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Abstract 

The increase of fuel extraction costs as well as of temperature will make it likely that in the 

medium-term future technological or political measures against global warming may be 

implemented. In assessments of a current climate policy the possibility of medium-term 

future developments like backstop technologies is largely neglected but can crucially affect its 

impact. Given such a future measure, a currently introduced carbon tax may more generally 

mitigate climate change than recent reflections along the line of the Green Paradox would 

suggest. Notably, the weak and the strong version of the Green Paradox, related to current 

and longer-term emissions, may not materialize. Moreover, the tax may allow the demanding 

countries to extract part of the resource rent, further increasing its desirability. 
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1 Introduction

In his seminal contribution, Pearce (1991) discussed conveniences of a carbon tax as an

e�cient policy instrument to reduce carbon dioxide emissions. He solely considered the

demand side, implicitly assuming a �xed, exogenous energy supply function.

Today a large fraction of climate economics research still exhibits the same limitation,

reducing the supply side of the energy market to a static process. However, at least since

the contribution of Sinn (2008), there exists growing awareness that supply side e�ects

can be crucial for the assessment of carbon emission reduction strategies. Along the claim

which Sinn entitled `Green Paradox', a realistic carbon tax introduced at a low initial level

but rapidly increasing over time might be counterproductive for the climate, by primarily

accelerating exploitation of the limited resources rather than delaying or reducing their

combustion. This is the conclusion he derives from a model in which owners of limited

stocks of fossil fuels optimise their sales over time. They anticipate in early periods that

the tax will in future be higher, inducing them to sell more of their fuels today rather than

on the highly taxed future markets. While controversial, Sinn's analysis has impressively

demonstrated the importance of supply side e�ects for the assessment of greenhouse gas

policies.

There exists a growing literature that tries to assess the possibility for the mentioned

counterproductive e�ects of climate protection policies to occur in speci�c situations. Fo-

cusing on alternative technologies rather than on a carbon tax, Gerlagh (2011) examines

the impact of suppliers' anticipation on the climate bene�ts from cheaper future backstop

technologies. A similar direction is taken by Van der Ploeg and Withagen (2010). While

the latter also show that in some cases a speci�c, not rapidly increasing tax could be

bene�cial for the climate, they do not discuss e�ects of other, non-optimal taxes. Polborn

(2011) concludes that intensifying research on carbon capture and storage has the advan-

tage of reverting the negative anticipation e�ects that research on backstop technologies

would have in terms of near-term carbon emissions.

The analyses by Sinn and subsequent contributors assumed a world in which the debated

policy would be the only potential relevant climate measure, valid from today on through-

out the entire future. But abstaining from a carbon tax today will not imply that neither

a carbon tax, nor any alternative climate relevant development may materialize in the

future. Rather, without substantial measures today, the unlimited growth of the climate

threat may increase the necessity of future measures to be taken, implying even more

stringent future measures than if the carbon tax would have been introduced today. This

point is likely to be relevant for the desirability of a current carbon tax as the resource

owners may not only anticipate a rapidly increasing tax but also other potential future

measures.
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In a recent contribution, Hoel (2010) has taken some account for this. He has been the

�rst to explicitly model the fact that to purposely avoid the introduction of a current tax

in�uences only the probability to have a certain tax in the medium or long-term future,

rather than implying that the current abstention could necessarily prevent any potential

future tax. He considered a stylized two-period model with the carbon tax in the second

period being endogenous, and found that the impossibility of long-term commitments of

current politics increases the desirability of the introduction of a carbon tax today.

Finally, Van der Ploeg and Withagen (2011) discuss the e�ect of dirty and clean backstops

on optimal carbon taxation. However, they focus on backstops that are already available

today and, more importantly, consider only the choice of optimized or prohibitive tax

paths, ignoring the possibility of the arbitrarily increasing taxes that are inherently part

of the argumentation of the Green Paradox.

In this paper, we model the impact of an � eventually rapidly increasing � carbon tax on

global medium and long-term emissions, taking future climate measures into account: we

assess the impact of current carbon taxes given the fact that even if a tax is currently

avoided, other climate measures, such as backstop technologies, global fuel demand cartels

à la Kyoto, carbon capture and storage systems, or, last but not least, alternative carbon

taxes, may be introduced at some point in the future. In order to keep the model tractable,

we assume these future measures to be introduced independently of the current tax,

although in many cases taking into account the endogeneity of such measures could even

strengthen our �ndings.

