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Abstract

This paper develops and illustrates a simple method to generate a DSGE model-

based forecast for variables that do not explicitly appear in the model (non-core vari-

ables). We use auxiliary regressions that resemble measurement equations in a dynamic

factor model to link the non-core variables to the state variables of the DSGE model.

Predictions for the non-core variables are obtained by applying their measurement

equations to DSGE model- generated forecasts of the state variables. Using a medium-

scale New Keynesian DSGE model, we apply our approach to generate and evaluate

recursive forecasts for PCE inflation, core PCE inflation, and the unemployment rate

along with predictions for the seven variables that have been used to estimate the

DSGE model.

JEL CLASSIFICATION: C11, C32, C53, E27, E47

KEY WORDS: Bayesian Analysis, DSGE Models, Forecasting
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models estimated with Bayesian methods

are increasingly used by central banks around the world as tools for projections and policy

analysis. Examples of such models are the small open economy model developed by the

Sveriges Riksbank (Adolfson, Laseen, Linde, and Villani, 2005 and 2008; Adolfson, Anders-

son, Linde, Villani, and Vredin, 2007), the New Area-Wide Model developed at the European

Central Bank (Coenen, McAdam, and Straub, 2008) and the Federal Reserve Board’s new

Estimated, Dynamic, Optimization-based model (Edge, Kiley, and Laforte, 2008). These

models extend specifications studied by Christiano, Eichenbaum, and Evans (2005) and

Smets and Wouters (2003) to open economy and multisector settings. A common feature is

that decision rules of economic agents are derived from assumptions about preferences and

technologies by solving intertemporal optimization problems. Compared to previous gener-

ations of macroeconometric models, the DSGE paradigm delivers empirical models with a

strong degree of theoretical coherence. The costs associated with this theoretical coherence

are two-fold. First, tight cross-equation restrictions potentially introduce misspecification

problems that manifest themselves through inferior fit compared to less-restrictive time se-

ries models (Del Negro, Schorfheide, Smets, and Wouters, 2007). Second, it is more difficult

than in a traditional system-of-equations approach to incorporate variables other than a core

set of macroeconomic aggregates such as real gross domestic product (GDP), consumption,

investment, wages, hours, inflation, and interest rates. Nonetheless, in practical work at

central banks it might be important to also generate forecasts for economic variables that

do not explicitly appear in the DSGE model. Our paper focuses on the second problem.

For brevity, we will refer to these non-modelled series as non-core variables.

Recently, Boivin and Giannoni (2006) integrated a medium-scale DSGE model into a

dynamic factor model for a large cross section of macroeconomic indicators, thereby linking

non-core variables to a DSGE model. The authors jointly estimated the DSGE model

parameters as well as the factor loadings for the non-core variables. Compared to the

estimation of a “non-structural” dynamic factor model, the Boivin and Giannoni approach

leads to factor estimates that have a clear economic interpretation. The joint estimation is

conceptually very appealing, in part because it exploits information that is contained in the

non-core variables when making inference about the state of the economy.1 The downside
1Formally we mean by “state of the economy” information about the latent state variables that appear

in the DSGE model.
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of the joint estimation is its computational complexity, which makes it currently impractical

for real time forecasting at central banks.

Our paper proposes a simpler two-step estimation approach for an empirical model that

consists of a medium-scale DSGE model for a set of core macroeconomic variables and a

collection of measurement equations or auxiliary regressions that link the state variables of

the DSGE model with the non-core variables of interest to the analyst. In the first step we

estimate the DSGE model using the core variables as measurements. Since the DSGE model

estimation is fairly tedious and delicate, in real time applications the DSGE model could be

re-estimated infrequently, for instance, once a year. Based on the DSGE model parameter

estimates, we apply the Kalman filter to obtain estimates of the latent state variables given

the most recent information set. We then use the filtered state variables as regressors to

estimate simple linear measurement equations with serially correlated idiosyncratic errors.

This estimation is quick and can be easily repeated in real time as new information arrives

or interest in additional non-core variables arises. An attractive feature of our empirical

model for policy makers is that we are linking the non-core variables to the fundamental

shocks that are believed to drive business cycle fluctuations. In particular, we are creating

a link between monetary policy shocks and non-core variables, which allows us to study the

effect of unanticipated changes in monetary policy on a broad set of economic variables.

The remainder of the paper is organized as follows. The DSGE model used for the

empirical analysis is described in Section 2. We are using a variant of the Christiano,

Eichenbaum, and Evans (2005) and Smets and Wouters (2003) model, which is described

in detail in Del Negro, Schorfheide, Smets, and Wouters (DSSW, 2007). Our econometric

framework is presented in Section 3. Section 4 summarizes the results of our empirical anal-

ysis. We estimate the DSGE model recursively based on U.S. quarterly data starting with

a sample from 1984:I to 2000:IV, generate estimates of the latent states as well as pseudo-

out-of-sample forecasts for a set of core variables, which is comprised of the growth rates of

output, consumption, investment, real wages, the GDP deflator, as well as the levels of inter-

est rates and hours worked. We then estimate measurement equations for three additional

variables: personal consumption expenditures (PCE) inflation, core PCE inflation, and the

unemployment rate. We provide pseudo-out-of-sample forecast error statistics for both the

core and non-core variables using our empirical model and compare them to simple AR(1)

forecasts. Finally, we study the propagation of monetary policy shocks to auxiliary variables

as well as features of the joint predictive distribution. Section 5 concludes and discusses

future research. Details of the Bayesian computations are relegated to the Appendix.
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2 The DSGE Model

This section briefly describes the DSGE model to which we apply our methods of con-

structing prior distributions. We use a medium-scale New Keynesian model with price and

wage rigidities, capital accumulation, investment adjustment costs, variable capital utiliza-

tion, and habit formation. The model is based on the work of Smets and Wouters (2003)

and Christiano, Eichenbaum, and Evans (2005). The specific version is taken from DSSW.

For brevity we only present the log-linearized equilibrium conditions and refer the reader

to the above-referenced papers for the derivation of these conditions from assumptions on

preferences and technologies.

The economy is populated by a continuum of firms that combine capital and labor

to produce differentiated intermediate goods. These firms have access to the same Cobb-

Douglas production function with capital elasticity α and total factor productivity At. Total

factor productivity is assumed to be non-stationary. We denote its growth rate by at =

ln(At/At−1), which is assumed to have mean γ. Output, consumption, investment, capital,

and the real wage can be detrended by At. In terms of the detrended variables the model

has a well-defined steady state. All variables that appear subsequently are expressed as

log-deviations from this steady state.

The intermediate goods producers hire labor and rent capital in competitive markets

and face identical real wages, wt, and rental rates for capital, rkt . Cost minimization implies

that all firms produce with the same capital-labor ratio

kt − Lt = wt − rkt (1)

and have marginal costs

mct = (1− α)wt + αrkt . (2)

The intermediate goods producers sell their output to perfectly competitive final good

producers, which aggregate the inputs according to a CES function. Profit maximization of

the final good producers implies that

ŷt(j)− ŷt = −
(

1 +
1

λfeλ̃f,t

)
(pt(j)− pt). (3)

Here ŷt(j)− ŷt and pt(j)−pt are quantity and price for good j relative to quantity and price

of the final good. The price pt of the final good is determined from a zero-profit condition

for the final good producers.
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We assume that the price elasticity of the intermediate goods is time-varying. Since

this price elasticity affects the mark-up that intermediate goods producers can charge over

marginal costs, we refer to λ̃f,t as mark-up shock. Following Calvo (1983), we assume that

in every period a fraction of the intermediate goods producers ζp is unable to re-optimize

their prices. These firms adjust their prices mechanically according to steady state inflation

π∗. All other firms choose prices to maximize the expected discounted sum of future profits,

which leads to the following equilibrium relationship, known as the New Keynesian Phillips

curve:

πt = βIEt[πt+1] +
(1− ζpβ)(1− ζp)

ζp
mct +

1
ζp
λf,t, (4)

where πt is inflation and β is the discount rate.2 Our assumption on the behavior of firms

that are unable to re-optimize their prices implies the absence of price dispersion in the

steady state. As a consequence, we obtain a log-linearized aggregate production function of

the form

ŷt = (1− α)Lt + αkt. (5)

Equations (2), (1), and (5) imply that the labor share lsht equals marginal costs in terms

of log-deviations: lsht = mct.

