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ABSTRACT

The paper generalizes the Taylor principle---the proposition that central banks can stabilize the

macroeconomy by raising their interest rate instrument more than one-for-one in response to higher

inflation---to an environment in which reaction coefficients in the monetary policy rule evolve

according to a Markov process. We derive a long-run Taylor principle that delivers unique bounded

equilibria in two standard models. Policy can satisfy the Taylor principle in the long run, even while

deviating from it substantially for brief periods or modestly for prolonged periods. Macroeconomic

volatility can be higher in periods when the Taylor principle is not satisfied, not because of

indeterminacy, but because monetary policy amplifies the impacts of fundamental shocks. Regime

change alters the qualitative and quantitative predictions of a conventional new Keynesian model,

yielding fresh interpretations of existing empirical work.
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GENERALIZING THE TAYLOR PRINCIPLE

TROY DAVIG AND ERIC M. LEEPER

1. Introduction

Monetary policy making is complex. Central bankers examine a vast array of data,
hear from a variety of advisors, use suites of models to interpret the data, and apply
judgment to adjust the predictions of models. This process produces a monetary
policy rule that is a complicated, probably non-linear, function of a large set of
information about the state of the economy.

For both descriptive and prescriptive reasons, macroeconomists seek simple char-
acterizations of policy. Perhaps the most successful simplification is due to Taylor
(1993). He finds that a very simple rule does a good job of describing Federal Reserve
interest-rate decisions, particularly since 1982. Taylor’s rule is

it = ī + α(πt − π∗) + γxt + εt, (1)

where it is the central bank’s policy interest rate, ī is the long-run policy rate, πt

is inflation, π∗ is the central bank’s inflation target, x is output, and ε is a random
variable. With settings of α = 1.5 and γ = .5 or 1, Taylor (1999a) uses this equation
to interpret Federal Reserve behavior over several eras since 1960.

The Taylor principle—the proposition that central banks can stabilize the macroe-
conomy by adjusting their interest rate instrument more than one-for-one with infla-
tion (setting α > 1)—and the Taylor rule that embodies it have proven to be powerful
devices to simplify the modeling of policy behavior. In many monetary models, the
Taylor principle is necessary and sufficient for the existence of a determinate rational
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expectations equilibrium. Failure of monetary policy to satisfy the principle can pro-
duce undesirable outcomes in two ways. First, the effects of fundamental shocks are
amplified and can cause fluctuations in output and inflation that are arbitrarily large.
Second, there exist a multiplicity of bounded equilibria in which output and inflation
respond to non-fundamental—sunspot—disturbances. If the objective of a central
bank is to stabilize output and inflation, these outcomes are clearly undesirable. Tay-
lor (1999a) and Clarida, Gali, and Gertler (2000), among others, have argued that
failure of Federal Reserve policy to satisfy the Taylor principle may have been the
source of greater macroeconomic instability in the United States in the 1960s and
1970s.

Taylor-inspired rules have been found to perform well in a class of models that is
now in heavy use in policy research [Bryant, Hooper, and Mann (1993), Rotemberg
and Woodford (1997), Taylor (1999b), Faust, Orphanides, and Reifschneider (2005),
Schmitt-Grohe and Uribe (2006)]. Some policy institutions publish the policy interest
rate paths produced by simple rules, treating the implied policy prescriptions as
useful benchmarks for policy evaluation [Bank for International Settlements (1998),
Sveriges Riksbank (2001, 2002), Norges Bank (2005), Federal Reserve Bank of St.
Louis (2005)]. In large part because it is a gross simplification of reality, the Taylor
rule has been extraordinarily useful.

Gross simplification is both a strength and a weakness of a constant-parameter rule
like (1). Because the rule compresses and reduces information about actual policy
behavior, it can mask important aspects of that behavior. There are clearly states
of the economy in which policy settings of the nominal interest rate deviate from
the rule in substantial and serially correlated ways. This confronts researchers with
a substantive modeling choice: it matters whether these deviations are shuffled into
the ε’s or modeled as time-varying feedback coefficients, αt and γt. Positing that pol-
icy rules mapping endogenous variables into policy choices evolve according to some
probability distribution can fundamentally change dynamics, including conditions
that ensure a unique equilibrium, and substantially expand the set of determinate
rational expectations equilibria supported by conventional monetary models.

This paper generalizes Taylor’s rule and principle by allowing the parameters of
that rule to vary stochastically over time.1 It examines how such time variation affects

1In contrast to our approach, some papers consider changes in processes governing exogenous pol-
icy variables [Dotsey (1990), Kaminsky (1993), Ruge-Murcia (1995), Andolfatto and Gomme (2003),
Davig (2003, 2004), and Leeper and Zha (2003)]. Each of these considers changes in exogenous pro-
cesses for policy instruments like a tax rate, money growth rate, or government expenditures. Other
papers model policy switching as changes in endogenous policy functions [Davig, Leeper, and Chung
(2006) and Davig and Leeper (2006b)].
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the nature of equilibrium in popular models of monetary policy. As a first step, in this
paper we model parameters as evolving exogenously according to a Markov chain.2

Two parts comprise the paper. We use a simple dynamic Fisherian model in the
first part to derive interpretable analytical restrictions on monetary policy behavior
that are required for the existence of a determinate equilibrium; that model yields
intuitive solutions that reveal how regime change alters the nature of equilibrium. In
the second, more substantive part, we use a conventional new Keynesian model to
examine the practical consequences of regime change for monetary policy.

The Fisherian model of inflation illustrates the following theoretical points:

• A unique bounded equilibrium does not require the Taylor principle to hold in
every period. Determinacy does require that monetary policy obey a long-run
Taylor principle, which permits departures from the Taylor principle that are
substantial (but brief) or modest (and prolonged).

• If there are two possible policy rules—one that aggressively reacts to infla-
tion (“more active”) and one that reacts less aggressively (“less active” or
“passive”)—expectations that future policy might be less active can strongly
affect the equilibrium under the more-active rule, and vice versa.

These theoretical themes extend to a conventional model of inflation and out-
put determination which has become a workhorse for empirical and theoretical work
on monetary policy. The long-run Taylor principle for the new Keynesian model
dramatically expands the region of determinacy relative to the constant-parameter
setup. On-going regime change creates expectations formation effects that arise from
the possibility that future regimes may differ from the prevailing regime. Those ef-
fects can change the responses of inflation and output to exogenous disturbances
in quantitatively important ways. Regimes that fail to satisfy the Taylor principle
can amplify the effects of fundamental exogenous shocks, which increases volatility
without resorting to indeterminacy and non-fundamental sources of disturbances.

Having established these theoretical results, we use the new Keynesian model to
show that regime change can be important in practice. The illustrations are of interest
because the model forms the core of the large class of models being fit to data by
academic and central-bank researchers.3 Illustrations focus on the following questions:

• A number of authors have argued that the U.S. inflation of the 1970s was
due to the Federal Reserve’s failure to obey the Taylor principle and the
resulting indeterminacy of equilibrium. Does this inference hold up when

2Davig and Leeper (2006a) examine the consequences of making regime change endogenous.
3For example, Rotemberg and Woodford (1997), Lubik and Schorfheide (2004), Smets and

Wouters (2003, 2005), Del Negro and Schorfheide (2004, 2006), Adolfson, Laseen, Linde, and Villani
(2005), Harrison, Nikolov, Quinn, Ramsey, Scott, and Thomas (2005).
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agents’ expectations embed the possibility of regime change? If a central
bank is an aggressive inflation fighter today, can the perception that it might
revert to 1970s-style accommodative policies make it difficult to stabilize the
economy now?

• Over the past 20-plus years, when the Fed arguably has aggressively sought
to reduce and stabilize inflation, there are apparent systematic departures
from the Taylor principle due to worries about financial instability or con-
cerns about weak real economic activity. What are the consequences of these
departures?

• Researchers typically divide data into regime-specific periods to interpret time
series as emerging from distinct fixed-regime models. What are the conse-
quences of this practice?

The paper offers some answers, along with some novel interpretations of existing
empirical findings. A possible switch from an active to an accommodating monetary
policy regime should concern a central bank for two reasons. First, if the accommo-
dating regime is sufficiently passive or sufficiently persistent, the equilibrium can be
indeterminate. Second, even in a determinate equilibrium, expectations of a move to
a dovish regime can raise aggregate volatility, even if current policy is aggressively
hawkish. A realized switch to passive policy dramatically increases inflation volatility
even when self-fulfilling expectations are ruled out. Brief departures from the Tay-
lor principle, such as occur during financial crises or business-cycle downturns, are
less likely to induce indeterminacy, but can nonetheless create expectations forma-
tion effects with quantitatively important impacts on economic performance. Efforts
to use theoretical models with fixed policy rules to interpret time series data gener-
ated by recurring regime switching are fraught with pitfalls, easily yielding inaccurate
inferences.

1.1. The Relevance of Recurring Regime Change. Recurring regime change
is not the norm in theoretical models of monetary policy, yet a major branch of
applied work finds evidence of time variation in monetary policy in the United States.4

The theoretical norm, which follows Lucas (1976) in treating policy shifts as once-
and-for-all rather than as an on-going process, is logically inconsistent, as Cooley,
LeRoy, and Raymon (1982, 1984) point out. Once-and-for-all shifts, by definition, are
unanticipated, yet once the shift occurs, agents are assumed to believe the new regime
is permanent and alternative regimes are impossible. But if regime has changed, then
regime can change; knowing this, private agents will ascribe a probability distribution
to regimes. Expectations formation and, therefore, the resulting equilibria will reflect

4For example, Judd and Trehan (1995), Taylor (1999a), Clarida, Gali, and Gertler (2000), Kim
and Nelson (2004), Lubik and Schorfheide (2004), Rabanal (2004), Favero and Monacelli (2005),
Boivin and Giannoni (2003), Boivin (2005), Cogley and Sargent (2005), Davig and Leeper (2006b),
and Sims and Zha (2006).
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agents’ beliefs that regime change is possible. This paper is a step toward bringing
theory in line with evidence.