The analysis is based on a dynamic multi-period model of the behaviour of forward looking

resource owners. They seek to maximize their present discounted revenues by optimally

rationing the sales of their resources over time. In order to derive rather general results, we

leave the exact nature of the modelled market as open as possible. We do neither assume

a speci�c functional form for the extraction cost curve nor use speci�c assumptions about

the tax path or the time-varying demand function. Finally, we consider both cases, where

the suppliers act monopolistically or competitively. In addition, we investigate the case

where a carbon tax is only introduced regionally, i.e. in some part(s) of the world.

In the presence of an anticipated future regime change such as the introduction of a

backstop technology, any presently implemented positive tax path bridging the time until

the future measure becomes e�ective unambiguously reduces cumulative emissions not

only in the long, but already in the medium-term, suggesting that the strong version

of the Green Paradox may not hold.1 This generally holds for a backstop technology

becoming worldwide e�ective at a speci�c future time. At least for limited tax levels, the

1Following Gerlagh (2011) we use the notions of weak and strong versions of the Green Paradox to
di�erentiate between the increase of current emissions (weak) resp. of net present value of cumulative
emissions (strong) due to the anticipation of cheaper clean energy.
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results remain valid in the case of regional taxes. The exact type of the future scheme

does not a�ect our �ndings. According to recent estimates the warming e�ect of emissions

in the current century will remain almost unchanged over at least the next 1'000 years

(Solomon et al., 2009). This suggests that, as far as we restrict the attention to medium-

term emissions, primarily the cumulative emissions matter and the exact path of the

emissions across the decades is only of limited additional importance. Thus, reducing

medium-term emissions, the tax is very likely favourable for the climate.

Giving up the assumption that an alternative measure is implemented at a �xed point

of time, we further consider a case where the time of the introduction of the backstop is

stochastic. Even under these conditions, the weak version of the Green Paradoxes' claim,

i.e. that taxes increasing at a rate faster than the real interest rate lead to increased

current emissions, does not necessarily hold; taxes increasing at rates higher than the real

interest rate can not only reduce cumulative emissions for some future period, but reduce

current and near term emissions as well.

This analysis has important implications for climate policy assessment in general. There

exist numerous assessments of di�erent climate policy measures, but these studies typically

compare scenarios with the measure in question to a business as usual scenario containing

no alternative climate policy measures. There is, however, no reason to believe that the

decision about a particular climate policy will be decisive for every other potential climate

measure as well. Taking the possibility of alternative climate measures into account might

often be necessary to prevent strongly biased results.

The remainder of the paper is organized as follows: Section 2 describes the model for

the resource owners' intertemporal decision problem. In Section 3, we show how the

anticipation of a backstop implemented in the medium-term future a�ects the resource

suppliers' behavior in the business as usual scenario without any present tax. We explain

that the anticipation of the future regime change induces a situation that is comparable

to a future high tax, implying even according to the anticipation e�ects pointed out by

Sinn (2008) that it becomes especially urgent to introduce a present tax.

Section 4 shows that a presently introduced tax bridging the time up to the introduction

of the backstop will unambiguously reduce cumulative medium-term emissions. Section

5 explains how the analytical derivation in the previous section extends to the case of

alternative future schemes. In Section 6, we discuss possible extensions of the model and

show the robustness of our analysis to a tax that may be applied only regionally. Also, in

this section, we show that a stochastic time of introduction of the backstop implies that

taxes can unambiguously reduce short- and medium-term emissions even if they increase

faster than the maximal rate which, according to the proposition of the Green Paradox,

is compatible with a reduction of carbon emissions. We also shortly discuss the possible

endogeneity of the future scheme switch.
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Section 7 provides a short discussion of the importance of the future regime switch to

our results, as well of how the tax can lead to a shift of part of the resource rent to the

consumer countries. Finally, Section 8 concludes.

2 The Model

Lumping the di�erent categories of fossil fuels into one considered resource, we assume a

world where consumers' instantaneous demand rate rt, which equals the extraction rate,

is a continuous, strictly decreasing, and potentially time-varying function of its price,

pt. Thus, we have the demand curve, rt(pt), as well as its inverse, pt(rt), as two strictly

decreasing functions, r′t(·) < 0, p′t(·) < 0, where the strict inequalities may only not apply

if the values of r or p reach their respective upper or lower boundaries, should these exist.