There is a continuum of households with identical preferences, which are separable in

consumption, leisure, and real money balances. Households’ preferences display (internal)

habit formation in consumption captured by the parameter h. Period t utility is a function

of ln(Ct − hCt−1). Households supply monopolistically differentiated labor services. These

services are aggregated according to a CES function that leads to a demand elasticity 1 +

1/λw. The composite labor services are then supplied to the intermediate goods producers

at real wage wt. To introduce nominal wage rigidity, we assume that in each period a

fraction ζw of households is unable to re-optimize their wages. These households adjust

their nominal wage by steady state wage growth e(π
∗+γ). All other households re-optimize

their wages. First-order conditions imply that

w̃t = ζwβIEt

[
w̃t+1 + ∆wt+1 + πt+1 + at+1

]
+

1− ζwβ
1 + νl(1 + λw)/λw

(
νlLt − wt − ξt + b̃t +

1
1− ζwβ

φt

)
, (6)

where w̃t is the optimal real wage relative to the real wage for aggregate labor services, wt,

and νl would be the inverse Frisch labor supply elasticity in a model without wage rigidity

(ζw = 0) and differentiated labor. Moreover, b̃t is a shock to the household’s discount

2We used the following re-parameterization: λf,t = [(1− ζpβ)(1− ζp)λf/(1 + λf )]λ̃f,t, where λf is the

steady state of λ̃f,t.
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factor3 and φt is a preference shock that affects the household’s intratemporal substitution

between consumption and leisure. The real wage paid by intermediate goods producers

evolves according to

wt = wt−1 − πt − at +
1− ζw
ζw

w̃t. (7)

Households are able to insure the idiosyncratic wage adjustment shocks with state con-

tingent claims. As a consequence they all share the same marginal utility of consumption

ξt, which is given by the expression:

(eγ − hβ)(eγ − h)ξt = −(e2γ + βh2)ct + βheγIEt[ct+1 + at+1] + heγ(ct−1 − at) (8)

+eγ(eγ − h)b̃t − βh(eγ − h)IEt[b̃t+1],

where ct is consumption. In addition to state-contingent claims, households accumulate

three types of assets: one-period nominal bonds that yield the return Rt, capital k̄t, and

real money balances. Since preferences for real money balances are assumed to be additively

separable and monetary policy is conducted through a nominal interest rate feedback rule,

money is block exogenous and we will not use the households’ money demand equation in

our empirical analysis.

The first order condition with respect to bond holdings delivers the standard Euler

equation:

ξt = IEt[ξt+1] +Rt − IEt[πt+1]− IEt[at+1]. (9)

Capital accumulates according to the following law of motion:

k̄t = (2− eγ − δ)
[
k̄t−1 − at

]
+ (eγ + δ − 1)[it + (1 + β)S′′e2γµt], (10)

where it is investment, δ is the depreciation rate of capital, and µt can be interpreted as

an investment-specific technology shock. Investment in our model is subject to adjustment

costs, and S′′ denotes the second derivative of the investment adjustment cost function at

steady state. Optimal investment satisfies the following first-order condition:

it =
1

1 + β

[
it−1 − at

]
+

β

1 + β
IEt[it+1 + at+1] +

1
(1 + β)S′′e2γ

(ξkt − ξt) + µt, (11)

where ξkt is the value of installed capital, evolving according to:

ξkt − ξt = βe−γ(1− δ)IEt
[
ξkt+1 − ξt+1

]
+ IEt

[
(1− (1− δ)βe−γ)rkt+1 − (Rt − πt+1)

]
. (12)

3For the estimation we re-parameterize the shock as follows: bt = eγ(eγ − h)/(e2γ + βh2)b̃t.
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Capital utilization ut in our model is variable and rkt in all previous equations represents the

rental rate of effective capital kt = ut+ k̄t−1. The optimal degree of utilization is determined

by

ut =
rk∗
a′′
rkt . (13)

Here a′′ is the derivative of the per-unit-of-capital cost function a(ut) evaluated at the steady

state utilization rate. The central bank follows a standard feedback rule:

Rt = ρRRt−1 + (1− ρR)(ψ1πt + ψ2ŷt) + σRεR,t. (14)

where εR,t represent policy shocks. The aggregate resource constraint is given by:

ŷt = (1 + g∗)
[
c∗
y∗
ct +

i∗
y∗

(
it +

rk∗
eγ − 1 + δ

ut

)]
+ gt. (15)

Here c∗/y∗ and i∗/y∗ are the steady state consumption-output and investment-output ratios,

respectively, and g∗/(1 + g∗) corresponds to the government share of aggregate output. The

process gt can be interpreted as exogenous government spending shock. It is assumed that

fiscal policy is passive in the sense that the government uses lump-sum taxes to satisfy its

period budget constraint.

There are seven exogenous disturbances in the model and six of them are assumed to

follow AR(1) processes:

at = ρaat−1 + (1− ρa)γ + σaεa,t (16)

µt = ρµµt−1 + σµεµ,t

λf,t = ρλf
λf,t−1 + σλf

ελf

gt = ρggt−1 + σgεg,t

bt = ρbbt−1 + σbεb,t

φt = ρφφt−1 + σφεφ,t.

We assume that innovations of these exogenous processes as well as the monetary policy

shock εR,t are independent standard normal random variates and collect them in the vector

εt. We stack all the DSGE model parameters in the vector θ. The equations presented in

this section form a linear rational expectations system that can be solved numerically, for

instance with the method described in Sims (2002).
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3 Econometric Methodology

Our econometric analysis proceeds in three steps. First, we use Bayesian methods to es-

timate the linearized DSGE model described in Section 2 on seven core macroeconomic

time series. Second, we estimate so-called auxiliary regression equations that link the state-

variables associated with the DSGE model to other macroeconomic variables that are of

interest to the analyst, but not explicitly included in the structural DSGE model (non-core

variables). Finally, we use the estimated DSGE model to forecast its state variables and

then map these state forecasts into predictions for the macroeconomic variables.

3.1 DSGE Model Estimation

The solution of the linear rational expectations system characterized in Section 2 can be

expressed as a vector autoregressive law of motion for a vector of state variables ςt:

ςt = Φ1(θ)ςt−1 + Φε(θ)εt. (17)

The coefficients of the matrices Φ1 and Φε are functions of the DSGE model parameters θ.

For the model described in Section 2 the non-redundant state variables are given by ct, it,

k̄t, Rt, wt, and the six serially correlated exogenous disturbances.

To estimate the DSGE model based on a sequence of observations Y T = [yt, . . . , yT ] us-

ing a likelihood-based method it is convenient to construct a state-space model. In addition

to the state transition equation (17) one needs to specify a system of measurement equations

that link the observables yt to the states ςt. The vector yt used in our empirical analysis in-

cludes quarter-to-quarter growth rates (measured in percentages) of real GDP, consumption,

investment, and nominal wages, as well as a measure of hours worked, the GDP deflator,

and the federal funds rate. Since some of our observables include growth rates, we augment

the set of model states by lagged values of output, consumption, investment, and real wages

and augment the matrices Φ1 and Φ2 in (17) accordingly. Thus,

ςt = [ct, it, k̄t, Rt, wt, at, µt, λf,t, gt, bt, φt, yt−1, ct−1, it−1, wt−1].′

We express the set of measurement equations generically as

yt = A0(θ) +A1(θ)ςt. (18)

The state-space representation of the DSGE model is given by Equations (17) and (18).
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Under the assumption that the innovations εt are normally distributed, the likelihood

function, denoted by p(Y T |θ), for the DSGE model can be evaluated with the Kalman filter.

The Kalman filter also generates a sequence of estimates of the state vector ςt:

ςt|t(θ) = IE[ςt|θ, Y t], (19)

where Y t = [y1, . . . , yt]. Our Bayesian estimation of the DSGE model combines a prior

p(θ) with the likelihood function p(Y T |θ)p(θ) to obtain a joint distribution of data and

parameters. The posterior distribution is given by

p(θ|Y T ) =
p(Y T |θ)p(θ)

p(Y )
, where p(Y T ) =

∫
p(Y T |θ)p(θ)dθ. (20)

We employ Markov-Chain-Monte-Carlo (MCMC) methods described in detail in An and

Schorfheide (2007) to implement the Bayesian inference. More specifically, a random-walk

Metropolis algorithm is used to generate draws from the posterior distribution p(θ|Y T ) and

averages of these draws (and suitable transformations) serve as approximations for posterior

moments of interest.

