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ABSTRACT

This paper proposes a new approach to identifying the effects of monetary policy shocks in an

international vector autoregression. Using high-frequency data on the prices of Fed Funds futures

contracts, we measure the impact of the surprise component of the FOMC-day Federal Reserve

policy decision on financial variables, such as the exchange rate and the foreign interest rate. We

show how this information can be used to achieve identification without having to make the usual

strong assumption of a recursive ordering.
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1. Introduction

The role of monetary policy in explaining the dynamics and volatility of exchange rates is

a central theme in empirical international finance. The current predominant approach to

identifying structural monetary policy shocks, in both closed- and open-economy settings,

involves using a vector autoregression (VAR). This approach relies on making identifying

assumptions relating structural shocks to the reduced form errors of the VAR. While many

identification approaches have been proposed for identifying VARs, most often short-run

restrictions are used. These specify that some structural shock has no contemporaneous

effect on one or more variables. In an open-economy setting, such identifying assumptions

are used by Eichenbaum and Evans (1995), Kim and Roubini (2000), and Kim (2001).

Identification of structural monetary policy shocks in VARs is contentious because, as

the authors generally acknowledge, there are few highly credible identifying assumptions.

Open economy VAR applications raise particularly thorny simultaneity issues. For example,

most closed economy applications involve a single financial market variable, a short-term

interest rate; long-term rates are generally excluded due to the identification problems that

arise when they are included.1 To be minimally credible, the open economy analogs must

We are grateful to Jonathan Halket and Shing-Yi Wang for superlative research assistance. We are
grateful to Jim Stock, Glenn Rudebusch, Chris Sims, Harald Uhlig and two anonymous referees for their very
helpful comments on earlier drafts of this manuscript. The views in this paper are solely the responsibility
of the authors and should not be interpreted as reflecting the views of the Board of Governors of the Federal
Reserve System or of any other person associated with the Federal Reserve System.

1See Leeper, Sims, and Zha (1996) for a thorough description of this issue and examples of VARs with
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include 3 financial market variables: a short-rate in each country and the exchange rate.

Satisfactory identifying restrictions for sorting out the contemporaneous movements of these

variables simply have not been found. For example, some papers assume that U.S. monetary

policy shocks have no effect on foreign interest rates until a month after the policy move

(Eichenbaum and Evans (1995), Kim and Roubini (2000)). This is at odds with the fact that

foreign central banks regularly change policy in the wake of Federal Reserve policy decisions.

Other authors assume that the Fed ignores any surprise movements in exchange rates and/or

short-term interest rates that have occurred during the month in which decisions on the

policy variable are made (Eichenbaum and Evans (1995) and Kim and Roubini (2000)).

If true, these assumptions would call into question why the Federal Reserve Board staff

invest tremendous effort in providing the Board with minute-by-minute information about

surprising movements in financial markets.

Aware that the assumptions are not entirely credible, authors typically discuss results

from a few alternative identifications, indicating that the published results are robust to

changes. Such robustness checks are of course indispensable. Nonetheless, in cases where

the alternatives identifications are each recursive a sense of dissatisfaction lingers since we

expect simultaneity among asset market variables.

Motivated by these considerations, Faust and Rogers (2002) apply an approach to

identification, originally developed by Faust (1998). This is an approach that allows one to

long and short rates.
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do inference in partially identified models. Using such methods, one can test whether the

answers to key questions are robust to dropping implausible identifying assumptions. Us-

ing a standard open-economy VAR, Faust and Rogers find that some key results are highly

sensitive to the assumed recursive structure of money market variables, while other results

are robust. For example, the “delayed overshooting” response of the nominal exchange rate

commonly found under the assumption that foreign interest rates do not respond contem-

poraneously to U.S. monetary policy shocks vanishes when even a slight response of foreign

rates is allowed. On the other hand, the assumption that monetary policy shocks generate

large deviations from uncovered interest rate parity is not sensitive to loosening the recursive

structure.

The approach of Faust and Rogers can show which answers are sensitive to allow-

ing simultaneity among financial market variables. When sensitivity is found, additional

identifying information is needed to sharpen our inferences.

In this paper, we bring high frequency financial market data to bear in identifying the

monetary policy shock following the approach of Faust, Swanson, and Wright (2002a). We

assume that the change in the Fed Funds target rate on the days of Federal Open Market

Committee (FOMC) meetings that was not anticipated by futures markets represents a

monetary policy shock. We then regress changes in exchange rates and spot and future

interest rates in a narrow window around the FOMC decision on the surprise change in the

target rate, and then impose that the impulse responses of the exchange rate and U.S. and
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foreign short-term interest rates in a standard open-economy VAR match the responses we

have estimated from the high frequency financial market data.

Our key results are these:

1. Most of the impulse responses of the system to U.S. policy shocks under the new

identification are consistent with those from the recursive identification. However, the

effect of the U.S. policy shock on foreign output and interest rates lasts longer than

with the recursive identification. The price puzzle in the recursive identification is

avoided with the new identification. For Germany, we formally reject the recursive

identification, but not for the UK.

2. The peak timing of the exchange rate response is imprecisely estimated as in Faust and

Rogers (2002). Whereas the recursive identification suggests strong evidence of delayed

overshooting, the confidence interval for the peak timing in the new identification

includes immediate peaks and delay of several years.

3. All the approaches agree that monetary policy shocks generate large UIP deviations.

The movements of the exchange rate following U.S. policy shocks do not seem to be

driven by UIP.

4. The confidence interval for the variance share of the exchange rate due to the policy

shock in the new identification is somewhat larger than in the recursive identification,

but is bounded by about 1/3. This is somewhat tighter than the estimates of Faust
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and Rogers, reflecting the fact that additional information has been brought to bear.

Other authors have also used high frequency financial market data to help identify the

monetary policy shock in an otherwise conventional VAR. Bagliano and Favero (1999) take

a monetary policy shock identified by interest rate moves around policy decisions and use it

to identify the effects of a policy shock in closed and open economy VARs. Cochrane and

Piazzesi (2002) use a similar approach in a closed economy VAR. The primary difference in

our method is that we also exploit futures market data and high-frequency spot exchange

rate data. In particular, we require that the VAR replicate the effect of the policy shock

on expected future home and foreign rates as measured from futures markets and spot

exchange rates. We also focus on a different set of questions–exchange rate effects of U.S.

policy shocks–than these other papers.

