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An Almost Integration-free Approach to Ordered Response 

Models 

 
 
 
Abstract 
 
In this paper we propose an alternative approach to the estimation of ordered response 

models.  We show that the Probit-method may be replaced by a simple OLS-approach, 

called P(robit)OLS, without any loss of efficiency.  This method can be generalized to the 

analysis of panel data. For large-scale examples with random fixed effects we found that 

computing time was reduced from 90 minutes to less than one minute.  Conceptually, the 

method removes the gap between traditional multivariate models and discrete variable 

models 
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1. Introduction.  

The main task of econometric methodology is to estimate relationships between variables 

y and variables x. The oldest example is OLS, where we try to explain a variable y by a 

linear combination of variables x. The expected structural relation is then 0y xβ β′≈ + , 

which we make exact by adding an error term, viz., 0y xβ β ε′= + + . It is assumed that 

the random vector of explanatory variables and the random residual are mutually 

independent1. The unknown β 's are estimated by minimizing the sum of squared 

residuals. Mostly this procedure is defended on the basis of probabilistic assumptions 

under which the OLS- procedure is identical with maximum- likelihood estimation. There 

is now a well-established family of methods, like simultaneous equations, principal 

components, etc., in short the body of literature, which is called the 'linear model' or 

'multivariate statistics', that may be seen as generalizations of the OLS- model. 

There are however situations where we have difficulty with applying such models. It may 

be that the variable to be explained is ordinally continuous. We think of preference 

orderings where situations, conditions or commodity bundles x are ordered according to a 

preference ordering ≺ . Under rather general conditions such a preference ordering may 

be described by a utility function ( )U x , such that (1) (2)x x≺  if and only if 

(1) (2)( ) ( )U x U x< . We know, following Pareto (1906) and Debreu (1959), that in such a 

case only the indifference curves, described by equations ' ( ) constantU x = ', are 

determined and observable, but that the function U(.) as such has no cardinal 

interpretation. It is just a labeling system, that may be replaced by any function 

                                                 
1 In the literature one chooses often the slightly more general assumption that the explanatory variables and 
the residual are uncorrelated. We prefer the independence assumption as being more intuitive.  
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(.) ( (.))U Uϕ=� , where ϕ (.) is a monotonically increasing function on the range of U(.). 

The situation may be even more complicated if the preference ordering is only discretely 

observed, e.g., in terms of verbal categories like 'bad', 'sufficient', 'good' or numerical 

categories 1,2,…7, where no cardinal meaning can be assigned to the numerical values. 

Then we have ordered response sets 1 2 ....A A≺ ≺ . Such problems are mostly approached 

by using an Ordered Probit (OP) or an Ordered Logit -model.  

The Ordered Probit (OP) and Ordered Logit (OL) models belong to the main traditional 

statistical workhorses in applied econometric studies. They are applied to cases where the 

range of possible events can be ordered or ranked in terms of more or less preferred, 

higher or lower, better or worse, more or less probable, more or less propensity to be 

employed. These are ordered response models. The model is implemented by the 

introduction of a latent variable ( , ; )Y f X Xε β β ε′= = + , where the function f(.) is 

mostly taken to be linear after suitable transformation of the variables involved. Then we 

postulate that the chance on the observation of iA  is ( ) ( )i iP A P Y A= ∈ , where we assume 

that the intervals 1( , ]i i iA μ μ−=  constitute a partition of disjoint intervals on the real axis. 

Maximization of the log-likelihood with respect to the 'nuisance parameters' μi and the 

parameters β yields the estimates. This is the usual approach when we deal with 

'satisfactions' or 'propensities'. Those 'satisfactions' or 'propensities' may deal with how 

satisfied individuals are with their life, with their income, or with a specific opera 

performance in terms of verbal descriptions, ranging from 'terrible' to 'delighted'. The 

same holds for individuals that we may order in, e.g., being less or more likely to be 

employed. Such variables are frequently encountered in economics and especially in the 
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now flourishing subjective satisfaction literature2. Beyond economics ordered- response 

models are used in many other fields like psychology, sociology, political science, 

medicine and biology. We refer for still relevant surveys to Amemiya (1981) and 

Maddala (1983). More recent surveys are by Dhrymes (1986), Long (1997), DeMaris 

(2004), and Greene (2005). The ordered response models entail computational problems. 

However, in modern software packages (e.g. STATA, LIMDEP) the problems involved 

in the estimation of a single equation (Probit, Logit) have been sufficiently tackled. 