Instantaneous extraction rates integrate to cumulative extractions, At, which are normal-

ized to zero at the starting time, A0 ≡ 0, At =
´ t

0
rsds. Extraction costs, c, are assumed

to be strictly increasing in the cumulative extractions: c′(A) > 0. This implies that the

most easily extractable resources are extracted �rst - a standard assumption which has

been shown to be a necessary condition for the potential optimality of an extraction path

(Her�ndahl, 1967).2

We model the resource owners' problem of maximizing their present value of expected

total net revenues, applying a positive discount rate ρ.

Given a tax path τt, the revenue �ow for a speci�c seller i at time t is rt,i · (pt − ct − τt),
where rt,i is seller i 's extraction rate, and the suppliers' maximization problem can thus

be written as

Ui = max
rt,i

ˆ t̄

t=t

e−ρtrt,i · (pt(rt)− c(At)− τt) dt (1)

s.t.
·
At = rt andA0 = 0, i.e.At =

ˆ t

s=0

rsds, and rt =
∑

i
rt,i.

In the competitive (comp) case, suppliers' individual rates are so small that each considers

the market price as given independently of his own supply, while the monopolistic (mono)

supplier will take the e�ect of his extraction rate onto prices into account, since the total

rate equals his own supply rate, rt ≡ rt,i. De�ning Pt as the considered rate of change of

2For positive real interest rates it is actually straightforward to see that this must hold.
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the term rt · pt(rt) in Eq. (1), we thus have in the two considered variants of the model:

Pt,mono(rt) ≡
∂ [rt,ipt(rt)]

∂rt,i

∣∣∣∣
mono

= pt(rt) + rtp
′
t(rt)

Pt,comp(rt) ≡
∂ [rt,ipt(rt)]

∂rt,i

∣∣∣∣
comp

= pt(rt)

Taking this into account in the current-value Hamiltonian,

H = rt · (pt(rt)− c(At)− τt)− λtrt, (2)

we arrive at the following two �rst order conditions:

∂H
∂rt

= 0 : Pt(rt) = c(At) + τt + λt (3)

λ̇t = ρλt +
∂H
∂At

: λ̇t = λtρ− ċt, (4)

where we de�ned ct ≡ c(At), and where λt is the shadow value at time t for a marginal unit

of resource stock, after the cumulative extraction of At previous units. This multiplier λt

is a non-negative value, as with a larger resource stock, the producer's future extraction

costs will be reduced and therefore the future achievable pro�t potentially higher and

never lower.

The backward resp. forward looking explicit solution for the multiplier in Eq. (4) become,

for any t < t < t,

λt = eρ(t−t)λt −
ˆ t

s=t

eρ(t−s) ·csds

λt = eρ(t−t)λt +

ˆ t

s=t

eρ(t−s) ·csds. (5)

The primary assumptions on which we will base our analysis of the supply behavior

implicitly de�ned with the maximization problem are the following:

� Property 1: p(0) > c(0), i.e. in the absence of a tax there will be a strictly positive

extraction rate at least at the starting time.

� Property 2: p(0) <∞, i.e. the choke-price is �nite. This is an intuitive assumption

notably as surrogates such as renewable wood or plant oils lend themselves as natural

substitutes.

� Property 3: c(A) < p(0) ⇒ 0 < c′(A) < ∞, i.e. as long as some resources are

pro�tably extractable, the rate of increase of the extraction costs is strictly positive

and �nite.
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� Property 4: limr→∞ p(r) = 0, i.e. when the supply rate tends to in�nity, the demand

price becomes zero.

� Property 5: Single-crossing in the �rst order conditions for the monopolistic supplier:

the marginal revenue of a monopolist's resource sales at a speci�c period is falling in

the current rate of extraction, i.e. ∂[p(r)+p′(r)r]
∂r

< 0 holds in the case for the globally

homogenous market, and ∂[p(r,τ)+p′(r,τ)r]
∂r

< 0 in the case of the regional tax.3

3 Future Regime Change in the BAU

In our analysis, the business as usual scenario (BAU) simply refers to the case in which

no present tax is introduced. However, we generally assume it to contain a relevant future

regime switch. As this is a major di�erence to previous studies, this section compares

this BAU to the case where no future regime change would take place.

Ruling out taxes, the suppliers' maximization problem can be represented by the Hamilto-

nian formulation from Eqs. (2) through (4), by simply assuming τt to be zero everywhere.

Introducing a backstop at time T prevents future sales and thus implies that the value of

the remaining resources at that time are zero. In this case, we can use t = T and λT = 0

in Eq. (5), yielding

λt =

ˆ T

s=t

eρ(t−s) ·csds.

This shows that λt is positive and approaches zero for t→ T .