The paper presumes that policy regimes recur and treats, as a special case, regimes
that are permanent. In the United States, monetary policy regimes over the post-
World War II period have been shaped largely by particular Federal Reserve chairmen,
rather than by institutional or legislative changes that altered the Fed’s mandate.
Despite this fact, some observers believe that since Alan Greenspan’s appointment
as Fed chairman in 1987—and possibly even before—U.S. monetary policy has been
in an absorbing state. At least this is the implicit assumption in most studies of
monetary policy behavior.

We are not persuaded. Appointments of central bank governors are determined by
the confluence of economic and political conditions, which fluctuate over time, rather
than by any legislated rules. As long as the personalities and preferences of those
appointees dictate the policies that central banks follow, fluctuating regimes is a more
natural assumption than is permanent regime. Certainly, regime change is a viable
working hypothesis.

2. A Fisherian Model of Inflation Determination

An especially simple model of inflation determination emerges from combining a
Fisher relation with a monetary policy rule that makes the nominal interest rate
respond to inflation. The setup is rich enough to highlight general features that arise
in a rational expectations environment with regime change in monetary policy, but
simple enough to admit analytical solutions that make transparent the mechanisms
at work.

Throughout the paper we define determinacy of equilibrium to be the existence of a
unique bounded equilibrium. We also place fiscal policy in the background, assuming
that lump-sum taxes and transfers adjust passively to ensure fiscal solvency.

This section describes a two-step procedure applicable to purely forward-looking
rational expectations models with regime-switching. First, we derive interpretable
analytical conditions on the model parameters that ensure a determinate equilibrium.
Next, we derive the equilibrium using the method of undetermined coefficients to
obtain solutions as functions of the minimum set of state variables.

2.1. The Setup. Consider a nominal bond that costs $1 at date t and pays off
$(1 + it) at date t + 1. The asset-pricing equation for this bond can be written in
log-linearized form as

it = Etπt+1 + rt, (2)
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where rt is the equilibrium (ex-ante) real interest rate at t. For simplicity, the real
interest rate is exogenous and evolves according to

rt = ρrt−1 + υt, (3)

with |ρ| < 1 and υ a zero-mean, i.i.d. random variable with bounded support [υ, υ],
so that fluctuations in rt are bounded.

Monetary policy follows a simplified Taylor rule, adjusting the nominal interest rate
in response to inflation, where the reaction to inflation evolves stochastically between
regimes

it = α(st)πt, (4)

where st is the realized policy regime, which takes realized values of 1 or 2. Two
regimes are sufficient for our purposes, though the methods employed immediately
generalize to many regimes. Regime follows a Markov chain with transition proba-
bilities pij = P [st = j |st−1 = i ], where i, j = 1, 2. We assume

α(st) =

{
α1 for st = 1
α2 for st = 2

(5)

and that the random variables s and υ are independent.

A monetary policy regime is a distinct realization of the random variable st and a
monetary policy process consists of all possible αi’s and the transition probabilities
of the Markov chain, (α1, α2, p11, p22). In this model, monetary policy is active in
regime i if αi > 1 and passive if αi < 1, following the terminology of Leeper (1991).
If α1 > α2, then the monetary policy process becomes more active if α1, α2, or p11

increase or p22 decreases.

Substituting (4) into (2), the system reduces to the single state-dependent equation

α(st)πt = Etπt+1 + rt. (6)

If only a single, fixed regime were possible, then αi = α and the expected path
of policy depends on the constant α. A unique bounded equilibrium requires active
policy behavior (α > 1) and the solution to (6) would be

πt =
1

α − ρ
rt. (7)

Stronger responses of policy to inflation (larger values of α) reduce the variability of
inflation. The Taylor principle says that α > 1 is necessary and sufficient for a unique
bounded equilibrium.

When α < 1 and regime is fixed, the equilibrium is not unique and a large mul-
tiplicity of solutions exist, including stationary sunspot equilibria, in which πt is a
function of (πt−1, rt) and possibly a sunspot shock.
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When regime can change, (6) is a system whose number of equations matches the
number of possible regimes. To make this explicit, the conditional expectation in (6)
is Etπt+1 = E[πt+1 |Ωt ], with Ωt = {st, st−1, . . . , rt, rt−1, . . .}.5 st follows a finite two-
state Markov chain, so is bounded by construction, and rt follows a bounded process.
It is convenient to define a smaller information set which excludes the current regime,
Ω−s

t = {st−1, . . . , rt, rt−1, . . .}, so Ωt = Ω−s
t ∪ {st}. Integrating over possible future

regimes, we can write

Etπt+1 = E[πt+1

∣∣st = i, Ω−s
t ] = pi1E[π1t+1

∣∣Ω−s
t ] + pi2E[π2t+1

∣∣Ω−s
t ], (8)

where we have introduced the state-contingent notation, πit = πt(st = i, rt), for
i = 1, 2, so πit is the solution to (6) when st = i. Define zt = (st, rt) to be the minimum
state vector at date t. We shall prove that the minimum state vector solution, πt (zt) =
(π1t, π2t)

′ , is the unique bounded solution to (6).

Shifting notation somewhat by letting Etπit+1 denote E[πit+1

∣∣Ω−s
t ], we now can

express (6) as [
α1 0
0 α2

][
π1t

π2t

]
=

[
p11 p12

p21 p22

] [
Etπ1t+1

Etπ2t+1

]
+

[
rt

rt

]
. (9)

Define the matrix

M =

[
α−1

1 0
0 α−1

2

] [
p11 p12

p21 p22

]
, (10)

and write (6) as
πt = MEtπt+1 + α−1rt, (11)

where πt = (π1t, π2t)
′
is now a vector and α−1 denotes the matrix that premultiplies

the transition probabilities in (10).

2.2. The Long-Run Taylor Principle. This section derives necessary and suffi-
cient conditions for the existence of a unique bounded solution to (11), assuming
bounded fluctuations in the exogenous disturbances. Our definition of determinacy
is consistent with the standard one used in the Taylor-rule literature in the absence
of regime switching.

We use the standard definition for two reasons. First, it corresponds to existence of
a locally unique solution. Local uniqueness allows us to analyze how small perturba-
tions to the model impact the equilibrium, as Woodford (2003, Appendix A.3) shows.
Second, this paper follows most of the literature in studying log-linear approximations

5This assumes that current regime enters the agent’s information set, which contrasts with the
usual econometric treatment of regime as an unobserved state variable [Hamilton (1989) or Kim and
Nelson (1999)]. Some theoretical work treats agents as having to infer the current regime [Andolfatto
and Gomme (2003), Leeper and Zha (2003), and Davig (2004)]. Concentrating all uncertainty about
policy on future regimes makes clearer how expectations formation, as opposed to inference problems,
affects the regime-switching equilibrium.
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to underlying nonlinear dynamic stochastic general equilibrium models.6 Bounded
solutions to the linear systems are approximate local solutions to the full nonlinear
models when the exogenous shocks are small enough.

Determinacy hinges on the eigenvalues of M . Taking αi > 0 for i = 1, 2, those
eigenvalues are

λ1 =
1

2α1α2

(
α2p11 + α1p22 +

√
(α2p11 − α1p22)

2 + 4α1α2p12p21

)
, (12)

λ2 =
1

2α1α2

(
α2p11 + α1p22 −

√
(α2p11 − α1p22)

2 + 4α1α2p12p21

)
. (13)

This leads to one of the main propositions of the paper.

Proposition 1. When αi > 0, for i = 1, 2, a necessary and sufficient condition for
determinacy of equilibrium, defined as the existence of a unique bounded solution for
{πt} in (11), is that all the eigenvalues of M lie inside the unit circle.

The proof, which appears in appendix A, shows that when all the eigenvalues of M
lie inside the unit circle, then all bounded solutions must coincide with the minimum
state variable solution, which is a function only of (st, rt). In the case where one of
the eigenvalues does not lie inside the unit circle, the proof displays a continuum of
bounded solutions, including stationary sunspot equilibria. Hence, even within the
standard definition of determinacy of equilibrium, the monetary policy process can
generate a large multiplicity of solutions that are a function of an expanded state
vector.7

Although one could use proposition 1 and work directly with the eigenvalues to
characterize the class of policy processes consistent with a determinate equilibrium,
it is more convenient and economically intuitive to analyze an equivalent set of con-
ditions. It turns out that requiring both eigenvalues to lie inside the unit circle is
equivalent to requiring that policy be active in at least one regime—αi > 1 for some
i—and that the policy process satisfies a long-run Taylor principle. This is the second
proposition of the paper, which appendix A also proves.

6Appendices in Davig, Leeper, and Chung (2004) display a model with regime switching in mon-
etary and fiscal policy rules for which conventional linearization methods will fail to uncover even
locally accurate stability conditions for the underlying full nonlinear model. The extent to which
solutions to linear systems are approximate local solutions to the nonlinear switching models remains
an area for future research.

7Farmer, Waggoner, and Zha (2006) employ an alternative definition of determinacy, requiring
stationary—mean-square stable—solutions, to generate multiple solutions. As appendix A points
out, this definition admits solutions in which inflation can exceed any finite bound with positive
probability, a result that is ruled out by the standard definition in linear models. Of course, both
with and without regime switching, there are many explosive solutions to (11).
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Proposition 2. Given αi > pii for i = 1, 2, the following statements are equivalent:

(A) All the eigenvalues of M lie inside the unit circle.
(B) αi > 1, for some i = 1, 2, and the long-run Taylor principle (LRTP)

(1 − α2) p11 + (1 − α1) p22 + α1α2 > 1 (14)

is satisfied.

The premise of proposition 2—that αi > pii for all i—is unfamiliar and requires
some discussion. If regime were fixed, the premise amounts to satisfying the Taylor
principle in both regimes. But when regime can change, it is a much weaker require-
ment. The LRTP defines a hyperbola in (α1, α2)-space with asymptotes α1 = p11 and
α2 = p22. The premise restricts the α’s to the space containing the economically in-
teresting portion of the hyperbola, in which monetary policy seeks to stabilize, rather
than destablize, the economy.