Nevertheless, when we try to apply ordered response models on more general models 

than the simple OLS-equation we easily run into difficulties. For instance, when we like 

to apply the method in panel analysis where we want to take into account the panel 

structure either by assuming that the error terms between different observations of the 

same individual are correlated (individual random effects) or by introducing individual 

fixed effects (see Greene, 2005), many computational problems appear, when the one-

dimensional integrals have to be replaced by multi-dimensional integrals, where 

integration problems tend to become overwhelming. Another example is the estimation of 

a system of equations. Although the conceptual model is just the traditional linear model, 

there arise problems when we like to extend the usual econometric toolkit, if latent 

variables are involved. Our method is much easier to implement, as it does not require 

many integrations. To be more precise, if the number of distinct response categories is k, 

we need (k-1) normal integrations, in most practical cases a number smaller than 10. In 

the traditional OP- approach we need N integrals, one per observation n. If we take into 

                                                 
2 See, e.g., Clark and Oswald, 1994; DiTella et al., 2001; Easterlin, 2001; Ferrer-i-Carbonell, 2005; Ferrer-
i-Carbonell and Frijters, 2004; Frey and Stutzer, 2002; Blanchflower and.Oswald, 2004; Frijters, Haisken-
DeNew, and Shields, 2004; van Praag, 1971;Van  Praag and Ferrer-i-Carbonell, 2004; and Van Praag, 
Frijters, and Ferrer-i-Carbonell, 2003. 
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account that Probit-estimation is typically solved by means of a few iteration rounds, say 

5, then the number of integrations is 5N. So, if we have 10 response categories and 2000 

observations, the traditional approach requires 10,000 integral computations, why for our 

method 9 integrals are sufficient. In our empirical results in Section 6 we will see that this 

will give a tremendous reduction of computer time. In a rather realistic model of a 

random fixed effect panel model the traditional approach requires about one and a half 

hour, while the same estimation by our method requires about a minute. 

When we consider the situation we feel that the ordered response literature is much more 

built up from solutions to isolated problems than the general linear model literature and 

that therefore it stands somewhat apart as a different field from mainstream statistics and 

econometrics.  

In this paper we will try to bridge that gap by proposing a specific OLS –approach that 

avoids the integration problems. In section 2 we shall have a close look at OP and its 

relationship with OLS. In section 3 we introduce an alternative to Probit, which we will 

call the Probit OLS (POLS)- method. In Section 4 we compare the POLS –approach with 

Ordered Probit. Our conclusion is that they are equivalent. In Section 5 we compare the 

POLS –approach with Ordered Probit on the basis of an empirical data set. The empirical 

findings confirm the equivalence of both methods. In Section 6 we apply the method to a 

panel data set with individual random effects. In Section 7 we compare the POLS-method 

with the Linear Probability method in the specific case of a binary response variable. It is 

easily seen that much of what we do lends itself for a Logit-type treatment as well; we 

consider and evaluate this briefly in Section 8. In Section 9 we draw some conclusions.  
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The main conclusion of this paper is that it seems possible to enroll all ordered response 

problems within the body of the well-established statistical –econometric toolkit of linear 

models. Computationally, it implies a significant reduction of computing time. Therefore, 

there would be hardly any need for a separate body of computationally hard methods 

dealing with ordered response analysis. For other empirical applications in a panel 

context or/and where the latent variables appear 'at the left-hand side' as well, we refer to 

Van Praag and Ferrer-i-Carbonell (2004), Van Praag, Frijters, and Ferrer-i-Carbonell 

(2003), and Van Praag and Baarsma (2005). 

 

2. The relation between OLS and the Ordered Probit (OP) model.  

In this section we will look for the relation between the OLS –estimators and the 

corresponding Probit-estimator, if the dependent variable is observed through an ordered 

response mechanism. In order to avoid unnecessary abstraction we cast our analysis in 

terms of a satisfaction context. It will be obvious that the analysis as such is completely 

general. 

We consider individual self-reported financial satisfaction3 μ, which is assumed to 

depend on log-income (inc) and log-family size (fs) according to the relation  

 

 1 2 0. .inc fsβ β β ε μ+ + + =                (2.1) 

or  

 X β ε μ′ + =           (2.2) 

 

                                                 
3 For the context see also Van Praag and Ferrer-i-Carbonell, 2004, chapter 2 
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for short. For each value of μ this equation describes an 'equal satisfaction' - or 

indifference –line on the (inc,fs,ε ) -space. We assume X and ε to be random and mutually 

independent. It follows that μ is a random variable as well. Moreover, we assume ε to be 

N (0,1)-distributed. 

The trade–off ratio between inc and fs is defined by 2 1/β β . If personal conditions 

change by incΔ  and fsΔ  such that incΔ = ( 2 1/β β− ). fsΔ , the individual stays on the 

same indifference curve. 

Let us now assume, quite realistically, that it is impossible to distinguish between very 

small satisfaction differences.  