If, on the other hand, no backstop is introduced, we know that limt→∞ λte
-ρt = 0. Using

thus t =∞ and limt→∞ e-ρtλt = 0 in Eq. (5), we get

λt =

ˆ ∞
s=t

e(t−s)ρ ·csds.

Thus, for any time t prior to the extraction of the last unit, the multiplier λt will take

on a strictly positive value in the BAU variant without backstop. This will notably be

the case for the time of the implementation of the backstop in the other BAU scenario,

i.e. at T : de�ning the backstop-scenario as a case where the backstop is relevant, implies

that it would be introduced at a time before the resource extraction would otherwise have

stopped. We thus have

λT

{
= 0

> 0
for

BAUbackstop

BAUno backstop.
(6)

3This assumption seems largely unproblematic; an extended note on it is provided in Part A of the
Annex.
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It is obvious that the introduction of the backstop at time T a�ects the resource owners'

optimization problem exactly in the same manner as a tax introduced at T would if the

tax rate were to be high enough for preventing any oil sales from time T onwards. This

leads already to the primary mechanism by which we will �nd that in expectation of al-

ternative future schemes it is rather urgent than counterproductive to introduce stringent

present carbon dioxide taxes: given the future schemes, the suppliers anticipate a future

tax-resembling measure - if no tax is introduced today, the situation for the suppliers

will correspond to one with a high future tax but with none today, which corresponds

exactly to the case in which the Green Paradox would - in this case righteously - predict

counterproductive e�ects. A tax introduction today is thus even more urgent the more

anticipation e�ects drive the resource owners.

As is emphasized in Proposition 1 and proven in Part B of the Annex, Eq. (6) ultimately

implies that the anticipated introduction of the backstop in the BAU scenario increases

the pre-T emissions.

Proposition 1. An anticipated increase (decrease) of the marginal value of the unex-

ploited resources at a speci�ed future time will lead to a decrease (increase) in cumulative

extraction during the period up to that future time.

4 Introducing a Tax before the Backstop

Here we consider the case for a present tax when a backstop technology is introduced in

the medium-term future at time T . The Hamiltonian formulation with the corresponding

�rst order conditions for the dynamic problem is given in Eqs. (2) through (4) in Section

2.

Recall that the multiplier becomes zero at the time of the introduction of the backstop,

λT = 0. This strong assumption, which has been used in earlier literature as well (see e.g.

Dasgupta and Heal 1974), may not necessarily have to be as far away from reality as it

may seem at �rst sight: given that a backstop will substitute the fossil fuels in all major

energy related applications, the residual demand for them, dedicated to, e.g., chemical

applications, will only amount to a limited fraction of prior consumption, drastically

reducing the expected achievable resource rent. Note that the smaller demand would

limit the scope for monopolies as even owners of small stocks could become relevant

competitors. We will consider the case for a residual value λT for the post-T period that

is non-zero and can vary with the amount of resources left at time T , in the next section.

As the tax generally reduces the possible net revenues from resource sales, it seems intu-

itive that positive tax rates will lead to reduced cumulative extractions.
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Proposition 2. If at a speci�c time T > 0 an alternative climate measure that �xes the

marginal value λT (AT ) = λT = const is introduced, any scheme of positive carbon taxes

up to time T leads to a reduction of cumulative emissions up to time T .

Proposition 2 is proven in Part D of the Annex.

If a regime change such as the introduction of a backstop technology is anticipated, a

carbon tax thus yields a decrease of total consumption, independently of the form of the

tax path or of the demand and production cost structure. According to our argumentation

above, reducing cumulative medium-term emissions is of primordial importance compared

to the exact path of the emissions, as long as relatively limited time-spans are considered.

Thus under the assumption of a future backstop quite any path of nonnegative tax rates

is bene�cial for the climate.

5 Extension to Alternative Future Schemes

In Proposition 2 we have shown that any (continuous) path of positive tax rates reduces

cumulative resource use during the period from the introduction of the tax until its re-

placement by a di�erent climate change mitigation measure, given that the value of the

marginal remaining resource unit for post-T sales is independent of the size of the stock of

remaining resources, i.e. λT (AT ) = const. This condition may not necessarily be given in

reality: rather, the marginal value of additional reserves, λT , depends on the cumulative

exploitations at time T for example if the post-T scheme is a demand cartel or an ex-

tremely high tax - only with a (perfect) backstop completely substituting the fossils would

λT not vary with the residual resource stock. This section shows that the argument for

the tax to be reducing cumulative extractions extends to the case of a �exible multiplier,

λT = λT (AT ).