Two eigenvalues inside the unit circle imply two linear restrictions that uniquely
determine the regime-dependent expectations of inflation in (9). This is quite differ-
ent from fixed regimes because with regime switching, when there is a determinate
equilibrium, the solutions always come from “solving forward,” even in regimes where
monetary policy behavior is passive (αi < 1). This delivers solutions that are quali-
tatively different from those obtained with fixed regimes.

A range of monetary policy behavior is consistent with the LRTP: monetary policy
can be mildly passive most of the time or very passive some of the time. To see
this, suppose that regime 1 is active and regime 2 is passive and consider the limiting
case that arises as α1 becomes arbitrarily large. Driving α1 → ∞ in the LRTP, (14),
implies that α2 > p22 is the lower bound for α2 in a determinate equilibrium. For α1

sufficiently large, a unique equilibrium can have α2 arbitrarily close to 0 (a pegged
nominal interest rate), so long as the regime in which this passive policy is realized
is sufficiently short-lived (p22 → 0). When regime 1 is an absorbing state (p11 = 1),
the eigenvalues are α1 and α2/p22. A unique equilibrium requires that α1 > 1 and
α2 > p22.

8 The general determinacy principle is that an active regime that is either
very aggressive (α1 → ∞) or very persistent (p11 = 1) imposes the weakest condition
on behavior in the passive regime.

Alternatively, the passive regime can be extremely persistent (p22 → 1), so long as
α2 is sufficiently close to, but still less than, 1. In this case, if the active regime has
short duration, it is possible for the ergodic probability of the passive regime to be
close to 1 (but less than 1), yet still deliver a determinate equilibrium.

8When p11 = 1, the system is recursive, so the difference equation for inflation in state 1 is
independent of state 2 and yields the usual fixed-regime solution for inflation. The second equation
reduces to a difference equation in inflation in state 2 and a unique bounded solution to that equation
requires α2 > p22.
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An interesting special case arises when both regimes are reflecting states. With
p11 = p22 = 0, the eigenvalues reduce to λk = ±1/

√
α1α2. When the α’s are both

positive and regime 1 is active, the lower bound on the passive policy (α2) for a
unique equilibrium is α2 > 1/α1. In this case, the economy spends equal amounts of
time in the two regimes, but it changes regime every period with probability 1. This
inequality reinforces the general principle that the more aggressive monetary policy
is in active regimes, the more passive it can be in other regimes and still deliver
determinacy.

Figure 1 uses the expressions for the eigenvalues in (12) and (13) to plot combi-
nations of the policy-rule coefficients, α1 and α2, that deliver determinate equilibria
for given transition probabilities. Light-shaded areas mark regions of the parame-
ter space that imply the fixed-regime equilibrium is determinate. When regime can
change, those regions expand to include the dark-shaded areas. The top two panels
show that as the mean duration, given by 1/(1 − pii), of each regime declines, the
determinacy region expands. Asymmetric mean duration expands the determinacy
region in favor of the parameter drawn from the more transient regime (α2 in the
southwest panel of the figure). As the mean durations of both regimes approach 1
period, the determinacy region expands dramatically along both the α1 and α2 di-
mensions, as the southeast panel shows. The figure and the LRTP make clear the
hyperbolic relationship betweeen α1 and α2, for given (p11, p22).

2.3. Solutions. Having delineated the class of monetary policy processes that deliver
a determinate equilibrium, we now find the minimum state variable (MSV) solution
using the method of undetermined coefficients. We posit regime-dependent linear
solutions of the form

πit = a(st = i)rt, (15)

for i = 1, 2, where

a(st = i) =

{
a1 for st = 1
a2 for st = 2

. (16)

Expected inflation one step ahead depends on this period’s realizations of regime
and real interest rate, as well as on next period’s expected solution

Etπt+1 = E[πt+1 |st, rt ]

= ρrtE[a(st+1) |st, rt ], (17)

where we have used the independence of the random variables r and s. The posited
solutions, together with (17), imply the following regime-dependent expectations

E[πt+1 |st = 1, rt ] = [p11a1 + (1 − p11)a2]ρrt, (18)

E[πt+1 |st = 2, rt ] = [(1 − p22)a1 + p22a2]ρrt. (19)
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Substituting (18) and (19) into (6) for each st = 1, 2, we obtain a linear system in
the unknown coefficients, (a1, a2)

A

[
a1

a2

]
= b, (20)

where

A =

[
α1 − ρp11 −ρ(1 − p11)

−ρ(1 − p22) α2 − ρp22

]
, b =

[
1
1

]
. (21)

The solutions are

a1 = aF
1

(
1 + ρp12a

F
2

1 − ρ2p12aF
2 p21aF

1

)
, (22)

and

a2 = aF
2

(
1 + ρp21a

F
1

1 − ρ2p12aF
2 p21aF

1

)
, (23)

where we have used the facts that p12 = 1−p11 and p21 = 1−p22, and we have defined
the “fixed-regime” coefficients to be9

aF
i =

1

αi − ρpii
, i = 1, 2. (24)

The limiting arguments applied to (14), together with the bounded real interest rate
process, imply that in a determinate equilibrium, αi > ρpii, so aF

i ≥ 0. aF
i is strictly

increasing in ρ, strictly decreasing in αi, and strictly increasing in pii. It is straight-
forward to show that the volatility of inflation is smaller in the regime where policy
is more active; that is, a1 < a2 if α1 > α2.

The a1 and a2 coefficients have the intuitive properties that they are strictly de-
creasing in both α1 and α2 and strictly increasing in ρ. More-active monetary policy
raises the α’s and decreases the inflation impacts of real interest rate shocks. Greater
persistence in real interest rates amplifies the magnitude and therefore the impact
of real-rate shocks on inflation. If α1 > α2, then as p11 rises (holding p22 fixed), the
persistence of the more-active regime and the fraction of time the economy spends in
the more-active regime both rise. This reduces the reaction of inflation to real-rate
disturbances in both regimes. Of course, if α1 > α2 and p22 rises (holding p11 fixed),
then both a1 and a2 rise.

When the real interest rate shock is serially uncorrelated (ρ = 0), the solutions
collapse to their “fixed-regime” counterparts, a1 = 1/α1 and a2 = 1/α2. But there
is an important difference. Determinacy of the fixed regime requires αi > 1 all i, so
monetary policy always dampens the impacts of shocks on inflation. With regime
switching, when α1 > 1 and p22 < α2 < 1, there can be a determinate equilibrium in
which monetary policy in regime 2 amplifies the effects of shocks.

9When regime is fixed at i, pii = 1, pjj = 0, i �= j, i, j = 1, 2 and the coefficients reduce to
aF

i = 1/(αi − ρ).
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In general, all policy parameters enter the solution. Expectations of policy be-
havior in regime 2 affects the equilibrium in regime 1 and vice versa. Let D =
1 − ρ2p12a

F
2 p21a

F
1 denote the denominator common to (22) and (23). D ∈ (0, 1] and

reaches its upper bound whenever regimes are absorbing states (p12 = 0 or p21 = 0).
Values of D less than 1 scale up the coefficients relative to their “fixed-regime” coun-
terparts. D achieves its minimum when regimes are reflecting states (p12 = p21 = 1).
In that case, D = 1 − 1/α1α2, raising the variability of inflation by its maximum
amount (given values for α1 and α2).

The numerators in the solutions report the two distinct effects that news about
future real interest rates has on current inflation. Suppose the economy is in regime
1 and a higher real interest rate is realized. One effect is direct and raises inflation
by an amount inversely related to α1, just as it would if regime were fixed. A second
effect works through expected inflation, E[πt+1 |st = 1, rt ], which is the function given
by (18), (p11a1 + p12a2)ρrt. The term p12a

F
2 in (22) arises from the expectation that

regime can change, with p12 the probability of changing from regime 1 to regime 2.
The size of this effect is also inversely related to α1 through the coefficient aF

1 . Both
of these effects are tempered when the current policy regime is active (α1 > 1) or
amplified when current policy is passive (α1 < 1).

Impacts that arise from expectations of possible future regimes are called expec-
tations formation effects , as in Leeper and Zha (2003). These effects are present
whenever agents’ rational expectations of future regime change induce them to alter
their expectations functions. Expectations formation effects are the difference be-
tween the impact of a shock when regime can change and the impact when regime is
fixed forever.

The strength of expectations formation effects flowing from regime 2 to regime
1 depends on the probability of transitioning from regime 1 to regime 2, p12, and
on the policy behavior in and the persistence of regime 2, which are determined by
α2 and p22. Expectations formation effects in regime 1 can be large if p12 is large,
p22 is large, or α2 is small. The only way to eliminate these effects is for regime 1
to be an absorbing state. In that case, p11 = 1 and the solution in that regime is
πt = [1/(α1 − ρ)]rt, exactly the fixed-regime rule.

3. A Model of Inflation and Output Determination

This and the next sections report the implications of a regime-switching monetary
policy process for determinacy and equilibrium dynamics in a model of inflation and
output. We use a bare-bones model from the class of models with sticky prices
that use Calvo’s (1983) price-adjustment mechanism. Ours is a textbook version,
as in Walsh (2003) and Woodford (2003), but the general insights extend to the
variants being fit to data. There are several reasons to examine regime change in
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a more complex model: it brings the analysis closer to models now being used to
confront data, compute optimal policy, and conduct actual policy analysis at central
banks; the model contains an explicit transmission mechanism for monetary policy—
an endogenous real interest rate—which tempers some of the expectations formation
effects found in the Fisherian model; it allows us to track how the possibility of regime
change influences the dynamic impacts of aggregate demand and aggregate supply
shocks on inflation and output.