3.2 Linking Model States to Non-Core Variables

Due to the general equilibrium structure the variables that are included in state-of-the-

art DSGE models are limited to a set of core macroeconomic indicators. However, in

practice an analyst might be interested in forecasting a broader set of time series. For

instance, the DSGE model described in Section 2 generates predictions for hours worked

but does not include unemployment as one of the model variables. We use zt to denote a

particular variable that is not included in the DSGE model but nonetheless is of interest

to the forecaster. We will express zt as a function of the DSGE model state variables

ςt. As discussed in the previous subsection, the Kalman filter delivers a sequence ςt|t(θ),

t = 1, . . . , T . We use ς̂t|t to denote an estimate of ςt|t(θ) that is obtained by replacing θ with

the posterior mean estimate θ̂T and let4

zt = α0 + ŝ′t|tα1 + ξt, ξt = ρξt−1 + ηt, ηt ∼ N (0, σ2
η), (21)

where ŝt|t = Mς̂t|t and M is a matrix composed of zeros and ones that potentially selects a

J-dimensional subset of the model state variables. Moreover, ξt is a variable-specific noise

process.
4Alternatively, we could define ς̂t|t as

∫
ςt|t(θ)p(θ|Y T )dθ.
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Equations (17), (18), and (21) can be interpreted as a factor model. The factors are

given by the state variables of the DSGE model, the measurement equation associated with

the DSGE model describes how our core macroeconomic variables load on the factors, and

the auxiliary regression (21) describes how additional macroeconomic variables load on the

factors. Our framework can be viewed as a simplified version of Boivin and Giannoni’s

(2006) DSGE-based factor model. The random variable ξt in (21) plays the role of an

idiosyncratic error term. Unlike Boivin and Giannoni (2006), we do not attempt to estimate

the DSGE model and the auxiliary equations simultaneously. While we are thereby ignoring

information about st contained in the zt variables, our analysis reduces the computational

burden considerably and can be more easily used for real time forecasting.

As in the estimation of the DSGE model, we also use Bayesian methods for the estima-

tion of the auxiliary regression for zt. We re-write (21) in quasi-differenced form as

z1 = α0 + ŝ′1|1α1 + ξ1 (22)

zt = ρzt−1 + α0(1− ρ) + [ŝ′t|t − ŝ
′
t−1|t−1ρ]α1 + ηt, t = 2, . . . , T.

Instead of linking the distribution of ξ1 to the parameters ρ and σ2
η we assume that ξ1 ∼

N (0, τ2) and discuss the choice of τ later on. A particular advantage of the Bayesian

framework is that we can use the DSGE model to derive a prior distribution for the α’s for

variables zt that are conceptually related to variables that appear in the DSGE model. Let

α = [α0, α
′
1]′. Our prior takes the form

α ∼ N (µα,0, Vα,0), ρ ∼ U(−1, 1), p(σ2
η) ∝ (σ2

η)−1. (23)

We construct the prior mean µα,0 based on the DSGE model implied factor loadings for a

model variable, say z†t , that is conceptually similar to zt. For concreteness, suppose that zt

corresponds to PCE inflation. Since there is only one-type of final good, our DSGE model

does not distinguish between, say, the GDP deflator and a price index of consumption

expenditures. Hence, a natural candidate for z†t is final good inflation. Let IEDθ [·] denote

an expectation taken under the probability distribution generated by the DSGE model,

conditional on the parameter vector θ. We construct µα,0 by a population regression of the

form

µα,0 =
(
IEDθ [s̃ts̃′t]

)−1

IEDθ [s̃tz
†
t ], (24)

where s̃t = [1, s′t]
′ and θ is in practice replaced by its posterior mean θ̂T . If z†t is among

the observables, then this procedure essentially recovers5 the corresponding rows of A0(θ)
5Depending on the procedure used to solve the DSGE model, some elements of ςt might be redundant
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and A1(θ) in the measurement equation (18). We provide details on the choice of z†t in the

empirical section. Our prior covariance matrix is diagonal with the following elements

diag(Vα,0) =
[
λ0,

λ1

ω1
, . . . ,

λ1

ωJ

]
. (25)

Here λ0 and λ1 are hyperparameters that determine the degree of shrinkage for the intercept

α0 and the loadings α1 of the state variables. We scale the diagonal elements of Vα,0 by the

inverse of ωj , which denotes the DSGE model’s implied variance of the j’th element of ŝt|t

(evaluated at the posterior mean of θ). Draws from the posterior distribution can be easily

obtained with a Gibbs sampler described in Appendix A.

3.3 Forecasting

Suppose that the forecast origin coincides with the end of the estimation sample, denoted by

T . Forecasts from the DSGE model are generated by sampling from the posterior predictive

distribution of yT+h. For each posterior draw θ(i) we start from6 ς̂T |T (θ(i)) and draw a

random sequence {ε(i)T+1, . . . , ε
(i)
T+h}. We then iterate the state transition equation forward

to construct

ς
(i)
T+h|T = Φ1(θ(i))ς(i)T+h−1|T + Φε(θ(i))ε

(i)
T+h, h = 1, . . . ,H. (26)

Finally, we use the measurement equation to compute

y
(i)
T+h|T = A0(θ(i)) +A1(θ(i))ς(i)T+h|T . (27)

The posterior mean forecast ŷT+h|T is obtained by averaging the y(i)
T+h|T ’s.

A draw from the posterior predictive distribution of a non-core variable zT+h is obtained

as follows. Using the sequence ς(i)T+1|T , . . . , ς
(i)
T+H|T constructed in (26), we iterate the quasi-

differenced version (22) of the auxiliary regression forward:

z
(i)
T+h|T = ρ(i)z

(i)
T+h−1 + α

(i)
0 (1− ρ(i)) + [ς(i)

′

T+h|TM
′ − ς(i)

′

T+h−1|TM
′ρ(i)]α(i)

1 + η
(i)
T+h,

where the superscript i for the parameters of (21) refers to the i’th draw from the posterior

distribution of (α, ρ, ση) and η
(i)
T+h is a draw from a N (0, σ2(i)

η ). The point forecast ẑT+h|T

is obtained by averaging the z(i)
T+h|T ’s. While our draws from the posterior distribution of

the DSGE model and auxiliary regression parameters are independent, we maintain some

correlation in the joint predictive distribution of yT+h and zT+h because the i’th draw is

computed from the same realization of the state vector, ς(i)T+h|T .

and linearly dependent, while st is assumed to be set of non-redundant states. To the extent that there

exists a redundancy in ςt the matrix A1(θ) is not unique.

6Alternatively, we could generate a draw ς
(i)
T |T from p(ςT |Y T , θ(i)).
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4 Empirical Application

We use post-1983 U.S. data to recursively estimate the DSGE model and the auxiliary

regression equations and to generate pseudo-out-of-sample forecasts. We begin with a de-

scription of our data set and the prior distribution for the DSGE model parameters. Second,

we discuss the estimates of the DSGE model parameters and its forecast performance for

the core variables. Third, we estimate the auxiliary regressions and examine their fore-

casts of PCE inflation, core PCE inflation, and the unemployment rate. Finally, we explore

multivariate aspects of the predictive distribution generated by our model. We report con-

ditional forecast error statistics and illustrate the joint predictive distribution as well as the

propagation of a monetary policy shock to the core and non-core variables.

4.1 Data and Priors

We include seven series into the vector of core variables yt that is used for the estimation of

the DSGE model: the growth rates of output, consumption, investment, and real wages, as

well as the levels of hours worked, inflation, and the nominal interest rate. We obtain these

series from Haver Analytics (Haver mnemonics are in italics). Real output is computed by

dividing the nominal series (GDP) by population 16 years and older (LN16N), and deflating

using the chained-price GDP deflator (JGDP). Consumption is defined as nominal personal

consumption expenditures (C) less consumption of durables (CD). We divide by LN16N

and deflate using JGDP. Investment is defined as CD plus nominal gross private domestic

investment (I). It is similarly converted to real per-capita terms. We compute quarter-to-

quarter growth rates as log difference of real per capita variables and multiply the growth

rates by 100 to convert them into percentages.