If the post-T regime does not prohibit all lucrative sales of the resource, an increase of

the remaining stock of resources can a�ect λT in either direction: satiation and the higher

discounting of future sales tend to decrease the shadow value of additional resources on

one hand, but the lower extraction costs for the additional unextracted resources can

also increase the additional units' value. Without further assumptions about the exact

nature of the post-T resource market framework or about extraction costs or the demand

function it cannot a priori be known which e�ect dominates. Still, using Proposition 1,

we show that the economics of the problem implies that one can rule out one possible

case for the relationship between λT and AT in the region of the optimally chosen amount

of cumulative extractions, A∗T . Then, an illustration why the derived restriction on the
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relationship between λT and AT implies that Proposition 2 extends to cases with a �exible

�nal multiplier λT (AT ) follows.

First, some clari�cations about the relationships between the marginal value and the

amount of cumulative exploitations at the time of the introduction of the new regime, λT

and AT . The function λT (AT ) indicates the value of a marginal additional unexploited

unit of resource at time T available for the post-T period, de�ned as the additional

(expected) pro�t the resource owner can make in the post-T future if he has a marginally

increased stock of remaining exploitable resources at time T . Conversely, function AT (λT )

designates the cumulative amount of pre-T sales the resource owner chooses for a given

�nal marginal multiplier λT . It therefore corresponds to the amount of pre-T sales for

which the sale of an additional marginal unit in the pre-T period would yield exactly

λT additional corresponding units of pre-T pro�ts (ignoring the in�uence on the post-T

situation). Optimizing his overall pro�ts, the resource owner will choose an amount A∗T
of pre-T sales for which the marginal additional pre-T pro�t for another sold marginal

unit in the pre-T period just equates the marginal foregone pro�t from post-T sales due

to the increase of the pre-T exploitations. With other words, if A∗T denotes the choosen

(optimal) amount of pre-T sales, and λ∗T the corresponding �nal multiplier, the following

condition is satis�ed

λT (A∗T )
!

= Ainv
T (A∗T ),

where Ainv
T (·) is the inverse function of AT (λT ).

For the following be λpreT (AT ) ≡ Ainv
T (AT ), whose simple interpretation is the marginal

pre-T pro�t from additional pre-T sales given AT units sold until T . For clarity then, call

λpostT (AT ) ≡ λT (AT ).

Recall from Proposition 1 that AT (λT ) is decreasing in λT . Thus, for the optimal amount

of cumulative exploitations A∗T the condition

∂λpreT (A∗T )

∂AT
≤ ∂λpostT (A∗T )

∂AT
(7)

must hold, as otherwise it would be lucrative for the resource owner to increase A∗T : the

change in overall discounted pro�ts, Π = Πpre + Πpost can be approximated as

Π(A∗T + ε)− Π(A∗T ) = Πpre(A∗T + ε) + Πpost(A∗T + ε)− Π(A∗T )

≈ ελpreT (A∗T ) +
ε2

2

∂λpreT (A∗T )

∂AT
− ελpostT (A∗T )− ε2

2

∂λpostT (A∗T )

∂AT

≈ ε2

2

[
∂λpreT (A∗T )

∂AT
− ∂λpostT (A∗T )

∂AT

]
(8)

for small deviations from A∗T . Clearly, if Eq. (7) does not hold, Eq. (8) would imply
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pro�ts that increase for any small value of ε, i.e. A∗T would not be a pro�t-maximizing

choice. Graphically, this is illustrated in Fig. 1, where the pluses indicate regions in which

it would be optimal for the resource owner to increase pre-T sales, and minuses where it

would be optimal for him to decrease sales.
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Figure 1: Possible equilibrium situations with �exible λT (AT )

As a second point, recall, from Proposition 2, that the tax unambiguously reduces pre-T

sales for any given �xed λT . As the function AT (λT ) remains the same here as when

λpostT (AT ) was constant, we thus know that in a diagram with AT on the horizontal axis,

AT,tax must lie strictly on the left of AT,no in all relevant ranges, as is shown in Fig. 2.
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Figure 2: Tax reduces pre-T emissions AT for constant λT
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Considering the case where λpost′T (A∗T ) > 0, it is straightforward to see that this implies

that the tax reduces the optimal amount of pre-T sales A∗T . This is illustrated in Fig. 3.
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Figure 3: Tax reduces pre-T emissions AT for �exible λT (AT ) when λ′T (AT ) > 0

As λpost′T (A∗T ) > 0, λpre′T (AT ) < 0 and Atax
T (λT ) < Ano tax

T (λT ), we have A∗T,tax < A∗T,no.