Section 2 discusses the approach to identification. Section 3 presents our approach and

results from the high frequency data exercise.. Section 4 contains the VAR results. Section

5 contains some tests of our identifying assumptions, and Section 6 concludes.

2. Identification

2.1 The simplest case

Consider the reduced form VAR,

A(L)Yt = ut (1)
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where Yt is G× 1, A(L) = Σ∞j=0AjL
j and A0 = I. Following the literature we assume that

A(L) is invertible so that the system can be written as,

Yt = B(L)ut (2)

where B(L) = A(L)−1.

The identified VAR literature makes the assumption that the G reduced form errors

ut are related to structural errors εt by the relation: ut = Sεt, where S is full rank. One of

the structural shocks is assumed to be the monetary policy shock of interest. We can order

things such that this is the first structural shock. The VAR can be written in terms of the

structural shocks as,

Yt = B(L)Sεt (3)

Call the first column of S, α; this is the column corresponding to the policy shock. The

impulse response of all variables in the VAR to the policy shock is,

B(L)α =
∞

j=0

BjαL
j

This is a G × 1 vector of lag polynomials and the coefficients of the gth element trace out

the response of the gth variable to the policy shock.

The Bs are given by the reduced form estimates and so identifying the impulse response

requires picking the G elements of α. One restriction is a normalization, choosing the sign

and units of the policy shock. In most work, one normalizes the standard deviation of the
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shock to be 1. In our work, the VAR includes the 3-month eurodollar interest rate and we

normalize the shock to have a contemporaneous -25 basis point effect on this interest rate.2

We complete the identification by requiring that certain impulse responses match values

given from the high frequency data. For this section, simply take it as given that we have

some restrictions saying that the impulse response of the jth variable to the policy shock at

lag h is rjh. This restriction can be written,

Bh:jα = rjh (4)

where Bh:j is the jth row of Bh. If we have G such restrictions, we can stack them to form

Rα = r

Clearly, if R and r are taken as known and R is full rank, α is uniquely identified as R−1r.

2.2 Factors complicating inference

In the above discussion, we treated R and r as known. In practice R will be implied by the

reduced form estimates of the VAR and r will be estimated from the futures market data.

We must take account of uncertainty in each when doing our inference. More problemati-

cally, full identification rests on the condition that R is of rank G. When we test the rank

2The choice of normalizing the impact effect or the standard deviation of the shock is innocuous in the
point estimates. Suppose a one standard deviation shock has a -25 basis point effect in the point estimates.
A 95 percent confidence interval for the effects of a one standard deviation shock need not be a 95 percent
confidence interval for a 25 basis point shock. This is because the impact effect of a one standard deviation
shock is stochastic. Our normalization is chosen for two reasons. It is technically convenient, and it leads to
confidence intervals for something we want to learn: the effects of a given size. We are less interested in the
effects of a 1 standard deviation shock, where the value of the standard deviation is not stipulated.
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of our estimated Rs below, we cannot reject rank deficiency. We discuss reasons for this

below. Thus our restrictions Rα = r leave the system only partially identified–some linear

combinations of α may be well identified while others are not. We must use methods ap-

propriate for partially identified systems. An alternative would be to find more restrictions.

We argue below that we are exploiting all the restrictions from high frequency data that we

could identify.

We take a classical approach to inference in partially identified systems. First, we

use economic reasoning to bound the magnitude of each element of α above and below.

Remember that the elements of α are the contemporaneous effect of the policy shock on

each variable in the VAR and that we normalize the effect on the short-rate in the U.S.

to 25 basis points. Thus, one can interpret our bounds as limits on the relative effect on

other variables of a shock that lowers the U.S. interest rate by 25 basis points. We choose

bounds that are largely uncontroversial, but these limits remain a substantive part of the

identification. It is important to note that several of these restrictions are strictly looser than

the restrictions imposed in recursive identification. In that work, certain contemporaneous

responses are set to zero.

These bounds are required because confidence intervals for linear functions of α (such

as structural impulse responses) would typically be unbounded when α is only partially

identified. Even with these bounds, the failure of the rank condition means that we must

give up on point estimation and only consider confidence intervals constructed in a way that
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is robust to the failure of the rank condition.

2.3 Confidence intervals under partial identification

Suppose we want to learn about some scalar parameter f . This could be the share of the

forecast error variance of output at horizon 48 due to the policy shock or the impulse response

of prices to the policy shock at some horizon. Calling all the reduced form parameters of

the VAR θ, f is a function of θ and α: f(θ,α).

To form confidence intervals for f , first, we form a v1% confidence set for α by a method

that takes account of uncertainty in R and r and that does not rely on assumptions about

the rank of R. The construction of this confidence set follows the work of Stock and Wright

(2000) and is discussed in detail in Appendix A1. Call this confidence set A.3

For any fixed α in A, we can use a conventional bootstrap to construct a v2% confidence

interval for f(θ,α). Let this confidence interval be [c(α), c̄(α)]. Next form the outer envelope

of all of these intervals across all αs inA, as [infαεA c(α), supαεA c̄(α)]. This confidence interval

has asymptotic coverage of at least v1 + v2 − 100%, from the Bonferroni inequality, because

asymptotically (i) the true α is included in A with probability v1%, and (ii) the bootstrap

confidence interval has v2% coverage for any fixed α. The technique is conservative in that

coverage may asymptotically be higher than v1 + v2 − 100%.4 The resulting confidence

3We also form confidence intervals reflecting uncertainty regarding α but not θ. Fixing θ at the re-
duced form point estimate θ̂, we can find the range of f(θ̂,α) consistent with α in our confidence set A:
[infαεA f(θ̂,α), supαεA f(θ̂,α)]. We do not report these to save space. They are sustantially smaller than
the confidence intervals we report below.

4For example, even when the true α is not in A, the confidence interval may contain the true f .
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interval may be wide, reflecting in part its construction as a conservative confidence interval

using the Bonferroni inequality. Henceforth in this paper, we set v1 = 95 and v2 = 73

ensuring that the asymptotic coverage is at least 68%, a coverage rate commonly applied in

VAR work.