Our measure of hours worked is computed by taking non-farm business sector hours

of all persons (LXNFH), dividing it by LN16N, and then scaling to get mean quarterly

average hours to about 257. We then take the log of the series multiplied by 100 so that

all figures can be interpreted as percentage deviations from the mean. The labor share

is computed by dividing total compensation of employees (YCOMP) by the product of

LN16N and our measure of average hours. Inflation rates are defined as log differences of

the GDP deflator and converted into percentages. The nominal interest rate corresponds to

the average effective federal funds rate (FFED) over the quarter and is annualized.

We consider PCE-inflation, core PCE inflation, and the unemployment rate as candi-

dates for zt in this paper. Quarterly data on the chain price index for personal consumption
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expenditures (JC) and personal consumption expenditures less food and energy (JCXF)

were obtained from Haver Analytics. Inflation rates are calculated as 100 times the log

difference of the series. The unemployment rate measure, also from Haver Analytics, is the

civilian unemployment rate for ages 16 years and older (LR).

Our choice of prior distribution for the DSGE model parameters follows DSSW and the

specification of what is called a “standard” prior in Del Negro and Schorfheide (2008) and

is summarized in the first four columns of Table 1. To make this paper self-contained we

briefly review some of the details of the prior elicitation. Priors for parameters that affect the

steady state relationships, e.g., the capital share α in the Cobb-Douglas production function

or the capital depreciation rate are chosen to be commensurable with pre-sample (1955 to

1983) averages in U.S. data. Priors for the parameters of the exogenous shock processes are

chosen such that the implied variance and persistence of the endogenous model variables

is broadly consistent with the corresponding pre-sample moments. Our prior for the Calvo

parameters that control the degree of nominal rigidity are fairly agnostic and span values

that imply fairly flexible as well as fairly rigid prices and wages. Our prior for the central

bank’s responses to inflation and output movements is roughly centered at Taylor’s (1993)

values. The prior for the interest rate smoothing parameter ρR is almost uniform on the

unit interval.

The 90% interval for the prior distribution on νl implies that the Frisch labor supply

elasticity lies between 0.3 and 1.3, reflecting the micro-level estimates at the lower end, and

the estimates of Kimball and Shapiro (2003) and Chang and Kim (2006) at the upper end.

The density for the adjustment cost parameter S′′ spans values that Christiano, Eichenbaum,

and Evans (2005) find when matching DSGE and vector autoregression (VAR) impulse

response functions. The density for the habit persistence parameter h is centered at 0.7,

which is the value used by Boldrin, Christiano, and Fisher (2001). These authors find that

h = 0.7 enhances the ability of a standard DSGE model to account for key asset market

statistics. The density for a′′ implies that in response to a 1% increase in the return to

capital, utilization rates rise by 0.1 to 0.3%.

4.2 DSGE Model Estimation and Forecasting of Core Variables

The first step of our empirical analysis is to estimate the DSGE model. While we estimate

the model recursively, starting with the sample 1984:I to 2000:IV and ending with the

sample 1984:I to 2007:III, we will focus our discussion of the parameter estimates on the
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final estimation sample. Summary statistics for the posterior distribution (means and 90%

probability intervals) are provided in Table 1. For long horizon forecasts, the most important

parameters are γ, π∗, and β. Our estimate of the average technology growth rate implies

that output, consumption, and investment grow at an annualized rate of 1.42%. According

to our estimates of π∗ and β the target inflation rate is 2.5% and the long-run nominal

interest rate is 3.5%. The cross-equation restrictions of our model generate a nominal wage

growth of about 4%.

Our policy rule estimates imply a strong response of the central bank to inflation

ψ̂1 = 2.99 and a tempered reaction to deviations of output from its long-run growth path

ψ̂2 = 0.04. As discussed in Del Negro and Schorfheide (2008), estimates of wage and price

stickiness based on aggregate price and wage inflation data tend to be somewhat fragile. We

obtain ζ̂p = 0.68 and ζ̂w = 0.25, which means that wages are nearly flexible and the price

stickiness is moderate. According to the estimated Calvo parameter, firms re-optimize their

prices every three quarters.

The technology growth shocks have virtually no serial correlation and the estimated

innovation standard deviation is about 0.8%. These estimates are consistent with direct

calculations based on Solow residuals. At an annualized rate, the monetary policy shock

has a standard deviation of 56 basis points. Both the government spending shock and the

labor supply shock φt have estimated autocorrelations near unity. The labor supply shock

captures much of the persistence in the hours series.

We proceed by plotting estimates of the exogenous shocks in Figure 1. These shocks

are included in the vector st that is used as regressor in the auxiliary model (21). Formally,

we depict the filtered latent variables, ŝj,t|t, conditional on the posterior mean θ̂T for the

period 1984:I to 2007:III. In line with the parameter estimates reported in Table 1, the

filtered technology growth process appears essentially iid. The processes gt and φt exhibit

long-lived deviations from zero and in part capture low frequency movements of exogenous

demand components and hours worked, respectively. µt is the investment-specific technology

shock. Its low frequency movements capture trend differentials in output, consumption, and

investment.

Table 2 summarizes pseudo-out-of-sample root-mean-squared error (RMSE) statistics

for the seven core variables that are used to estimate the DSGE model: the growth rates

of output, consumption, investment, and nominal wages, as well as log hours worked, GDP

deflator inflation, and the federal funds rate. We report RMSEs for horizons h = 1, h = 2,

h = 4, and h = 12 and compare the DSGE model forecasts to those from an AR(1) model,
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which is recursively estimated by OLS.7 h-step ahead growth (inflation) rate forecasts refer

to percentage changes between period T + h− 1 and T + h. Boldface entries indicate that

the DSGE model attains a RMSE that is lower than that of the AR(1) model. We used the

Harvey, Leybourne, and Newbold (1998) version of the Diebold-Mariano (1995) test for equal

forecast accuracy of the DSGE and the AR(1) model, employing a quadratic loss function.

Due to the fairly short forecast period, most of the loss differentials are insignificant.

The RMSE for one-quarter-ahead forecasts of output, consumption, and nominal wage

growth obtained from the estimated DSGE model is slightly larger than the RMSE associ-

ated with the AR(1) forecasts. The DSGE model generates a lower RMSE for the investment

forecasts. RMSEs for log hours and interest rates are essentially identical for the two models.

Over a three-year forecast horizon, the DSGE model attains lower RMSEs than the AR(1)

model for the interest rate, nominal wage growth, and hours worked. The AR(1) model

does slightly better in forecasting the remaining four variables. The accuracy of long-run

forecasts is sensitive to mean growth estimates, which are restricted to be equal for output,

consumption, investment, and real wage growth in the DSGE model.

In Table 3 we are comparing the pseudo-out-of-sample RMSEs obtained with our esti-

mated DSGE model to those reported in three other studies, namely (i) DSSW, (ii) Edge,

Kiley, and Laforte (EKL, 2008), and (iii) Smets and Wouters (2007). Since all studies differ

with respect to the forecast period, we report sample standard deviations over the respec-

tive forecast periods, computed from our data set. Unlike the other three studies, EKL use

real time data and report mean absolute errors instead of RMSEs. Overall, the RMSEs

reported in DSSW are slightly worse than those in the other three studies. This might be

due to the fact that DSSW use a rolling window of 120 observations to estimate their DSGE

model and start forecasting in the mid 1980s, whereas the other papers let the estimation

sample increase and start forecasting in the 1990s. Only EKL are able to attain an RMSE

for output growth that is lower than the sample standard deviation. The RMSEs for the

inflation forecasts range from 0.22 to 0.27 and are very similar across studies. They are only

slightly larger than the sample standard deviations. Finally, the interest rate RMSEs are

substantially lower than the sample standard deviations, because the forecasts are able to

exploit the high persistence of the interest rate series.
7The h-step forecast is generated by iterating one-step ahead predictions forward, ignoring parameter

uncertainty: ŷi,T+h|T = α̂1,OLS + α̂2,OLS ŷi,T+h−1|T .
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4.3 Forecasting Non-Core Variables with Auxiliary Regressions

We now turn to the estimation of the auxiliary regressions for PCE inflation, core PCE

inflation, and unemployment. The following elements are included in the vector st that

appears as regressor in (21):

st = Mςt = [ct, it, k̄t, Rt, wt, zt, µt, λf,t, gt, bt, φt]′.

