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1. Introduction

Since the seminal work of Kydland and Prescott (1982) and Prescott (1986a) proponents of the

Real Business Cycle (RBC) paradigm have claimed a central role for exogenous variations in

technology as a source of economic fluctuations in industrialized economies. Those fluctuations

have been interpreted by RBC economists as the equilibrium response to exogenous variations in

technology, in an environment with perfect competition and intertemporally optimizing agents,

and in which the role of nominal frictions and monetary policy is, at most, secondary.

Behind the claims of RBC theory lies what must have been one of the most revolution-

ary findings in postwar macroeconomics: a calibrated version of the neoclassical growth model

augmented with a consumption-leisure choice, and with stochastic changes in total factor pro-

ductivity as the only driving force, seems to account for the bulk of economic fluctuations in

the postwar U.S. economy. In practice, “accounting for observed fluctuations” has meant that

calibrated RBC models match pretty well the patterns of unconditional second moments of a

number of macroeconomic time series, including their relative standard deviations and correla-

tions. Such findings led Prescott to claim “...that technology shocks account for more than half

the fluctuations in the postwar period, with a best point estimate near 75 percent.”1 Similarly,

in two recent assessments of the road traveled and the lessons learned by RBC theory after more

than a decade, Cooley and Prescott (1995) could confidently claim that “it makes sense to think

of fluctuations as caused by shocks to productivity,” while King and Rebelo (1999) concluded

that “...[the] main criticisms levied against first-generation real business cycle models have been

largely overcome.”

While most macroeconomists have recognized the methodological impact of the RBC research

program and have adopted its modelling tools, other important, more substantive elements of

1Prescott (1996b)
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that program have been challenged in recent years. First, and in accordance with the widely

acknowledged importance of monetary policy in industrialized economies, the bulk of the profes-

sion has gradually moved away from real models (or their near-equivalent frictionless monetary

models) when trying to understand short run macroeconomic phenomena. Secondly, and most

importantly for the purposes of this paper, the view of technological change as a central force

behind cyclical fluctuations has been called into question. In the present paper we focus on the

latter development, by providing an overview of the literature that has challenged the central

role of technology in business cycles.

A defining feature of the literature reviewed here lies in its search for evidence on the role of

technology that is “more direct” than just checking whether any given model driven by technol-

ogy shocks, and more or less plausibly calibrated, can generate the key features of the business

cycle. In particular we discuss efforts to identify and estimate the empirical effects of exogenous

changes in technology on different macroeconomic variables, and to evaluate quantitatively the

contribution of those changes to business cycle fluctuations.

Much of that literature (and, hence, much of the present paper) focuses on one central,

uncontroversial feature of the business cycle in industrialized economies, namely, the strong

positive comovement between output and labor input measures. That comovement is illustrated

graphically in Figure 1, which displays the quarterly time series for hours and output in the U.S.

nonfarm business sector over the period 1948:1-2002:4. In both cases the original series have

been transformed using the band-pass filter developed in Baxter and King (1994), calibrated to

remove fluctuations of periodicity outside an interval between 6 and 32 quarters. As in Stock

and Watson (1999), we interpret the resulting series as reflecting fluctuations associated with

business cycles.

As is well known, the basic RBC model can generate fluctuations in labor input and output

of magnitude, persistence, and degree of comovement roughly similar to the series displayed in
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Figure 1. Furthermore, and as shown in King and Rebelo (1999), when the actual sequence

of technology shocks (proxied by the estimated disturbances of an AR process for the Solow

residual) is fed as an input into the model, the resulting equilibrium paths of output and labor

input track surprisingly well the observed historical patterns of those variables; the latter exercise

can be viewed as a more stringent test of the RBC model than the usual moment-matching.

The literature reviewed in the present paper asks, however, very different questions: What

have been the effects of technology shocks in the postwar U.S. economy? How do they differ

from the predictions of standard RBC models? What is their contribution to business cycle

fluctuations? What features must be incorporated in business cycle models to account for the

observed effects? The remainder of this paper describes the tentative (and sometimes contra-

dictory) answers that the efforts of a growing number of researchers have yielded. Some of that

research has exploited the natural role of technological change as a source of permanent changes

in labor productivity to identify technology shocks using structural VARs; other authors have

instead relied on more direct measures of technological change and examined their comovements

with a variety of macro variables. It is not easy to summarize in a few words the wealth of

existing evidence nor to agree on some definite conclusions of a literature that is still very much

ongoing. Nevertheless, it is safe to state that the bulk of the evidence reviewed in the present

paper provides little support to the initial claims of the RBC literature on the central role of

technological change as a source of business cycles.

The remainder of the paper is organized as follows. Section 2 reviews some of the early papers

that questioned the importance of technology shocks, and presents some of the basic evidence

regarding the effects of those shocks. Section 3 discusses a number of criticisms and possible

pitfalls of that literature. Section 4 presents the case for the existence of nominal frictions as

an explanation of the estimated effects of technology shocks. Section 5 summarizes some of the

real explanations for the same effects found in the literature. Section 6 lays out and analyzes an
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estimated DSGE model that incorporates both nominal and real frictions, and evaluates their

respective role. Section 7 concludes.

2. Estimating the Effects of Technology Shocks

In Galí (1999) the effects of technology shocks were identified and estimated using a structural

VAR approach. In its simplest specification, to which we restrict our analysis here, the empirical

model makes use of information on two variables: output and labor input, which we denote

respectively by yt and nt, both expressed in logs. Those variables are used to construct a

series for (log) labor productivity, xt ≡ yt − nt . In what follows the latter is assumed to be
integrated of order one (in a way consistent with the evidence reported below). Fluctuations in

labor productivity growth (∆xt) and in some stationary transformation of labor input (bnt) are
assumed to be a consequence of two types of shocks hitting the economy and propagating their

effects over time. Formally, the following MA representation is assumed: ∆xtbnt
 =

 C11(L) C12(L)

C21(L) C22(L)

  εzt

εdt

 ≡ C(L) εt (2.1)

where εzt and εdt are serially uncorrelated, mutually orthogonal structural disturbances, whose

variance is normalized to unity. The polynomial |C(z)| is assumed to have all its roots outside
the unit circle. Estimates of the distributed lag polynomials Cij(L) are obtained by a suitable

transformation of the estimated reduced form VAR for [∆xt, bnt] after imposing the long run
identifying restriction C12(1) = 0.2 That restriction effectively defines {εzt } and {εdt } as shocks
with and without a permanent effect on labor productivity, respectively. On the basis of some

of the steady state restrictions shared by a broad range of macro models (and further discussed

below) Galí (1999) proposes to interpret permanent shocks to productivity {εzt } as technology

2 See Blanchard and Quah (1989) and Galí (1999) for details.
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shocks. On the other hand, transitory shocks {εdt } can potentially capture a variety of driving
forces behind output and labor input fluctuations that would not be expected to have permanent

effects on labor productivity. The latter include shocks that could have a permanent effect on

output (but not on labor productivity), but which are “non-technological” in nature, as would

be the case for some permanent shocks to preferences or government purchases, among others.3

As discussed below, they could in principle capture transitory technology shocks as well.

2.1. Revisiting the Basic Evidence on the Effects of Technology Shocks

Next, we revisit and update the basic evidence on the effects of technology shocks reported in Galí

(1999). Our baseline empirical analysis uses quarterly U.S. data for the period 1948:I-2002:IV.

Our source is the Haver USECON database, for which we list the associated mnemonics. Our

series for output corresponds to nonfarm business sector output (LXNFO). Our baseline labor

input series is hours of all persons in the nonfarm business sector (LXNFH). Below we often ex-

press the output and hours series in per capita terms, using a measure of civilian noninstitutional

population aged 16 and over (LNN).

Our baseline estimates are based on a specification of hours in first-differences, i.e. we set

bnt = ∆nt. That choice seems consistent with the outcome of ADF tests applied to the hours
series, which do not reject the null of a unit root in the level of hours at a 10 percent significance

level, against the alternative of stationarity around a linear deterministic trend. On the other

hand, the null of a unit root in the first-differenced series is rejected at a level of less than 1

percent.4 In a way consistent with the previous result, a KPSS test applied to nt rejects the

stationarity null with a significance level below 1 percent, while failing to reject the same null

3 It is precisely that feature what differentiates the approach to identification in Galí (1999) from that in
Blanchard and Quah (1989). The latter authors used restrictions on long-run effects on output, as opposed to
labor productivity. In the presence of a unit root in labor input that could lead to the mislabeling as “technology”
shocks of any disturbances that was behind the unit root in labor input.

4With four lags, the corresponding t−statistics are −2.5 and and −7.08 the level and first-difference,
respectively.
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when applied to ∆nt. In addition, the same battery of ADF and KPSS tests applied to our xt

and ∆xt series support the existence of a unit root in labor productivity, a necessary condition

for the identification strategy based on long-run restrictions employed here. Both observations

suggest the specification and estimation of a VAR for [∆xt,∆nt]. Henceforth, we refer to the

latter as the difference specification.

Figure 2 displays the estimated effects of a positive technology shock, of size normalized to

one standard deviation. The graphs on the left show the dynamic responses of labor productivity,

output, and hours, together with (±) two standard error bands.5 The corresponding graphs on
the right show the simulated distribution of each variable’s response on impact. As in Galí

(1999), the estimates point to a significant and persistent decline in hours after a technology

shock that raises labor productivity permanently.6 The point estimates suggest that hours do

eventually return to their original level (or close to it), but not until more than a year later.

Along with that pattern of hours, we observe a positive but muted initial response of output in

the face of a positive technology shock.

The estimated responses to a technology shock displayed in Figure 2 contrast starkly with

the predictions of a standard calibrated RBC model, which would predict a positive comovement

among the three variables plotted in the figure in response to that shock.7

Not surprisingly, the previous estimates have dramatic implications regarding the sources of

the business cycle fluctuations in output and hours displayed in Figure 1. This is illustrated

in Figure 3, which displays the estimated business cycle components of the historical series for

output and hours associated with technology and non-technology shocks. In both cases the

estimated components of the (log) levels of productivity and hours have been detrended using

5That distribution is obtained by means of a Montecarlo simulation based on 500 drawings from the distrib-
ution of the reduced-form VAR distribution.

6Notice that the distribution of the impact effect on hours assigns a zero probability to an increase in that
variable.

7 See, e.g., King et al. (1988) and Campbell (1994)
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the same band-pass filter underlying the series plotted in Figure 1. As in Galí (1999), the

picture that emerges is very clear: fluctuations in hours and output driven by technology shocks

account for a small fraction of the variance of those variables at business cycle frequencies: 5

and 7 percent, respectively. Furthermore, the comovement at business cycle frequencies between

output and hours resulting from technology shocks is shown to be essentially zero (the correlation

is −0.08), in contrast with the high positive comovement observed in the data (0.88). Clearly,
the pattern of technology-driven fluctuations, as identified in our structural VAR, shows little

resemblance with the conventional business cycle fluctuations displayed in Figure 1.

The picture changes dramatically if we turn our attention to the estimated fluctuations

of output and hours driven by shocks with no permanent effects on productivity (displayed

in the bottom graph). Those shocks account for 95 and 93 percent of the variance of the

business cycle component of hours and output, respectively. In addition, they generate a nearly

perfect correlation (0.96) between the same variables. In contrast with its technology-driven

counterpart, this component of output and hours fluctuations displays a far more recognizable

business cycle pattern.

A possible criticism to the above empirical framework is the assumption of only two driving

forces underlying the fluctuations in hours and labor productivity. As discussed in Blanchard and

Quah (1989), ignoring some relevant shocks may lead to a significant distortion in the estimated

impulse responses. Galí (1999) addresses that issue by estimating a five-variable VAR (including

time series on real balances, interest rates and inflation). That framework allows for as many as

four shocks with no permanent effects on productivity, and for which no separate identification

is attempted. The estimates generated by that higher-dimensional model regarding the effects

of technology shocks are very similar to the ones reported above, suggesting that the focus on

two shocks only may not be restrictive for the issue at hand.8

8See also Francis and Ramey (2002), among others, for estimates using higher dimensional VARs.
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2.2. Related Empirical Work

The empirical connection between technological change and business cycle fluctuations has been

the focus of a rapidly expanding literature. Next we briefly discuss some recent papers providing

evidence on the effects of technology shocks, and which reach conclusion similar to Galí (1999),

while using a different data set or empirical approach. We leave for later a discussion of the

papers whose findings relate more specifically to the content of other sections, including those

that question the evidence reported above.

An early contribution is given by the relatively unknown paper by Blanchard, Solow and

Wilson (1995). That paper already spells out some of the key arguments found in the subsequent

literature. In particular, it stresses the need to sort out the component of productivity associated

with exogenous technological change from that which varies in response to other shocks that

may affect the capital-labor ratio. They adopt a simple instrumental variables approach, with a

number of demand-side variables assumed to be orthogonal to exogenous technological change

used as instruments for employment growth or the change in unemployment in a regression that

features productivity growth as a dependent variable. The fitted residual in that regression is

interpreted as a proxy for technology-driven changes in productivity. When they regress the

change in unemployment on the “filtered” productivity growth variable they obtain a positive

coefficient, i.e. an (exogenous) increase in productivity drives the unemployment rate up. A

dynamic specification of that regression implies that such an effect lasts for about three quarters,

after which unemployment starts to fall and returns rapidly to its original value.