An alternative approach to inference in unidentified systems is provided by a Bayesian

framework. While the Bayesian approach might be simpler in some respects, the results

in underidentified systems may be highly sensitive to the prior, even in large samples. Our

classical confidence intervals will (asymptotically) have at least the stated coverage so long as

the bounds we impose on α are correct. Thus, so long as ones prior for α is not inconsistent

with our bounds, the stated results should be of interest.

3. High Frequency Asset Price Data and Impulse Responses to

Policy Shocks

This section develops the claim, taken as given in the last section, that some structural

impulse responses to a monetary policy shock can be measured from high frequency data

on interest rates, interest rate futures and exchange rates. Our method relies on several

important assumptions. These are to some degree testable and we present evidence in

support of the assumptions in section 5.

3.1 The principle assumptions
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Since February 1994, the FOMC has made a public announcement about its target for

the Federal Funds rate at 2:15pm Eastern time on each of its eight regularly scheduled

meeting dates every year. We follow Kuttner (2001) and other papers5 in assuming that the

unexpected change in the target rate in the FOMC announcement can be measured from

Federal Funds futures contracts (described precisely below) and that this unexpected target

change reflects an exogenous monetary policy shock. This assumption will fail, for example,

if the FOMC’s policy move at 2:15pm reveals private information of the Fed’s about the state

of the economy. In section 5, we discuss our tests of this assumption. This assumption does

not require that there are no policy shocks on other days–say, days the Chairman testifies

in Congress.

For 3 variables in the VAR (domestic and foreign short-term interest rates and the

exchange rate), we have high frequency data. We estimate the contemporaneous effect of

the policy shock on these variables by regressing the change in each variable in a narrow

window around the FOMC meeting on the unexpected change in the target rate at the

FOMC meeting, as measured from the Federal Funds futures market (which we henceforth

refer to as the FFT shock). We assume that the relative movements in these variables in

response to the FFT shock measure the effect of a monetary policy shock on these variables

in the VAR. We gain efficiency in estimating the contemporaneous effects of the policy shock

5Cochrane and Piazzesi (2002) use changes in the spot 30-day eurodollar interest rate around the FOMC
announcement instead.
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on other variables by picking the narrowest possible window around the policy shock.6

We gain 4 additional restrictions by assuming that we can measure the change in

expectations of future spot rates due to the policy shock from interest rate futures markets.

In particular, we use high frequency 3-month and 6-month futures data on the home and

foreign short rate. We take the change in the these rates due to the FFT shock in a narrow

window around the FOMC announcement as a measure of the effect of the policy shock on

expected interest rates at the relevant horizon. In addition to the assumptions stated so far,

this step requires that risk premia embedded in the futures rates do not change over the

window of time when we measure the change. We test some implications of this assumption

below.

One might wonder why we do not use additional high frequency data in order to gain

further restrictions. We think we have exploited much of the relevant data. We use high

frequency data for every variable in the VAR that is measured at high frequency. There

are other futures or forward data for the interest rates and exchange rates in the VAR.

Unfortunately, our tests below indicate that the risk premia in these data appear to be too

variable to reliably treat these as measures of expectations.

3.2 Asset price data

The Federal Funds futures contract, traded on the CBOT, settles on the last day of the

6Picking the narrowest possible window for the left-hand side variables in this regression is purely a matter
of efficiency, not consistency.
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month for the average effective Federal Funds rate over all days in that month. Following

Kuttner (2001), we measure the surprise change in the target Federal Funds rate on the

FOMC day by taking the difference between the closing price of the Federal Funds contract

that day (3:00pm Eastern time) and the closing price the previous day and multiplying this

change by days in month
days left in month.

7 We would prefer to have the change in the Fed Funds futures

rate in a narrower window of time around the FOMC announcement (2:00pm-2:30pm), but

we have these data only for the last two years of the sample.

We have observations at 5 minute intervals for the sterling and the mark/euro exchange

rates against the dollar, obtained from Olsen Associates. We measure the change around

the FOMC announcement from 2:00pm and 2:30pm. The data on spot and future 3-month

interest rates are observed only at the daily frequency, so we use the change in daily quotes.

Since these quotes are taken at different times for different assets, the main issue is whether

we want the close from the day before to the day of the announcement or the change from the

day of to the day after. We measure U.S., U.K and German interest rates using the spot 3-

month eurodollar, spot 3-month sterling Libor and spot 3-month Fibor/Euribor deposit rates

respectively (mark and euro rates are spliced). These rates are directly comparable to each

other, the associated assets are very actively traded by international market participants,

7 Near the end of the month, this scaling factor is quite large. Unfortunately, our Fed Funds futures
rate data are recorded only to the nearest basis point (to the nearest half basis points since 1995). Thus,
our measured changes involve measurement error that is greatly exacerbated when the time-of-month scaling
factor is large. For this reason, we take the target surprise to be the change in the next month’s contract
whenever the change is after the 22nd of the month. Whenever the FOMC meeting occurs this late in the
month, there is no FOMC meeting the next month.
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and there are very well developed futures markets corresponding to each. We measure

expected future interest rates 3-months ahead and 6-months ahead using these eurodollar,

Libor and Fibor/Euribor futures contracts that trade in Chicago, London and Frankfurt,

respectively8. Our Eurodollar spot rate is the British Banker’s Association trimmed mean

of market quotes at 11am London time each day, well before the FOMC announcement. Libor

and Fibor/Euribor interest rate futures prices are closing prices in London and Frankfurt,

and these markets close before the FOMC announcement. Thus, for all these series we take

the change from the day of to the day after the announcement. The eurodollar futures prices

are taken at the Chicago close which is after the FOMC announcement. Thus, in this case,

we use the change from the day before to the day of the announcement.

3.3 Estimating the structural impulse responses

We run the regression of the changes in the spot 3-month interest rates, 3-month and 6-month

interest rate futures for the home and foreign country, and the exchange rate on the FFT

shock (the unexpected target rate change) for all of the 62 FOMC meetings from February

1994 to October 2001, inclusive. We then normalized the coefficient on the spot U.S. interest

rate to -25 basis points, to get our estimate of structural impulse responses.9

The results, using the U.K. and Germany as the foreign countries are reported in Table

8These contracts all settle based on the spot eurodollar, Libor or Fibor/Euribor interest rate on the last
day of the contract. Liquid contracts exist settling in March, June, September and December of each year.
We use linear interpolation to compute the implied 3 and 6 month ahead forecast interest rates.