By a similar argument and using Eq. (7) it becomes clear that even if λpost′T (AT ) < 0,

A∗T,tax < A∗T,no holds. This situation is depicted in Fig. 4.
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Figure 4: Tax reduces pre-T emissions AT for �exible λT (AT ) when λ′T (AT ) < 0

Therefore the proposition from the previous section extends to the case of a �exible �nal

multiplier, λ∗T = λT (A∗T ), which we summarize in Proposition 3.

Proposition 3. If at a speci�c future time T an alternative climate measure is introduced

that �xes the marginal value to a continuous di�erentiable function of the cumulative

extractions up to T , λT = λT (AT ), any scheme of positive CO2 taxes up to time T leads

to a reduction of cumulative emissions up to time T .
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6 Further Extensions

6.1 A Regional Tax

So far, experiences with climate protection discussions suggest that, should in the close

future some international carbon tax be introduced, not all countries may be willing to

participate in such a treaty. We therefore examine the e�ect of a bridging tax which

remains limited to a part of the world. Analytically, this implies that the world, respec-

tively its demand for fossil fuels, is split in two regions: Region 1 which imposes a tax

on its carbon emissions, and Region 2 which will not take any comparative regulatory

action in the close future. In our model for this divided world we assume in a �rst step

that the ratio by which the worldwide demand is split is - for a price that is the same in

both regions - �xed and constant over time. We explain at the end of the modeling part

why the conclusions derived extend to the case where the fractions of the two regions of

the world are changing over time. This last point may be of relevance as the parts of the

world that have been revealed as the leaders resp. the laggards in the current political

climate debate do not exhibit only distinguished climate intensities but also di�erent rates

of growth of their respective demand.

Demand structure A demand for fossil fuels split into two �xed regions implies that

the demand resulting for a speci�c price in one region can be expressed as a multiple of

the corresponding demand in the other region. Accordingly, we introduce the variable x

as the following ratio:

r2(p) = x · r1(p),

i.e. x indicates which multiple of the demand in Region 1, r1, corresponds to demand in

Region 2, r2.

The worldwide demand is the sum of both regions' demands,

r = r1 + r2.

When a tax is levied in Region 1, the consumption price for the resource, p1, will be

the sum of the consumption price of Region 2, p2, and the tax level, τ . The price p2

corresponds to the sales price for the resource owner, pR:

p1 = p2 + τ = pR + τ

p2 = pR

The demands of the two regions, r1(p1) and r2(p2) can thus be expressed as r1(p1) =

r1(pR + τ) and r2(p2) = r2(pR). Thus, as shown in Fig. 5, the total demand for a given
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sales price and tax rate is

r(pR, τ) = r1(p1) + r2(p2) = r1(pR + τ) + r2(pR). (9)
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Figure 5: Regional demand with tax in Region 1

E�ect of the tax on the demand The demand curves of both regions are assumed

to be continuous and strictly decreasing. Eq. (9) implies thus that the current worldwide

demand decreases as well in the current sales price pR as in the current tax rate τ .

Therewith the inverse demand curve, here the sales price which yields a speci�c demand,

pR(r, τ), is strictly decreasing in r.

Given this new demand structure, the optimality condition Eq. (3) becomes

p(rt, τt) + rt
∂p(rt, τt)

∂r
= c(At) + λt. (10)

While it eventually seems intuitive, without any further analytical inspection it seems not

necessarily clear whether the LHS of the supplier's adapted FOC, Eq. (10), decreases

unambiguously in τt in the case of the regional tax. It is therefore proven and stated as a

general result in Lemma 1 (the lemma is stated below Proposition 4 and its proof given

in Part E of the Annex), at least for limited tax levels.

Thus, according to Lemma 1, a regional tax levied on Region 1's consumption at time t

reduces worldwide consumption at the same time t for a given multiplier λt and extraction

costs ct. Given this result, it is straightforward to see that the proof for Proposition 2

extends to the case of the regional tax - Lemma 1 ensures that Eq. (A.12) holds in the

proof.
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Thus, also a regional tax leads to a reduction in cumulative emissions up to time T , which

is emphasized as Proposition 4. Note that, while we are not aware of any particular reasons

for which the statement should not extend to larger taxes as well, the proven validity of

our analytical derivations for Lemma 1 and thus Proposition 4 is restricted to certain

smoothness conditions for the tax as well to tax rates that are not too large.