As mentioned in Galí (1999, footnote 19) and stressed by Valerie Ramey in her discussion, the

finding of a decline in hours (or an increase in unemployment) in response to a positive technology

shock could also have been detected by an attentive reader in a number of earlier VAR papers,

though that finding generally goes unnoticed or is described as puzzling. Blanchard and Quah

(1989) and Blanchard (1989) are exceptions in that they provide some explicit discussion of
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the finding, which they interpret as consistent with a traditional Keynesian model “in which

increases in productivity...may well increase unemployment in the short run if aggregate demand

does not increase enough to maintain employment”.9

The work of Basu, Fernald and Kimball (1999; BFK, henceforth) deserves special attention

here, given its focus and the similarity of its findings to those in Galí (1999) despite the use of an

unrelated methodology. BFK use a sophisticated growth accounting methodology allowing for

increasing returns, imperfect competition, variable factor utilization and sectoral compositional

effects in order to uncover a time series for aggregate technological change in the postwar U.S.

economy. Their approach, combining elements of earlier work by Hall (1990) and Basu and

Kimball (1997) among others, can be viewed as an attempt to cleanse the Solow residual (Solow

(1957)) of its widely acknowledged measurement error resulting from the strong assumptions

underlying its derivation. Estimates of the response of the economy to innovations in their mea-

sure of technological change point to a sharp short run decline in the use of inputs (including

labor) when technology improves, with output showing no significant change (with point esti-

mates suggesting a small decline). After that short-run impact both variables gradually adjust

upward, with labor input returning to its original level and with output reaching a permanently

higher plateau several years after the shock.

Kiley (1996) applies the structural VAR framework in Galí (1999) to data from two-digit

manufacturing industries. While he does not report impulse responses, he finds that technology

shocks induce a negative correlation between employment and output growth in 12 of the 17

industries considered. When he estimates an analogous conditional correlation for employment

and productivity growth, he obtains a negative value for 15 out of 17 industries. Francis (2001)

conducts a similar analysis, though he attempts to identify industry-specific technology shocks

by including a measure of aggregate technology, which is assumed to be exogenous to each of

9Blanchard (1989, p. 1158).
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the industries considered. He finds that, for the vast majority of industries, a sectoral labor

input measure declines in response to a positive industry-specific technology shock. Using data

from a large panel of 458 manufacturing industries and 35 sectors, Franco and Philippon (2004)

estimate a structural VAR with three shocks: technology shocks (with permanent effects on

industry productivity), composition shocks (with permanent effects on the industry share in

total output), and transitory shocks. They find that technology shocks (i) generate a negative

comovement between output and hours within each industry, and (ii) are almost uncorrelated

across industries. Accordingly, they conclude that technology shocks can only account for a small

fraction of the variance of aggregate hours and output (with two thirds of the latter accounted

for by transitory shocks).

Shea (1998) uses a structural VAR approach to model the connection between changes in

measures of technological innovation (R&D and number of patent applications) and subsequent

changes in TFP and hired inputs, using industry level data. For most specifications and in-

dustries he finds that an innovation in the technology indicator does not cause any significant

change in TFP, but tends to increase labor inputs in the short run. While not much stressed

by Shea, however, one of the findings in his paper is particularly relevant for our purposes: in

the few VAR specifications for which a significant increase in TFP is detected in response to a

positive innovation in the technology indicator, inputs—including labor—are shown to respond in

the direction opposite to the movement in TFP, a finding in line with the evidence above.10

Francis and Ramey (2003a) extend the analysis in Galí (1999) in several dimensions. The first

modification they consider consists in augmenting the baseline VAR (specified in first differences)

with a capital tax rate measure in order to sort out the effects of technology shocks from those

of permanent changes in tax rates (more below). Secondly, they identify technology shocks as

those with permanent effects on real wages (as opposed to labor productivity) and/or no long run

10See the comment on Shea’s paper by Galí (1998) for a more detailed discussion of that point.
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effects on hours, both equally robust predictions of a broad class of models that satisfy a balance

growth property. Those alternative identifying restrictions are not rejected when combined into

a unified (overidentified) model. Francis and Ramey show that both the model augmented with

capital tax rates and the model with alternative identifying restrictions (considered separately

or jointly) imply impulse responses to a technology shock similar to those in Galí (1999) and,

in particular, a drop in hours in response to a positive technology shock.

Francis, Owyang and Theodorou (2003) use a variant of the sign restriction algorithm of

Uhlig (1999) and show that the finding of a negative response of hours to a positive technology

shock is robust to replacing the restriction on the asymptotic effect of that shock with one taking

imposing a positive response of productivity at a horizon of ten years after the shock.

A number of recent papers have provided related evidence based on non-U.S. aggregate data.

In Galí (1999) the structural VAR framework discussed above is also applied to the remaining G7

countries (Canada, U.K., France, Germany, Italy, and Japan). He uncovers a negative response

of employment to a positive technology shock in all countries, with the exception of Japan. Galí

(1999) also point out some differences in those estimates relative to those obtained for the U.S.:

in particular, the (negative) employment response to a positive technology shocks in Germany

, the U.K. and Italy appears to be larger and more persistent, which could be interpreted as

evidence of “hysteresis” in European labor markets. Very similar qualitative results for the euro

area as a whole can also be found in Galí (2004), which applies the same empirical framework

to the quarterly data set which has been recently available. In particular, technology shocks

are found to account for only 5 percent and 9 percent of the variance of the business cycle

component of euro area employment and output, respectively, with the corresponding correlation

between their technology-driven components being −0.67). Francis and Ramey (2003b) estimate
a structural VAR with long-run identifying restrictions using long-term U.K. annual time series

tracing back to the nineteenth century; they find robust evidence of a negative short-run impact
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of technology shocks on labor in every subsample.11 Finally, Carlsson (2000) develops a variant

of the empirical framework in BFK (1999) and Burnside et al. (1995) to construct a time

series for technological change, and applies it to a sample of Swedish two-digit manufacturing

industries. Most prominently, he finds that positive shocks to technology have, on impact, a

contractionary effect on hours and a non-expansionary effect on output, as in BFK (1999).

2.3. Implications

The implications of the evidence discussed above for business cycle analysis and modelling are

manifold. Most significantly, those findings reject a key prediction of the standard RBC par-

adigm, namely, the positive comovement of output, labor input and productivity in response

to technology shocks. That positive comovement is the single main feature of that model that

accounts for its ability to generate fluctuations that resemble business cycles. Hence, taken at

face value, the evidence above rejects in an unambiguous fashion the empirical relevance of the

standard RBC model. It does so in two dimensions. First, it shows that a key feature of the econ-

omy’s response to aggregate technology shocks predicted by calibrated RBC models cannot be

found in the data. Secondly, and to the extent that one takes the positive comovement between

measures of output and labor input as a defining characteristic of the business cycle, it follows

as a corollary that technology shocks cannot be a quantitatively important (and, even less, a

dominant) source of observed aggregate fluctuations. While the latter implication is particu-

larly damning for RBC theory, given its traditional emphasis on aggregate technology variations

as a source of business cycles, its relevance is independent of one’s preferred macroeconomic

paradigm.

11The latter evidence contrasts with their analysis of long term U.S. data, in which the results vary significantly
across samples and appear to depend on the specification used (more below).
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3. Possible Pitfalls in the Estimation of the Effects of Technology Shocks

This section has two main objectives. First, we try address a question that is often raised

regarding the empirical approach used in Galí (1999): to what extent can we be confident in

the economic interpretation given to the identified shocks and, in particular, in the mapping

between technology shocks and the nonstationary component of labor productivity? Below we

provide some evidence that makes us feel quite comfortable about that interpretation. Second,

we describe and address some of the econometric issues that Christiano, Eichenbaum, and

Vigfusson (2003) have raised in a recent paper, and which focus on the appropriate specification

of hours (levels or first differences). Finally, we discuss a recent paper by Fisher (2003), which

distinguishes between two types of technology shocks, neutral and investment-specific.

3.1. Are Long Run Restrictions Useful in Identifying Technology Shocks?

The approach to identification proposed in Galí (1999) relies on the assumption that only (per-

manent) technology shocks can have a permanent effect on (average) labor productivity. That

assumption can be argued to hold under relatively weak conditions, satisfied by the bulk of busi-

ness cycle models currently used by macroeconomists. To review the basic argument consider

an economy whose technology can be described by an aggregate production function12

Yt = F (Kt, AtNt) (3.1)

where Y denotes output, K is the capital stock, N is labor input and A is an index of technology.

Under the assumption that F is homogeneous of degree 1, we have

Yt
Nt

= At Fk (kt, 1) (3.2)

12An analogous but somewhat more detailed analysis can be found in Francis and Ramey (2003a)
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where kt ≡ Kt

AtNt
is the ratio of capital to labor (expressed in efficiency units). For a large class

of models characterized by an underlying balanced growth path, the marginal product of capital

Fk must satisfy, along that path, a condition of the form

(1− τ) Fk (k, 1) = (1 + µ)
³
ρ+ δ +

γ

σ

´
(3.3)

where µ is the price markup, τ is a tax on capital income, ρ is the time discount rate, δ is the

depreciation rate, σ is the intertemporal elasticity of substitution, and γ is the average growth

rate of (per capita) consumption and output. Under the assumption of decreasing returns to

capital, it follows from (3.3) that the capital labor ratio k will be stationary (and will thus

fluctuate around a constant mean) so long as all the previous parameters are constant (or

stationary). In that case, (3.2) implies that only shocks that have a permanent effect on the

technology parameter A can be a source of the unit root in labor productivity, thus providing

the theoretical underpinning for the identification scheme in Galí (1999).

How plausible are the assumptions underlying that identification scheme? Preference or

technology parameters like ρ, δ, σ, and γ are generally assumed to be constant in most examples

and applications found in the business cycle literature. The price markup µ is more likely to

vary over time, possibly as a result of some embedded price rigidities; in the latter case, however,

it is likely to remain stationary, fluctuating around its desired or optimal level. In the event

that desired markups (or the preference and technology parameters listed above) displayed some

non stationarity, the latter would more likely take the form of some smooth function of time,

which should be reflected in the deterministic component of labor productivity, but not in its

fluctuations at cyclical frequencies.13Finally, it is important to notice that the previous approach

to identification of technology shocks requires that (i) Fk be decreasing, so that k is uniquely

13Of course that was also the traditional view regarding technological change, but one that was challenged by
the RBC school.

15



pinned down by (3.3), and (ii) that the technology process {At} is exogenous (at least with
respect to the business cycle). The previous assumptions have been commonly adopted by

business cycle modelers.14

3.1.1. Do Capital Income Tax Shocks Explain Permanent Changes in Labor Pro-

ductivity ?

The previous argument, however, is much less appealing when applied to the capital income tax

rate. As Uhlig (2004) and others have pointed out, the assumption of a stationary capital income

tax rate may be unwarranted, given the behavior of measures for that variable over the postwar

period. This is illustrated graphically in Figure 4, which displays two alternative measures of

the capital income tax rate in the U.S.. Figure 4.A displays a quarterly series for the average

capital income tax rate constructed by Jones (2002) for the period 1958:I-1997:IV. Figure 4.B

shows an annual measure of the average marginal capital income tax rate constructed by Ellen

McGrattan for the period 1958-1992 and which corresponds to an updated version of the one

used in McGrattan (1994).15 Henceforth we denote those series by τJt and τMt , respectively.

Both series display an apparent non-stationary behavior, with highly persistent fluctuations.

This is confirmed by a battery of ADF tests, which fail to reject the null hypothesis of a unit

root in both series, at conventional significance levels.

Furthermore, as evidenced in Figures 4.C and 4.D, which display the same series in first

differences, the presence of sizeable short-run variations in those measures of capital taxes could

hardly be captured by means of some deterministic or smooth function of time (their standard

deviations being 0.79 % for the quarterly Jones series, and 2.4 % for the annual McGrattan se-

ries). In fact, in both cases that first-differenced series ∆τ t shows no significant autocorrelation,

14Exceptions include stochastic versions of endogenous growth models, as in King et al. (1988b). In those
models any transitory shock can in principle have a permanent effect on the level of capital or disembodied
technology and, as a result, on labor productivity.
15We are grateful to Craig Burnside and Ellen McGrattan for providing the data.
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suggesting that a random walk process can approximate the pattern of capital income tax rates

pretty well.

The previous evidence, combined with the theoretical analysis above, points to a potential

caveat in the identification approach followed in Galí (1999): the shocks with permanent effects

on productivity estimated therein could be capturing the effects of permanent changes in tax

rates (as opposed to those of genuine technology shocks). That “mislabeling” could potentially

account for the empirical findings reported above.