9The Fed had a Federal Funds rate target before February 1994, but we use only data since February
1994 because we need to know the exact time at which the public learns of the FOMC target rate decision.
A public announcement has been made at 2:15pm since February 1994 only.
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1. The coefficients on the 3-month and 6-month ahead U.S. interest rates are negative and

highly significant. The coefficients on the spot and future interest rates are not significantly

different from zero for the U.K. The coefficient on the 3-month ahead German interest rate is

significantly negative and is about half the size of the 25 basis point decline in the spot U.S.

rate. The coefficients on the spot and 6-month ahead German interest rates are negative and

borderline significant. The coefficient on the exchange rate is positive (a surprise loosening

of monetary policy depreciates the dollar), and the coefficient is significant for both the U.K.

and Germany. The magnitudes of the coefficients are, in our view, quite reasonable. The

effect on U.S. rates decays slightly over the 6 month horizon, but is nearly constant. The

identification procedure takes these point estimates as the rjhs in (4). We take account of

uncertainty in these estimates using the conventional variance-covariance matrix. We next

combine these results with the VAR to gain identification.10

4. Results on the identified VAR

In this section we apply the methodology to a benchmark 7-variable VAR of Eichenbaum

and Evans (1995). Our dataset consists of monthly observations from January 1974 through

October 2001. The variables are domestic and foreign output (y and y∗) measured as in-

dustrial production, U.S. prices (p) measured as the CPI, the three-month U.S. and foreign

interest rates (i and i∗) described above, the ratio of nonborrowed reserves to total reserves

10We assume there is no covariance between these estimates and the estimated VAR coeficients discussed
in the next section. This assumption strikes us as reasonable.
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in the U.S. (nbrx) and the exchange rate (s) measured as the dollar price of foreign currency.

The two foreign countries are the United Kingdom and Germany. The details of the data

sources are in the data appendix. All of the variables, except the i and i∗ are in logs, and

the VAR includes 6 lags and a constant.

Eichenbaum and Evans (EE) estimate a recursive VAR with the data ordered as y, p,

y∗, i∗, nbrx, i, s, calling the shock in the NBRX equation the monetary policy shock. Figures

1 and 2 show the estimated impulse responses and 68% bootstrap confidence intervals for

the recursive identification, for both countries. The results are generally reasonable by the

standards of the literature and generally consistent with what EE find using slightly different

data and a sample ending in May 1990. The surprise 25 basis point loosening of U.S. policy

persists for about 6 months and then decays rapidly. The UK interest rate falls about half

as much but is more persistent. Home output rises gradually to a peak effect of nearly a

percentage point after two years and then decays. Foreign output follows a similar pattern,

but at about half the magnitude. There is a “price puzzle” in that the home price level

initially falls significantly following a monetary policy loosening. The exchange rate response

is quite different from that in EE, however. It initially rises and then has a second mode at

a horizon of about 3 years. The German results show roughly the same pattern.

We are particularly interested in three questions concerning the exchange rate response:

i) What is the timing of the peak exchange rate effect? ii) What share of the variance of

exchange rates is due to monetary policy shocks? (iii) Is the response to policy shocks
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consistent with uncovered interest rate parity (UIP)? These questions can all be motivated

by Dornbusch’s classic work on overshooting (1976). This model was designed to help explain

the high volatility of exchange rates relative to macroeconomic fundamentals. In Dornbusch-

style overshooting, the peak exchange rate effect should come contemporaneously with the

shock, and the dynamics of the exchange rate are consistent with UIP.

With regard to the question of UIP, we know that UIP does not hold unconditionally

in the data. The deviation from UIP is interpreted as a time varying risk premium and

called the forward premium bias puzzle (see, e.g., Engel 1996). It remains conceptually

possible, however, that UIP holds conditionally in response to money shocks. In this case,

the monetary policy shock does not drive the variance of the risk premium or equivalently,

monetary policy shocks do not contribute to the forward premium bias. Most prior work

finds that conditional UIP does not hold.11

To assess this issue we calculate the implied root mean square UIP deviation (UIPD)

over 48 months following the money shock. The expected UIPD deviation at t+h of a shock

at t is given by,12

c(i, l)− c(i∗, l)− 400[c(s, l + 3)− c(s, l)].

where c(x, l) is the response of variable x at lag l to the policy shock. The RMSE of the

11Eichenbaum and Evans (1995), Cushman and Zha (1997) and Kim and Roubini (2000) report that
policy shocks generate deviations from UIP that are several times larger than the generated interest rate
differential. Cushman and Zha note that the pointwise coverage intervals on the the UIP deviations cover
zero, but do not report a joint statistic on the statistical significance of the UIP deviations.
12This is annualized, presumes monthly data, and three-month interest rates in annual percentage rate

units.
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UIPD comes from summing the squared deviations over the 48 month horizon, and taking

the square root of this object.13 A large RMSE UIPD implies either large absolute deviations

or highly variable deviations, or both.

The top panel of Table 2 shows the estimates and 68% bootstrap confidence intervals

for various parameters relevant to answering our 3 questions: (i) the fraction of the variance

of exchange rates at horizons 12, 24, 36, 48 and 60 months that are due to the monetary

policy shock, (ii) the time of the peak effect of the monetary policy shock on exchange rates

and (iii) the RMSE UIPD.

The EE model draws mixed conclusions at best regarding Dornbusch overshooting

as an explanation for exchange rate movements. For both countries and all horizons, the

confidence interval for the variance share of the exchange rate accounted for by the policy

shock is 11 percent or less. The confidence interval for the UK shows the peak exchange

rate effect occurring more than two years after the shock; the German peak is much earlier.

Finally, for both countries the RMSE UIPD is quite large.

4.1 Results for the identified VAR

Remember that we can view the identification problem as choosing a vector α and that the 7

elements of α give the impact effect of the policy shock on the 7 variables in the VAR. The

element of α corresponding to the domestic interest rate is normalized to -0.25 (a surprise

13Some tricky timing and definition questions arise. We use monthly average data for exchange rates and
interest rates. If the identification is correct, then the calculated UIP deviations should be interpreted as
the expected path of the monthly-average UIP deviation in response to a money shock.
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25 basis point easing). As discussed in section 2, we bound all other elements of α above

and below: we require that (i) the elements of α corresponding to p, y and y∗ are between

0 and 0.05, (ii) the element corresponding to i∗ is between -0.25 and 0, (iii) the element

corresponding to nbrx is between 0 and 0.25 and (iv) the element corresponding to s is

between 0 and 2.5. We therefore require that a surprise loosening of monetary policy cannot

lower output (foreign or domestic), prices, or NBRX contemporaneously, that it cannot cause

the dollar to appreciate contemporaneously and that it cannot cause foreign interest rates

to rise, contemporaneously.