This implies that the dense net of indifference curves is replaced by a set of just k non- 

overlapping ‘indifference strips’ on the (inc, fs)-space (see Figure 1). Each indifference 

strip i has a lower and upper boundary, corresponding to the indifference curves labeled 

by 1iμ − , and iμ . The curve corresponding to the level iμ  is a 'group-average' curve in a 

sense to be made precise later on. 

 

 

 

 

 

 

 

Fig. 1. Indifference curves in the (income, family size) – space. 

Family Size 

Income 

μi-1 

iμ
μi 

Unhappier
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Since ε is assumed to be N (0,1)- distributed, the likelihood of observation n, being in 

response category ni  is  

 

 
1 1

1

( ) ( )

( ) ( )

i n i i n i n

i n i n

P x P x x

N x N x

μ β ε μ μ β ε μ β

μ β μ β

− −

−

′ ′ ′< + ≤ = − < + ≤ −

′ ′− − −
 (2.3) 

 

where N(.) stands for the standard- normal distribution function. 

Applying the ML-estimation principle we differentiate the logarithm of (2.2) with respect 

to β  yielding 

 

 1

1

( ) ( )ln( ) .( )
( ) ( )

i n i n
n

i n i n

n x n xP x
N x N x

μ β μ β
β μ β μ β

−

−

′ ′− − −∂
= −

′ ′∂ − − −
 (2.4) 

 

Now we have (see, e.g., Johnson and Kotz, p.81, 1970 and Maddala, p.366, 1983) for the 

conditional expectation of the normal distribution the general formula 

 

 
( ) ( )

( ; , ) .
( ) ( )

A m B mn n
s sE X m s A X B m sB m A mN N
s s

− −
−

< ≤ = +
− −

−
 (2.5) 

 

where X is N(m,s)-distributed.  

Using this formula we may rewrite (2.4) as  
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 1 ,
ln( ) ( ;0,1 ).( )n

i n i n n j
j

P E x x xε μ β ε μ β
β −

∂ ′ ′= − < ≤ − −
∂

 (2.6) 

or  

 

1 ,

1 ,

ln( ) ( ;0,1 ).( )

[ ( ;0,1 )].( )

i i n j
j

n i i n j

P E x

E x x

ε μ μ μ
β

μ β μ μ μ

−

−

∂
= < ≤ −

∂

′= − < ≤ −

 (2.7) 

 

If we sum over the observations we get the normal equation system 

   

 1 ,
1 1

ln( ) [ ( ;0,1 ) ].( ) 0
n n

N N
n

i i n n j
n nj

P E x xμ μ μ μ β
β −

= =

∂ ′= < ≤ − − =
∂∑ ∑  (2.8) 

 

We see that this is just the familiar orthogonality condition of regression analysis, where 

the variable μ is replaced by its conditional expectation 1( ;0,1 )
n n

def

i i iE μ μ μ μ μ− < ≤ = , 

yielding the system 

 

 ( )X X Xβ μ′ ′=  (2.9) 

 

This is equivalent to regressing μ  on X instead of μ itself. The difference 

,( )
def

i i withinμ μ ε− = may be seen as a measurement error with respect to the variable μ to be 

explained. Its expectation is zero and its total variance is 2
withinσ . The regression equation 

becomes 
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 withinXμ β ε ε′= + −  (2.10) 

 

yielding a consistent estimator of β. However, compared to the case of continuous 

observation where μ itself would be observable this estimator has a greater standard 

deviation caused by the increased residual variation.   

Consider now the background - model  

 

 n n nXμ β ε′= +  (2.11) 

 

where β is assumed to be known. It implies a labeling system for the indifference curves. 

When nε ε=  the observation n lies on the indifference curve n n nXμ β ε′= + . 

If X is a random vector with expectation X  and variance –covariance matrix XXΣ , it 

follows that we know the distribution of the indifference curve labels μ , if we know the 

distribution of X and ε. We have ( )E Xμ β ′= and var( ) 1XXμ β β′= Σ + . In view of the 

fact that the distance between indifference curves is defined by using the likelihood 

2

1

1 ( )
2i n

i

x
e d

μ μ β

μ
μ

−

′− −

∫ , where the distance 2( )xnμ β ′−  appears in the exponent, the resulting 

labeling system may in fact be interpreted as a cardinalization. 

If we stick to the ordinal approach to utility and satisfaction, our only information refers 

to the shape of the indifference curves. The information on β , or rather on the slope 

described by the trade-off ratios, is the same, irrespective of the specific labeling system 

used. We will come back to this later. 
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3.The Probit OLS (POLS) - approach. 