3.1. The Model. The linearized equations describing private sector behavior are the
consumption-Euler equation and aggregate supply relations

xt = Etxt+1 − σ−1(it − Etπt+1) + uD
t , (25)

πt = βEtπt+1 + κxt + uS
t , (26)

where xt is the output gap, uD
t is an aggregate demand shock, and uS

t is an aggre-
gate supply shock. σ−1 represents the intertemporal elasticity of substitution, κ is a
function of how frequently price adjustments occur, as in Calvo (1983), and of β, the
discount factor. The slope of the supply curve is determined by κ = (1−ω)(1−βω)/ω,
where 1 − ω is the randomly selected fraction of firms that adjust prices. Prices are
more flexible as ω → 0, which makes κ → ∞. As a baseline, we set σ = 1, β = .99
and ω = .67, so κ = .17. We interpret a model period as one quarter in calendar
time.10 Exogenous disturbances are autoregressive and mutually uncorrelated

uD
t = ρDuD

t−1 + εD
t , (27)

uS
t = ρSuS

t−1 + εS
t , (28)

where |ρD| < 1, |ρS | < 1, εD
t and εS

t are mean zero random variables with bounded
supports, and E[εD

t εS
s ] = 0 for all t and s. If shocks are i.i.d., then regime switching is

irrelevant to the dynamics, but not to the determinacy properties of the equilibrium.

As before, monetary policy is the source of regime switching and we assume a
Taylor rule that sets the nominal interest rate according to

it = α(st)πt + γ(st)xt, (29)

where st evolves according to a Markov chain with transition matrix whose typical
element is pij = Pr[st = j|st−1 = i] for i, j = 1, 2. st is independent of uD

t and uS
t . As

before, α(st) equals α1 or α2 and γ(st) equals γ1 or γ2. We assume the steady state
does not change across regimes.

10The model is linearized around a steady state inflation rate of 0 to keep the analysis simple.
In future work it is worthwhile to explore the implications of allowing the inflation target to fluc-
tuate stochastically [Cogley and Sbordone (2005), Ireland (2006)] and to allow varying degrees of
indexation to inflation [Ascari and Ropele (2005)].
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3.2. Fixed-Regime Equilibrium. Intuition from the fixed-regime equilibrium car-
ries over to a switching environment. Solutions are

πt =
κ

ΔD
uD

t +
σ−1γ + 1 − ρS

ΔS
uS

t , (30)

xt =
1 − βρD

ΔD
uD

t − σ−1(α − ρS)

ΔS
uS

t , (31)

where ΔZ = 1 + σ−1(ακ + γ) − ρZ [1 + σ−1(κ + βγ) + β(1− ρZ)], Z = S, D.

More-active monetary policy (higher α) reduces the elasticities of inflation and
output to demand shocks. Supply shocks, however, present the monetary authority
with a well-known tradeoff: a more-active policy stance reduces the elasticity of
inflation with respect to supply shocks, but it raises the responsiveness of output. A
stronger reaction of monetary policy to output (higher γ) reduces the elasticities of
inflation and output to demand shocks. Higher γ reduces the elasticity of output to
supply shocks and raises the responsiveness of inflation to supply shocks.

3.3. The Long-Run Taylor Principle. Turning back to the setup with regime
change, this section describes how to derive restrictions on the monetary policy pro-
cess that ensure the long-run Taylor principle is satisfied. Substituting the policy
rule, (29) , into (25) yields

xt = Etxt+1 − σ−1(α(st)πt + γ(st)xt − Etπt+1) + uD
t . (32)

The system to be solved consists of (26) and (32).

To specify the system whose eigenvalues determine whether there exists a unique
bounded equilibrium, we follow the procedure for the Fisherian model. Let πit =
πt(st = i, uD

t uS
t ) and xit = xt(st = i, uD

t , uS
t ), i = 1, 2, denote state-specific inflation

and output. As appendix B describes, after defining the forecast errors

ηπ
1t+1 = π1t+1 − Etπ1t+1, ηπ

2t+1 = π2t+1 − Etπ2t+1, (33)

ηx
1t+1 = x1t+1 − Etx1t+1, ηx

2t+1 = x2t+1 − Etx2t+1, (34)

the model is cast in the form

AYt = BYt−1 + Aηt + Cut, (35)

where

Yt =

⎡
⎢⎢⎣

π1t

π2t

x1t

x2t

⎤
⎥⎥⎦ , ηt =

⎡
⎢⎢⎣

ηπ
1t

ηπ
2t

ηx
1t

ηx
2t

⎤
⎥⎥⎦ , ut =

[
uS

t

uD
t

]
, (36)

and the matrices are defined in the appendix. A straightforward extension of propo-
sition 1 (and its proof in appendix A) applies to this model: necessary and sufficient
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conditions for the existence of a unique bounded solution to (35) is that all the gen-
eralized eigenvalues of (B, A) lie outside the unit circle. The eigenvectors associated
with those eigenvalues generate four linear restrictions that determine the regime-
dependent forecast errors for inflation and output. The eigenvalues of this system
determine whether the monetary policy process satisfies the long-run Taylor princi-
ple. The model structure is such that analytical expressions for the eigenvalues are
available, but they do not yield compact expressions.

Figure 2 illustrates that recurring regime change can dramatically expand the set
of policy parameters that deliver a determinate equilibrium.11 As long as one regime
is active, the less persistent the other regime is, the smaller is the lower bound on the
response of monetary policy to inflation. The bottom panels of the figure indicate
that when regimes are transitory, a large negative response of policy to inflation is
consistent with determinacy.12 As in the Fisherian model, a determinate equilibrium
can be produced by a policy process that is mildly passive most of the time or very
passive some of the time.

In contrast to fixed regimes, recurring regime change makes determinacy of equilib-
rium depend on the policy process and all the parameters describing private behavior,
(β, σ, κ), even when the Taylor rule does not respond to output. Because the cur-
rent regime is not expected to prevail forever, parameters that affect intertemporal
margins interact with expected policies to influence determinacy [figure 3]. Greater
willingness of households to substitute intertemporally (lower σ) or greater ability
of firms to adjust prices (lower ω) enhance substitution away from expected infla-
tion, giving expected regime change a smaller role in decisions. This shrinks the
determinacy region toward the flexible-price region in section 2.

3.4. Solutions. To solve the model, define the state of the economy at t as
(
uD

t , uS
t , st

)
.

The method of undetermined coefficients delivers solutions as functions of this small-
est set of state variables—the MSV solution. We posit solutions of the form

πt = aD(st)u
D
t + aS(st)u

S
t , (37)

xt = bD(st)u
D
t + bS(st)u

S
t , (38)

where

aZ(st) =

{
aZ

1 for st = 1
aZ

2 for st = 2
, bZ(st) =

{
bZ
1 for st = 1

bZ
2 for st = 2

, Z = D, S. (39)

11For simplicity, figures 2 and 3 are drawn setting γ(st) = 0, st = 1, 2, so in fixed regimes, the
Taylor principle is α1 > 1 and α2 > 1.

12 In the Fisherian model we restricted attention to cases where αi > 0 for i = 1, 2. This
restriction focuses on policies of economic interest, though as these results indicate, it is not a
necessary condition for determinacy in the new Keynesian model.
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These posited solutions, along with their one-step-ahead expectations,

E [πt+1 |st = i ] = pii

(
aD

i ρDuD
t + aS

i ρSuS
t

)
+ pij

(
aD

j ρDuD
t + aS

j ρSuS
t

)
, (40)

E [xt+1 |st = i ] = pii

(
bD
i ρDuD

t + bS
i ρSuS

t

)
+ pij

(
bD
j ρDuD

t + bS
j ρSuS

t

)
, (41)

for i, j = 1, 2, are substituted into (26) and (32) to form a system whose solution
yields expressions for π and x as functions of the model parameters and the monetary
policy process. Appendix B describes the systems of equations that are solved.

4. Some Practical Implications of Regime Switching

We turn now to the implications of monetary policy processes that empirical ev-
idence suggests are relevant. In practice, obeying the Taylor principle is viewed as
desirable because of its well-known stabilization properties and its ability to prevent
fluctuations due to self-fulfilling expectations. However, no central bank systemati-
cally implements a policy with the primary goal of satisfying the Taylor principle on
a period-by-period basis. Instead, central banks seem to have internalized Taylor’s
key prescription: on average, raise nominal interest rates more than one-for-one with
inflation. But central banks also desire the flexibility to respond to developments
that may entail a departure from the Taylor principle. Should such departures be
of concern? Addressing this question requires a complete specification of the mone-
tary policy process—the degree of the departure, given by regime-dependent values
of the policy rule coefficients, and the duration of the departure, determined by the
transition probabilities.

Two types of departures from the Taylor principle are of particular interest in
describing Federal Reserve behavior. The first arises when private agents believe there
is a small probability of returning to a persistent regime like the one that prevailed in
the 1970s. This policy process reflects empirical work that finds U.S. monetary policy
followed very different rules from 1960 to 1979 and after 1982. The second kind of
departure occurs when central banks abandon their “business-as-usual” rule and do
something different for brief periods of time. Examples include the October 1987 stock
market crash, Asian and Russian financial crises in the 1990s, credit controls in 1980,
sluggish job-market recoveries from recessions, and currency crises. These are events
with small probability mass that recur and can entail a substantial deviation from
the usual rule. We model these events as relatively short-lived excursions into passive
policy behavior, though we recognize that this is, at best, a crude representation of
the diversity of examples listed above.

Departures from a constant rule obeying the Taylor principle have two possible
ramifications. The first is determinacy of equilibrium and the second is volatility
arising from expectation formation effects. We examine these ramifications for the
two types of departures from the Taylor principle.
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4.1. A Return to the 1970s? Many observers of U.S. monetary policy fear that
the Fed could revert to the policies of the 1970s. Such a fear is often behind argu-
ments for adopting inflation targeting in the United States [Bernanke and Mishkin
(1997), Bernanke, Laubach, Mishkin, and Posen (1999a), Mishkin (2004), Goodfriend
(2005)]. The United States seems particularly susceptible to this kind of policy rever-
sal because, in the absence of institutional reforms, the Fed relies on what Bernanke,
Laubach, Mishkin, and Posen (1999b) call the “just trust us” approach, which relies
more on the personal credibility of policy makers than on the credibility of the policy
institution or the policymaking process.13

Three widely cited empirical studies report constant-coefficient estimates of Tay-
lor rules for the United States [Clarida, Gali, and Gertler (2000), Taylor (1999a),
Lubik and Schorfheide (2004)]. Each of these reports that U.S. monetary policy
was passive through the 1960s and 1970s and active since 1982. Efforts to estimate
Markov-switching versions of these rules frequently find analogous results [Favero and
Monacelli (2005), Davig and Leeper (2006b)]. A literal interpretation of the switching
results is that agents place substantial probability mass on a return to the inflationary
times of the 1970s.