Francis and Ramey (2003a) attempt to overcome that potential shortcoming by augmenting

the VAR with a capital tax rate variable, in addition to labor productivity and hours. As

mentioned above, the introduction of the tax variable is shown not to have any significant

influence on the findings: positive technology shocks still lead to short run declines in labor.

Here we revisit the hypothesis of a “tax rate shock mistaken for a technology shock” by

looking for evidence of some comovement between (i) the “permanent” shock εzt estimated using

the structural VAR discussed in section 2, and (ii) each of the two capital tax series, in first-

differences. Given the absence of significant autocorrelation in ∆τJt and ∆τ
M
t , we interpret each

of those those series as (alternative) proxies for the shocks to the capital income tax rate. Also,

when using the McGrattan series, we annualize the “permanent” shock series obtained from the

quarterly VAR by averaging the shocks corresponding to each natural year.

The resulting evidence can be summarized as follows. First, innovations to the capital income

tax rate show a near zero correlation with the permanent shocks from the VAR. More precisely,

our estimates of corr(∆τJt , ε
z
t ) and corr(∆τ

M
t , ε

z
t ) are, respectively, −0.06 and 0.12, neither of

which is significant at conventional levels. Thus, it is highly unlikely that the permanent VAR

shocks may be capturing exogenous shocks to capital taxes.

Secondly, an OLS regression of the Jones tax series ∆τJt on current and lagged values of ε
z
t

yields jointly insignificant coefficient estimates: the p-value is 0.54 when four lags are included,
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0.21 when we include eight lags. A similar result obtains when we regress the McGrattan tax

series ∆τMt on current and several lags of εzt , with the p-value for the null of zero coefficients

being 0.68 when four lags are included (0.34 when we use 8 lags). Since the sequence of those

coefficients corresponds to the estimated impulse response of capital taxes to the permanent

VAR shock, the previous evidence suggests that the estimated effects of the permanent VAR

shocks are unlikely to be capturing the impact of a possible endogenous response in capital taxes

to whatever exogenous shock underlies the estimated permanent VAR shock.

We conclude from the previous exercises that there is no support for the hypothesis that the

permanent shocks to labor productivity, interpreted in Galí (1999) as technology shocks, could

be instead capturing changes in capital income taxes.16

3.1.2. Do Permanent Shocks to Labor Productivity Capture Variations in Technol-

ogy?

Having all but ruled out variations in capital taxes as a significant factor behind the unit root

in labor productivity, we next present some evidence that favors the interpretation of the VAR

permanent shock as a shift to aggregate technology. In addition we also provide some evidence

against the hypothesis that transitory variations in technology may be a significant force behind

the shocks identified as transitory shocks, a hypothesis that cannot be ruled out on purely

theoretical grounds.

Francis and Ramey (2003a) test a weak form of the hypothesis of permanent shocks as

technology shocks, by looking for evidence of Granger-causality between a number of indicators

that are viewed as independent of technology on the one hand, and the VAR-based technology

shock on the other. The indicators include the Romer and Romer (1989) monetary shock dummy,

the Hoover and Perez (1994) oil shock dummies, Ramey and Shapiro’s military buildup dates

16A similar conclusion is obtained by Fisher (2003), using a related approach in the context of the multiple
technology shock model described below.
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(1998), and the federal funds rate. Francis and Ramey show that none of them have a significant

predictive power for the estimated technology shock.

Here we provide a more direct assessment by making use of the measure of aggregate techno-

logical change obtained by Basu, Fernald and Kimball (1999; BFK, henceforth).17 As discussed

earlier, those authors constructed that series using an approach unrelated to ours. The BFK

variable measures the annual rate of technological change in the U.S. nonfarm private business

sector. The series has an annual frequency and covers the period 1950-1989. Our objective here

is to assess the plausibility of the technology-related interpretation of the VAR shocks obtained

above by examining their correlation with the BFK measure. Given the differences in frequencies

we annualize both the “permanent” and “transitory” shock series obtained from the quarterly

VAR by averaging the shocks corresponding to each natural year.

The main results can be summarized as follows. First, the correlation between the VAR-

based permanent shock and the BFK measure of technological change is positive and significant

at the 5 percent level, with a point estimate of 0.45. The existence of a positive contemporane-

ous comovement is apparent in Figure 5, which displays the estimated VAR permanent shock

together with the BFK measure (both series have been normalized to have zero mean and unit

variance, for ease of comparison).

Secondly, the correlation between our estimated VAR transitory shock and the BFK series

is slightly negative, though insignificantly different from zero (the point estimate is −0.04). The
bottom graph of Figure 5, which displays both series, illustrates the absence of any obvious

comovement between the two.

Finally, and given that the BFK series is mildly serially correlated, we have also run a simple

OLS regression of the (normalized) BFK variable on its own lag, and the contemporaneous

17 In particular, we use their “fully corrected” series from their 1999 paper When revising the present paper
BFK made us aware of an updated version of their technology series, extending the sample period through to
1996, and incorporating some methodological changes. The results obtained with the updated series were almost
identical to the ones reported below.
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estimates of the permanent and transitory shocks from the VAR. The estimated equation, with

t statistics in brackets, is given by:

BFKt = 0.29
(1.85)

BFKt−1 + 0.67
(2.16)

εzt − 0.32
(−1.11)

εdt

which reinforces the findings obtained from the simple contemporaneous correlations.

In summary, the results from the above empirical analysis suggest that the VAR-based per-

manent shocks may indeed be capturing exogenous variations in technology, in a way consistent

with the interpretation made in Galí (1999). In addition, we cannot find evidence supporting

the view that the VAR transitory shocks—which were shown in Section 2 to be the main source

of business cycle fluctuations in hours and output—may be related to changes in technology.

3.2. Robustness to Alternative VAR Specifications

In a recent paper, Christiano, Eichenbaum, and Vigfusson (2003; CEV, henceforth ) have ques-

tioned some of the VAR-based evidence regarding the effects of technology shocks found in Galí

(1999) and Francis and Ramey (2003a), on the basis of their lack of robustness to the trans-

formation of labor input used. In particular, CEV argue that first-differencing the (log) of per

capita hours may distort the sign of the estimated response of that variable to a technology

shock, if that variable is truly stationary. Specifically, their findings based on a bivariate VAR

model in which (per capita) hours are specified in levels (bnt = nt) imply that output, hours, and
productivity all rise in response to a positive technology shock. On the other hand, when they

use a difference specification they obtain results similar to the ones reported above, i.e. a nega-

tive comovement between output (or productivity) and hours in response to technology shocks.

Perhaps most interestingly, CEV discuss the extent to which the findings obtained under the

level specification can be accounted for under the assumption that the difference specification is

the correct one, and viceversa. Given identical priors over the two specifications, that “encom-
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passing” analysis leads them to conclude that the odds in favor of the level specification relative

to the difference specification are about 2 to 1.18 CEV obtain similar results when incorporating

additional variables in the VAR.

Our own estimates of the dynamic responses to a technology shock when we specify (per

capita) hours in levels do indeed point to some qualitative differences. In particular, as shown in

an appendix available on request, the point estimate of the impact response of hours worked to

a positive technology is now positive, though very small. Yet, and in contrast with the findings

in CEV, that impact effect and indeed the entire dynamic response of hours is not significantly

different from zero. The sign of the point estimates, however, is sufficient to generate a positive

correlation (0.88) between output and hours conditional on the technology shock. Furthermore,

as reported in the second row of Table 1, under the level specification, technology shocks still

account for a (relatively) small fraction of the variance of output and hours at business cycle

frequencies (37 and 11 percent, respectively), though that fraction is larger than the one implied

by the difference specification estimates.19

While we find the encompassing approach adopted by CEV enlightening, their strategy of

pairwise comparisons with uniform priors (which mechanically assigns a 1
2 prior to the level

specification) may lead to some bias in the conclusions. In particular, a simple look at a plot of

the time series for (log) per capita hours worked in the U.S. over the postwar period, displayed in

Figure 6, is not suggestive of stationarity, at least in the absence of any further transformation.

In particular, and in agreement with the ADF and KPSS tests reported above, the series seems

perfectly consistent with a unit root process, though possibly not a pure random walk. On

the basis of a cursory look at the same plot, and assuming that one wishes to maintain the

18That odds ratio increases substantially when an F statistic associated with a covariates ADF test is incor-
porated as part of the encompassing analysis.
19With the exception of their bivariate model under a level specification, CEV also find the contribution of

technology shocks to the variance of output and hours at business cycles to be small (below 20 percent). In their
bivariate, level specification model that contribution is as high as 66 and 33 percent, respectively.
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assumption of a stationary process for the stochastic component of (log) per capita hours, a

quadratic function of time would appear to be a more plausible characterization of the trend

than just the constant implicit in CEV’s analysis. In fact, an OLS regression of that variable on a

constant, time and time squared yields a highly significant coefficient associated with both time

variables. Furthermore, a test of a unit root on the residual from that regression fails to reject

that hypothesis, while the KPSS does not reject the null of stationarity, at a 5 percent significance

level in both cases.20 Figure 6 displays the fitted quadratic trend and the associated residual,

illustrating graphically that point. When we re-estimate the dynamic responses to a technology

shock using detrended (log) per capita hours we find again a decline in hours in response to

positive technology shock, and a slightly negative (−0.11) conditional correlation between the
business cycle components of output and hours. In addition, the estimated contribution of

technology shocks to the variance of output and hours is very small (7 and 5 percent, essentially

the same as under difference specification; see Table 1).21

In order to further assess the robustness of the above results we have also conducted the

same analysis using a specification of the VAR using an alternative measure of labor input,

namely, (log) total hours, without a normalization by working age population. As it should be

clear from the discussion in section 3.1, the identification strategy proposed in Galí (1999) and

implemented here should be valid independently of whether labor input is measured in per capita

terms or not, since labor productivity in invariant to that normalization.22 The second panel

in Table 1 summarizes the results corresponding to three alternative transformations considered

(first differences, levels, quadratic detrending). In the three cases a positive technology shock

20Given the previous observations one wonders how an identical prior for both specifications could be assumed,
as CEV do when computing the odds ratio.
21Unfortunately, CEV do not include any statistic associated with the null of no trend in hours in their

encompassing analysis. While it is certainly possible that one can get a t statistic as high as 8.13 on the time-
squared term with a thirteen percent frequency when the true model contains no trend (as their Montercarlo
analysis suggests), it must surely be the case that such a frequency is much higher when the true model contains
the quadratic trend as estimated in the data !
22 In fact, total hours was the series used originally in Galí (1999).
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is estimated to have a strong and statistically significant negative impact on hours worked, at

least in the short run. Interestingly, under the level and detrended transformations that negative

response of hours is sufficiently strong to pull down output in the short-run, despite the increase

in productivity. Note however that the estimated decline in output is not significant in either

case.23 Furthermore, the estimated contribution of technology shocks to the variance of the

business cycle component of output and hours is small in all cases, with the largest share being

36 percent of the variance of hours, obtained under the level and detrended specifications.

As an additional check on the robustness of our findings, we have also estimated all the model

specifications discussed above using employment as labor input measure (instead of hours), and

real GDP as an output measure. A summary of our results for the six specifications considered

using employment and GDP can be in Table 2. The results under this specification are much

more uniform: independently of the transformation of employment used, our estimates point to

a decline in that variable in the short run in response to a positive technology shock, as well

as a very limited contribution of technology shocks to the variance of GDP and employment.

We should stress that those findings obtain even when we specify employment rate in levels,

even though the short run decline in employment is not statistically significant in that case. In

summary, the previous robustness exercise based on postwar U.S. data has shown that, for all

but one of the transformations of hours used, we uncover a decline in labor input in response

to a positive technology shock, in a way consistent with the literature reviewed in section 2.

The exception corresponds to the level specification of per capita hours, but even in that case

the estimated positive response of hours does not appear to be significant. In most cases the

contribution of technology shocks to the variance of the cyclical component of output and hours

is very small, and always below 40 percent. Finally, and possibly with the exception mentioned

above, the pattern of comovement of output and hours at business cycle frequencies resulting

23The finding of a slight short run decline in output was obtained in BFK (1999).
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from technology shocks, fails to resemble the one associated with postwar U.S. business cycles.

As further discussed in Valerie Ramey’s discussion to this paper, Fernald (2004) makes an

important contribution to the debate, by uncovering the most likely source of the discrepancy

of the estimates when hours are introduced in levels. In particular he shows that the existence

of a low frequency correlation between labor productivity growth and per capita hours. As

illustrated through a number of simulations, the presence of such a correlation, while unrelated

to the higher frequency phenomena of interest, can distort significantly the estimated short-run

responses. Fernald illustrates that point most forcefully by re-estimating the structural VAR

in its levels specification (as in CEV), though allowing for two (statistically significant) trend

breaks in labor productivity (in 1973:I and 1997:II): the implied impulse responses point to a

significant decline in hours in response to a technology shock, a result that also obtains when

the difference specification is used.