The regression approach to Probit, as outlined in equations (2.8)-(2.10), is unfeasible in 

practice as we do not know the distribution of μ. Consequently, the conditional 

expectation in (2.7) cannot be computed. In the POLS- approach we start from the other 

end so to speak. We assume that the labels μ of the indifference curves within a 

population are distributed according to a continuous distribution function ( )G μ , that is, 

there is no indifference curve with a discrete mass of observations on it. Then ( )G μ  is 

the fraction of the population that is situated on or at a lower satisfaction level than the 

one associated with the indifference curve μ. We repeat that in the ordinal approach there 

is no cardinal meaning attached to the values μ. This means that we can replace the 

values μ by ( ; )μ ϕ μ ζ=� , where the function ϕ  is monotonically increasing to preserve 

the order and where ζ  is a set of ϕ  -specific parameters. Notice that if ( ; )xμ μ β= , then 

( ( ; ); )xμ ϕ μ β ζ=� . This implies that both representations describe the same net of 

indifference curves. The distribution function of the distribution of μ�  is 

1( ) ( ( ))H Gμ ϕ μ−=� � . This shows that the distribution function of the label distribution 

depends on the specific labeling system. Inversely, it follows that the label distribution 

may be any continuous distribution on the real axis, depending on the appropriate choice 

of the re-labeling function ϕ (.). 

It follows that there is a specific labeling system, for which the distribution of μ�  will be 

standard normal, i.e., ( ) ( ;0,1)H Nμ μ=� � . We call this labeling system the normal labeling 

system. We drop the tilde from now on. 
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Let us now assume that we observe satisfaction in terms of a few discrete response 

categories, for example ranging from 'very dissatisfied' to 'very satisfied'.  

The range of labels is partitioned in response categories that represent k adjacent intervals 

1( , ]i iμ μ− , such that a response I=i (i=1,…,k) implies that the latent 

variable 1( , ]i iμ μ μ−∈ . We define 0 , kμ μ= −∞ = ∞ . The categorical frequencies (i.e. the 

frequency of responses found in each k category) are 1,..., kp p . Now, if we start off from 

the normal labeling system the variable μ is N(0,1)-distributed in the population. 

Moreover, we assume a model where μ may be decomposed into a structural part, say 

f(X) and a residual part ε, such that the two components are mutually independent. A 

rather deep theorem in probability theory, first proved by H. Cramèr in 1937 (see Feller, 

1966, Ch. XV, 8, also Rao, 1973, p.525), states that if μ is normally distributed and if it is 

the sum of two mutually independent random variables, say f(X) and a residual part ε, 

then those two variables have to be normally distributed as well. It implies that the 

structural part ( ) f X  will be normally distributed as well. This does not imply that all X- 

variables separately have to be normal, for they are not assumed to be mutually 

independent. But it does imply that ( ) f X cannot be restricted to a proper subset of the 

real axis ( , )−∞ ∞  only.  

Given the distribution of μ over the population we may estimate the iμ ’s in a simple 

manner by solving the equations 

 

 1( ) ( )     ( 1,..., 1)i i ip N N i kμ μ −= − = −  (3.1) 
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(see for similar thoughts also Terza (1987), Stewart (1983), and Ronning and Kukuk 

(1996)). 

These are (k-1) equations in (k-1) unknowns 1 1,..., kμ μ − . Although we do not know the 

exact value of individual μ's, we now know at least that it lies within a specific interval. 

Notice that this result does not depend on the x-values, not brought into play yet, but only 

on the distribution of the response categories, that is, the unconditional distribution of μ. 

Let us now assume that we try to explain the variable μ by a linear model   

 

 ,
0

m

n POLS j jn n
j

Xμ β ε
=

= +∑  (3.2) 

  

where 0 1nX ≡  and 0β  the intercept4.  

Although nμ  cannot be directly observed, we may calculate its conditional expectation 

(see (2.5))
ni

μ = 1( )i iE μ μ μ μ− < ≤ . As already said, for the normal distribution holds the 

formula (see, e.g., Maddala, 1983, p.366) 

 

 1
1

1

( ) ( )
( )

( ) ( )
n n

n n n

n

i i
i i i

in i

n n
E

N N
μ μ

μ μ μ μ μ
μ μ

−
−

−

−
= < ≤ =

−
                             (3.3) 

 

The variable 
ni

μ  is a discrete random variable with chances 1( ) ( )i i ip N Nμ μ −= − .  

Now we take 
ni

μ as a proxy for nμ . We write nμ  1( )
n n ni i iEμ ε μ μ μ−= − < ≤ and we 

regress 
ni

μ  on the variables x. We estimate the model  

                                                 
4 We denote random variables by capitals and their values by lower case. 
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 , , 1
0

( )
n n n

m

i j POLS j n n i iX Eμ β ε ε μ μ μ−= + − < ≤∑                               (3.4) 

 

Notice that (2.10) and (3.4) are identical except for a factor of proportionality. 

