. One is that the customer's second period income is stochastic and she may not have enough money to pay back the loan. Another is that the value of the car evolves stochastically and the customer may choose to default if its value of paying falls below the loan liability.
 ${ }^{20}$ If one views default as a mechanical consequence of circumstances rather than as a considered choice, moral hazard is arguably not the best label, but this appears to be the standard terminology in the literature.

[^13]: ${ }^{21}$ Depending on the parameters, a separating equilibrium may not always exist. One possibility is that the terms required by firms are simply too onerous for consumers. Another possibility is that the equilibrium can be upset by a firm that offers a profitable pooling contract. The intuition for the latter is the same as in the well-studied insurance

[^14]: ${ }^{22}$ The mechanism that leads to adverse selection may either operate through a causal effect - individuals know they will default and therefore pay less up-front - or through a statistical relationship - individuals who have less liquidity today for down payment also have less liquidity later, which is why they default. We can remain agnostic as to which of these mechanisms is more important, as it has no effect on our analysis.

[^15]: ${ }^{23}$ This is to be expected given the striking similarity in the timing of default patterns across different risk groups, as shown in Figure 1(a). For instance, we get similar results using probit or logit models of default, estimated either using the uncensored loans in our data or using all loans with the dependent variable being a dummy equal to one if the loan defaults in the first quarter of the loan term. We have also experimented with default models where the cumulative distribution of defaults, rather than the hazard, is separable in duration and covariates, and with using calendar time rather than the fraction of payments as the dependent variable.

[^16]: ${ }^{24}$ One way to address this is to focus on variation in list price, by applying again the instrumental variable strategy we use in Section 3, where the list price is used as an instrument for the transaction price. The results from such specifications were very similar to the results reported in Table 3. We should note that because applying instrumental