Additional evidence on the implications of alternative transformations of hours using annual

time series spanning more than a century is provided by Francis and Ramey (2003b). Their

findings based on US data point to considerable sensitivity of the estimates across subsample

periods and the choice of transformation for hours. In order to assess the validity of the different

specifications they look at their implications for the persistence of the productivity response to

a non-technology shock, the plausibility of the patterns of estimated technology shocks, as well

as the predictability of the latter (the Hall-Evans test). On the basis of that analysis they

conclude that first-differenced and, to a lesser extent, quadratically detrended hours yields are

the most plausible specification. Francis and Ramey show that in their data those two preferred

specifications generate a short run negative comovement between hours and output in response

to a shock that has a permanent effect on technology in the postwar period. In the pre-WWII

period, however, the difference specification yields an increase in hours in response to a shock

that raises productivity permanently. On the other hand, when they repeat the exercise using
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UK data (and a difference specification) they find a clear negative comovement of employment

and output both in the pre-WWII and postwar sample periods.24

In light of those results and the findings in the literature discussed above, we conclude that

there is no clear evidence favoring a conventional RBC interpretation of economic fluctuations

as being largely driven by technology shocks, at least when the latter take the form assumed in

the standard one-sector RBC model. Next we consider how the previous assessment is affected

once we allow for technology shocks that are investment-specific.

3.3. Investment-Specific Technology Shocks

In a series of papers, Greenwood, Hercowitz, and Huffman (1998), and Greenwood, Hercowitz,

and Krusell (1997, 2000; henceforth, GHK) put forward and analyze a version of an RBC model

in which the main source of technological change is specific to the investment sector. In the

proposed framework, and in contrast with the standard RBC model, a technology shock does

not have any immediate impact on the production function. Instead, it affects the rate of

transformation between current consumption and productive capital in the future. Thus, any

effects on current output must be the result of the ability of that shock in eliciting a change

in the quantity of input services hired by firms. GHK (1997, 2000) motivate the interest in

studying the potential role of investment-specific technology shocks by pointing to the large

variations in measures of the relative price of new equipment constructed by Gordon (1990),

both over the long-run as well as at business cycle frequencies. In particular, GHK (2000)

analyze a calibrated model in which investment-specific technology shocks are the only driving

force. They conclude that the latter can account for about 30 percent of US output fluctuations,

a relatively modest figure compared to the claim of the earlier RBC literature regarding the

24Pesavento and Rossi (2003) propose an agnostic procedure to estimate the effects of a technology shock which
does not require taking a stance on the order of integration of hours. They find that a positive technology shock
has a negative effect on hours on impact.
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contribution of aggregate, sector-neutral technology shocks in calibrated versions of one-sector

RBC models.

In a recent paper, Fisher (2003) revisits the evidence on the effects of technology shocks

and their role in the US business cycle, using an empirical framework that allows for separately

identified sector-neutral and investment-specific technology shocks (which, following Fisher, we

refer to respectively as N-shocks and I-shocks, for short). In a way consistent with the identi-

fication scheme proposed in Galí (1999) both types of technology shocks are allowed to have a

permanent effect on labor productivity (in contrast with non-technology shocks). Yet, and in a

way consistent with the GHK framework, only investment-specific technology shocks are allowed

to affect permanently the relative price of new investment goods. Using times series for labor

productivity, per capita hours, and the price of equipment (as a ratio to the consumption goods

deflator) constructed by Cummins and Violante (2002), Fisher estimates impulse responses to

the two types of shocks, and their relative contribution to business cycle fluctuations. We have

conducted a similar exercise on our own, and summarized some the findings in Table 3.25 For

each type of technology shock and specification the table reports its contribution to the vari-

ance of the business cycle component of output and hours, as well as the implied conditional

correlation between those two variables.

The top panel in Table 3 corresponds to three specifications using per capita hours worked,

the labor input variable to which Fisher (2003) restricts his analysis. Not surprisingly, our

results essentially replicate some of his findings. In particular, we see that under the three

transformations of labor input measures considered, N-shocks are estimated to have a negligible

contribution to the variance of output and hours at business cycle frequencies, and to generate

a very low correlation between those two variables.

The results for I-shocks are different in at least two respects. Firstly, and as stressed in Fisher

25We thank Jonas Fisher for kindly providing the data on real investment price.
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(2003), I-shocks generate a high positive correlation between output and hours. The last column

of Table 3 tells us that such a result holds for all labor input measures and transformations

considered. As argued in the introduction, that property must be satisfied by any shock that

plays a central role as a source of business cycles. Of course, this is a necessary, not a sufficient

condition. Whether the contribution of I-shocks to business cycle fluctuations is large or not

depends once again on the transformation of labor input used. Table 3 shows that when that

variable is specified in levels, it accounts for more than half of the variance of output and hours

at business cycle frequencies, a result that appears to be independent of the specific labor input

measure used. On the other hand, when hours or employment are specified in first differences or

are quadratically detrended the contribution becomes much smaller, and always remains below

one-fourth.

What do we conclude from this exercise? First of all, the evidence does not speak with a

single voice: whether a technology shocks are given a prominent role or not as source of business

cycles depends on the transformation of the labor input measure used in the analysis. Perhaps

more interestingly, the analysis of the previous empirical model makes it clear that if some form

of technological change plays a significant role as a source of economic fluctuations, it is not

likely to be of the aggregate, sector-neutral kind that the early RBC literature emphasized,

but of the investment-specific kind stressed in GHK (2000). Finally, and leaving aside the

controversial question of the importance of technology shocks, the previous findings, as well as

those in Fisher (2003), raise a most interesting issue: why do I-shocks appear to generate the

sort of strong positive comovement between output and labour input measures that characterizes

business cycles, while that property is conspicuously absent when we consider N-shocks? Below

we attempt to provide a partial explanation for this seeming paradox.
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4. Explaining the Effects of Technology Shocks

In the present section we briefly discuss some of the economic explanations for the “anomalous”

response of labor input measures to technology shocks. As a matter of simple accounting, firms’

use of inputs (and labor, in particular) will decline in response to a positive technology shock

only if they choose (at least on average) to adjust their level of output less than proportionally to

the increase in total factor productivity. Roughly speaking we can think of two broad classes of

factors which are absent in the standard RBC model and which could potentially generate that

result. The first class involves the presence of nominal frictions, combined with certain monetary

policies. The second set of explanations is unrelated to the existence of nominal frictions, so we

refer to it as “real” explanations. We discuss them in turn next.

4.1. The Role of Nominal Frictions

A possible explanation for the negative response of labor to a technology shock, put forward

both in Galí (1999) and BFK (1999), relies on the presence of nominal rigidities. As a matter

of principle, nominal rigidities should not, in themselves, necessarily be a source of the observed

employment response. Nevertheless, when prices are not fully flexible, the equilibrium response

of employment (or, for that matter, of any other endogenous variable) to any real shock (includ-

ing a technology shock) is not invariant to the monetary policy rule in place; in particular, it will

be shaped by how the monetary authority reacts to the shock under consideration.26 Different

monetary policy rules will thus imply different equilibrium responses of output and employment

to a technology shock, ceteris paribus.

Galí (1999) provided some intuition behind that result by focusing on a stylized model

economy in which the relationship yt = mt − pt holds in equilibrium,27 firms set prices in

26See the discussion in McGrattan (1999), Dotsey (2002), and Galí, López-Salido and Vallés (2003), among
others.
27This would be consistent with any model in which velocity is constant in equilibrium (see Galí (1999) for an
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advance (implying a predetermined price level), and the central bank follows a simple money-

supply rule. It is easy to see that, in that context, employment will experience a short-run decline

in response to a positive technology shocks, unless the central bank endogenously expands the

money supply (at least) in proportion to the increase in productivity. Galí (2003) shows that

the previous finding generalizes (for a broad range of parameter values) to an economy with

staggered-price setting, and a more realistic interest elasticity of money demand, but still an

exogenous money supply. In that case, even though all firms will experience a decline in their

marginal cost only a fraction of them will adjust their prices downwards in the short run.

Accordingly, the aggregate price level will decline, and real balances and aggregate demand will

rise. Yet, when the fraction of firms adjusting prices is sufficiently small, the implied increase in

aggregate demand will be less than proportional to the increase in productivity. That, in turn,

induces a decline in aggregate employment.

Many economists have criticized the previous argument on the grounds that it relied on a

specific and unrealistic assumption regarding how monetary policy is conducted, namely, that

of a money-based rule (e.g., Dotsey (2002)).

In the next subsection we address that criticism by analyzing the effects of technology shocks

in the context of a simple illustrative model with a more plausible staggered price-setting struc-

ture, and a monetary policy characterized by an interest rate rule similar to the one proposed

by Taylor (1993). The model is simple enough to generate closed-form expressions for the re-

sponses of output and employment to variations in technology, thus allowing us to illustrate the

main factors shaping that response and thus generating a negative comovement between the two

variables.

example of such an economy).
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4.1.1. A Simple Illustrative Model

The model we use to illustrate the role of nominal rigidities and monetary policy in shaping the

effects of technology shocks is a standard New Keynesian framework with staggered price setting

a la Calvo (1983). Its equilibrium dynamics can be summarized as follows. On the demand side

output is determined by a forward-looking IS-type equation:

yt = Et{yt+1}− σ (rt −Et{πt+1}) (4.1)

where yt denotes (log) output, rt is the nominal interest rate, and πt ≡ pt − pt−1 denotes the
rate of inflation between t− 1 and t. Parameter σ can be broadly interpreted a measure of the

sensitivity of aggregate demand to changes in interest rates and, thus, of the “effectiveness” of

monetary policy.

Inflation evolves according to a forward-looking new Keynesian Phillips curve

πt = β Et{πt+1}+ κ (yt − yt) (4.2)

where yt is the natural level of output (or potential output, for short), defined as the one

that would prevail in the absence of nominal frictions. Equivalently, yt can be interpreted

as the equilibrium output generated by some background real business cycle model driven by

technology. The previous equation can be derived from the aggregation of optimal price-setting

decisions by firms subject to price adjustment constraints à la Calvo. In that context, coefficient

κ is inversely related to the degree of price stickiness: stronger nominal rigidities imply a smaller

response of inflation to any given sequence of output gaps.

For simplicity we assume that exogenous random variations in productivity are the only

source of fluctuations in the economy and, hence, the determinants of potential output. Accord-
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ingly, we postulate the following reduced form expression for potential output:28

yt = ψy at (4.3)

where at represents an exogenous technology parameter. The latter is assumed to follows an

AR(1) process at = ρa at−1 + εt, where ρa ∈ [0, 1]. Notice that under the assumption of an
aggregate production function of the form yt = at + (1 − α) nt, we can derive the following

expression for the natural level of employment nt

nt = ψn at

where ψn ≡ ψy−1
1−α . Since we want to think of the previous conditions as a reduced-form repre-

sentation of the equilibrium of a standard calibrated RBC model (without having to specify its

details), it is natural to assume ψy ≥ 1 (and, hence, ψn > 0). In that case, a positive technology
shock generates an increase in both output and employment, as generally implied by the RBC

models under conventional calibrations. Notice that it is precisely that property which makes it

possible for any technology-driven RBC model to generate equilibrium fluctuations which repli-

cate some key features of observed business cycles, including a positive comovement of output

and employment.29

In that context, a natural question that arises is the extent to which the comovement of

output and employment in response to technology shocks found in the evidence described above

may have been the result of the way monetary policy has been conducted in the U.S. and other

industrialized economies. In order to illustrate that point, we embed in the context of the

28Such a reduced form relationship would naturally arise as an equilibrium condition of a simple RBC model
with productivity as the only state variable.
29The absence of another state variable (say, capital stock or other disturbances) implies a perfect correlation

between the natural levels of output and employment, in contrast with existing RBC models in the literature
where that correlation is positive and very high, but not one.
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simple model above, by deriving the implications for the effects of technology shocks of having

the central bank follow an interest rate rule of the form

rt = φπ πt + φy yt (4.4)

A rule similar to (4.4) has been proposed by Taylor (1993) and others as a good charac-

terization of monetary policy in the U.S. and other industrialized economies in recent decades.

Notice that, as in Taylor, we assume that the monetary authority responds to output (or its

deviations from trend), and not to the output gap. We view this as a more realistic description

of actual policies (which emphasize output stabilization), and consistent with the fact that the

concept of potential output used here, while necessary to construct any measure of the output

gap, cannot be observed by the policymaker.30

Combining (4.4) with equilibrium conditions (4.1) and (4.2), we can derive the following

closed-form expression for equilibrium output:

yt = Θ ψy at

≡ ψy at

where

Θ ≡ κ (φπ − ρa)

(1− βρa)[σ
−1(1− ρa) + φy] + κ(φπ − ρa)

Notice that under the (weak) assumption that φπ > ρa, we have 0 < Θ ≤ 1. The fact that
Θ > 0 guarantees that a positive (negative) technology shock raises (lowers) output, as in the

30Throughout we assume that the condition κ(φπ − 1) + (1 − β)φy > 0 is satisfied. As shown by Bullar and
Mitra (2002) that condition is necessary to guarantee a unique equilibrium.
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standard RBC model. On the other hand, Θ ≤ 1 implies that

ψy ≤ ψy

i.e., in the presence of nominal frictions the size of response of output to a technology shock, ψy,

is bounded above by that implied by the corresponding RBC model (ψy) when the central bank

follows rule (4.4). Hence, the combination of sticky prices and a Taylor rule will tend to over-

stabilize the output fluctuation resulting from technology shocks. We can interpret parameter

Θ as an index of effective policy accommodation, i.e. one that measures the extent to which

Taylor rule (4.4) accommodates the changes in potential output resulting from variations in

technology shocks, given the persistence of the latter and the rest of parameters describing the

economy. Notice that the index of effective policy accommodation Θ is increasing in the size of

the inflation coefficient in the Taylor rule (φπ), and in the effectiveness of interest changes (as

reflected by σ). It is also positively related to κ (and, hence, inversely related to the degree of

price stickiness). On the other hand, it is inversely related to the size of the output coefficient

in the Taylor rule (φy).