We have the following variance decomposition. The total variance of the continuous μ is 

2 ( ) 1σ μ =  by definition. The variable 
ni

μ  we observe is a class mean. Its variance is 

2 ( ) 1
ni

σ μ < . The difference 21 ( )
ni

σ μ− is the information loss by observing the 

discretized variable 
ni

μ instead of the continuous latent variable μ behind it. Hence, we 

get the decomposition. 

 

 2 2

0
(1 ( )) var( ) ( ) 1

n

m

i i in nXσ μ β σ ε− + + =∑  (3.5) 

 

The observed 2R�  is 

 

 2 0

2

0

var( )

var( ) ( )

m

i in

m

i in n

X
R

X

β

β σ ε
=

+

∑

∑
�  (3.6) 

 

This is an overestimate of the true R2, which equals  
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 2 0

2 2

0

var( )
var( )

(1 ( )) var( ) ( )
n

m

i in

m

i i in n

X
R X

X

β
β

σ μ β σ ε
′= =

− + +

∑

∑
 (3.7) 

 

Or in words, the larger the information loss due to discretization, the larger apparently the 

variance explained. It also implies that the residual variance is under-estimated, and 

hence that the standard deviations of the estimators are underestimated as well. 

Therefore, the corresponding t-ratios are overestimated. The correction factor Δ  is easily 

assessed to be  

 

 0
2

1 var( )

( )

m

i in

n

xβ

σ ε

−
Δ =

∑
 (3.8) 

 

It stands to reason that the POLS-method can be used for non-linear models as well after 

suitable transformation. 

 

4. Comparison between POLS and Ordered Probit. 

The question is now how traditional Ordered Probit compares with the POLS-approach. 

The traditional model in OP is again 

 

 ,
0

m

n in i OP n
i

Y X β ε
=

′= +∑  (4.1) 
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However, the assumptions of the OP- model differ from those of the POLS- model. In OP 

the error term is normal N(0,1), but the structural part ,
0

( )
m

i OP in n OPX Xβ β′=∑  is not 

necessarily normal. That implies that the population distribution of the latent variable Y is 

not necessarily normal either. However, in practice there are two reasons why there is at 

least a reasonable chance that Y will be approximately normal as well. First, the 

distribution of many explanatory variables is frequently nearly normal in the population 

under study. Second, in econometric practice variables are frequently transformed prior 

to the analysis in such a way that their distribution in the population (unintendedly) 

becomes approximately normal. An interesting example is income. Frequently we take 

log-income as explanatory variable, which is approximately normally distributed in 

populations. It is also possible to transform explanatory variables X on purpose by a one-

one monotonous transformation such that the sample distributions of the transform, say 

( )X Xϕ=� , are N(0,1)-distributed. Thus, the sum ,j j nXβ∑ � is ensured to be normal. 

Finally, the Central Limit Theorem is at work. Mostly the number of explanatory 

variables is between five and ten, which is too small a number to warrant the claim of 

accurate normality of their sum, but in practice the difference is mostly negligible. If that 

is true, we see that (2.10) and (3.4) are identical systems except for a factor of 

proportionality. And inversely, if we find that the systems are different in more than a 

factor of proportionality we may infer that the structural part is not approximately 

normally distributed in the population. 

Under the Probit assumptions the variance of the unknown error is set equal to one, 

2 ( ) 1σ ε = . It follows that the variance of the latent OPY  equals 
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2 2 2 2( ) ( ) ( ) 1 ( )OP n OP n OPX Xσ μ σ ε σ β σ β′ ′= + = + . Hence, the variance of the Probit latent 

variable is larger than that of the POLSμ  in the POLS-approach. If both models describe 

the same indifference curves, it follows that the coefficients OPβ  and POLSβ  must have a 

fixed ratio 
21 ( )
( )

n OPOP

POLS

X
H

σ ββ
β σ μ

′+
= = . Let us now assume that ( ) 0OPE Y = . This 

implies the identification of the intercept 0, ( )OP n OPE Xβ β′= − .5 

The chance on a response i in the Probit- model is  

  

 
1 1

1

( ) ( )

( ) ( )

i OP i i i

i i

P P x x

N x N x

μ μ μ μ β ε μ β

μ β μ β

− −

−

′ ′< ≤ = − < ≤ −

′ ′= − − −
  (4.2) 

 

The unknown 'nuisance parameters’ (μ) are found by solving the triangular system  

 

 

1

2

1 1

2 2 2

1 { ( )}

1 { ( ) ( )}

.......

n OP
n A

n OP n OP
n A

N x p
N

N x N x p
N

μ β

μ β μ β

∈

∈

′− =

′ ′− − − =

∑

∑   (4.3) 