4.1.1. Determinacy Regions for Previous Studies. Previous studies posit that U.S.
monetary policy unexpectedly shifted from a rule that allowed a large multiplicity
of equilibria to one that delivered a determinate equilibrium. For example, Lubik
and Schorfheide (2004) emphasize that in a model with a fixed policy rule, their
estimate of Fed behavior from 1960-1979 leaves the equilibrium indeterminate and
subject to self-fulfilling sunspot equilibria.14 Since the early 1980s, however, Lubik
and Schorfheide infer that their estimates imply a determinate equilibrium. In the
latter period, for the mean of the posterior distribution they estimate α1 = 2.19
and γ1 = .3, while for the earlier period the estimates are α2 = .89 and γ2 = .15.
Their maximum likelihood estimates contrast the fit of determinate to indeterminate
equilibria under the maintained assumption that policy rules cannot change.

Central to Lubik and Schorheide’s study is the logical inconsistency that Cooley,
LeRoy, and Raymon (1982, 1984) observed about rational expectations policy exper-
iments: although policy rules can and do change, agents in the model always believe

13Fiscal policy in the United States represents a possible impetus for a change from an active to
a passive monetary policy stance. As fiscal pressures build, it may be reasonable to expect some
erosion of the much-vaunted independence of the Federal Reserve. A possible outcome is a shift
to a policy that accommodates inflation as a source of fiscal financing. Sargent’s (1999) learning
environment offers a different rationale for how a return to the 1970s might arise. In his setup, time
inconsistency and constant-gain learning combine to create incentives for policy to optimally choose
to revert to an accommodative stance.

14Clarida, Gali, and Gertler (2000) also suggest this possibility.
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such changes are impossible. Do Lubik and Schorfheide’s inferences about determi-
nacy of equilibrium stand up in an environment in which agents’ expectations reflect
the possibility that policy regime can change? An answer requires specifying values
for β, κ, and σ, as well as the transition probabilities. Lubik and Schorfheide do not
constrain the estimates of private parameters to be the same across regimes, so there
is no straightforward method to choose single values for those parameters. Instead,
we compare two sets of parameter values for κ and σ, which draw extreme values
for κ and σ from Lubik and Schorfheide’s estimated 90-percent probability intervals.
The first set shrinks the region of determinacy in (p11, p22)-space and the second set
expands it. We assume β = .99. Shaded regiones in figure 4 report combinations of
the transition probabilities, (p11, p22), that yield a determinate equilibrium.15

The figure appears to lend support to Lubik and Schorfheide’s inference that in-
flation in the 1970s may have been driven by sunspots. After all, if the passive
regime has an expected duration of more than 5 years (p22 > .95), then Lubik and
Schorfheide’s policy parameter estimates imply indeterminacy.

Carrying this argument forward, however, reveals an unappealing implication. Un-
less one is willing to maintain the implausible assumption that the post-1982 regime
is an absorbing state (p11 = 1), the U.S. economy must still be in an indeterminate
equilibrium.16 Without assuming people place no probability mass on future passive
policy, it is difficult to reconcile Lubik and Schorfheide’s conclusion that the equilib-
rium switched from indeterminate to determinate with an environment of recurring
regime change.

Alternatively, if the passive regime has an expected duration of less than 5 years,
then a sufficiently persistent active regime yields a determinate equilibrium. The logic
then implies that the 1970s fluctuations were not driven by sunspots; rather, they are
the outcome of a determinate equilibrium with shocks whose impacts are amplified
by passive monetary policy behavior.

Table 1 reports the volatility of inflation and output, conditional on exogenous
shocks, in each regime relative to a fixed regime with active policy. The results use
Lubik and Schorfheide’s estimated policy parameters and the baseline calibration.
Regimes are equally likely with expected duration of 5 years. Expectations formation
effects are substantial, raising the relative inflation volatility from 9 to 15 percent,
even when the prevailing regime is active.

Of more importance for assessing Lubik and Schorfheide’s inferences, in the passive
regime inflation is about 21

2
times more volatile than in the active regime. The change

in output volatility is also substantial and depends on the source of disturbance,

15The smaller region uses σ = 1.04 and κ = 1.07; the larger region uses σ = 2.84 and κ = 0.27.
16The reasoning is identical to that contained in footnote 8. Once the economy transits to the

active, absorbing state, the equilibrium is identical to a fixed regime with α1 = 2.19.
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rising for demand shocks and falling for supply shocks. Lubik and Schorfheide find
that sunspot shocks help to account for the macroeconomic instability of the 1970s.
This example suggests that indeterminacy may not be necessary to account for the
observed shift in volatility in the post-war period.

Of course, determinacy of equilibrium depends on all the parameters of the model,
so the 5-year duration for the passive monetary regime, which the figure suggests, is
sensitive to the parameter settings. For example, when α2 increases to .95, a value well
inside Lubik and Schorfheide’s 90-percent probability interval, determinacy requires
the expected duration of the passive regime to be about 10 years, a highly plausible
value. Modest changes in other parameters can also have substantial impacts on the
determinacy regions. A satisfactory resolution to the question of whether aggregate
fluctuations in the U.S. are driven by sunspots or are the outcome of a determinate
equilibrium subject to various shocks requires estimation of a complete DSGE model
with a switching monetary policy process.

A central bank that seeks to stabilize inflation and output should be concerned with
the private sector’s beliefs about possible future policy regimes. The possibility of
prolonged episodes of passive policy introduces the potential for destabilizing sunspot
fluctuations. Even if beliefs about alternative regimes do not create indeterminacy,
the expectations formation effects can make it more difficult for monetary policy to
achieve its goals, even when current policy is active. The next section illustrates
that even very brief recurring regimes of passive policy can generate expectations
formation effects that contribute importantly to aggregate volatility.

4.2. Financial Crises and Business Cycles. Periodically, monetary policy shifts
its focus from price stability to other concerns. Two other concerns that recurrently
come into the central bank’s focus are financial stability and job creation. Episodes
in which price stability is de-emphasized in favor of other objectives can last a few
months or more than a year. Distinctive features of these episodes are that they recur
fairly often and that they represent an important shift away from monetary policy’s
usual reaction to inflation and output. In the United States, since Greenspan became
chairman of the Fed in the summer of 1987, the episodes include at least two stock
market crashes, two foreign financial crises, and two “jobless recoveries”—an episode
every three years, on average.17

Marshall (2001) carefully documents the financial crisis in late summer and fall
of 1998. In August the Russian government devalued the rouble, defaulted on debt,
and suspended payments by financial institutions to foreign creditors. These actions

17We do not include the terrorist attacks of September 11, 2001 in this list because, although the
Fed reacted sharply by pumping liquidity into the market and lowering the federal funds rate, within
two months it had just as sharply withdrawn the liquidity. This event is probably best modeled as
a sequence of additive shocks to the policy rule.
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precipitated the near collapse of Long-Term Capital Management, a large hedge fund.
The Fed reacted swiftly by cutting the federal funds rate by a total of 75 basis
points over three moves. One of the policy moves arose from an unusual intermeeting
conference call on October 15 and all the moves occurred against a backdrop of
concern by Federal Open Market Committee members about inflation. In fact, until
the August 18 FOMC meeting, which left the funds rate unchanged, the Committee
concluded the risks to the outlook were tilted toward rising inflation. Marshall argues
that the Fed’s unusually rapid response signalled that the “policy rule had changed,”
with the purpose of discretely shifting private-sector beliefs to a lower likelihood of a
liquidity crisis in the United States.

Rabanal (2004) presents a variety of evidence on time variation in Taylor rules.
First, he reports estimates of Taylor rules with parameter drift that buttress Mar-
shall’s claim: during periods that Rabanal calls “high risk in the economy,” the Fed’s
response to inflation declines appreciably. High-risk periods include financial crises.

Rabanal also estimates a two-state—recessions and expansions—Taylor rule to find
that during recessions the Fed’s reaction to inflation is weaker and its reaction to out-
put is stronger than during expansions. Davig and Leeper’s (2006b) estimates of (29)
identify the “jobless recoveries” from the recessions of 1990-91 and 2000 as episodes
of passive Fed behavior, with a weaker response to inflation and a stronger response
to output than in the surrounding active episodes. Whereas Rabanal estimates the
economy is three times more likely to be in an expansion than a recession, Davig and
Leeper, using a longer time series beginning in the late 1940s, estimate that active
and passive regimes are almost equally likely.

Table 2 reports that expectations formation effects from a passive regime can sub-
stantially raise the standard deviations of inflation and output in an active regime
relative to their values in a fixed regime. The probabilities of transitioning to the
passive regime are 5 percent and 2.5 percent (p11 = .95 and p11 = .975), which cor-
respond to a financial crisis or stronger concern about job growth occurring every
5 or 10 years, on average. In the active and the fixed regimes, α1 = α = 1.5 and
γ1 = γ = .25. Passive policy responds more strongly to output (γ2 = .5), while
both its response to inflation, α2, and its persistence, p22, take different values in the
table.18

When the passive regime lasts only one period (p22 = 0), expectations formation
effects are relatively small and intuition from fixed regimes directly applies: when
regime 2 is more passive (lower α2), expectations formation effects raise the volatil-
ity of inflation and output from demand shocks, raise the volatility of inflation from
supply shocks, and lower the volatility of output from supply shocks. Fixed-regime

18In the case of strict inflation targeting, γ1 = γ2 = γ = 0, the relative standard deviations of
inflation are amplified, but the patterns are identical to those in the table.
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intuition carries over because when the passive regime lasts only one period, it gen-
erates only minor expectations formation effects.