To construct a prior mean for α1, we are linking each zt variable with a conceptually

related DSGE model variable z†t and use (24). More specifically, we link the two measures

of PCE inflation to the final good inflation πt and the unemployment rate to a scaled

version of log hours worked, see Table 4. Our DSGE model has only a single final good,

which is domestically produced and used for consumption and investment. Hence, using

identical measurement equations for inflation in consumption expenditures and GDP seems

reasonable. Linking the unemployment rate with hours worked can be justified by the

observation that most of the variation of hours worked over the business cycle is due to

changes in employment rather than variation along the intensive margin. The three panels

of Figure 2 depict the sample paths of the non-core variables zt and the elements of the vector

of core variables yt that are used as empirical measures of z†t in the DSGE model estimation:

the GDP deflator and hours worked. The inflation measures are highly correlated. PCE

inflation is more volatile and core PCE inflation is less volatile than GDP deflator inflation.

In the third panel we re-scale and re-center log hours such that it is commensurable with

the unemployment rate. These two series are also highly correlated.

To proceed with the Bayesian estimation of (22) we have to specify the hyperparameters.

In our framework τ can be interpreted as the prior standard deviation of the idiosyncratic

error ξ1. We set τ equal to 0.12 (PCE inflation), 0.11 (core PCE inflation), and 0.40 (un-

employment rate). These values imply that the prior variance of ξ1 is about 15% to 20% of

the sample variance of z1. We let λ0 = λ1 and consider three values: 1.00, 0.10, and 1E-5.

The value 1E-5 corresponds to a dogmatic prior under which posterior estimate and prior

mean essentially coincide. As we increase λ, we allow the factor loading coefficients α to

differ from the prior mean.8 The estimates of the auxiliary regressions are summarized in

Table 5. Rather than providing numerical values for the entire α vector, we focus on the

persistence and the standard deviation of the innovation to the idiosyncratic component. By
8In principle we could use marginal likelihood values to implement a data driven choice of the λ’s. Instead,

we decided to report the properties of our auxiliary regression model, including the pseudo-out-of-sample

forecasting performance, for a variety of values.
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construction, ŝ′t|tµα1,0 (µα1,0 is the prior mean of α1) reproduces the time paths of the GDP

deflator inflation and log hours worked, respectively. Thus, for 1E-5 the idiosyncratic error

term ξt essentially picks up the discrepancies between non-core variables and the related

core variables depicted in Figure 2. For the two inflation series the estimate of ση increases

as we lower the hyperparameter. The larger λ the better the in-sample fit of the auxiliary

regression and the more of the variation in the variable is explained by ŝ′t|tα̂1. For instance,

the variability of core PCE inflation captured by the factors is 5.24 times as large as the

variability due to the idiosyncratic disturbance ξt if the λ’s are equal to one. This factor

drops to 1.36 if the prior is tightened. For PCE inflation the idiosyncratic disturbance is

virtually serially uncorrelated, whereas for core PCE inflation the serial correlation ranges

from 0.22 (λ’s are 1.00) to 0.54 (λ’s are 1.E-5). The most striking feature of the unem-

ployment estimates is the high persistence of ξt, with ρξ estimates ranging from 0.96 to

0.98.

Figure 3 displays the time path of α̂0,T + ŝ′t|tα̂1,T for different choices of the hyper-

parameter, where α̂i,T is the posterior mean estimate of αi. Consider the two inflation

series. For λ0 = λ1 = 1E-5 the factor predicted path for the two inflation rates is essentially

identical and reproduces the GDP deflator inflation. As the λ’s are increased to one they

more closely follow the two PCE inflation measures, which is consistent with the estimates

of ρ and ση reported in Table 5. The predicted paths for the unemployment rate behave

markedly different. If we set the λ’s to one, then the predicted path resembles the actual

path fairly closely, with the exception of the end of the sample. Hence, the implied ξt series

stays close to zero until about 2002 and then drops to about -2% between 2002 and 2006.

As we decrease the λ’s to 1E-5, the predicted path shifts downward. The estimate of ξ1 is

roughly 2% and ξt follows approximately a random walk process subsequently that captures

the gap between the path predicted with the factors and the actual unemployment series.

Forecast error statistics for the non-modelled variables are provided in Table 6. We

compare RMSEs of the forecasts generated with our auxiliary models to those from an

AR(1) model. For the inflation measures, decreasing the λ’s improves the forecasts and we

perform slightly better than an AR(1) model. For the unemployment rate, our auxiliary

model yields to lower RMSEs than the AR(1) at all horizons and for all choices of the λ’s.

The best performance is attained for λ0 = λ1 = 0.1.
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4.4 Multivariate Considerations

So far the analysis focused on univariate measures of forecast accuracy. A conservative

interpretation of our findings and those reported elsewhere, e.g., Adolfson et al. (2005, 2007)

and Edge, Kiley, and Laforte (2008), is that by and large the univariate forecast performance

of DSGE models is not worse than that of competitive benchmark models, such as simple

AR(1) specifications or more sophisticated Bayesian VARs. The key advantage of DSGE

models and the reason that central banks are considering them for projections and policy

analysis, is that these models use modern macroeconomic theory to explain and predict

comovements of aggregate time series over the business cycle. Historical observations can

be decomposed into the contributions of the underlying exogenous disturbances, such as

technology, preference, government spending, or monetary policy shocks. Future paths of

the endogenous variables can be constructed conditional on particular realizations of the

monetary policy shocks that reflect potential future nominal interest rate paths. While

it is difficult to quantify some of these desirable attributes of DSGE model forecasts and

trade them off against forecast accuracy in a RMSE sense, we will focus on two multivariate

aspects. First, we present impulse response functions to a monetary policy shock and

document how the shock transmits to the non-core variables through our auxiliary regression

equations. Second, we examine some features of the predictive density that our empirical

model generates for the core and non-core variables.

An important aspect of monetary policy making is to assess the effect of changes in

the federal funds rate. In the DSGE model we represent these changes – unanticipated

deviations from the policy rule – as monetary policy shocks. An attractive feature of our

framework is that it generates a link between the structural shocks that drive the DSGE

model and other non-modelled variables through the auxiliary regressions. We can compute

impulse response functions of zt to a monetary policy shock as follows:

∂zt+h
∂εR,t

=
∂s′t+h
∂εR,t

α1,

where ∂s′t+h/∂εR,t is obtained from the DSGE model. In Figure 4 we are plotting impulse

responses of three core variables (top panels: output, GDP inflation, interest rates) and

the three non-core variables (bottom panels) to a one-standard deviation monetary policy

shock. The one standard deviation increase to the monetary policy shock translates into a

40 basis point increase in the funds rate, measured at an annual rate. The estimated DSGE

model predicts that output drops by 10 basis points in the first quarter and returns to its

trend path after seven quarters. Quarter-to-quarter inflation also falls by 10 basis points and
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returns to its steady state within two years. Regardless of the choice of hyperparameter,

the PCE inflation responses closely resemble the GDP deflator inflation responses both

qualitatively and quantitatively. The core PCE inflation and unemployment responses are

more sensitive to the choice of hyperparameter. If the λ’s are equal to 1E-5 and we force

the factor loadings to match those of hours worked, the unemployment rises by about five

basis points immediately after impact. As we relax the hyperparameter, which improves the

RMSE of unemployment forecast, the unemployment response becomes more hump-shaped

and the core PCE response drops from 10 basis points to about five basis points.

Our empirical model generates a joint density forecast for the core and non-core vari-

ables, which reflects uncertainty about both parameters and future realizations of shocks.

A number of different methods exist to evaluate multivariate predictive densities. To assess

whether the probability density forecasts are well calibrated, that is, are consistent with

empirical frequencies, one can construct the multivariate analog of a probability integral

transform of the actual observations and test whether these transforms are uniformly dis-

tributed and serially uncorrelated. A formalization of this idea is provided in Diebold, Hahn,

and Tay (1999).

We will subsequently focus on log predictive scores (Good, 1952). To fix ideas, consider

the following simple example. Let yt = [y1,t, y2,t]′ be a 2×1 vector and consider the following

two forecast models

M1 : x ∼ N

 0

0

 ,
 1 0

0 1

 , M2 : x ∼ N

 0

0

 ,
 1 0

0 1

 .