 

where iA  stands for the set of respondents with response i. Notice now that if ( )n OPX β′ is 

(approximately) normal the first sum tends to the marginal distribution function 

                                                 
5 We notice that in Ordered-Probit analysis either 0β  or the first nuisance parameter 1μ is set at zero. This 
procedure is needed for identification and does not imply a loss of generality. We partition if needed 

0 1( , )β β β= . 
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2
1( ;0,1 ( ))n OPN xμ σ β′+ . Similarly, the second term tends to 

2 2
2 1[ ( ;0,1 ( ) ( ;0,1 ( )]n OP n OPN X N Xμ σ β μ σ β′ ′+ − +  and so on. This is the system (3.1) 

except for a different variance. It follows that the Probit -μ 's are related to the POLS -

μ 's according to the relation 21 ( ).OP n OP POLSXμ σ β μ′= + . 

If (2.10) and (3.4) are completely equivalent, except for a factor of proportionality, it 

follows that POLS and OP are equivalent. The t- values of both methods are the same, as 

the factor 21 ( )n OPXσ β′+  cancels out. Hence, both methods would be equally efficient. 

It follows that the observed overestimation in POLS, due to discrete observation, of the t 

–values and of 2R holds for Probit as well.  

 

5. Empirical illustration. 

We applied the above ideas on the Financial Satisfaction Question, which appears in the 

German Socio-Economic Panel (GSOEP, wave 1996) and in many other surveys as well. 

This question runs as follows: 

 

How satisfied are you with your household income? ……………………. 

 

(Please answer by using the following scale, in which 0 means 'totally unhappy' and 10 

means 'totally happy') 

 

We explained the answer to this question by two variables, viz. log(household income) 

(lny) and log (family size) (lnfs) according to the equation 
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 ,1 ,2 ,0ln( ) ln( )
ni POLS n POLS n POLS ny fsμ β β β ε= + + +     (5.1) 

 

where nε  stands for the composite error term in (3.4). 

We estimated this equation by POLS and by the traditional OP- method. We present the 

estimation results of this equation side by side in Table 1.  

 

Table 1. Estimates of the same relation by OP and POLS6. Data:GSOEP, 1996 
 Ordered Probit POLS 
 Coeff. t-ratio Coeff. t-ratio 
Ln(y) 0.487 15.070 0.454 15.230 
Ln(fs) -0.189 -5.690 -0.176 -5.680 
Constant   -3.596 -15.11 
N = 5179     
Log.Like. -9650    
R2   0.0429  
Adjust. R2   0.0425  
Trade-off-ratio 2 1/β β  -0.388  -0.387  
The intercept terms are now shown in the table.  
 

As predicted in Section 5, we see that both estimates (Probit and POLS) look rather 

similar. The important point is that the trade-off ratio 2 1/β β , that is defining the shape of 

the indifference curve, is virtually the same for both cases. The t-ratios are the same as 

well. Hence, we conclude that OP and POLS are here equivalent indeed. 

It is frequently thought that the number of response categories k is irrelevant for the 

estimation. This is however not true. We tried the two regression methods on a 

transformed data set, where we had just two response categories ‘low’ and ‘high’ 

financial satisfaction. The border was laid at such a point that both response classes 

contain about half the sample, hence the information loss is maximal. The result is a 

dependent variable that takes the value 0 if financial satisfaction is equal to or smaller 

                                                 
6 Similar results are presented in Chapter 2 in Van Praag and Ferrer- i –Carbonell (2004). 
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than 7 and value 1 otherwise [8 to 10]. There are 2.533 observations with value 0 and 

2.646 with value 1.The regression results running a Probit and an OLS on this 0/1 

transformed variable are given in Table 2. 

 

Table 2. Probit and POLS on a dichotomous sample grouping. 
 BiProbit POLS, 2 values 
 Coeff. t-ratio Coeff. t-ratio 
Ln(y) 0.551 13.580 0.339 13.900 
Ln(fs) -0.260 -6.320 -0.161 -6.330 
Constant -4.288 -13.260 -2.657 -13.640 
N = 5179     
Log.Like. -3493    
R2   0.0362  
Adjust. R2   0.0358  
Trade-off-ratio 2 1/β β  -0.47  -0.47  
 

We see that the trade-off coefficients and the t-values are again the same for both 

approaches. However, somewhat surprisingly, we see that the trade-off coefficient is 

0.47, which is significantly different from the value 0.38, found with the finer 

categorization of Table 1. We shall not go too far in considering this difference here. 

However, it is a sign that the underlying indifference curves are not parallel to each other, 

as the trade-off changes when we shift from one satisfaction level to the other. The 

difference between both estimates is caused by a different grouping. 