Such assumptions are commonly applied either formally or informally in the literature

(e.g., Faust (1998)). We also set fairly weak bounds on the magnitude of these contempo-

raneous effects. We think larger contemporaneous effects are implausible. Recursive identi-

fications make the stronger restriction that there is no contemporaneous effect on variables

such as output and prices that are higher in the ordering. While we view our restrictions as

quite reasonable, others may disagree. One of the nice features of our approach is that any

restrictions that are viewed as implausible may be loosened as much as one likes: the cost

of removing restrictions is simply wider confidence intervals. We discuss some modifications

of this variety below.

We use the results from Table 1 to obtain an estimate of r with an associated variance-

covariance matrix. If the matrix R were of rank 7, then α would be just identified. We test

hypotheses about the rank of the matrix R using the method described in Appendix A2. We
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know that the matrix R has rank of at least 3, since one restriction normalizes the monetary

policy shock to lower interest rates by 25 basis points and the contemporaneous effects of the

monetary policy shocks on exchange rates and foreign interest rates are also imposed. For

both countries, the hypotheses that R has rank 3 or 4 are clearly rejected (Table 3). The

hypotheses that it has rank 5 or 6 are not rejected. Thus α is not fully identified, and this

partial identification means that we will not have any point estimates and must construct

confidence intervals as described above.14

Figures 3 and 4 show pointwise confidence intervals on the impulse response of the

variables in the system to the monetary policy shock.15 These are conservative confidence

intervals in the sense that they will have coverage of at least 68% asymptotically. In these

confidence intervals, we have substantially weakened the restrictions of the recursive identifi-

cation, allowing simultaneity among all the variables. We have instead achieved identification

with restrictions taken from the high frequency financial market data and with the interval

restrictions on α. Since we effectively have only five identifying restrictions and the interval

restrictions on α, one might suppose that our confidence intervals will be very wide. In

practice, our confidence intervals are quite similar (both in width and shape) to those found

for the recursive identification.

14An intuition for the rank deficiency is that the rows of R associated with the U.S. interest rate response
at horizons 3 and 6 are nearly proportional - using the notation in (4), B3:j is nearly proportional to B6:j
where the U.S. interest rate is the jth variable in the VAR. This is not surprising: similarly dated impulse
response estimates are typically highly collinear. The same argument holds for the foreign interest rate.
15As noted above, these take account of both uncertainty in our estimates of α and the reduced form

parameters.
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Part of the precision comes from our a priori bounds on α. This is necessary because

each impulse response is linear in α, which is unidentified in some directions, so that our

confidence intervals for impulse responses will typically be unbounded otherwise. It is how-

ever natural to ask if the high frequency financial data are contributing anything over and

above these bounds on α. We have re-done some of the results relying only on these bounds

on α, and find that the confidence intervals are substantially wider16.

While the general character of the impulse response to the policy shock matches the

recursive identification, there are some differences. For example, the effect on output is

somewhat delayed and somewhat moderated relative to the recursive identification. The

effect of the U.S. policy shock on foreign output and interest rates lasts longer than with the

recursive identification. The confidence interval for prices is shifted up so that at no horizon

is there a pointwise significant fall in prices following the policy loosening.

The confidence intervals for the variance share of the exchange rate due to the policy

shock are considerably wider than those from the recursive identification, going from about

0 to 30 percent (Table 2, bottom panel). But they are still considerably narrower than those

reported by Faust and Rogers (2002) who drop the strict recursiveness assumption but do

not use the financial market data. Thus, while there are other differences among the three

approaches, it appears that the very small confidence intervals in the top panel of Table 2

16The lag zero impulse responses are just the elements of α. For example, the upper bound on our
confidence interval for the contemporaneous exchange rate effect, incorporating high frequency financial
data, is about 0.5 percent; our a priori upper bound for this parameter is 2.5 percent.
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rely on the strict recursiveness assumption. Dropping that, as in Faust and Rogers, leads

to the possibility that policy shocks are the main source of exchange rate variation. Adding

the restrictions implied by the financial market data, reduces the maximal share to under

one-third.

Consistent with Faust and Rogers, we find that the peak timing is not tightly identified.

Our confidence interval goes from an immediate peak to a peak at a horizon over 5 years.17

Thus, the delayed overshooting found in EE seems to rely on strict recursiveness. For those

who find strict recursiveness implausible, further information will have to be brought to bear

to further reduce our uncertainty on this point.

The recursive identification, the approach of Faust and Rogers, and the new approach

in this paper concur that UIP deviations following money shocks are quite large. The

new identification actually narrows the confidence interval some relative to the recursive

identification.

Recently, there has been some interest in the possibility that monetary policy loosenings

represent cost-shocks that could boost aggregate supply and lower prices in the short-run

(see, for example, Christiano and Eichenbaum (1992), Christiano, Eichenbaum and Evans

(1997) and Barth and Ramey (2000)). In addition, it would be possible to argue that a

monetary policy loosening could cause the dollar to appreciate. In order to allow for these

possibilities we also considered relaxing our bounds on α to specify that the element of α

17Specifically, here we are referring to confidence intervals on the lag time of the maximum impulse response
over lag horizons zero through 90.
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corresponding to p is between -0.05 and 0.05 and the element corresponding to s is between

-2.5 and 2.5. The results are very similar and our key conclusions emphasized above are not

altered by this modification.18

4.2 Testing the validity of the recursive identification

Our method drops some strong restrictions implied by the recursive identification. The

benefit is that we do not have to be concerned about robustness of our results to minor and

plausible changes in assumptions such as allowing small simultaneous interactions where

recursion imposes no response. The cost is that confidence intervals for some items are quite

wide. Thus, it is worth checking whether the recursive identification can be maintained in

the face of the information from financial markets.