As the passive regime becomes more persistent (p22 rises), the monetary policy
process becomes less active and the relative volatility of inflation rises monotonically
across both types of shocks. Even when the expected duration of passive policy is
only 2 quarters (p22 = .5), as it might be during some financial crises, if policy is
very passive, inflation volatility can be 20 percent or more higher in the active state
than in a fixed-regime setup. When the duration is one year (p22 = .75), as when
the Fed kept interest rates low for extended periods during the two recent recoveries
from recession, inflation can be 50 percent more volatile than in a fixed regime [see
columns for p11 = .95].

Persistence in the passive regime changes the effects on relative output variability
of increases in the degree to which policy is passive. The prospect of moving to
a passive regime raises current and expected inflation in the active regime relative
to a fixed regime. Although it starts at a higher level, in the long run the ergodic
mean of inflation in the switching environment converges to the mean when regime is
constant. With inflation expected to fall more rapidly in the active regime, the real
interest rate rises more sharply. A higher real rate offsets the effects of a demand
shock on output, but it reinforces the impacts of a supply shock. This shows up
in table 2 as declining relative output variability in the demand columns and rising
relative output variability in the supply columns, as the monetary policy process
becomes more passive.

The table shows that plausible departures from the Taylor principle during episodes
when the central bank’s focus shifts from inflation stabilization to other concerns,
can produce quantitatively important expectations formation effects that can make it
more difficult for the central bank to achieve its stabilization objectives during normal
periods.

5. Some Empirical Implications of Regime Change

Regime change also carries implications for empirical work on monetary policy.
This section illustrates two pitfalls in interpreting time series generated by switching
policies with theoretical models in which policy rules are time invariant.

5.1. Qualitative Inferences from Estimated Policy Rules. It is commonplace
for empirical studies of monetary policy to split data samples into subperiods over
which researchers believe a particular policy regime prevailed. This section illustrates
the pitfalls of this procedure when actual time series are generated by recurring regime
change. We imagine that a researcher has access to a long time series of data and
seeks to estimate a monetary policy rule, which is then inserted into a conventional
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new Keynesian model with a fixed policy regime. The researcher has extra-sample
information that specifies when regime changes occurred. We assume this information
is accurate, as are the equations describing private behavior.

We use the model with the baseline calibration of private parameters—β = .99, σ =
1, κ = .17—and the estimates of policy behavior and exogenous shocks that Lubik
and Schorfheide (2004) report to generate a sample of data on {xt, πt, it} of length
10,000 from the regime-switching new Keynesian model. We consider three scenarios:
conditional on being in regime 1 (active monetary policy with α1 = 2.19 and γ1 =
0.30); conditional on being in regime 2 (passive monetary policy with α2 = 0.89 and
γ2 = 0.15); recurring changes in policy regime between regime 1 and regime 2. Using
these simulated data, the researcher estimates a VAR with a common set of identifying
assumptions across samples: monetary policy affects aggregate demand directly, while
its contemporaneous effects on aggregate supply operate through output via a Phillips
curve.19 With these restrictions, the model is just identified when the response of
monetary policy to output, γi, is calibrated at its true value. No restrictions are
imposed on lags in any equation. The estimated model is summarized by

xt = δit + uD
t + lags

πt = θxt + uS
t + lags (42)

it = απt + γ̄xt + uMP
t + lags

where γ̄ denotes the parameter that is fixed at its true value and the serially correlated
shock, uMP

t , has been added to the policy rule.20

Table 3 reports that the VAR accurately estimates the policy parameters in each
of the three scenarios, with the estimated values of the response of monetary policy
to inflation remarkably close to their theoretical values. Researchers who import
the policy estimates into a new Keynesian model with a calibration of the discount
factor, β, of about 0.99 will conclude that regime 1 yields a determinate equilibrium,
regime 2 leaves the equilibrium indeterminate, and the full sample is consistent with
a determinate equilibrium.21

In the simulated regime-switching model the equilibrium is determinate, so the
qualitative inference drawn about regime 2 is incorrect. Using the full sample yields
qualitatively accurate inferences because it brings information from both regimes to

19These restrictions accurately represent the direct contemporaneous interactions among variables
in the new Keynesian model, but they do not necessarily reflect all the contemporaneous interactions
that operate through expectations.

20The shock processes are calibrated to be roughly consistent with Lubik and Schorfheide’s (2004)
estimates: standard deviations are σD = 0.23, σS = 0.80, σMP = 0.20 and the autoregressive param-
eters are ρj = 0.75, j = D, S, MP.

21Woodford (2003, Appendix C) proves that the equilibrium of this model is determinate if and
only if α + γ(1 − β)/4κ > 1.
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bear, producing more accurate estimates of policy behavior in the long run. Splitting
the sample into distinct regimes, in contrast, can distort inferences: conditioning on
regime 2, for example, discards all observations in which policy behaved actively,
thereby uniquely determining the equilibrium.

5.2. Quantitative Predictions of the Impacts of Shocks. To illustrate the
potential expectations formation effects from a belief that policy might return to
its passive behavior in the 1970s, we employ the baseline calibration with Lubik
and Schorfheide’s policy parameter estimates, along with the transition probabilities
p11 = .95 and p22 = .93, which deliver a determinate equilibrium. These probabilities
mean there is a 5 percent chance of returning to a passive policy rule. The active
regime is expected to last 20 quarters, while the passive regime lasts 14 quarters, on
average. We gauge the extent that expectations of a future passive regime affects the
equilibrium in the active regime by contrasting responses of inflation and output to
demand and supply disturbances in the active regime with switching to those in an
equivalently active fixed regime.

Expectations formation effects from this policy process are substantial. Figure 5
shows that researchers predicting the impacts of exogenous disturbances assuming
the policy rule is fixed will consistently underpredict inflation.22 The underprediction
can be more than 20 basis points following demand shocks and nearly 1 percentage
point following supply disturbances. Output predictions depend on the source of the
shock. A hump-shaped response of output in the switching environment means the
fixed-regime model initially overpredicts and then underpredicts output. With supply
shocks, the prediction errors are quite large. A constant-coefficient policy rule misses
the initial decline in output by nearly 1 percentage point; the errors change sign after
several periods when constant-coefficient predictions are about .3 percentage points
too pessimistic.

6. Concluding Remarks

This paper offers a broader perspective on the Taylor principle and the range of
unique bounded equilibria it supports by allowing policy regime to vary over time.
Examples show that endowing conventional models with empirically relevant mone-
tary policy switching processes can generate important expectations formation effects.
These effects can alter the qualitative and quantitative predictions of standard mod-
els. Along the way, the paper develops a two-step solution method that obtains
determinacy conditions and solutions for a rational expectations equilibrium. This

22These are expected paths, computed taking draws from regime after the initial period.
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method can be applied to a broad class of purely forward-looking rational expec-
tations models with exogenous Markov switching in parameters and many discrete
regimes.

The paper’s results should be useful for both researchers and policy analysts using
constant-coefficient policy rules in DSGE models. The choice of how to model devia-
tions from such rules is potentially quite important. Under prevailing practice, that
choice is made implicitly. That choice should be explicit, with careful consideration
given to the characteristics of the deviation—how likely is it to recur? how long is it
likely to last? what is the nature of policy behavior during the period of deviation?
Some deviations are more naturally modeled as additive, exogenous errors to the
policy rule. Some might be better modeled as systematic responses to an expanded
information set for the policy authority. Others are best treated as recurring changes
in rules mapping endogenous variables to policy choices, as in this paper.

Modeling policy as we do in this paper requires no more heroic assumptions than
those routinely made in policy research. Largely as a matter of convenience, nearly
all theoretical models assume—rather heroically—that future policy is current pol-
icy. When the current regime is an absorbing state, this assumption is reasonable.
If, as seems more likely, alternative future policies are possible, then rational agents
must have a probability distribution over those policies, and the properties of ob-
served equilibria will depend critically agents’ beliefs about those policies and their
probabilities.
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Appendix A. Proof of Determinacy in Fisherian Model

Following the notation in section 2.1, πt(zt) = (π1t, π2t)
′ denotes the MSV solution,

while π̂t = (π̂1t, π̂2t)
′ denotes any other solution to (11). The associated systems, for

i = 1, 2, are
αiπit = pi1Etπ1t+1 + pi2Etπ2t+1 + rt (43)

and
αiπ̂it = pi1Etπ̂1t+1 + pi2Etπ̂2t+1 + rt. (44)

Let xit ≡ π̂it − πit be the difference between any other solution and the MSV
solution. Subtracting (43) from (44) yields

αixit = pi1Etx1t+1 + pi2Etx2t+1, (45)

the system of interest for the present analysis. Bounded solutions for inflation corre-
spond to bounded solutions for the process {xt}.

Defining the matrix

M =

[
α−1

1 0
0 α−1

2

] [
p11 p12

p21 p22

]
, (46)

and letting xt = (x1t, x2t)
′, write (45) as

xt = MEtxt+1. (47)

To establish determinacy, we must show that E[xt+1 |Ωt ] = 0 so that, given αi > 0
for i = 1, 2, xit = 0. This establishes that πit = πt(zt) for i = 1, 2, and the MSV
solution is the unique bounded solution to the original system in (11).

For convenience, we reproduce the eigenvalues of M when αi > 0 for i = 1, 2

λ1 =
1

2α1α2

(
α2p11 + α1p22 +

√
(α2p11 − α1p22)

2 + 4α1α2p12p21

)
, (48)

λ2 =
1

2α1α2

(
α2p11 + α1p22 −

√
(α2p11 − α1p22)

2
+ 4α1α2p12p21

)
. (49)

Note that the roots λ1 and λ2 are necessarily real, that λ1 > 0, and that λ1 > λ2.

Proposition 1. When αi > 0, for i = 1, 2, a necessary and sufficient condition for
determinacy of equilibrium, defined as the existence of a unique bounded solution for
{xt} in (47), is that all the eigenvalues of M lie inside the unit circle.