Under a quadratic loss function the two models deliver identical univariate forecasts for

each linear combination of the elements of y. Nonetheless, the predictive distributions are

distinguishable. Let Σi be the covariance matrix of the predictive distribution associated

with model Mi. The log predictive score is defined as the log predictive density evaluated

at a sequence of realizations of y:

LPSC(Mi) = −H
2
ln(2π)− H

2
ln |Σi| −

1
2

H∑
h=1

x′T+hΣ−1
i xT+h.

Roughly speaking, if the actual xT+h was deemed unlikely byMi and falls in a low density

region (e.g., the tails) of the predictive distribution, then the score is low. Let Σ11, Σ12,

and Σ22 denote partitions of Σ that conform with the partitions of x. If we factorize the

joint predictive density of x into a marginal and a conditional density, we can rewrite the
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predictive score as

LPSC(Mi) = −H
2
ln(2π)− H

2
ln |Σi,11| −

1
2Σi,11

H∑
h=1

x2
1,T+h (28)

−H
2

ln |Σi,22|11| −
1

2Σi,22|11

H∑
h=1

(
x2,T+h − Σi,21Σ−1

i,11x1,T+h

)2

,

where

Σi,22|11 = Σ22 − Σi,21Σ−1
i,11Σi,12.

We can express the difference between log predictive scores for models M1 and M2 as

LPSC(M1)−LPSC(M2) =
H

2
ln |1−ρ2|− 1

2

H∑
h=1

x2
2,T+h+

1
2(1− ρ2)

H∑
h=1

(x2,T+h−ρx1,T+h)2.

Here the contribution of the marginal distribution of y1,T+h to the predictive scores cancels

out, because it is the same forM1 andM2. It is straightforward to verify that for large H

the predictive score will be negative if in fact the y’s are generated from M2. In fact, the

log score differentials has similar properties as a log likelihood ratio and is widely used in

the prequential theory discussed in Dawid (1992). Moreover, notice that 1
H

∑H
h=1(x2,T+h−

ρx1,T+h)2 can be interpreted as the mean-squared-error of a forecast of x2 conditional on

the realization of x1. If x1 and x2 have non-zero correlation, the conditioning improves the

accuracy of the x2 forecast. We will exploit this insight below.

Figure 5 depicts bivariate scatter plots generated from the joint predictive distribution

of core and non-core variables. The predictive distribution captures both parameter uncer-

tainty as well as shock uncertainty. We focus on one-step-ahead predictions for 2001:IV and

2006:III. We use filled circles to indicate the actual values (small, light blue), the uncon-

ditional mean predictions (medium, yellow), and the conditional means of ouput growth,

PCE inflation, and unemployment given the actual realization of the nominal interest rate.

We approximate the predictive distribution by a normal distribution with mean µ and vari-

ance Σ and compute the prediction of a variable x2 given the realization of x1 from the

conditional mean formula for a multivariate normal distribution:

x̂2|1 = µ2 + Σ21Σ−1
11 (x1 − µ1).

In Figure 5 the nominal interest rate plays the role of the conditioning variable x1.

First, consider the predictive distribution for output growth and interest rates in 2001:IV.

The predictive distribution is centered at an interest rate of 4% and output growth of about

0%. The actual interest rate turned out to be 2% and output grew at about 20 basis points
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over the quarter. Since the predictive distribution exhibits a negative correlation between

interest rates and output growth, conditioning on the actual realization of the interest rate

leads to an upward revision of the output growth forecast to about 30 basis points. In

2006:III the actual interest rate exceeds the mean of the predictive distribution, and hence

conditioning reduces the output growth forecast.

PCE inflation (λ’s are 1E-5) and the interest rate are strongly positively correlated

and the conditioning leads to a downward revision of the inflation forecast in 2001:IV and

an upward revision in 2006:III. Our estimation procedure is set up in a way that leaves

the coefficients of the auxiliary regression uncorrelated with the DSGE model parameters.

Hence, all the correlation in the predictive distribution is generated by shock uncertainty

and the fact that the auxiliary regression links the non-core variable to the DSGE model

states. Finally, we turn to the joint predictive distribution of unemployment (λ’s are 0.1) and

interest rates. Since the idiosyncratic shock ξt plays an important role for the unemployment

dynamics according to our estimates and it is assumed to be independent of the DSGE model

shocks, the predictive distribution exhibits very little correlation. In this case, conditioning

hardly affects the unemployment forecast.

Figure 5 focuses on two particular time periods. More generally, if the normal dis-

tribution is a good approximation to the predictive distribution, and our model captures

the comovements between interest rates and the other variables, then we should be able

to reduce the RMSE of the output, unemployment, and inflation forecasts by conditioning

on the interest rate. Tables 7 and 8 provide RMSE ratios of conditional and unconditional

forecasts. To put these numbers into perspective we also report the ratio of the conditional

versus the unconditional variance computed from a normal distribution:√
(Σ11 − Σ12Σ−1

22 Σ21)/Σ11.

Since the covariance matrix of the predictive distribution changes over time, we compute

averages of the theoretical RMSE reduction.

The results obtained when conditioning on the interest rate, reported in Table 7, are

somewhat disappointing. Although except for the unemployment rate, the bivariate corre-

lations between the interest rate and the other variables are non-zero and would imply a

potential RMSE reduction between 2% and 12%, the RMSE obtained from the conditional

forecasts exceeds that from the unconditional forecasts.9 If we condition on the realization
92001:IV and 2006:III are not representative, since conditioning in these periods leads to a reduction of

the forecast error.
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of the GDP deflator inflation (Table 8), then the results improve and we observe a RMSE

reduction. For output growth, hours worked, PCE inflation, and the unemployment rate,

the actual RMSE ratios appear to be broadly in line with those predicted from a bivariate

normal distribution. The joint distribution of core PCE inflation and the GDP deflator

exhibits are strong correlation as is evident from the fairly large RMSE reduction factor.

The actual RMSE ratio tends to be much larger than the one predicted by the normal

distribution and it is greater than one for multi-step forecasts.

The results reported in this section have to be interpreted carefully. First, it is important

to keep in mind that we are examining particular dimensions of the joint predictive density

generated by our model. While in the past, researchers have reported log predictive scores

and predictive likelihood ratios for DSGE model predictions, these summary statistics make

it difficult to disentangle in which dimensions the predictive distributions are well calibrated.

We decided to focus on bivariate distributions, trying to assess whether the DSGE model

and the auxiliary regressions capture the comovements of, say, interest rates with output

growth, inflation, and unemployment. Our results were mixed: bivariate distributions that

involved the interest rate were not well calibrated in view of the actual realizations; bivariate

distributions that involved the GDP deflator were more successful capturing the uncertainty

about future pairwise realizations. We think that our statistics are a useful addition to the

univariate forecast accuracy measures that have been reported for DSGE models. It might

be worthwhile to consider non-parametric approximations to the predictive distribution in

future work.

5 Conclusion

This paper has developed a framework to generate DSGE model-based forecasts for economic

variables that are not explicitly modelled but that are of interest to the forecaster. Our

framework can be viewed as a simplified version of the DSGE model based factor model

proposed by Boivin and Giannoni (2006). We first estimate the DSGE model on a set of

core variables, extract the latent state variables, and then estimate auxiliary regressions that

relate non-modelled variables to the model-implied state variables. We compare the forecast

performance of our model with that of a collection of AR(1) models based on pseudo-out-of-

sample RMSEs. While our approach does not lead to a dramatic reduction in the forecast

errors, the forecasts are by and large competitive with those of the statistical benchmark

model. We also examined bivariate predictive distributions generated from our empirical
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model. Our framework inherits the two key advantages of DSGE model based forecasting:

it delivers an interpretation of the predicted trajectories in light of modern macroeconomic

theory and it enables the forecaster to conduct a coherent policy analysis.
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Table 1: Prior and Posterior of DSGE Model Parameters (Part 1)

Prior Posterior

Name Density Para (1) Para (2) Mean 90% Intv.