Finally, we look at the distribution of ( )n OPX β′  over the sample. We present the graph of 

the distribution in fig. 2, which shows that the distribution looks rather normal indeed. 

The usual normality tests on skewness, kurtosis and the Jarque-Bera test do not reject the 

normality assumption. 
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Figure 2. Density of the linear prediction according to Ordered Probit. 

 

6. An application to panel-data.  

This method is especially attractive for panel data analysis, where the inclusion of 

individual effects with ordered response variables is troublesome. Instead if the POLS 

method is used, panel data analysis becomes as simple as with linear models. Here we 

present one example. Again, we use the Financial Satisfaction data from the German 

SOEP- data set covering the period 1992-1996. We assume the model  

 

 
1 2 0

2 2 2 2

. .

with    ( ) ( ) 0, ( . ) 0

           ( ) , ( )

nt nt nt n nt

n nt n nt

n nt

inc fs

E E E

ε η

μ β β β ε η

ε η ε η

σ ε σ σ η σ

= + + + +

= = =

= =

 (6.1) 
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The random effect and the white noise are both assumed to be normally distributed. We 

estimated the model by Ordered Probit using STATA and by our POLS –approach. We 

find the following results, presented in Table 3. 

 

Table 3. Estimates of the same relation by OP and POLS with random effects. 
Data:GSOEP, 1992-1996 
 OP, random effects POLS, random effects 
 Coeff. t-ratio Coeff. t-ratio 
Ln(y) 0.439 21.240 0.669 22.260 
Ln(fs) -0.248 -11.170 -0.357 -11.040 
Constant   1.955 8.210 
Number of observations 25609  25609  
Number of individuals 7807  7807  
Log.Like. -48172.8    
R2:                      Within   0.002  

Between   0.074  
overall   0.038  

Var (ind. random effect)/ 
Var (total unexplained) 0.377  0.344  

Trade-off-ratio 2 1/β β  -0.566  -0.534  
The intercept terms are now shown in the table.  
 

As expected, we find again that the two methods lead to similar results. However, there is 

a remarkable difference between the running times of the two methods. The traditional 

method via standard STATA (using the “reoprob” command) takes about 1.5 hour, while 

the POLS approach, using “xtreg” on the transformed answers, requires less than a 

minute running time.  

For more applications we refer to Van Praag and Ferrer-i-Carbonell (2004), e.g. Chapter 

6 with a free error- covariance matrix. 
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7. The link between BI-POLS and the linear probability model. 

There is an interesting link between the BIPOLS-model and the so-called linear 

probability (LP) -model (see e.g. Heij et al., 2004, p.439). The linear probability model is 

of an extreme simplicity. The variable Y is a binary dependent variable assuming the 

values 0 and 1. It is assumed that ( 1)P Y = = 0X β β′ + . It is explained by the regression 

equation 

 

 0Y X β β′= +  (7.1) 

 

The serious literature rejects this model for some reasons, notably because the RHS in 

(7.1) can assume values outside the interval [0,1]. The model is logically inconsistent. 

Nevertheless, the estimation method is frequently used in practice, because it is simple 

and the trade-off ratios are remarkably similar to those found with Probit-analysis. Using 

our approach we can now understand why this is and must be the case. 

Consider the BIPOLS- analogue, where we assign the values 1 2,μ μ to the lower and 

upper category, respectively. Averaging over the lower and upper category we find  

 

 1 1 0,

2 2 0,

POLS POLS

POLS POLS

X

X

μ β β

μ β β

′= +

′= +
 (7.2) 

 

Now we remind the reader that the choice of the values 1 2,μ μ  depends on the specific 

identification rule, where we assumed that the label- variable μ is N(0,1)-distributed. We 
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may use other scaling and position parameters, such that 1 2,μ μ become equal to zero and 

one. We solve the system  

 

 1 0,

2 0,

0 ( ) .

1 ( ) .

POLS POLS

POLS POLS

X

X

γ β δ β

γ β δ β

′= +

′= +
 (7.3) 

 

for γ and δ. It follows that if we identify μ by assuming μ  to be ( , / )N γ δ γ -distributed, 

then BIPOLS is equivalent to the Linear Probability method. As POLS estimates the 

trade-off ratios as efficiently as Probit, it follows that LP is just as good as Bi-Probit. 

However, this does only hold for the case of two response categories. If we have three 

categories and try to estimate in the same way by assigning the values 0,1,2 to the 

response categories, the trade-off ratios will be distorted. 

 

8. How about Logit? 

In the literature there is an alternative to the Probit model, viz. Logit analysis (see Cramer 

(2003) for a recent survey). Up to now there is no definite preference for one of the two 

modes. Some researchers like Logit better than Probit and vice versa. It is just a matter of 

tradition which method one chooses. Amemiya (1981) suggested that the Logit and 

Probit estimators differ only by a multiple of about 0.625 (see also Maddala p.22). He 

suggested that this was so, because the two distributions look very much alike. In this 

paper we argue that this is just a consequence of the general fact that both are 

representations of the same net of indifference curves.  