The analysis remains valid in the case where the demand-ratio between the regions, x,

varies over time: Lemma 1 is not a�ected at all, and the proof of Proposition 2 allows for

time-varying pR(r, τ).

We thus emphasize the following result:

Proposition 4. If an alternative climate measure is introduced at a speci�c future time

T , any scheme with positive carbon taxes covering a (eventually non-constant) fraction of

the world's demand up to time T leads to a reduction of cumulative worldwide emissions

up to T , at least for limited tax rates.

Lemma 1. If an interior solution to the pro�t maximization problem with the �rst order

condition

p(rt, τt) + rt
∂p(rt, τt)

∂r
= c(At) + λt

exists, then a current regional tax at time t levied on Region 1's consumption reduces

current worldwide consumption for a given multiplier λt and extraction costs ct, at least

for not too large tax rates.

The proof of Lemma 1 is provided in Part E of the Annex.

6.2 Stochastic Introduction of the Future Scheme

It cannot be predicted with certainty which future development in terms of climate change

mitigation may once prevent all carbon stored in fossil fuels to be released into the at-

mosphere. It would be even more unrealistic to pretend knowing when exactly such a

breakthrough will occur. Also, the change may come gradually over several years rather

than at one speci�c point in time. What's more, the uncertainty about the time of the

future regime change may even be large. Finally, it could also be the case that no real

regime change will happen at all. To account for these uncertainties, a stochastic model

has to be considered, eventually considerably complicating the analysis.

An analytical investigation of the stochastic case may be possible to a certain extent,

especially with a backstop, at the introduction of which the resources left underground

at time T will loose all their value. In such a case, the stochastic end time can readily
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be accounted for by augmenting the discounting rate ρ by an appropriate term ψt and

otherwise using the deterministic model, as has been shown by Dasgupta and Heal (1974).

For simplicity, we here consider the case where the probability of the introduction of

a backstop, conditional on no prior occurrence (further called periodic probability), is

constant. The additional discounting factor, ψ, which equals this periodic probability,

inherits this constancy, i.e. ψt = ψ. This implies that the analytical structure of the model

does not di�er from the deterministic case at all. Note that the underlying (unconditional)

probability density for the introduction of the backstop at date t is then f(t) = ψe-ψt.

The additional discount factor due to the possible introduction of the backstop alters the

conclusion about the taxes' impact on the emissions. While in the case where no backstop

was considered the Green Paradox would hold up to a certain extent, implying that a tax

rising more rapidly than with the real interest rate would lead to larger current emissions,

this �nding is not valid anymore in the case of the possible backstop: in this case, taxes

that exponentially rise at any rate lower than ρ+ψ imply reductions of current emissions

and lower cumulative emissions at any future time period. We emphasize this claim with

Proposition 5 - the analytical proof is given in Part F of the Annex.

Proposition 5. Any positive tax exhibiting a rate of increase, θ, that �gures between 0

and the sum of the real interest rate, ρ, and the periodic probability of the introduction of a

backstop technology, ψ, leads to a reduction of the expectancy of the cumulative emissions

and notably does for no period yield increased potential cumulative emissions.

6.3 Endogenous Future Regime Change

The introduction of a carbon tax changes on one hand the consumption prices for con-

ventional energy and therewith incentives for the development of alternative technologies.

On the other hand, it directly a�ects the carbon emissions and the climate and thus the

political pressure to work on additional measures. It is clear that a present tax may

therefore in�uence the likelihood resp. the timing of the implementation of future mea-

sures. Assuming the latter to be perfectly exogenous is thus a simpli�cation of reality

and it seems important to address the possible endogeneity of the future climate regime.

But this is beyond the scope of the present work. It can, however, be foreseen that

the direction of the e�ect on the expected results is ambiguous: lower political pressure

due to eventually tax induced emissions reductions could lower the probability of early

measures. But technological development boosted by the eventually higher carbon prices

could imply earlier development of substitute technologies.
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7 Discussion

Arguments questioning the relevance of the Green Paradox have already been raised prior

to this paper. Yet, the possibility of an exogenous future regime switch has been ne-

glected so far in the literature on that topic. Taking this additional element into account

in the modeling of the e�ects of a carbon tax renders the predictions more accurate and

shows that a carbon tax may be more desirable than previous studies have suggested

overall. This is important notably as some other points in favor of the tax raised in liter-

ature do not necessarily invalidate all aspects of the Green Paradox. Hoel (2010) argues

that any positive tax rate would reduce overall, i.e. long-term, emissions anyway, which

can intuitively be understood, given smoothly increasing extraction costs together with a

demand-price limited by a �nite choke-price: while without any tax the last unit of fuel

exploited would be the one for which extraction costs correspond to the choke-price, this

price would be reduced by any positive tax. Due to the increasing extraction cost curve

this would imply that total extractions would decrease as well. Due to two reasons this

insight may not in every case be considered as a decisive argument in favor of a carbon tax:

depending on the form of the demand function and the extraction costs curve de�ning the