Let us now turn to the equilibrium response of employment to a technology shock, which is

given by:

nt =

Ã
Θψy − 1
1− α

!
at

≡ ψn at

Notice that, in a way analogous to the output case, we have ψn ≤ ψn. In other words, the

size of the employment response to a (positive) technology shock in the presence of nominal

frictions is bounded above by the size of the response generated by the underlying frictionless

RBC model. Furthermore, it is clear that the impact of a technology shock on employment may
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be positive or negative, depending on the configuration of parameter values.

We can get a sense for the likely sign and plausible magnitude for ψn by using conventional

values used in calibration exercises in the literature involving similar models. Thus, Rotemberg

and Woodford’s (1999) estimates based on the response to monetary policy shocks, imply a

value of 0.024 for κ. A unit value is often used as an upper bound for σ. Taylor’s widely used

values for φπ and φy are 1.5 and 0.5, respectively. In standard RBC calibrations the assumption

ρa = 0.95 is often made. Finally we can set β = 0.99 and α = 1
3 , two values that are not much

controversial. Under those assumptions, we obtain a value for Θ of 0.28. The latter figure points

to a relatively low degree of effective policy accommodation.

Using a standard calibrated RBC model, Campbell (1994) obtains a range of values for ψy

between 1 and 2.7, depending on the persistence of the shock and the elasticity of labor supply.

In particular, given a unit labor supply elasticity and a 0.95 autocorrelation in the technology

process, he obtains an elasticity ψy of 1.45 , which we adopt as our benchmark value.
31 When we

combine the latter with our calibrated value for Θ computed, we obtain an implied benchmark

elasticity of employment ψn equal to −0.87.
The previous calibration exercise, while admittedly quick and loose, illustrates that condi-

tion ψn < 0 is likely to hold under a broad range of reasonable parameter values. Under those

circumstances, and subject to the caveat implied by the simplicity of the model and the charac-

terization of monetary policy, it is hard to interpret the negative comovement between output

and employment observed in the data as a puzzle, as it has often been done.32

In his seminal paper, Prescott (1986) concluded his description of the predictions of the RBC

paradigm by stating: “In other words [RBC] theory predicts what is observed. Indeed, if the

31This corresponds to the impact elasticity with respect to productivity, and ignores subsequent adjustment
of capital (which is very small). The source is Table 3 in Campbell (1994), with an appropriate adjustment
to correct for his (labor-augmenting) specification of techology in the production function (we need to divide
Campbell’s number by 2/3).
32 Interestingly, a similar result can be uncovered in an unpublished paper by McGrattan (1999). Unfortunately

the author did not seem to notice that finding (or, at least, she did not discuss it explicitly).
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economy did not display the business cycle phenomena, there would be a puzzle.” In light of

the analysis above, perhaps we should think of turning Prescott’s dictum over its head, and

argue instead that if as a result of technology variations the economy did indeed display the

typical positive comovement between output and employment that characterizes the business

cycle, then there would be a puzzle!

4.1.2. Nominal Rigidities and the Effects of Investment-Specific Technology Shocks

Interestingly, the logic behind the impact of nominal rigidities on the effects of conventional

aggregate, sector neutral technology shocks on which the previous discussion focuses, would also

seem consistent with the estimated effects of investment-specific technology shocks, as reported

in Fisher (2003) and further discussed in section 3 above. The argument can be made most

clearly in the context of a sticky price version of a model like that in GHK (2000) model. Once

again, let us for simplicity that the relationship yt = mt − pt holds in equilibrium, and that
both mt and pt are pre-determined relative to the shock. In that case firms will want to produce

the same quantity of the good but, in contrast with the case of neutral technology shocks, in

order to do so they will need to employ the same level of inputs since the efficiency of the latter

has not been affected (only newly purchased capital goods will enhance that productivity in the

future). That property of I-shocks is illustrated in Smets and Wouters (2003a) in the context of

a much richer DSGE model. In particular, those authors show that even in the presence of the

substantial price and wage rigidities estimated for the U.S. economy a positive I-shock causes

output and labor input to increase simultaneously, in a way consistent with the Fisher (2003)

VAR evidence. In fact, as shown in Smets and Wouters (2003a) the qualitative pattern of the

joint response of output and hours to an I-shock is not affected much when they simulate the

model with all nominal rigidities turned off.
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4.1.3. Evidence on the Role of Nominal Rigidities

A number of recent papers have provided evidence, often indirect, on the possible role of nominal

rigidities as a source of the gap between the estimated responses of output and labor input

measures to a technology shock and the corresponding predictions of an RBC model. We briefly

describe a sample of those papers next.

Models with nominal rigidities imply that the response of the economy to a technology shock

(or to any other shock, for that matter) will generally depend on the endogenous response of

the monetary authority, and should thus not be invariant to the monetary policy regime in

place. Galí, López-Salido, and Vallés (2003; henceforth, GLV) exploit that implication, and try

to uncover any differences in the estimated response to an identified technology shock across

subsample periods. Building on the literature that points to significant differences in the conduct

of monetary policy between the pre-Volcker and the Volcker-Greenspan periods, they estimate

a four-variable structural VAR with a long run restriction as in Galí (1999) for each of those

subsample periods. Their evidence points to significant differences in the estimated responses to

a technology shock. In particular, they show that the decline in hours in response to a positive

technology shock in much more pronounced in the pre-Volcker period, being hardly significant

in the Volcker-Greenspan. That evidence is consistent with the idea that monetary policy in

the latter period has focused more on the stabilization of inflation, an not so much on the

stabilization of economic activity.33

Some evidence at the micro-level is provided by Marchetti and Nucci (2004), who exploit a

detailed data set containing information on output, inputs and price-setting practices for a large

panel of Italian manufacturing firms. Using a modified Solow residual approach they construct

33The analysis in GLV (2003) has been extended by Francis, Owyang, and Theodorou (2004) to other G7
countries. They uncover substantial differences across countries in the joint response of employment, prices and
interest rates to technology shocks, and argue that some of those differences can be grounded in differences in
the underlying interest rate rules.
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a time series for total factor productivity at the firm level, and estimate the responses of a

number of firm-specific variables to an innovation in the corresponding technology measure.

Among other findings, they provide evidence of a negative impact effect of a technology shock

on labor input. Most interestingly, Marchetti and Nucci also exploit firm-specific information

regarding the frequency of price adjustments. They split the sample of firms according to the

frequency of their price revisions: “flexible” price firms (adjust prices every three months or

more often) and “sticky” price firms (adjusting every six months or less often). They find that

the negative response of employment to a positive technology shock is larger (and significant) in

the case of “sticky” price firms, and much weaker (and statistically insignificant) for “flexible”

price firms. That evidence suggests that nominal rigidities may be one of the factors underlying

the estimated effects of technology shocks.34

4.2. Real Explanations

Several authors have proposed explanations for the evidence described in Section 2 that do

not rely on the presence of nominal rigidities. Such “real” explanations generally involve some

modification of the standard RBC model. Next we briefly describe some of those explanations.

Francis and Ramey (2003a) propose two modifications of an otherwise standard RBC model

that can potentially account for the negative comovement of output and hours in response to

a technology shock. The first model incorporates habit formation in consumption and capital

adjustment costs. As shown in Francis and Ramey a calibrated version of that model can

account for many of the estimated effects of technology shocks. In particular, the response to a

permanent improvement in technology of consumption, investment and output is more sluggish

than in the standard model with no habits or capital adjustment costs. If that dampening effect

34A less favorable assessment is found in Chang and Hong (2003), who conduct a similar exercise using four-
digit U.S. manufacturing industries, and relying on evidence of sectoral nominal rigidities based on the work of
Bils and Klenow () Weak evidence of contractionary effects and correlation with measures of price stickiness]
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is sufficiently strong, the increase in output may be smaller than the increase in productivity

itself, thus causing a reduction in hours. The latter decline is consistent with the optimal

decision of households to consume more leisure (despite the higher wage) as a consequence of

a dominant income effect.35A similar mechanism underlies the modification of the basic RBC

model proposed by Wen (2001), who assumes a utility function with a subsistence level of

consumption (equivalent to a constant habit).

The second modification of the RBCmodel proposed by Francis and Ramey (2003a) hinges on

the assumption of no substitutability between labor and capital in production. In that context

the only way to increase output in the short run is by increasing the workweek of capital.

Furthermore, hours beyond the standard workweek generate additional disutility. In such a

model a permanent increase in labor-augmenting technology is shown to generate a short run

decline in hours. The intuition is simple, and in the final analysis not much different from other

modifications proposed. While output increases in the short run (due to increased investment

opportunities), that increase is not sufficient to compensate for the fact that any quantity of

output can now be produced with less employment (per shift) and a shorter workweek.

Rotemberg (2003) develops a version of the RBC model in which technological change diffuses

much more slowly than implied by conventional specifications found in the RBC literature. The

rate at which technology is adopted is calibrated on the basis of the micro studies on speed of

diffusion. Rotemberg shows that when the smooth technology process is embedded in the RBC

model it generates small short run fluctuations in output and employment, which are largely

unrelated to the cyclical variations associated with detrended measured of employment and

output. In particular, a positive innovation to technology that diffuses very slowly generates a

very large wealth effect (relative to the size of the innovation) which in turn leads households the

35See Lettau and Uhlig (2000) for a detailed analysis of the properties of an RBC model with habit formation.
As pointed out by Francis and Ramey, Lettau and Uhlig seem to dismiss the assumption of habits on the grounds
that it yields “counterfactual cyclical behavior.”
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increase their consumption of leisure. As a result, both hours and output experience a short run

decline in response to a technology shock of a typical size, before they gradually increase above

their initial levels. Because those responses are so smooth, they imply very small movements at

cyclical frequencies. It follows that technology shocks with such characteristics will only account

for a small fraction of observed cyclical fluctuations in output and hours.

Collard and Dellas (2002) emphasize an additional mechanism, specific to an open economy,

through which technology shocks may induce short run negative comovements between output

and labor input even in the absence of nominal rigidities. They analyze a two-country RBC

model with imperfect substitutability between domestic and foreign consumption goods. If that

substitutability is sufficiently low, a positive technology shock in the home country triggers

a large deterioration in its terms of trade (i.e, a large decline in the price of domestic goods

relative to foreign goods). That change in relative prices may induce households to increase

their consumption of leisure at any given product wage, thus contracting labor supply and

lowering hours. The quantitative analysis of a calibrated version of their model suggests that

while technology shocks may be a non-negligible source of output fluctuations its role is likely

to be very small as a driving force behind hours fluctuations.

The papers discussed in this section provide examples of model economies which can account

for the evidence regarding the effects of technology shocks without relying on any nominal

frictions. On the basis of that evidence it is not possible to sort out the relative role played

by “nominal” and “real” frictions in accounting for the evidence. The reason is simple: there

is no clear mapping between the estimated coefficients in a structural VAR and the underlying

structural parameters which determine the degree of those frictions. As a result estimated VARs

cannot serve as the basis of the sort of counterfactual simulations that would allow us to uncover

the implied effects of technology shocks if either “nominal” or “real” frictions were not present.

Such counterfactual exercises require the use of an estimated structural model. In the next
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section we turn our attention to one such model.

5. Technology Shocks and the Business Cycle in an Estimated DSGE

Model

In the present section we try to sort out the merits of the two types of explanations discussed

above by estimating and analyzing a framework that incorporates both types of frictions, and

which is sufficiently rich to be taken to the data. The features that we incorporate include habit

formation in consumption, staggered price and wage-setting a la Calvo, flexible indexation of

wages and prices to lagged inflation, and a monetary policy rule of the Taylor type with interest

rate smoothing.

Several examples of estimated general equilibrium models can be found in the literature. Our

framework is most closely related to the one used in Rabanal (2003), with two main differences.

First, we allow for a unit root in the technology process in a way consistent with the assumptions

underlying the identification strategy pursued in section 2. Second, we ignore the cost channel

mechanism allowed for in Rabanal (2003), in light of the evidence in that paper suggesting an

insignificant role for that mechanism.

We estimate the parameters of the model using Bayesian methods, and focus our analysis

on the implications of the estimated model regarding the effects of technology shocks and the

contribution of the latter to the business cycle. The use of a structural estimated model allows

us to determine, by means of counterfactual simulations, the role played by different factors

in accounting for the estimated effects of technology shocks. Last but not least, the estimated

model gives us an indication of the nature of the shocks that have played a dominant role as a

source of postwar business cycles.