The α implied by the Eichenbaum and Evans (1995) recursive identification is simply

the fifth column of the Cholesky factor of the covariance matrix of the reduced form errors,

using their ordering of the variables (in which nbrx comes fifth). For the UK this choice of α

is included in the confidence set A, but for Germany it is not. In other words, the recursive

identification is rejected by our identification for Germany but not the UK (the p-values for

the test of Rα = r are 0.42 and 0.00 for the UK and Germany, respectively).19

18We have also re-run the original exercise but limiting the VAR estimation sample to begin in 1984:02, as
a stability check. Once again the results are quite similar. Note that since the high frequency data start in
1994, that portion of the estimation is unchanged when we estimate the VAR reduced form over the shorter
sample.
19We also tested the recursive ordering in which i∗ comes after nbrx; the nbrx shock is still the policy

shock. This recursive ordering is not rejected for either country (p-values 0.40 and 0.94 for the UK and
Germany, respectively).
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5. Support for the identifying assumptions

Our approach to identification relies on the following principle assumptions.

1. The surprise change in the target rate on FOMC day is a monetary policy shock.

2. The change the interest rate future data give accurate measures of a change in the

expectation of future spot rates.

We take up these assumptions in this section.

5.1 Is the FOMC day surprise strictly due to a monetary policy shock?

There are two ways that this assumption could fail. First, other important information

could hit the market on the day of announced target changes. Second, the Fed’s decision on

FOMC day could reveal private information of the Fed about the state of the economy.

The issue of other important information hitting the market on the day of announced

target changes could be effectively circumvented by using the change in the Fed Funds futures

price from 2:00pm to 2:30pm on FOMC day, instead of the daily close-to-close change. We

have intradaily data on the Fed Funds futures prices at 2:00pm and 2:30pm for the last 2

years of the sample only. The correlation between the change in the target surprise measured

using the 2:00pm-2:30pm intradaily data, and using the daily close-to-close data is 0.955.

This extremely high correlation would be surprising for other futures markets, but in the

case of the Fed Funds rate, we are dealing with a rate relatively tightly targeted by the

Federal Reserve. On FOMC days very little happens to change the expectation of this rate

over the remainder of the month except the FOMC announcement.
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Nonetheless, we checked whether any important pieces of macro data were announced

on the day of FOMC meetings. We find that on the 62 FOMC days in our sample, durable

goods and GDP were released once each, PPI was released twice, industrial production was

released three times and CPI was released 5 times. There were no FOMC meeting days in

our sample on which retail sales were released. Deleting the FOMC days on which there is

one of these macro releases does not change the regression estimates in Table 1 by much.

The Federal Reserve might, however, have an information advantage through earlier

access to data (especially data that are produced by the Federal Reserve, such as industrial

production) or through superior economic analysis provided by the Fed’s staff economists.

In short, the Fed announcement itself might effectively release macroeconomic data. Faust,

Swanson and Wright (2002a, 2002b) test this hypothesis by regressing 9 macroeconomic

data releases on survey expectations for those data taken before the FOMC meeting, and

the FOMC-day target surprise measured from Federal Funds futures contracts. We find that

the coefficient on the target surprise is not significantly different from zero at the 1 percent

level for any data release, and is significant at the 5 percent level for only 1 of the 9 releases

(industrial production). We interpret this as, at most, weak evidence against our assumption

that the Fed releases no macro information through the FOMC-day target surprise.

If the FOMC day surprise is strictly due to a monetary policy shock, we would expect

FOMC days to be special in some way. If the behavior of the Fed Funds futures price or its

association with other variables is not different on these days than other days, it would be
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difficult to argue that we are capturing a policy shock.

In recent years the unexpected component of the FOMC decision on the target rate,

measured from the futures market, is usually less than 10 basis points. Although this seems

like a small surprise, the standard deviation of the price of the same-month Federal Funds

contract is about 3 times larger on FOMC days than on non-FOMC days.20

If we are capturing the response to a monetary policy shock, then we would expect

the relative movements of asset prices around a macroeconomic data release, in response

to the unexpected component of that data release, to be quite different from our estimated

response to policy shocks because macroeconomic data releases are not monetary policy

shocks. To investigate this, we regressed the change in the exchange rate from 8:15am

to 8:45am and the daily changes in spot interest rates and interest rate futures21 on the

surprise component of the non-farm payrolls release. This is a data release that comes out

at 8:30am Eastern time, and was found by Fleming and Remolona (1997) to be the most

important monthly macroeconomic release. The surprise component is measured as the

deviation between the actual non-farm payrolls data release and the Money Market Services

median forecast. We then computed the relative effects of this shock, normalizing the effect

on the spot U.S. interest rate to -25 basis points. The results are shown in Table 4, and are

20The FOMC-day standard deviation is 6 basis points, versus a non-FOMC-day standard deviation of 2.1
basis points. This does not necessarily mean that the monthly monetary policy shock in the VAR is small.
Again, our identification assumes that the FFT is purely a monetary policy shock, not that it is the only
monetary policy shock.
21The spot and future interest rate series are the same as described in subsection 3.2.
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the direct analog of the results in Table 1, except using the unexpected components of the

non-farm payrolls data release instead of the unexpected component of the FOMC decision.

The relative movements of asset prices in response to the non-farm payrolls data release are

indeed quite different from those in response to FOMC decision. In particular, the effect of

the macroeconomic release on U.S. interest rates builds over time; the effect at a 6-month

horizon is larger than at a 3-month horizon, which is larger than the contemporaneous effect,

in contrast to the results in Table 1. Also, the effects on the 6-month ahead expected future

interest rate in the United Kingdom, and on the sterling exchange rate, are much larger in

response to the non-farm payrolls release than in response to the FOMC decision.

5.2 Do the interest rate futures data accurately reflect expected future spot rates?

Eurodollar, libor and euromark/euribor futures all settle in the middle of March, June,

September and December. We assess the efficiency of the interest rate forecasts from each of

these markets as predictors of the actual interest rate on the settlement day22 1 or 2 quarters

later by the standard forecast rationality regression. Specifically, we regress the forecast error

on a constant and the forecast interest rate If there is no time varying term premium, then

the slope coefficient should not be significantly different from 0. The results are reported in

Table 5. In all cases the hypothesis that the slope coefficient is 0 is not rejected, so that we

can think of the term premia in interest rate futures as being time invariant.23

22This is implied by the settlement price of the contract.
23These findings are also consistent with Favero and Mosca’s (2001) results that the expectations theory

cannot be rejected in the post 1993 data.
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Interestingly, if we redo this exercise using the forecast of interest rates from the futures

market 4 or 8 quarters ahead, then the slope coefficient is significantly below 0. This indicates

that the term premia vary over time, and may therefore be affected by a monetary policy

shock. This, combined with the lower liquidity on longer dated contracts, are the reasons

why we do not use future interest rates more than 6 months ahead.