Household

h B 0.70 0.05 0.67 [ 0.61 , 0.74 ]

a′′ G 0.20 0.10 0.32 [ 0.15 , 0.48 ]

νl G 2.00 0.75 2.29 [ 1.33 , 3.16 ]

ζw B 0.60 0.20 0.25 [ 0.15 , 0.35 ]

400 ∗ (1/β − 1) G 2.00 1.00 0.998 [ 0.44 , 1.54 ]

Firms

α B 0.33 0.10 0.21 [ 0.16 , 0.27 ]

ζp B 0.60 0.20 0.68 [ 0.58 , 0.85 ]

S′′ G 4.00 1.50 2.44 [ 0.99 , 3.83 ]

λf G 0.15 0.10 0.19 [ 0.02 , 0.34 ]

Monetary Policy

400π∗ N 3.00 1.50 2.47 [ 2.25 , 2.71 ]

ψ1 G 1.50 0.40 2.99 [ 2.29 , 3.69 ]

ψ2 G 0.20 0.10 0.04 [ 0.01 , 0.07 ]

ρR B 0.50 0.20 0.87 [ 0.84 , 0.90 ]
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Table 1: Prior and Posterior of DSGE Model Parameters (Part 2)

Prior Posterior

Name Density Para (1) Para (2) Mean 90% Intv.

Shocks

400γ G 2.00 1.00 1.42 [ 0.94 , 1.89 ]

g∗ G 0.30 0.10 0.27 [ 0.12 , 0.41 ]

ρa B 0.20 0.10 0.09 [ 0.02 , 0.15 ]

ρµ B 0.80 0.05 0.79 [ 0.73 , 0.86 ]

ρλf
B 0.60 0.20 0.78 [ 0.43 , 0.98 ]

ρg B 0.80 0.05 0.96 [ 0.95 , 0.98 ]

ρb B 0.60 0.20 0.86 [ 0.80 , 0.93 ]

ρφ B 0.60 0.20 0.98 [ 0.96 , 0.99 ]

σa IG 0.75 2.00 0.78 [ 0.68 , 0.89 ]

σµ IG 0.75 2.00 0.51 [ 0.38 , 0.64 ]

σλf
IG 0.75 2.00 0.17 [ 0.14 , 0.19 ]

σg IG 0.75 2.00 0.33 [ 0.29 , 0.37 ]

σb IG 0.75 2.00 0.36 [ 0.28 , 0.44 ]

σφ IG 4.00 2.00 3.13 [ 2.15 , 4.07 ]

σR IG 0.20 2.00 0.14 [ 0.12 , 0.16 ]

Notes: Para (1) and Para (2) list the means and the standard deviations for the Beta (B),

Gamma (G), and Normal (N ) distributions; the upper and lower bound of the support

for the Uniform (U) distribution; s and ν for the Inverse Gamma (IG) distribution, where

pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. The joint prior distribution is obtained as a product of the

marginal distributions tabulated in the table and truncating this product at the boundary of

the determinacy region. Posterior summary statistics are computed based on the output of

the posterior sampler. The following parameters are fixed: δ = 0.025, λw = 0.3. Estimation

sample: 1984:I to 2007:III.
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Table 2: RMSE Comparison: DSGE Model versus AR(1)

Series Model h = 1 h = 2 h = 4 h = 12

Output Growth DSGE 0.51 0.51 0.41 0.39

AR(1) 0.50 0.49 0.44 0.37

Consumption Growth DSGE 0.39 0.39 0.42 0.45

AR(1) 0.37 0.37 0.34 0.31

Investment Growth DSGE 1.46 1.55 1.31∗ 1.53

AR(1) 1.56 1.67 1.60 1.60

Nominal Wage Growth DSGE 0.65 0.67∗ 0.61 0.54

AR(1) 0.59 0.59 0.59 0.56

100× Log Hours DSGE 0.57 0.99 1.67 2.00

AR(1) 0.66 1.20 2.08 3.40

Inflation DSGE 0.25 0.26 0.24 0.28

AR(1) 0.22 0.23 0.22 0.23

Interest Rates DSGE 0.54 0.97 1.58 2.07

AR(1) 0.54 1.00 1.73 2.93

Notes: We report RMSEs for DSGE and AR(1) models. Numbers in boldface indicate a

lower RMSE of the DSGE model. ∗ (∗∗) denotes 10% (5%) significance of the two-sided

modified Diebold-Mariano test of equal predictive accuracy under quadratic loss. The RM-

SEs are computed based on recursive estimates starting with the sample 1984:I to 2000:IV

and ending with the samples 1984:I to 2007:III (h=1), 1984:I to 2007:II (h=2), 1984:I to

2006:III (h=4), 1984:I to 2004:III (h=12), respectively. h-step ahead growth (inflation) rate

forecasts refer to percentage changes between period T + h− 1 and T + h.
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Table 3: One-Step-Ahead Forecast Performance of DSGE Models

Study Forecast Period Output Growth Inflation Interest Rate

(Q %) (Q %) (A %)

Schorfheide, Sill, Kryshko 2001:I to 2007:IV 0.51 0.25 0.55

(0.47) (0.22) (1.68)

Del Negro et al. (2007) 1985:IV to 2000:I 0.73 0.27 0.87

(0.52) (0.25) (1.72)

Edge, Kiley, Laforte (2008) 1996:III to 2005:II 0.38 0.22 0.59

(0.57) (0.20) (1.96)

Smets, Wouters (2007) 1990:I to 2004:IV 0.57 0.24 0.43

(0.57) (0.22) (1.97)

Notes: Schorfheide, Sill, Krysho: RMSEs, DSGE model is estimated recursively with data

starting in 1984:I. Del Negro et al. (2007, Table 2): RMSEs, VAR approximation of DSGE

model estimated based on rolling samples of 120 observations. Edge, Kiley, and Laforte

(2008, Table 4): Mean absolute errors, DSGE model is estimated recursively with data

starting in 1984:II. Smets and Wouters (2007, Table 3): RMSEs, DSGE model is estimated

recursively, starting with data from 1966:I. Numbers in parentheses are sample standard

deviations for forecast period, computed from the Schorfheide, Sill, Kryshko data set. Q %

is the quarter-to-quarter percentage change, and A % is an annualized rate.
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Table 4: Non-Modelled and Related DSGE Model Variables

Non-Modelled Variable DSGE Model Variable Transformation

PCE Inflation Final Good Inflation πt None

Core PCE Inflation Final Good Inflation πt None

Unemployment Rate Hours Worked Lt −(100/3)(Lt − L̄)
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Table 5: Auxiliary Regression Estimates

ρ ση Signal/Noise

Series (λ0, λ1) Mean 90% Intv Mean 90% Intv
ˆvar(ŝ′t|tα̂1)

ˆvar(ξ̂t)

PCE Inflation (1.00, 1.00) 0.09 [ -0.12, 0.30 ] 0.03 [ 0.02, 0.04 ] 3.03

(0.10, 0.10) 0.10 [ -0.14, 0.30 ] 0.03 [ 0.02, 0.04 ] 2.53

(1E-5, 1E-5) 0.06 [ -0.11, 0.24 ] 0.04 [ 0.03, 0.05 ] 1.48

Core PCE Inflation (1.00, 1.00) 0.22 [ 0.02, 0.45 ] 0.01 [ 0.01, 0.02 ] 5.24

(0.10, 0.10) 0.22 [-0.01, 0.44 ] 0.01 [ 0.01, 0.02 ] 5.11

(1E-5, 1E-5) 0.54 [ 0.37, 0.67 ] 0.03 [ 0.03, 0.04 ] 1.36

Unemployment Rate (1.00, 1.00) 0.98 [ 0.94, 1.00 ] 0.02 [ 0.01, 0.03 ] 2.88

(0.10, 0.10) 0.96 [ 0.93, 1.00 ] 0.02 [ 0.01, 0.03 ] 3.24

(1E-5, 1E-5) 0.98 [ 0.97, 1.00 ] 0.04 [ 0.03, 0.05 ] 1.94

Notes: The posterior summary statistics are computed based on the output of the Gibbs

sampler. The sample variance ratios are computed using the posterior mean estimate of α1.