The use of Bayesian methods to estimate DSGE models has increased over the recent years,
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in a variety of contexts.36 Fernández-Villaverde and Rubio-Ramírez (2004) show that parameter

estimation is consistent in the Bayesian framework even under model misspecification. Smets

and Wouters (2003a, 2003b) estimate a model with capital accumulation, and both nominal and

real rigidities for the euro area and the U.S.. Lubik and Schorfheide (2003) use the Bayesian

framework to estimate a small scale model allowing for indeterminacy. Rabanal (2003) estimates

a general equilibrium model for the United States and the euro area in search for cost channel

effects of monetary policy.37

Next we summarize the set of equilibrium conditions of the model.38 The demand side of

the model is represented by the Euler-like equation

b ∆yt = Et{∆yt+1}− (1− b) (rt −Et{πt+1}) + (1− ρg)(1− b) gt (5.1)

which modifies equation (4.1) above by allowing for some external habit formation (indexed

by parameter b), an introducing a preference shock {gt}, that follows an AR(1) process with
coefficient ρg. Underlying (5.1) there is an assumption that preferences are separable between

consumption and hours, and logarithmic in the quasidifference of consumption in order to pre-

serve the balanced growth path property.39 Aggregate output and hours are related by the

simple log-linear production function

yt = at + nt

36However, the existing literature on estimating general equiilibrium models using Bayesian methods assumes
that all shocks are stationary, even when highly correlated. A novelty of this paper is that we introduce a
permanent technology shock. Ireland (2004) estimates a general equilibrium model with permanent technology
shocks, using maximum likelihood.
37A somewhat different estimation strategy is the one followed by Christiano, Eichenbaum and Evans (2003),

Altig et al. (2003) and Bovin and Giannoni (2003), who estimate general equilibrium models by matching model’s
implied impulse-response functions to the estimated ones.
38Details can be found in an appendix available from the authors upon request.
39 Specifically, every household j maximizes the following utility function

E0
P∞
t=0 β

t[Gt log(C
j
t −bCt−1)−

(Nj
t )
1+ϕ

1+ϕ
]. subject to a usual budget constraint. The preference shock evolves,

expressed in logs, as:
gt = (1− ρg)Ḡ+ ρg gt−1 + εgt .
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Equivalently, and using a tilde to denote variables normalized by current productivity (in

order to induce stationarity), we have

ỹt = nt (5.2)

Log-linearization of the optimal price-setting condition around the zero inflation steady state

yields an equation describing the dynamics of inflation as a function of the deviations of the

average (log) markup from its steady state level, which we denote by µpt .
40

πt = γb πt−1 + γf Et{πt+1}− κp (µ
p
t − ut) (5.3)

where γb =
ηp

1+βηp
, γf =

β
1+βηp

, κp =
(1−βθp)(1−θp)
θp(1+ηpβ)

, θp is the probability of not adjusting prices

in any given period, and ηp ∈ [0, 1] is the degree of price indexation to lagged inflation. Notice
that µpt = − log

³
Wt

PtAt

´
≡ −ω̃t is the price markup, where ω̃t = ωt − at is the real wage per

efficiency unit. Variable ut denotes exogenous variations in the desired price markup.

Log-linearization the optimal wage-setting condition yields the following equation for the

dynamics of the (normalized) real wage:

ω̃t =
1

1 + β
ω̃t−1 +

β

1 + β
Et{ω̃t+1}− 1

1 + β
∆at +

β

1 + β
Et{∆at+1}+ ηw

1 + β
πt−1 (5.4)

−(1 + βηw)

1 + β
πt +

β

1 + β
Et{πt+1}− κw

1 + β
(µwt − vt)

where θw denotes the fraction of workers that do not re-optimize their wage, ηw ∈ [0, 1] is the
degree of wage indexation to lagged inflation, and where κw ≡ (1−θw)(1−βθw)

θw(1+²wϕ)
, where ²w is the

wage elasticity of labor demand in the steady state. Also notice that µwt ≡ ω̃t − ( 1
1−b ỹt −

b
1−b ỹt−1 − gt + b

1−b∆at +ϕnt) is the wage markup. Variable vt denotes exogenous variations in

the desired wage markup.

40See Smets and Wouters (2003a) for a derivation of the price and wage setting equations.
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Finally, we close the model by assuming that the monetary authority adjusts interest rates

in response to changes in inflation and output growth according to the rule:

rt = φr rt−1 + (1− φr)φπ πt + (1− φr)φy ∆yt + zt (5.5)

where zt is an exogenous monetary shock.41

The exogenous driving variables are assumed to evolve as follows:

at = at−1 + εat

gt = ρg gt−1 + εgt

ut = ρu ut−1 + εut

vt = ρv vt−1 + εvt

zt = εzt

Notice that while we do not observe ω̃t and ỹt, the two variables are related as follows:

ωt − yt = ω̃t − ỹt

and ωt − yt is an observable variable, which should be stationary in equilibrium. In the next
section, we explain how to write the likelihood function in terms of the five observable variables:

output growth, inflation, the nominal interest rate, hours, and the real wage-output ratio.

41Following Erceg and Levin (2003), we assume that the Federal Reserve reacts to output growth rather than
the output gap. An advantage of following such a rule, as Orphanides and Williams (2002) stress, is that
mismeasurement of the level of potential output does not affect the conduct of monetary policy (as opposed to
using some measure of detrended output to estimate the output gap).
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5.1. Parameter Estimation

5.1.1. Data

We estimate the model laid out in the previous section using U.S. quarterly time series for five

variables: real output, inflation, real wages, hours and interest rates. The sample period is 1948:1

to 2002:4. For consistence with the analysis in section 2, we use the same series for output and

hours. Our measure of nominal wages is the compensation per hour in the nonfarm business

sector (LXNFC), and the measure for the price level is the nonfarm business sector deflator

(LXNFI). Finally, we use the quarterly average daily readings of the 3-month T-bill (FTB3) as

the relevant nominal interest rate. In order to render the series stationary we detrend hours and

the real wage-output ratio using a quadratic trend. We treat inflation, output growth and the

nominal interest rate as stationary, and express them in deviations from their sample mean.

As is well known from Bayes’ rule, the posterior distribution of the parameters is proportional

to the product of the prior distribution of the parameters and the likelihood function of the

data. Until recently, only well known and standard distributions could be used. The advent

of fast computer processors and Markov Chain Monte Carlo (MCMC) methods has removed

this restriction, and a more general class of models and distributions can be used.42 In order

to implement the Bayesian estimation method, we need to be able to evaluate numerically the

prior and the likelihood function. Then, we use the Metropolis-Hastings algorithm to obtain

random draws from the posterior distribution, from which we obtain the relevant moments of

the posterior distribution of the parameters.

5.1.2. The Likelihood Function

Let ψ denote the vector of parameters that describe preferences, technology, the monetary policy

rule and the shocks of the model, dt be the vector of endogenous variables (observable or not),

42 See Fernández-Villaverde and Rubio-Ramírez (2004).
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zt be the vector of shocks, and εt be the vector of innovations.

The system of equilibrium conditions and the process for the exogenous shocks can be written

as a second order difference equation

A (ψ) Et{dt+1} = B (ψ) dt + C (ψ) dt−1 +D (ψ) zt,

zt = N (ψ) zt−1 + εt, E(εtε
0
t) = Σ(ψ).

We use standard solution methods for linear models with rational expectations (see, e.g.,

Uhlig, (1999)) to write the law of motion in state-space form and the Kalman filter, as in

Hamilton (1994) to evaluate the likelihood of the five observable variables xt = [rt,πt,ωt −
yt, nt,∆yt]

0. We denote by L
³
{xt}Tt=1 |ψ

´
the likelihood function of {xt}Tt=1.

5.1.3. Priors

In this section, we denote by Π(ψ) the prior distribution of the parameters. We present the list of

the structural parameters and its associated prior distributions in the first three columns of Table

4. Most of the priors involve uniform distributions for the parameters, which simply restrict the

support. We use uniform distributions for the parameter that explains habit formation, for the

probabilities of the Calvo lotteries, and for the indexation parameters. The prior for all these

parameters has support between 0 and 1, except the probabilities of the Calvo lottery, which

are allowed to take values up to 0.9, i.e., we are ruling out average price and wage durations of

more than 10 quarters.

We try to supplement as much prior information as possible for the model’s exogenous

shocks. The AR(1) coefficients have uniform prior distributions between 0 and 0.97. Gamma

distributions for the standard deviations of the shocks are assumed, to guarantee non-negativity.

We select their hyperparameters to match available information for the prior mean standard

deviation of the innovations, while allowing reasonable uncertainty in this parameters. For
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instance, for the monetary policy rule we choose the means of the inflation and output growth

coefficients to match the ones proposed by Taylor.43 For the monetary policy shock, we use the

standard deviation that comes from running an OLS regression for the Taylor rule equation.

In addition, we fix some parameters. The discount factor, we set at β = 0.99. The elasticities

of product and labor demand are set to 6 (which implying steady state markups of 20 percent).

These values are pretty conventional in the literature.

5.1.4. Drawing from the Posterior

From Bayes rule, we obtain the posterior distribution of the parameters as follows:

p(ψ| {xt}Tt=1) ∝ L({xt}Tt=1 |ψ) Π (ψ)

The posterior density function is proportional to the product of the likelihood function and

the prior joint density function of ψ. Given our priors and the likelihood functions implied by

the state-space solution to the model, we are not able to obtain a closed-form solution for the

posterior distributions. However, we are able to evaluate both expressions numerically. We

follow Fernández-Villaverde and Rubio-Ramírez (2004) and Lubik and Schorfheide (2003) and

use the random walk Metropolis-Hastings algorithm, to obtain a random draw of size 500,000

from p
³
ψ| {xt}Tt=1 ,m

´
. We use the draw to estimate the moments of the posterior distribution,

and to obtain impulse responses and second moments of the endogenous variables.

43 If a random draw of the parameters is such that the model does not deliver a unique and stable solution,
we assign a zero likelihood value, which implies that the posterior density will be zero as well. See, Lubik and
Schorfheide (2003) for a estimated DSGE model allowing for indeterminacy.
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5.2. Main Findings

5.2.1. Parameter Estimates and Second Moments

The last two columns of Table 4 report the mean and standard deviation of the posterior

distributions for all the parameters. Notice that the habit formation parameter is estimated

to be 0.42, a value somewhat smaller than that suggested by Christiano, Eichenbaum and

Evans (2003) or Smets and Wouters (2003b). The parameter that measures the elasticity of the

marginal disutility of hours, ϕ, is estimated to be 0.80, which is close to values usually obtained

or calibrated in the literature.

The average duration of price contracts implied by the point estimate of the price stickiness

parameter lies slightly above two quarters. We view this estimate as a “moderate” amount of

price stickiness in the economy. Perhaps most surprising is the low degree of wage stickiness

uncovered by our estimation method. Such an implausible low estimate may suggest that the

Calvo model is not the best formalism to characterize wage dynamics.44

The price indexation coefficient is estimated at a low value, 0.04, suggesting that the pure

forward looking model is a good approximation to inflation dynamics, once we allow for autore-

gressive price mark up shocks. On the other hand, indexation in wage setting is more important,

with a posterior mean of 0.42. The coefficients of the interest rate rule suggest a high degree of

interest rate smoothing, 0.69, a small response of the interest rate to output growth fluctuations,

and a coefficient of the response of the interest rate to inflation of 1.33, which corresponds to a

“lean against the wind” monetary policy. The estimated processes for the shocks of the model

suggest that all of them are highly autocorrelated, with parameters between 0.95 for the price

markup shock to 0.91 for the wage markup shock.45

44Rabanal (2003) finds a similar result for an estimated DSGE model that is only slightly different from the
one used here.
45We have also conducted some subsample stability analysis, splitting the sample into pre-Volcker years and

the Volcker-Greenspan era. While there were some small differences in estimated parameters across samples,
none of the main conclusions of this section were affected.
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Table 5 displays some selected posterior second moments implied by the model estimates,

and compare them to the data.46 The first two columns present the standard deviation of the

observed variables, and their counterparts implied by the estimated model. We can see that

the model does a very good job in replicating the standard deviations of output, inflation and

the nominal interest rate. The model also does well in mimicking the unconditional correlation

between the growth rates of hours and output: in the data it is 0.75, and in the model it is

0.72. However, it overestimates the standard deviation of hours (3.11 percent in the data and

4.6 percent in the model) and to a lesser extent the real wage-to-output ratio (3.69 percent in

the data, 4.44 percent in the model)

5.2.2. The Effects of Technology Shocks

Next we turn our attention to the estimated model’s predictions regarding the effects of tech-

nology shocks.47 Figure 7 displays the posterior impulse responses to a permanent technology

shock of size normalized to one standard deviation.48 We can observe that the model replicates

the VAR-based evidence fairly well, in spite of the differences in the approach. In particular

the estimated model implies a persistent decline in hours in response to a positive technology

shock, and a gradual adjustment of output to a permanently higher plateau. It takes about

four quarters for output to reach its new steady state level. Hours drop on impact by about 0.4

percentage points, and converge monotonically to their initial level afterwards.49

The third column of Table 5 reports the second moments of the observed variables conditional

on technology shocks being the only driving force. The fourth column shows the fraction of the

46These second moments where obtained using a sample of 10,000 draws from the 500,000 that were previously
obtained with the Metropolis-Hastings algorithm.
47A related analysis has been carried out independently by Smets and Wouters (2003b), albeit in the context

of a slightly different DSGE model.
48The posterior mean and standard deviations are based on the same sample that was used to obtain the

second moments.
49A similar pattern of responses of output and hours to a technology shock can be found in Smets and Wouters

(2003b).
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variance of each variable accounted for by the technology shock.50 We can see that technology

shocks do not play a major role in explaining the variability of the five observed variables.