Proof. (Sufficiency) Suppose there exists a vector of bounds K = (K(1), K(2))′,
where K(i) ≥ 0 for i = 1, 2 such that whenever st = i, |xit| ≤ K(i). Then there exist
bounds K ′(i) ≥ 0 where |xit| ≤ K ′(i) for all i and K ′(i) is defined by

K ′(i) = max
xit

∣∣α−1
i [pi1x1t + pi2x2t]

∣∣ s.t. |xit| ≤ K(i) for i = 1, 2. (50)
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The solution to this maximization problem is to set each xit equal to its upper bound,
xit = K(i), so the vector of bounds evolves according to

K ′ = MK. (51)

Repeating this argument, existence of the vector of bounds K ′ implies existence of a
vector of bounds

K ′′ = MK ′ = M2K. (52)

Continuing with this line of argument, it follows that if the vector of bounds K exists,
then MnK is also a vector of bounds, for any n. If all the eigenvalues of M lie inside
the unit circle, then limn→∞ Mn = 0 and the only bounded solution to (47) is xt = 0,
for all t.

(Necessity) Suppose, by way of contradiction, that one eigenvalue does not lie inside
the unit circle; say λ1 ≥ 1, while λ2 < 1. We now show that under these conditions
there exist a continuum of solutions to (47). Diagonalize M by writing M = V ΛV −1,
and define yt = V −1xt, so (47) becomes

yt = ΛE[yt+1

∣∣Ω−s
t ] = ΛEtyt+1, (53)

or [
y1t

y2t

]
=

[
λ1 0
0 λ2

] [
Ety1t+1

Ety2t+1

]
. (54)

Bounded solutions for yit are [
y1t

y2t

]
=

[
γλ−t

1

0

]
, (55)

where γ is an arbitrary constant associated with the loose initial condition. In terms
of the underlying {xt} process, xt = V yt, the solution is[

x1t

x2t

]
=

[
γv11λ

−t
1

γv21λ
−t
1

]
, (56)

where (v11, v21)
′ is the first column of V, the matrix of right eigenvectors. The solution

in (56) shows that if one eigenvalue of M fails to lie inside the unit circle, then there
exist a continuum of solutions to (47), indexed by the arbitrary constant γ.

The indeterminate solution also supports bounded sunspot equilibria. Consider the
solution y1t+1 = λ−1

1 y1t +φt+1, where φ is any random variable with bounded support
that satisfies Etφt+1 = 0. Evidently, this solution, together with y2t = 0, also satisfies
(54) and produces bounded fluctuations in the underlying {xt} process. �

The proof of necessity of proposition 1 illustrates that, in general, indeterminacy
is a property that transmits across regimes. This occurs because, except in the case
when the current (state-contingent) determinate regime is an absorbing state, the
expectation of moving to the other (state-contingent) indeterminate regime makes
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the current regime indeterminate also. If, for example, p11 = 1, so regime 1 is an
absorbing state, then (v11, v21)

′ = (0, 1)′ and the solution in (56) becomes x1t = 0 and
x2t = γλ−t

1 .

Definition 1. The long-run Taylor principle (LRTP) is

(1 − α2) p11 + (1 − α1) p22 + α1α2 > 1. (57)

For given p11 and p22, the LRTP defines a hyperbola in (α1, α2)−space with the
vertical asymptote where α1 = p11 and the horizontal asymptote where α2 = p22. As
in figure 1, our analysis focuses on the hyperbola in the region of the parameter space
where αi > pii, for i = 1, 2. This region captures the economically interesting set
of monetary policy processes and has the intuitive implication that αi > 1 for some
i = 1, 2 is a necessary condition for the LRTP to imply determinacy. For example,
αi < 0, for i = 1, 2, can satisfy the LRTP, but is at odds with the way central banks
set policy and does not result in all the eigenvalues of M being inside the unit circle,
so fails to deliver a unique bounded equilibrium.

Lemma 1. If αi > pii for all i = 1, 2 and LRTP, then αi > 1 for some i = 1, 2.

Proof. For pii = 1 for some i, then αi > 1 for some i = 1, 2 by the condition αi > pii

for all i = 1, 2. For pii < 1 for both i, take α2 > p22 ≥ 0 and rewrite the LRTP as

α1 >
1 − p11 − p22 + α2p11

α2 − p22

. (58)

Note that the right side of (58), expressed as a function of α2 and the transition
probabilities, is monotonically decreasing in α2. We now show that over the range
p22 < α2 < 1, α1 > 1 for all p11 ∈ [0, 1) and p22 ∈ [0, 1). Letting α2 → 1, (58) implies

α1 >
1 − p22

1 − p22

= 1. (59)

Letting α2 → p22 implies the right side of (58) approaches ∞ for any p11 ∈ [0, 1) and
p22 ∈ [0, 1). �
Proposition 2. Given αi > pii for i = 1, 2, the following statements are equivalent:

(A) All the eigenvalues of M lie inside the unit circle.
(B) αi > 1, for some i = 1, 2, and the long-run Taylor principle (LRTP) is satis-

fied.

Proof. (Statement A implies statement B)

We know λ1 > 0, so the restriction on that root is 0 < λ1 < 1. Hence we seek the
implications for (α1, α2, p11, p22) of the conditions that λ1 > 0 and λ1 < 1. Considering
each case,
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λ1 > 0 : This is true by inspection and imposes no additional restrictions on the
policy process.

λ1 < 1 : This condition implies√
(α2p11 − α1p22)

2 + 4α1α2p12p21 < 2α1α2 − (α2p11 + α1p22). (60)

The restriction that −1 < λ2 < 1, written as λ2 > −1 and λ2 < 1, carries further im-
plications for the policy process that delivers a determinate equilibrium. Considering
each case,

λ2 < 1 : This condition implies

−
√

(α2p11 − α1p22)
2 + 4α1α2p12p21 < 2α1α2 − (α2p11 + α1p22) . (61)

λ2 > −1 : This condition implies

2α1α2 + (α2p11 + α1p22) >

√
(α2p11 − α1p22)

2 + 4α1α2p12p21. (62)

Squaring both sides and simplifying yields

α1α2 + p11(1 + α2) + p22(1 + α1) > 1 (63)

Note that (60) and (61) together imply that∣∣∣∣
√

(α2p11 − α1p22)
2 + 4α1α2p12p21

∣∣∣∣ < 2α1α2 − (α2p11 + α1p22), (64)

so it must be the case that 2α1α2 − (α2p11 + α1p22) > 0 and squaring both sides of
(60) preserves the inequality. Doing this and rearranging yields the LRTP

α1α2 + p11(1 − α2) + p22(1 − α1) > 1. (65)

Since, as shown above, when λ1 < 1,√
(α2p11 − α1p22)

2 + 4α1α2p12p21 < 2α1α2 − (α2p11 + α1p22), (66)

and

−
√

(α2p11 − α1p22)
2 + 4α1α2p12p21 <

√
(α2p11 − α1p22)

2 + 4α1α2p12p21, (67)

(61) also yields the LRTP

α1α2 + p11(1 − α2) + p22(1 − α1) > 1. (68)

It is straightforward to show that condition (68) implies condition (63). To see this,
rewrite the conditions as

α1α2 + p11 + p22 > 1 + α2p11 + α1p22 (69)

α1α2 + p11 + p22 > 1 − α2p11 − α1p22 (70)
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By the non-negativity of (α1, α2, p11, p22), it is clear that if (69) holds, then (70) also
holds. Given αi > pii for i = 1, 2 and LRTP, Lemma 1 implies that αi > 1, for some
i = 1, 2.

(Statement B implies statement A)

Write the LRTP as

1 −
(

p11

α1
+

p22

α2

)
>

1 − p11 − p22

α1α2
, (71)

and note the eigenvalues satisfy

λ1 + λ2 =
p11

α1
+

p22

α2
≥ 0, (72)

since αi > pii for i = 1, 2 and

λ1λ2 =
p11 + p22 − 1

α1α2

. (73)

Substituting (72) and (73) into (71), yields

λ1 + λ2 − 1 < λ1λ2. (74)

Now (74) implies that λ1 �= 1 and λ2 �= 1 because under the maintained assumption
of the LRTP, equality of the roots to unity implies the obvious contradiction that
λi < λi.

Since λ1 > 0, (74) is
1 − 1/λ1 < λ2(1 − 1/λ1), (75)

and (75) implies if 0 < λ1 < 1 then λ2 < 1 or if λ1 > 1 then λ2 > 1. Thus, (75) states
that both eigenvalues are either outside or inside the unit circle.

Now using the assumption that αi > pii for i = 1, 2, expression (72) becomes

0 ≤ λ1 + λ2 =
p11

α1
+

p22

α2
< 2. (76)

imposing a restriction on λ2. We now have that

0 < λ1 < 1 and |λ2| < 1 (77)

because the alternative of λ1 > 1 and λ2 > 1 violates (76). Clearly, if 0 < λ1 < 1 and
λ2 ≤ −1, then (76) is violated, leading to |λ2| < 1. �

Uniqueness of the bounded solution, which is established by proposition 1, need
not imply there is a unique stationary solution, as Farmer, Waggoner, and Zha (2006)
show. Those authors require a solution to be mean square stable, ensuring the exis-
tence of finite first and second moments, and argue that the long-run Taylor principle
admits a continuum of solutions, including sunspots. Their solution, which allows
lagged states to enter, is not bounded, as it can exceed any finite bound with positive
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probability.23 This implication of stationarity makes their solution at odds with the
standard definition of determinacy applied to linear rational expectations models.
Boundeness precludes lagged states from entering the solution.