6. Conclusions

Structural inference about the effects of monetary policy shocks on exchange rates suffers

from the normal problems in identifying structural models and more. In the open economy

context one must sort out the simultaneous interaction of at least 3 financial market variables:

home and foreign interest rates and the exchange rate. No recursive relation among these

variables is very plausible. Nonetheless, various recursive identifications have been proposed

and generally plausible answers have emerged from this work.

In this paper, we bring high frequency financial market information to bear in identify-

ing the reaction of financial market variables to a policy shock. Essentially, we require that

the impulse response of the VAR match the high frequency response of financial market vari-

ables around the time of FOMC announcements. Using this new approach, we find support

for the general characteristics of the impulse response of the system to policy shocks.

We find this quite reassuring. We drop all recursiveness assumptions and use instead

very different restrictions coming from financial market data. The basic pattern of most of
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the responses is little changed in the face of large changes in the approach to identification.

However, the effect of the U.S. policy shock on foreign output and interest rates lasts longer

than with the recursive identification. There is a price puzzle in the recursive identification,

which is avoided with the new identification. With specific regard to the exchange rate

response, our results are between those of Eichenbaum and Evans (1995) and Faust and

Rogers (2002). We find that the peak timing of the exchange rate effect is quite imprecisely

estimated: it may come nearly immediately as in Dornbusch overshooting or come several

years later. The estimated variance share of exchange rate movements due to the policy

shock–bounded at about 1/3–is between the Eichenbaum-Evans and Faust-Rogers esti-

mates. Like both previous studies, we find added support for the view that policy shocks

generate large UIP deviations.

Appendices

A1 Partial identification

Here we describe how to construct the confidence set A for the vector α when the restrictions

Rα = r must be satisfied, R is estimated by R̂, r is estimated by r̂, R may be rank deficient,

T 1/2(vec(R̂) − vec(R)) →d N(0, VR) and T 1/2(r̂ − r) →d N(0, Vr). Consider the GMM

objective function

S(α) = T (R̂α− r) [(α⊗ IK)V̂R(α ⊗ IK) + V̂r]−1(R̂α− r).
In standard GMM terminology, this is the continuous updating GMM objective function.

The estimator α̂ that minimizes this objective function is not consistent for the true α

29



because of the rank deficiency of the matrix R. However S(α0) has a χ2 null distribution

regardless of the rank of R where α0 denotes the true value of the vector α. Define the

confidence set

A = {αεA+ : S(α) ≤ Fχ2}
where Fχ2 denotes the 95th percentile of a χ2 distribution (degrees of freedom equal to the

number of elements in r) and A+ is our parameter space for α, each element of which is

constrained to lie between a lower bound and an upper bound.

The use of such confidence sets in models that are not fully identified was proposed

by Stock and Wright (2000), where they are referred to as S-sets. If the matrix R is rank

deficient, then there exists a subspace of vectors α that are observationally equivalent to α0.

Any vector in this subspace must be included in A with probability 95%, asymptotically.

Any other vector α will be excluded from A with probability 1, asymptotically. This is a

correct statement of what we do and do not know about α, when R is rank deficient. More

formally, the confidence set A is unbounded with probability 0.95, asymptotically: this must

be the case for any confidence set for an unidentified parameter if the confidence set is to

have 95% asymptotic coverage uniformly in the parameter space (Dufour (1997)).

Concretely, we proceed by forming a grid with 20 million points in A+. For each point

in this grid, we calculate the objective function S(α). If this is above the critical value, we

compute nothing else and simply proceed to the next point in the grid. If the objective

function S(α) is below the critical value, we include that value of α in the confidence set A.

For each such α, we then compute the lower and upper bounds of the bootstrap confidence
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intervals for all the parameters of interest (notably variance shares and impulse responses)

conditional on that α. Each bootstrap replication involves calculating a new θ from the

bootstrap sample, while holding α fixed - the confidence interval then consists of the 100−v2
2

and 100+v2
2

percentiles of the parameters over a total of 500 bootstrap replications. Having

cycled through all points in the grid, our confidence intervals for the objects of interest are

given by the smallest and largest values of these percentiles, respectively. This completes

the algorithm we use, for which MATLAB code is available from the authors, on request.

For each point α in the grid such that S(α) is below the critical value, we have used the

Runkle (1987) bootstrap to form a confidence interval for the parameters of interest, given

that θ is uncertain. We could instead take draws from the posterior for θ that corresponds

to the RATS prior and interpret the percentiles of this posterior as a classical confidence

interval. This turns out to give similar results with the model and data considered in this

paper. Implementing the bias-adjusted bootstrap of Kilian (1998) pushes the largest root

of the VAR inside the unit circle except that Kilian’s algorithm then calls for the bias-

adjustment to be scaled back so as to induce a unit root but not an explosive root. We are

not aware of evidence that the bias-adjustment works well under these specific circumstances,

even though it too gives similar results except at long horizons. We accordingly report results

using just the bootstrap.

A2 Testing the rank of R

We wish to test the hypothesis that ρ(R) = L against the alternative that ρ(R) > L, where
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ρ(.) denotes the rank of the argument. Assume that T 1/2(θ̂− θ)→d N(0, Vθ). See Hamilton

(1994) for primitive conditions for this convergence results and V̂θ, a consistent estimator

of Vθ. The matrix R is a nonlinear function of θ and can be estimated by R̂, where this

denotes this same nonlinear function of θ̂. By the delta method, T 1/2(vec(R̂)− vec(R))→d

N(0, VR) where VR =
dvec(R)
dθ

Vθ
dvec(R)
dθ

.

To test the hypothesis about that rank of R, we use the test statistic

T minPεπ(L)(vec(R̂)− vec(P )) V̂ −1R (vec(R̂)− vec(P ))

where V̂R is
dvec(R̂)
dθ

V̂θ
dvec(R̂)
dθ

and π(L) is the space of all conformable matrices of rank L. By

Theorem 1 of Cragg and Donald (1997), under the null hypothesis, this test statistic has a

χ2 null limiting distribution.