They explain 22 percent of the variability of output growth, and 6 percent of the variability

of inflation. For the rest of variables, including hours, they explain an insignificant amount

of overall volatility. A key result emerges when we simulate the model with technology shocks

only: we obtain a correlation between (∆yt,∆nt) of −0.49, which contrasts with the high positive
correlation between the same variables observed in the data.

The last three rows of Table 5 report statistics based on band-pass filtered data. In this

case, the series of output growth and hours generated by the estimated model (when all shocks

other than technology are turned off) are used to obtain the (log) levels of hours and output,

on which the band-pass filter is applied. Once again we find that technology shocks can only

account for a small fraction of the variance of the business cycle component of output and hours.

The conditional correlation between those two variables falls to −0.14, from a value of 0.88 for

the actual filtered series.

The previous findings are illustrated graphically in Figure 7, which displays the business

cycle components of log output and log hours associated with technology shocks, according to

our estimated model. It is apparent that technology shocks only explain a minor fraction of

output fluctuations. This is even more dramatic when we look at fluctuations in hours, in a way

consistent with most of the VAR findings. Similar qualitative findings are found in Altig et al.

(2003), Ireland (2003) and Smets and Wouters (2003b), using slightly different models and/or

estimation methods.

50We use the method of Ingram, Kocherlakota and Savin (1994) to recover the structural shocks. This method
is a particular case of using the Kalman filter to recover the structural shocks. We assume that the economy is
at its steady state value in the first observation, rather than assuming a diffuse prior. By construction, the full
set of shocks replicate perfectly the features of the model.
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5.2.3. What are the Main Sources of Economic Fluctuations?

Which shocks play a more important role in explaining fluctuations in our observed variables?

In Table 6 we report the contribution of each shock to the total variance of each variable implied

by our model estimates. The shock that explains most of the variance of all variables in our

framework is the preference shock, which we can interpret more broadly as a (real) demand

shock. It explains above 70 percent of the variance of hours, the real wage-output ratio, and

the nominal interest rate. The preference shock also explains 57 percent of the variance of

output, and 36 percent of the variance of inflation. On the other hand, the monetary shock

only explains approximately 5 percent of output growth and the nominal interest rate, and is

an important determinant of inflation variability, contributing to 27 percent of total volatility.

Price and wage mark up shocks both have some importance in explaining the volatility of all

variables, with contributions to the variance that range from 7 percent to 17 percent. Overall,

the picture that emerges from Table 8 is that preference shocks are key to explain the volatility

of all variables. The monetary and technology shocks have some importance in the sense that

they explain about 20 percent of the variance in one of the variables (output growth in the case

of technology, inflation in the case of monetary shocks), but their contribution to the remaining

variables is very small. The price and wage markup shocks explain a small fraction of variability

in all variables.

5.2.4. Structural Explanations for the Estimated Effects of Technology Shocks

Finally, we examine which features of the model are driving the negative comovement between

hours and output in response to technology shocks. In Table 7 we present the correlation between

the business cycle components of output and hours that arises under several counterfactual

scenarios. For each scenario we shut down some of the rigidities of the model and simulate it

again while keeping the same value for the remaining parameter estimates.
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Three features of the model stand out as natural candidates to explain the negative correla-

tion between output and hours: sticky prices, sticky wages, and habit formation. When we shut

down each of those of those we find that the remaining rigidities still induce a large and negative

conditional correlation. For instance, in the second row we can see that assuming flexible wages

(θw = ηw = 0) delivers basically the same correlations. This result is not surprising given that

nominal wage rigidities do not appear to be important given the parameter estimates. When we

assume flexible prices but keep sticky wages and habit formation, things do not change much

either.

A particular scenario would seem to be of special interest: one with flexible prices and wages,

and habit formation. In that case, once again, a similar pattern of correlations emerges. A similar

result is obtained by Smets and Wouters (2003b), who interpret it as evidence favorable to some

of the real explanations found in the literature. Yet, when we turn off habit formation in our

estimated model but keep nominal rigidities operative we find a qualitatively similar result: the

conditional and unconditional correlations between hours and output have the same pattern of

signs as that observed in the data. It is only when we shut down all rigidities (nominal and

real) that we obtain a positive correlation between hours and output, both conditionally and

unconditionally, and in a way consistent with the predictions of the basic RBC model.

Finally, we consider a calibration in which the central bank responds exclusively to inflation

changes, but not to output. Some authors have argued that the negative comovement of output

and hours may be a consequence of an attempt by the monetary authority to overstabilize output.

Our results suggest that this cannot be an overriding factor: when we set the coefficient on output

growth equal to zero (but keeping both habit formation and nominal rigidities operative) we

still obtain a negative conditional correlation between hours and output.

In light of the previous findings we conclude that both real rigidities (habit formation, in our

model) and nominal rigidities (mostly sticky prices) appear to be relevant factors in accounting
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for the evidence on the effects of technology shocks. Interestingly, and by way of contrast, both

nominal and real rigidities seem to be required in order to account for the empirical effects of

monetary policy shocks (see e.g. Christiano, Eichenbaum and Evans (1999)) or the dynamics of

inflation (e.g., Galí and Gertler (1999)).

6. Conclusions

In the present paper we have reviewed recent research efforts that seek to identify and estimate

the role of technology as a source of economic fluctuations in ways that go beyond the simple

unconditional second moment matching exercises found in the early RBC literature. The number

of qualifications and caveats of any empirical exercise that seeks to provide an answer to the

above questions is never small. Furthermore, and as is often the case in empirical research in

economics, the evidence does not speak with a single voice, even when similar methods and

data sets are used. Those caveats notwithstanding, the bulk of the evidence reported in the

present paper raises serious doubts about the importance of changes in aggregate technology

as a significant (or, even more, a dominant) force behind business cycles, in contrast with the

original claims of the RBC literature. Instead it points to demand factors as the main force

behind the strong positive comovement between output and labor input measures that is the

hallmark of the business cycle.

7. Addendum: A Response to Ellen McGrattan

In her comments to the present paper, Ellen McGrattan (2004) dismisses the evidence on the

effects of technology shocks based on structural VARs that rely on long-run identifying restric-

tions (SVARs). The purpose of this addendum is to explain why we think McGrattan’s analysis

and conclusions are misleading. Since some of her argument and the evidence she provides is

based on her recent working paper with Chari and Kehoe, our discussion often refers directly to
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that paper (Chari, Kehoe, and McGrattan (2004); CKM, henceforth).

Our main point is easy to summarize. McGrattan and CKM study a number of model

economies, all of which predict that hours should rise in response to a positive technology

shock. Yet, when they estimate a SVAR on data generated by those models, the resulting

impulse responses show a decline in hours in response to such a shock (with one exception to

be discussed below).

McGrattan presents her findings and those in CKM as an illustration of a general flaw with

SVARs. But we find that conclusion unwarranted. What McGrattan and CKM really show is

that a misidentified and/or misspecified SVAR often leads to incorrect inference. As McGrattan

herself acknowledges, in her example of a “standard” RBC model (as well as in all but one of the

examples in CKM) the assumptions underlying the data generating model are inconsistent with

the identifying assumption in the VAR: either technology is stationary, or non-technology shocks

have a permanent effect on productivity, or the order of integration of hours is wrong.51 In those

cases the finding of incorrect inference is neither surprising nor novel, since it restates points that

have already been made in the literature.52 Furthermore, that conclusion should be contrasted

with that of Erceg, Guerrieri, and Gust (2004; EGG, henceforth), who show that when the

SVAR is correctly specified and the identifying restrictions are satisfied by the underlying data

generating models, the estimated responses to technology shocks match (at least qualitatively)

the theoretical ones.

We think that, when properly used, SVARs provide an extremely useful guide for developing

business cycle theories. Evidence on the effects of particular shocks that is shown to be robust to

a variety of plausible identification schemes should not be ignored when developing and refining

DSGE models that will be used for policy analysis. On the one hand, that requirement imposes

51 In the one case where the VAR is identified correctly, it yields the correct qualitative responses, though with
some quantitative bias resulting from the inability to cature the true dynamics with a low order VAR. This result
has been shown in Erceg, Guerrieri, and Gust (2004).
52 See Cooley and Dwyer (1998) and Christiano el al. (2003), among others.
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a stronger discipline on model builders than just matching the patterns of unconditional second

moments of some time series of interest, the approach traditionally favored by RBC economists.

On the other hand, it allows one to assess the relevance of alternative specifications without

knowledge of all the driving forces impinging on the economy.53

Another finding in CKM that may seem striking to many readers is that their business

accounting framework produces a rise in hours in response to a positive technology shock, in

contrast with the evidence summarized in section 2 of the present paper. Below, we conjecture

that such a result hinges critically on treating the conventional Solow residual as an appropriate

measure of technology, in contrast to the wealth of evidence suggesting the presence of significant

procyclical error in that measure of technology. By way of contrast, most of the SVAR-based

findings on the effects of technology shocks overviewed in the present paper rely on identifying

assumptions that are much weaker than those required for the Solow residual to be a suitable

measure of technology.

Next we elaborate on the previous points, as well as on other issues raised by McGrattan’s

comment. First, we try to shed some light on why the estimated SVARs do not recover the

model-generated impulse responses. Second, we provide a conjecture as to why CKM’s estimated

model would predict an increase in hours in response to a positive technology shock, even if the

opposite were to be true. Finally, we comment on CKM’s proposed alternative to SVARs.

7.1. Why Does the SVAR Evidence Fail to Match the McGrattan and CKMModels’

Predictions?

The reason why the SVAR estimates reported by McGrattan fail to recover the joint response

of output and hours implied by her RBC model should not be viewed as reflecting an inherent

flaw in the SVAR approach. Instead it is most likely a consequence of misspecification and

53See Christiano et al. (2003) for an illustration of the usefulness of that approach.
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misidentification of the SVAR used.

First, and most flagrantly, the “geometric growth” specification of technology assumed in

the McGrattan exercise implies that technology shocks will only have temporary effects on labor

productivity. A maintained assumption in Galí (1999) and in section 2.1 above, is the existence

of a unit root in the technology process, underlying the observed unit root in productivity. It is

clear that if a researcher holds an inherent belief in the stationarity of technology she will not

want to use that empirical approach to estimate the effects of technology shocks. We find the

notion that technology shocks don’t have permanent effects hard to believe, though cannot offer

any proof (though we have provided suggestive evidence along those lines in section 3.1). In any

event, we find it useful to point out that the literature contains several examples, reviewed in

section 2, which do not rely on the unit root assumption, and which yield results similar to Galí

(1999).54

In principle, CKM appear to overcome the previous misidentification problem by using as a

data generating mechanism an RBC model which assumes a “unit root” in technology. They

consider two versions of that model (“preferred” and “baseline”), which we discuss in turn.

Their “preferred” specification fails to satisfy the identifying restriction of the VAR in another

important dimension: because of the endogeneity of technology in their model (reflected in the

non-zero off-diagonal terms in the process describing the driving forces), shocks that are non-

technological in nature are going to have an effect on the level of technology and, hence, on

productivity. As a result, the identification underlying the SVAR will be incorrect and inference

will be distorted.

The two misidentification problems just discussed should not affect the CKM “baseline” spec-

ification, for in the latter technology is assumed to follow an exogenous random walk process.

Yet, when we look at the properties of that model we uncover a misspecification problem in

54See, e.g., BFK (1999), Francis et al. (2003), and Pesavento and Rossi (2004).
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the VAR used. In a nutshell, and as it it the case for most RBC models found in the litera-

ture, CKM’s baseline model implies that hours worked follow a stationary process, though they

estimate the SVAR using first-differenced hours. The potential problems associated with that

misspecification were originally pointed out by CEV (2003) and have been discussed extensively

in section 3 of the present paper.55

Interestingly, CKM provide one example (the “exception” we were referring to above) in

which the estimated SVAR satisfies both the key long-run identifying restriction (technology is

exogenous and contains a unit root) and is correctly specified (hours are introduced in levels). In

that case, and not surprisingly, the SVAR makes a correct inference: hours are estimated to rise

in response to a technology shock, as the model predicts. While CKM acknowledge that fact,

they instead focus on the finding that the estimated impulse response shows a non-negligible

bias. This is an interesting point, but it is not central to the controversy regarding the effects

of technology shocks: the latter has focused all along on the estimated sign of the comovement

of output and hours, not on the size of the responses. Nor is it novel: it is one of the two main

findings in Erceg, Guerrieri and Gust (2003; EGG), who already point and analyze the role

played by the slow adjustment of capital in generating that downward bias.