Appendix B. Determinacy and Solution for the New Keynesian Model

The proof of determinacy and the solution method described in appendix A can be
applied directly to any purely forward-looking linear model to show that the minimum
state variable solution is the unique bounded solution. The equations of the model
are

πt = βEtπt+1 + κxt + uS
t , (78)

xt = Etxt+1 − σ−1(α(st)πt + γ(st)xt − Etπt+1) + uD
t . (79)

The state-contingent expectations are

Etπt+1 = E[πt+1

∣∣st = i, Ω−s
t ] = pi1E[π1t+1

∣∣Ω−s
t ] + pi2E[π2t+1

∣∣Ω−s
t ], (80)

Etxt+1 = E[xt+1

∣∣st = i, Ω−s
t ] = pi1E[x1t+1

∣∣Ω−s
t ] + pi2E[x2t+1

∣∣Ω−s
t ]. (81)

The model can be rewritten as

πit = β (pi1Etπ1t+1 + pi2Etπ2t+1) + κxit + uS
t , (82)

xit = pi1Etx1t+1 + pi2Etx2t+1 − (83)

σ−1 ((αiπit + γixit) − (pi1Etπ1t+1 + pi2Etπ2t+1)) + uD
t , (84)

where πit and xit are inflation and output at t for st = i, where i = 1, 2. The
information set Ω−s

t = {uS
t , uS

t−1, . . . , u
D
t , uD

t−1, . . . st−1, st−2, . . .} denotes the agents’
information set at t, not including the current regime, and Ωt = Ω−s

t ∪ {st}. All ex-
pectations in (78) and (79) are formed conditional on Ωt. Define the state-contingent
forecast errors

ηπ
1t+1 = π1t+1 − Etπ1t+1, ηπ

2t+1 = π2t+1 − Etπ2t+1, (85)

ηx
1t+1 = x1t+1 − Etx1t+1, ηx

2t+1 = x2t+1 − Etx2t+1. (86)

and use them to eliminate the conditional expectations in (82)-(83), yielding the
system

AYt = BYt−1 + Aηt + Cut, (87)

23One aspect of Farmer, Waggoner, and Zha’s indeterminate solution includes xt+1 = α2
p22

xt +
shocks. |α2/p22| > 1 is ruled out by boundedness, while |α2/p22| < 1 produces a multiplicity of
bounded solutions.



GENERALIZING THE TAYLOR PRINCIPLE 31

where

Yt =

⎡
⎢⎢⎣

π1t

π2t

x1t

x2t

⎤
⎥⎥⎦ , ηt =

⎡
⎢⎢⎣

ηπ
1t

ηπ
2t

ηx
1t

ηx
2t

⎤
⎥⎥⎦ , ut =

[
uS

t

uD
t

]
, (88)

A =

[
β ⊗ Π 02×2

σ−1 ⊗ Π Π

]
, (89)

B =

⎡
⎢⎢⎢⎢⎣

I2×2
|
| −κI2×2

−−− | −− −−−−−−
σ−1α1 0

0 σ−1α2
| 1 + σ−1γ1 0

0 1 + σ−1γ2

⎤
⎥⎥⎥⎥⎦ , (90)

C =

⎡
⎢⎢⎣

−1 0
−1 0
0 −1
0 −1

⎤
⎥⎥⎦ . (91)

The roots of the system are the generalized eigenvalues of (B, A), where a unique,
bounded equilibrium requires all four eigenvalues to lie inside the unit circle. Obtain-
ing analytical restrictions on the roots that deliver determinacy are more complicated
in the new Keynesian model because, as was highlighted in the text, the determinacy
regions vary with private sector parameters. To establish determinacy, note that the
model can be written so current state-contingent variables depend only on the ex-
pectations of future state-contingent variables, as in (11). Writing the model in this
form highlights that the model has the same structure as the simple Fisherian model.

Solutions for the model are derived using the method of undetermined coefficients.
However, given that the expectational errors in (87) are conditionally mean zero,
standard methods for solving linear rational expectations models can be used to
compute the solution. For example, Sims’s (2001) method and corresponding gensys
code produces a solution matching the method of undetermined coefficients solution.
McCallum (2004) notes that in purely forward looking models, such as (87), the
method of undetermined coefficients using the minimum set of state variables yields
the unique, bounded solution.

In obtaining the solution, we assume supply and demand shocks are uncorrelated,
so the coefficients on the demand shocks and those on the supply shocks can be solved
separately. Coefficients on the supply shock come from solving for the undetermined
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coefficients in⎡
⎢⎢⎣

1 − βp11ρS −βρS (1 − p11) −κ 0
−βρS (1 − p22) 1 − βp22ρS 0 −κ
1
σ
(α1 − ρSp11) −ρS

σ
(1 − p11) 1 + σ−1γ1 − p11ρS −ρS (1 − p11)

−ρS

σ
(1 − p22)

1
σ

(α2 − p22ρS) −ρS (1 − p22) 1 + σ−1γ2 − p22ρS

⎤
⎥⎥⎦

⎡
⎢⎢⎣

aS
1

aS
2

bS
1

bS
2

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦

and those on demand shocks from solving for the coefficients in⎡
⎢⎢⎣

1 − βp11ρD −βρD (1 − p11) −κ 0
−βρD (1 − p22) 1 − βp22ρD 0 −κ
1
σ

(α1 − ρDp11) −ρD

σ
(1 − p11) 1 + σ−1γ1 − ρDp11 −ρD (1 − p11)

−ρD

σ
(1 − p22)

1
σ

(α2 − p22ρD) −ρD (1 − p22) 1 + σ−1γ2 − p22ρD

⎤
⎥⎥⎦

⎡
⎢⎢⎣

aD
1

aD
2

bD
1

bD
2

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦ .

Analytical expressions for the coefficients are not easy to interpret, but are straight-
forward to compute. These coefficients are the impact elasticities of the various shocks
on output and inflation.
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Demand Supply
Inflation Output Inflation Output

Active Regime 1.152 0.936 1.090 1.022
Passive Regime 2.650 1.980 2.866 0.359

Table 1. Standard deviation relative to fixed active regime.
Uses Lubik and Schorfheide’s estimated policy parameters—α1 =
2.19, γ1 = .30, α2 = .89, γ2 = .15—and baseline parameters—β =
.99, σ = 1, κ = .17. Transition probabilities are p11 = p22 = .95. Fixed
active regime is α = 2.19, γ = .30.

p11 = .95 p11 = .975
Demand Supply Demand Supply

Inflation Output Inflation Output Inflation Output Inflation Output
p22 = 0

α2 = .5 1.044 1.008 1.075 .995 1.022 1.004 1.037 .998
α2 = .25 1.060 1.011 1.092 .994 1.030 1.005 1.045 .997

α2 = 0 1.073 1.014 1.110 .992 1.037 1.007 1.054 .997

p22 = .5
α2 = .5 1.084 .988 1.143 1.008 1.042 .993 1.071 1.004

α2 = .25 1.120 .983 1.185 1.010 1.059 .990 1.091 1.006
α2 = 0 1.165 .977 1.238 1.013 1.080 .987 1.115 1.007

p22 = 2/3
α2 = .5 1.123 .961 1.209 1.025 1.061 .979 1.104 1.014

α2 = .25 1.188 .940 1.290 1.034 1.092 .968 1.142 1.018
α2 = 0 1.283 .910 1.408 1.048 1.135 .953 1.194 1.025

p22 = .75
α2 = .5 1.162 .931 1.275 1.044 1.080 .963 1.137 1.024

α2 = .25 1.268 .886 1.412 1.066 1.129 .940 1.199 1.034
α2 = 0 1.454 .807 1.653 1.104 1.210 .903 1.302 1.052

Table 2. Standard deviation in active regime 1 relative to
fixed regime. Active and fixed regimes set α1 = α = 1.5 and γ1 =
γ = .25. Passive regime sets γ2 = .5. Ergodic probability of active
regime ranges from .83 (p11 = .95, p22 = .75) to .98 (p11 = .975, p22 = 0).
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α γ̄ δ θ
Regime 1 2.182 0.30 -1.690 0.409
Regime 2 0.885 0.15 -0.750 1.675
Full Sample 1.375 0.225 -1.476 0.657

Table 3. Estimated parameters from an identified VAR in
(42) using simulated data from regime-switching new Keyne-
sian model. Regime 1 is conditional on remaining in regime with
α1 = 2.19; Regime 2 is conditional on remaining in regime with
α2 = 0.89; Full sample is recurring changes from regime 1 to regime
2. α is the estimated response of monetary policy to inflation; γ̄ is the
policy response to output, held fixed in estimation.
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Figure 1. Determinacy regions: Fisherian model. Parameter
combinations in the light-shaded regions imply a unique equilibrium
in fixed-regime model; combinations in dark-shaded plus light-shaded
regions imply a unique equilibrium in regime-switching model.
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Figure 2. Determinacy regions: New Keynesian model. Pa-
rameter combinations in the light-shaded regions imply a unique equi-
librium in fixed-regime model; combinations in dark-shaded plus light-
shaded regions imply a unique equilibrium in regime-switching model.
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Figure 3. Determinacy regions and private parameters: New
Keynesian model. Parameter combinations in the light-shaded re-
gions imply a unique equilibrium in fixed-regime model; combinations
in dark-shaded plus light-shaded regions imply a unique equilibrium in
regime-switching model for various settings of ω and σ.
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Figure 4. Determinacy regions for Lubik and Schorfheide’s
estimates. Shaded regions give (p11, p22) combinations that yield a
determinate equilibrium. Dark region is for parameters implying high
degree of flexibility and substitution (σ = 1.04, κ = 1.07); light region
plus dark region for a low degree of flexibility and substitution (σ =
2.84, κ = 0.27); β = .99 in both regions. Using Lubik and Schorfheide’s
(2004) estimates: α1 = 2.19, γ1 = .30, α2 = .89, γ2 = .15.
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Figure 5. Demand and supply shocks under Lubik and
Schorfheide’s estimates of policy parameters. Solid line is con-
ditional on active regime initially (α1 = 2.19, γ1 = .30) when other
regime is passive (α2 = .89, γ2 = .15). Transition probabilities are
p11 = .95, p22 = .93. Dashed line is fixed regime with α = α1, γ = γ1.
Figures plot the mean responses from 50,000 draws of regime, beginning
in the second period.