 26

A POLS- type approach to Logit is simple to construct. Assume that the representation is 

logistic, which implies a logistic distribution function. In that case we may define the 

logistic analogue of equation (3.1) by 

 

 1( ) ( )     ( 1,..., )i i ip L L i kμ μ −= − =  (8.1) 

 

Then we may define the conditional expectations ,ni LOGμ  with respect to the logistic. For 

the formula we refer to Maddala (1983, p.369). We estimate the model    

 

 , ,
0

n

m

i LOG i LOG in nZ Xβ ε= +∑� �  (8.2) 

 

Now the variance of the standard Logit is 21
3π . It follows that 21

3 .LOG POLSβ π β≈ . 

There is one problem which makes the logistic problematic. If the left-hand side of (8.2) 

is logistically distributed that must hold for the right-hand side as well. But the first term 

at the right hand tends to a normal variate due to the working of the Central Limit 

Theorem. This makes (8.2) logically inconsistent. It is for this reason that we do not 

recommend the Logit- specification. 

 

9. Discussion and Conclusion. 

In this paper we develop a linear –method that compares very well with the traditional 

Ordered Probit. The essential point is that we estimate the shape of indifference curves, 

that is, the trade-off ratios between coefficients. This method, which we call POLS, 
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replaces the original dependent variable by its conditional mean. This new variable obeys 

the same trade-off relations as its underlying component. In the paper we show that the 

POLS yields almost the same outcomes as OP, except for a proportionality factor. If that 

situation does not hold, the POLS- procedure is attractive for the analysis of ordinal 

variables in its own right.   

The essential difference between the traditional latent variable approach and our 

approach is that traditionally one starts to define the underlying model and its likelihood. 

We instead start by translating the observed ordered variable according to its conditional 

mean and applying OLS afterwards. In our approach we stay much closer to OLS and 

there is only a gradual difference between the treatment of continuously and discretely 

observable variables.  

In presenting the new method, this paper contributes to the understanding of the Probit 

model. This is in itself interesting from a theoretical point of view. Nevertheless, the 

POLS method might not seem very relevant for present econometric and statistical 

practice, as the Probit- routine is included in most standard software packages. However, 

the POLS method is easily generalized to complex situations (such as panel data and 

system of equations), which are even nowadays not a matter of computational routine.  

For example, consider the multi-Probit version of a SUR model where, say, k equation 

errors are correlated, this involves hard computations of k-dimensional integrals on a 

large scale. Here we may also use the POLS- trick by replacing all k variables to be 

explained by their POLS-analogues and estimating the corresponding SUR-equation 

system in a linear setting. We refer to Van Praag, Ferrer-i-Carbonell (2004) and to Van 

Praag, Frijters, Ferrer-i-Carbonell (2003) for empirical examples.  
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Another instance where the POLS-approach is very helpful is when we employ Probit 

type-variables in longitudinal analysis with inter-temporal correlations. While for ordered 

response variables the use of panel techniques becomes difficult (see Greene (2005), 

Ferrer-i-Carbonell and Frijters 2004)), such econometric techniques are very easy to 

implement if using the POLS method. We again refer to Van Praag and Ferrer–i-

Carbonell (2004) for empirical examples.  

The approach is also helpful when we want to employ ordered variables as explanatory 

variables. In this case, we can plug in the conditional mean as explanatory variable. 

Examples are found Van Praag and Baarsma (2005) and Van Praag and Ferrer–i-

Carbonell (2004). It is a matter of course that the usual identification problems and their 

solutions hold. Identification does not become more difficult but not easier either. Next to 

the above-mentioned examples, the POLS can also be applied to factor analysis and 

principal components. 

The most important result of our findings is that a good part of the methods of traditional 

discrete response analysis may be replaced by POLS and its generalizations, utilizing a 

POLS- transformation of the data. Not only are the OLS-variants computationally easier 

than the discrete methods that require the computation of many integrals and or Monte 

Carlo simulations, but also they open the way to the application of linear classical 

methods to discrete response data.  

One thing we should always keep in mind: discrete observation instead of observation on 

a continuous scale necessarily implies a loss of information. This loss of information will 

have an impact on the standard deviations, which become larger, and on the correlations, 

which will become smaller in an absolute sense than under continuous observation. This 
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is the price to be paid for discrete observation. However, this has nothing to do with a 

POLS - cardinalization. As we saw, the same loss in reliability has to be paid when 

applying a Probit –type method. 
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