Unfortunately, neither McGrattan nor CKM emphasize EGG’s second main finding, which

is highly relevant for their purposes: using both a standard RBC model and a new Keynesian

model with staggered wage and price setting as data generating mechanisms, they conclude that

the estimated responses to a technology shock using the same SVAR approach as in Galí (1999),

look like the true responses to that shock in both models, at least from a qualitative viewpoint

(leading to a rise in hours in the former case, and to a drop in the latter, in a way consistent

with the models’ predictions).

55CKM’s discussion of that problem is somewhat obscured by their reference to “the insufficient number of
lags in the VAR”, as opposed to just stating that hours are over-differenced. See also Marcet (2004) for a more
general discussion of the consequences (or lack thereof) of overdifferencing.
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7.2. Why Does the CKM Accounting Framework Predict a Rise in Hours?

The framework used by McGrattan in section 2.2 of her comment is unlikely to be recognized by

most macroeconomists as a “standard RBC model,” the title of the subsection notwithstanding .

Instead, it consists of a version of the business cycle accounting framework originally developed in

Chari et al. (2004). That framework consists of a standard RBC model with four driving forces

(or “wedges,” in their terminology). One of those driving forces, which enters the production

function as a conventional productivity parameter, is interpreted as a technology shock. Two

other driving forces are broadly interpreted as a labor market and an investment wedge. The

fourth is government spending. After assuming functional forms for preferences and technology

as well as a conventional calibration of the associated parameters conventional in the RBC

literature, CKM estimate a VAR model for the four driving forces using time series for output,

hours, investment and government consumption.

Let us put aside some of the issues regarding the suitability of SVARs discussed in the

previous section to turn to a different question: Why does the estimated CKM accounting

framework predict an increase in hours in response to a positive technology shock? The interest of

the question may be puzzling to some readers, for after all, the CKM model looks like a standard

RBC model augmented with many shocks. But that description is not accurate in a subtle,

but important dimension: the disturbances/wedges in the CKM accounting framework are not

orthogonal to each other, having instead a rich dynamic structure. Thus, nothing prevents, at

least in principle, some of the non-technology wedges from responding to a technology shock in

such a way as to generate a negative comovement between output and hours in response to that

shock. After all, the increase in markups following a positive technology shock is precisely the

mechanism through which a model with nominal rigidities can generate a decline in hours.

Here we can only speculate on the sources of the sign of the response of hours predicted

by the CKM model. But a cursory look at the structure of the model, and the approach to
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uncovering its shocks, points to a very likely candidate for that finding: the CKM measure of

the technology parameter corresponds to the gap between (log) GDP and a weighted average of

(log) capital and (log) hours, with the weights based on average income shares. In other words,

the CKM measure of technology corresponds for all practical purposes to the conventional Solow

(1957) residual. In adopting that approach to identification of technology, CKM are brushing

aside two decades of research pointing to the multiple shortcomings of the Solow residual as a

measure of short run variations to technology, from Hall (1988) to BFK (1999). In the absence

of any adjustments for market power, variable utilization of inputs, and other considerations,

the Solow residual, as an index of technological change, is known to be ridden with a large (and

highly procyclical) measurement error.

To illustrate this consider an economy with a constant technology (and no capital) in which

output and (measured) hours are linked according to the following reduced form equilibrium

relationship:

yt = α nt

CKM’s index of technology zt would have been computed using the Solow formula as:

zt = yt − s nt

where s is the average labor income share. Under Solow’s original assumptions s = α. But

the existing literature provides a number of compelling reasons why in practice we will almost

surely have α > s. It follows that CKM’s technology index can be written as:

zt = (α− s) nt

thus implying a mechanical positive correlation between measured technology and hours.

The previous example is admittedly overstylized but we think it illustrates the point clearly.
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Thus, it should come as no surprise if the estimated responses of the different wedges to inno-

vations in that error-ridden measure of technology were to be highly biased, and may indeed

resemble the responses to a demand disturbance. In fact, the use of VARs based on either long

run restrictions (as in Galí (1999)) or purified Solow residuals (as in BFK (1999), as well as the

approach to model calibration in Burnside and Eichenbaum (1996) was largely motivated by

that observation.

7.3. Some Agreement

We cannot conclude this addendum without expressing our agreement with CKM’s proposed

“alternative approach” to identification and estimation of technology (and other shocks), based

on the specification of a “state representation and a set of identifying assumptions that nests the

class of models of interest...” and which can be “conveniently estimated with Kalman filtering”

techniques. But this is precisely the approach that we have pursued in section 5 of the present

paper, following the footsteps of a number authors referred to in that section (including the

second author of the present paper).

In her comment McGrattan criticizes the particular model that we choose to implement

that approach (which she refers to as the “triple-sticky” model) on the grounds that it abstracts

from capital accumulation. But our goal was not to develop a fully-fledged model, encompassing

all relevant aspects of the economy, but just to provide an illustration of a potentially fruitful

approach to analyzing the role of different frictions in shaping the estimated effects of technology

shocks. Fortunately, other authors have provided a similar analysis using a richer structure that

includes endogenous capital accumulation, among many other features. The models used in that

literature allow (but do not impose) all sorts of frictions in a highly flexible way, and nest the

standard RBC model as a particular case. Most importantly for our purposes here, some of those

papers (see, e.g., Smets and Wouters (2003b)) have analyzed explicitly the effects of technology
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shocks implied by their estimated models. In a way consistent with our findings above, those

effects have been shown to imply a negative response of hours to a positive technology shock.

Unfortunately McGrattan reports no comparable evidence for her “triple-sticky model with

investment,” though we conjecture that the latter would imply a similar response.
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TABLE 1.    
 

The Effects of Technology Shocks on Output and Hours   
 

in the Nonfarm Business Sector 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 Contribution to: Conditional Impact on n and y: 
 var(y) var(n) corr(y,n) sign significance 

      
Per Capita Hours      
      
Difference 0.07 0.05 -0.08 -  / + yes / yes 
      
Level 0.37 0.11 0.80 + / + no / yes 
      
Detrended 0.07 0.05 -0.11 - / + yes / yes 
      
      
Total Hours      
      
Difference 0.06 0.06 -0.03 - / + yes / yes 
      
Level 0.10 0.36 0.80 - / - yes / no 
      
Detrended 0.15 0.36 0.80 - / 0 yes / no 
      
      



 
 
 
 

TABLE 2.   
 

The Effects of Technology Shocks on GDP and Employment 
 

 Contribution to: Conditional Impact on n and y: 
 var(y) var(n) corr(y,n) sign significance 

      
Employment Rate      
      
Difference 0.31 0.04 0.40 -  / + yes / yes 
      
Level 0.03 0.19 -0.30 - / + yes / no 
      
Detrended 0.15 0.04 -0.43 - / + yes / yes 
      
      
Total Employment      
      
Difference 0.21 0.03 -0.40 - / + yes / yes 
      
Level 0.09 0.08 -0.72 - / + yes / yes 
      
Detrended 0.09 0.09 -0.68 - / + yes / no 
      
      



TABLE 3.   
 

Investment-Specific Technology Shocks: The Fisher Model 

 N-Shocks I-Shocks 
 Contribution to:  Contribution to:  
 var(y) var(n) corr(y,n) var(y) var(n) corr(y,n) 

       
Per Capita Hours       
       
Difference 0.06 0.06 -0.09 0.22 0.19 0.94 
Level 0.12 0.02 0.16 0.62 0.60 0.96 
Detrended 0.08 0.07 -0.03 0.10 0.09 0.94 
       
Total Hours       
       
Difference 0.07 0.06 0.05 0.16 0.14 0.94 
Level 0.05 0.15 0.33 0.82 0.78 0.97 
Detrended 0.10 0.28 0.62 0.09 0.08 0.93 
       
Employment Rate       
       
Difference 0.21 0.05 0.08 0.19 0.13 0.93 
Level 0.08 0.08 -0.32 0.86 0.89 0.95 
Detrended 0.06 0.17 -0.11 0.12 0.10 0.92 
       
Total Employment       
       
Difference 0.19 0.06 -0.05 0.10 0.06 0.90 
Level 0.04 0.16 -0.25 0.64 0.52 0.96 
Detrended 0.04 0.20 0.05 0.12 0.09 0.90 

       



 
 

Table 4.  
 

Prior and Posterior Distributions 
 
 

 Prior Distribution Posterior Distribution 
Parameter   Mean s.d. mean s.d. 
  b Uniform(0,1) 0.50 0.289 0.42 0.04 
ϕ       Normal(1,0.25) 1.00 0.25 0.80 0.11 

pθ  Uniform(0,0.9) 0.45 0.259 0.53 0.03 
wθ     Uniform(0,0.9) 0.45 0.259 0.05 0.02 
pη   Uniform(0,1) 0.50 0.289 0.02 0.02 
wη  Uniform(0,1) 0.50 0.289 0.42 0.28 
rρ       Uniform(0,0.97) 0.485 0.284 0.69 0.04 
yφ  Normal(0.5,.125) 0.50 0.13 0.26 0.06 
πφ  Normal(1.5,0.25) 1.50 0.25 1.35 0.13 
gρ       Uniform(0,0.97) 0.485 0.284 0.93 0.02 
uρ       Uniform(0,0.97) 0.485 0.284 0.95 0.02 
vρ       Uniform(0,0.97) 0.485 0.284 0.91 0.01 
zσ  Gamma(25,0.0001) 0.0025 0.0005 0.003 0.000 
aσ     Gamma(25,0.0004) 0.01 0.002 0.009 0.001 
gσ    Gamma(16,0.00125) 0.02 0.005 0.025 0.0024 
uσ    Gamma(4,0.0025) 0.01 0.005 0.011 0.001 
vσ     Gamma(4,0.0025) 0.01 0.005 0.012 0.001 

 
 



 
 

Table 5. 
 

 
Second Moments of Estimated DSGE Model 

 

Original Data 
  

  
Standard Deviations (%) 

  

Contribution 
to Variance 

 Data Model 
Technology 
Component 

Technology 
Shocks 

     
   Output Growth 1.36 1.27 0.60  22.3 % 
     
   Inflation 0.72 % 0.73 0.18 6.0  % 
     
   Interest Rate 0.72 0.67 0.04 0.3 % 
     
   Hours 3.11 4.60 0.42 0.8 % 
     
   Real Wage/Output 3.69 4.44 0.13 0.1 % 
     
Correlation between (dy,dn) 0.75 0.72 -0.49  
       
     
Band-Pass Filtered Data     
     
   Output 2.04 2.04 0.87 18.2 % 
     
   Hours 1.69 1.69 0.26 2.3 % 
     
Correlation between (y,n) 0.88 0.88 -0.14  



 
Table 6.  Variance Decomposition from Estimated DSGE Model 

 
 

 
 
 
 

 Shocks 

  

 
Monetary 
 

Technology 
 

Preference 
 

Price 
Markup 

Wage 
Markup 

      
Output Growth 4.8 % 22.3 % 57.1 % 8.0 % 7.1 % 
      
Inflation 27.1 % 6.1 % 36.3 % 13.7 % 14.7 % 
      
Nominal Rate 5.0 % 0.4 % 72.3 % 9.8 % 11.8 % 
      
Hours 0.4 % 0.8 % 70.0 % 17.6 % 9.6 % 
      
Wage - Output 0.1 % 0.1 % 73.6 % 12.0 % 12.8 % 



 
 
 

Table 7.    
 

Technology-Driven Fluctuations Output and Hours:  Correlations   
 

Implied  by  Alternative Model Specifications (BP-Filtered Data) 
 

 
 

     
Original    -0.14 
    
Flexible Wages   -0.16 
    
Flexible Prices   -0.18 
   
No Habit Formation  -0.29 
   
Flexible Prices and Wages  -0.21 
  
No Frictions (RBC) 0.22 
   
Inflation Targeting   -0.15 
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Figure 1. Business Cycle Fluctuations in Output and Hours
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Figure 2. The Estimated Effects of Technology Shocks
Difference Specification , 1948:01-2002:04
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Figure 3: Sources of U.S. Business Cycle Fluctuations
Difference Specification , Sample Period:1948:01-2002:04
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Figure 4: Capital Income Tax Rates
A. Jones Series (Level)
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Figure 5. Technology Shocks: VAR vs. BFK
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Figure 6. Hours Worked, 1948-2002
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Figure 7 
 

Posterior Impulse Responses to a Technology Shock: 
Model Based Estimates 
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 Figure 8   
 

The Role of Technology Shocks in U.S. Postwar Fluctuations: 
Model Based Estimates 
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Note:    solid line: technology component (BP-filtered) 

dashed line: U.S. data (BP-filtered) 
 