A3 Data

High frequency data. The spot and futures interest rate data were acquired from Datastream

and CBOT and consist of daily closing prices, as described in the text. The exchange rate

data consist of 2pm and 2:30pm Eastern Time quotes (midpoint of bid and ask) obtained

from Olsen and Associates.

VAR data. The data were acquired from the Federal Reserve Board’s International Finance

and the IMF’s International Financial Statistics (IFS) databases. All series are expressed

in natural logarithms except interest rates, which are expressed in percentage points. The

series definitions and as follows:

y (y∗) = index of U.S. (foreign) industrial production;
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p = U.S. CPI - all urban, all items;

nbr = non-borrowed reserves plus extended credit, seasonally adjusted, monthly average;

tr = total reserves, seasonally adjusted, monthly average;

nbrx = nbr/tr;

s = spot exchange rate; monthly average; US$/foreign currency;

i, i∗= for the U.S., 90-day T-bill rate, monthly average (line 60c, IFS); for the U.K., 90-day

T-bill rate, monthly average (line 60cs, IFS), for Germany, 90-day Fibor/Euribor rate.
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Table 1: Measures of the impulse response to a policy shock

UK VAR German VAR
variable horizon rel. response st. error rel. response st. error

i 0 -0.25 -0.25
3 -0.233 0.042 -0.233 0.042
6 -0.206 0.060 -0.206 0.060

i∗ 0 0.028 0.071 -0.040 0.022
3 -0.016 0.076 -0.113 0.043
6 -0.016 0.089 -0.127 0.067

s 0 0.352 0.156 0.611 0.271

Notes: The results are for a least squares regression of the change in the spot/future in-
terest rate or exchange rate on the unexpected change in the target Federal Funds rate,
with no intercept, around the FOMC meeting. The coefficient on the spot U.S. interest
rate is normalized to -25 basis points. There are 62 observations; the standard errors are
conventional OLS standard errors using the delta method to adjust for the normalization.



Table 2: Summary of the response of the exchange rate to the monetary policy shock

variance share at horizon
12 24 36 48 60 Peak time UIPD

Recursive Identification
UK pt. est. 0.01 0.01 0.01 0.02 0.02 1 0.45
UK CI 0.01 0.05 0.01 0.06 0.02 0.09 0.02 0.11 0.02 0.11 30 34 0.47 0.98
Germany pt. est. 0.01 0.01 0.00 0.01 0.01 1 0.47
Germany CI 0.01 0.05 0.01 0.06 0.01 0.07 0.01 0.08 0.01 0.09 1 1 0.47 1.05

new identification

UK CI 0.00 0.35 0.01 0.28 0.01 0.25 0.02 0.24 0.02 0.26 0 64 0.34 0.99
Germany CI 0.00 0.34 0.01 0.31 0.01 0.33 0.02 0.34 0.02 0.33 1 67 0.31 0.96

Notes: The confidence intervals are 68 conservative percent bootstrap intervals as discussed
in the text. The peak time and variance share horizons are in months. UIPD is the root
mean square UIP deviation at horizon 48.



Table 3: Test of the rank of R in Rα = r, test statistic and (p-value)

Null UK Germany

ρ = 3 226.62 244.86
(0.00) (0.00)

ρ = 4 98.45 108.54
(0.00) (0.00)

ρ = 5 11.48 8.54
(0.32) (0.58)

ρ = 6 1.40 1.19
(0.84) (0.88)

Notes: See Appendix A2 for details on this test.



Table 4: Measures of the impulse response to the Non-Farm Payrolls data surprise

US-UK data US-German data
variable horizon rel. response st. error rel. response st. error

i 0 -0.25 -0.25
3 -0.463 0.058 -0.463 0.058
6 -0.647 0.088 -0.647 0.088

i∗ 0 0.036 0.057 0.003 0.028
3 -0.176 0.057 -0.094 0.029
6 -0.263 0.077 -0.135 0.043

s 0 0.641 0.181 0.121 0.273

Notes: The results are for a least squares regression of the change in the spot/future interest
rate or exchange rate on the unexpected component of the non-farm payrolls data release,
with no intercept, around the data release time. For the US-UK and US-German data,
the home country is the US and the foreign country is the UK and Germany, respectively.
The coefficient on the spot U.S. interest rate is normalized to -25 basis points. There are
62 observations; the standard errors are conventional OLS standard errors using the delta
method to adjust for the normalization.



Table 5: Forecast efficiency tests for interest rate futures

α̂ β̂

Eurodollar -0.16 -0.01
1 quarter ahead (0.52) (0.90)

Eurodollar 0.00 -0.08
2 quarters ahead (1.00) (0.51)

Sterling LIBOR -0.08 0.00
1 quarter ahead (0.94) (0.97)

Sterling LIBOR -0.53 0.04
2 quarters ahead (0.37) (0.55)

Euribor -0.12 0.02
1 quarter ahead (0.32) (0.37)

Euribor -0.40 0.06
2 quarters ahead (0.14) (0.19)

Notes: These results refer to the standard efficiency test evaluating the forecast of 1 and 2
quarter ahead spot interest rates implicit in interest rate futures markets. The forecast error
is regressed on a constant and the forecast. There are four observations per year, correspond-
ing to the settlement days of the interest rate futures contracts. The p-values associated
with coefficient estimates are shown in parentheses. For one-quarter ahead forecasts, con-
ventional OLS standard errors are used. For two-quarter ahead forecasts, Hansen-Hodrick
standard errors are used.



Fig. 1: Recursive Identification Impulse Responses for UK (with 68% bootstrap intervals)

0 50
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Effect on I

0 50
−0.5

0

0.5

1
Effect on Y

0 50
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Effect on P

0 50
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Effect on YSTAR

0 50
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Effect on ISTAR

0 50
−0.5

0

0.5

1

1.5
Effect on NBRX

0 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Effect on S



Fig. 2: Recursive Identification Impulse Responses for Germany (with 68% bootstrap intervals)
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Fig. 3: New Identification Confidence Intervals for UK Impulse Responses
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Fig. 4: New Identification Confidence Intervals for German Impulse Responses
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