Estimation sample: 1984:I to 2007:III.
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Table 6: RMSE Comparisons: Auxiliary Regressions versus AR(1)

Series Model (λ0, λ1) h = 1 h = 2 h = 4 h = 12

PCE Inflation Aux (1.00, 1.00) 0.36 0.40 0.39 0.36

Aux (0.10, 0.10) 0.37 0.41 0.39 0.40

Aux (1E-5, 1E-5) 0.32 0.35 0.33 0.36

AR(1) 0.36 0.35 0.33 0.32

Core PCE Inflation Aux (1.00, 1.00) 0.21∗ 0.22∗∗ 0.19 0.17

Aux (0.10, 0.10) 0.22∗ 0.22∗∗ 0.19 0.14

Aux (1E-5, 1E-5) 0.16 0.16 0.15 0.11∗∗

AR(1) 0.16 0.16 0.18 0.17

Unemployment Rate Aux (1.00, 1.00) 0.16∗∗ 0.26 0.46 0.74∗

Aux (0.10, 0.10) 0.15∗∗ 0.25 0.45 0.64

Aux (1E-5, 1E-5) 0.18 0.29 0.47 0.74

AR(1) 0.21 0.37 0.63 1.00

Notes: See Table 2.
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Table 7: RMSE Ratios: Conditional (on Interest Rates) versus Unconditional

Series (λ0, λ1) h = 1 h = 2 h = 4 h = 12

Output Growth Actual 1.10 1.19 1.28 1.02

(Theory) (0.91) (0.88) (0.89) (0.90)

100× Log Hours Actual 1.14 1.30 1.43 1.65

(Theory) (0.98) (0.96) (0.95) (0.96)

Inflation Actual 1.20 1.29 1.50 1.70

(Theory) (0.84) (0.84) (0.86) (0.89)

PCE Inflation (1E-5, 1E-5) Actual 1.10 1.15 1.32 1.44

(Theory) (0.90) (0.90) (0.90) (0.91)

Core PCE Inflation (1E-5, 1E-5) Actual 1.15 1.55 2.04 3.08

(Theory) (0.88) (0.89) (0.90) (0.91)

Unemployment Rate (0.10, 0.10) Actual 1.04 1.08 1.25 1.12

(Theory) (0.99) (0.99) (0.98) (0.98)

Notes: Using the draws from the posterior predictive distribution of two variables x1 and

x2 we construct a Gaussian approximation with means µ1 and µ2 and covariances Σ11,

Σ12, and Σ22. The conditional forecast of x1 given x2 is µ1 + Σ12Σ−1
22 (x2 − µ2). and the

unconditional forecast is µ1. The theoretical RMSE ratio is
√

(Σ11 − Σ12Σ−1
22 Σ21)/Σ11.
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Table 8: RMSE Ratios: Conditional (on GDP Deflator Inflation) versus Un-

conditional

Series (λ0, λ1) h = 1 h = 2 h = 4 h = 12

Output Growth Actual 0.93 0.88 0.99 1.18

(Theory) (0.92) (0.93) (0.93) (0.94)

100× Log Hours Actual 0.95 0.96 0.99 0.92

(Theory) (0.99) (0.99) (0.99) (0.98)

PCE Inflation (1E-5, 1E-5) Actual 0.79 0.76 0.83 0.75

(Theory) (0.69) (0.65) (0.64) (0.67)

Core PCE Inflation (1E-5, 1E-5) Actual 0.94 1.48 1.54 2.16

(Theory) (0.59) (0.63) (0.64) (0.68)

Unemployment Rate (0.10, 0.10) Actual 1.03 1.01 0.99 1.05

(Theory) (1.00) (1.00) (1.00) (0.99)

Notes: See Table 7.
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Figure 1: Latent State Variables of the DSGE Model
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Notes: The six panels of the figure depict time series of elements of ŝt|t. Estimation sample:

1984:I to 2007:III.
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Figure 2: Non-Core Variables and Related Model Variables
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Notes: The top two panels depict quarter-to-quarter inflation rates. In the third panel we

re-scale the log of hours worked by a factor of -(100/3) and add a constant to match the

mean of unemployment over the period 1984:I to 2007:III.
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Figure 3: Non-Core Variables and Factors
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factor predictions α̂0 + ŝ′t|tα̂1,T for λ = 1E-5 (light blue, dashed) and λ = 1 (red, dotted).
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Figure 4: Impulses Response to a Monetary Policy Shock
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Notes: For the non-core variables we overlay two responses, corresponding to the auxiliary

regressions estimated with λ = 1E-5 (red, solid), and λ = 1 (blue, dashed). Estimation

sample: 1984:I to 2007:III.
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Figure 5: Bivariate One-Step-Ahead Predictive Distributions
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Notes: The panels depict a scatter plot of draws from the one-step-ahead predictive distri-

bution. The three filled circles denote: the actual value (small, light blue), the unconditional

mean predictor (medium, yellow), and the conditional mean predictor (large, brown). For

PCE inflation we use λ0 = λ1 = 1E-5 and for the unemployment rate we let λ0 = λ1 = 0.1.
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A MCMC Implementation

DSGE model coefficients. The posterior sampler for the DSGE model is described in

An and Schorfheide (2007).

Gibbs sampler for the coefficients that appear in the measurement equations.

We will in turn derive the conditional distributions for a Gibbs sampler that iterates over

the conditional posteriors of α, ρ, and ση. We will start from the quasi-differenced form (22)

of the auxiliary regression. τ , λ0, and λ1 are treated as hyperparameters and considered as

fixed in the description of the Gibbs sampler.

Conditional posterior of α: The posterior density is of the form

p(α|ρ, σ2
η, Z

T , ST ) ∝ p(ZT |ST , α, ρ, σ2
η)p(α).

Define

y1 =
ση
τ
z1, x′1 =

ση
τ

[1, ŝ′1|1]

yt = zt − ρzt−1, x′t = [1− ρ, ŝ′t|t − ŝ
′
t−1|t−1ρ]′, t = 2, . . . , T.

We can now write (3.3) as linear regression

yt = x′tα+ ηt.

If we let Y be a T × 1 matrix with rows yt and X be a T × k matrix with rows x′t, then we

can rewrite the regression in matrix form

Y = Xα+ E.

From this linear regression model we obtain

p(α|ρ, σ2
η, Z

T , ST ) ∝ exp
{
− 1

2σ2
η

(α− α̂)′X ′X(α− α̂)
}

× exp
{
−1

2
(α− µα,0)′V −1

α,0 (α− µα,0)
}
,

where

α̂ = (X ′X)−1X ′Y.

We deduce that the conditional posterior of α is N (µα,T , Vα,T ) with

µα,T = Vα,T

[
V −1
α,0µα,0 +

1
σ2
η

X ′Xα̂

]
Vα,T =

(
V −1
α,0 +

1
σ2
η

X ′X

)−1

.
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Conditional posterior of ρ: The posterior density is of the form

p(α|ρ, σ2
η, Z

T , ST ) ∝ p(ZT |ST , α, ρ, σ2
η)I{|ρ| < 1}.

We now define

yt = zt − α0 − ŝ′t|tα1, xt = zt−1 − α0 − ŝ′t−1|t−1α1.

Again, we can express (3.3) as linear regression model

yt = xtρ+ ηt.

Using the same arguments as before we deduce that

p(ρ|α, σ2
η, Z

T , ST ) ∝ I{|ρ| < 1} exp
{
− 1

2σ2
η

(ρ− ρ̂)′X ′X(ρ− ρ̂)
}

with

ρ̂ = (X ′X)−1X ′Y.

Thus, the conditional posterior is truncated normal: I{|ρ| < 1}N (µρ,T , Vρ,T ) with

µρ,T = ρ̂, Vρ,T = σ2
η(X ′X)−1.

Conditional posterior of ση: The posterior density is of the form

p(σ2
η|α, ρ, ZT , ST ) ∝ p(ZT |ST , α, ρ, σ2

η)(σ2
η)−1.

Solve (3.3) for ηt:

ηt = zt −
[
ρzt−1 + α0(1− ρ) + [ŝ′t|t − ŝ

′
t−1|t−1ρ]α1

]
.

Now, notice that

p(σ2
η|α, ρ, ZT , ST ) ∝ (σ2

η)−(T+2)/2 exp
{
− 1

2σ2
η

∑
η2
t

}
.

This implies that the conditional posterior of σ2
η is inverted Gamma with T degrees of

freedom and location parameter s2 =
∑
η2
t . To sample a σ2

η from this distribution generate

T random draws Z1, . . . , ZT from a N (0, 1/s2) and let σ̃2
η =

[∑T
j=1 Z

2
j

]−1

.