'available' resource quantities, if no future regime switch were available, the time when

the last unit of the resource would be exploited may theoretically lie far enough in the

future that the timing of the emissions could not anymore be considered as of subordinate

importance compared to the absolute emissions. Even more importantly, if alternative

technologies are not developed well enough, the choke-price of the demand may be large

enough for the extraction cost curve to be rather steep at the corresponding point already:

given that the total amount of the physically existent fossil reserves is a limited quantity,

of which on one hand an important fraction is exploitable at rather low costs but on the

other hand the last drops somewhere deep in the ground would be exploitable only at

very high costs, it may seem plausible that the cost curve in the region of the choke-price

may be rather steep, implying that the change in the overall exploited quantity may vary

only to a small extent as a reaction to some limited tax.

Beyond the above analysis, there is an additional reason why the anticipation e�ects could

increase the desirability of a carbon tax rather than reduce it. Without the external cli-

matic e�ects of the combustion of carbon containing fuels, one may generally depart from

the assumption that an eventual carbon tax could be associated with negative economic

e�ects on the taxed region. This negative e�ect on the economy may increase with the

level of the tax, and only the negative climatic externalities may justify an eventual car-

bon tax: for a �xed net fuel price and in a �rst approximation the optimal compromise

between climate protection and economic activity should be achieved by a tax level that

corresponds to the level of the marginal climate costs of an emitted unit of carbon. In this
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case, the demand for fuels should be reduced to the point from which on an additional

reduction would yield economic costs that exceed the additional bene�t from increased

climate protection4. Now, the analysis of the pro�t maximizing behavior of the resource

owners shows that they reduce the net price they demand for their goods if a climate tax

is introduced. Therewith, the previously described `optimal' climate tax would reduce

the consumption by less than the climate policy maker may have expected, should he

have neglected this behavioral adaptation: the gross price does not increase by the full

amount of the tax rate, but only by part of it. In this sense one could at �rst sight be

tempted to consider the tax as ine�cient. The reduction of the demanded net sales price

from the side of the resource owners could, however, also be utilized to �x the tax rate

so much above the `optimal'5 tax rate until the gross price exceeds the net price from the

no-tax scenario by the value of the `optimal' tax rate.6 In this case the originally located

demand reduction and the originally mentioned economic costs result: despite the higher

than originally described tax rate, the costs for the economy increase only by the originally

targeted value. At the same time, however, the taxing region generates higher extra tax

revenues, which corresponds to a transfer of parts of the resource rent from the resource

owners to the consumer countries. The tax induced behavioral adaptation of the resource

owners can thus be used to the advantage of the fuel importing countries and increases

the economic attractivity of such a tax. In this sense the pro�t-expectation-reductions

related to the anticipatory e�ects of the resource owners, and the associated attenuation

of the impact of the tax on the sales price and the demand, should not be considered as

an e�ciency problem of the tax. Rather, they should be understood as a possible means

to reduce, in an e�cient manner, at the same time the cumulative demand as well as the

import costs of the oil.

8 Conclusions

The claim that carbon taxes with rapidly increasing tax rates would exacerbate the cli-

mate problem rather than alleviating it, cannot be sustained as generally as it has been

suggested with the Green Paradox.

This paper indicates two primary reservations against the claims brought forward with

4It is beyond the scope of this paper to address the numerous practical problems of the introduction
of such a tax - while very crucial for any project of a carbon tax in general, they seem to be of minor
importance to our speci�c argumentation.

5Optimal in the sense of the level that would be desirable if no supply-side adaptation would be made.
6In this case, the result could indeed be improved even further when the tax rate is not exactly �xed

in this way. Beyond the scope of this article, a discussion of the optimal tax accounting for the strategic
consumer-owner interaction on the resource market can be found in Liski and Tahvonen (2004) who
examine a �rst best climate taxation in general, and Dullieux et al. (2010) who examine the optimal tax
given a 2° C warming equivalent emission constraint. Both studies �nd that under certain conditions the
optimal tax may contain an import tari� component, i.e. be larger than the pure Pigou tax.
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the Green Paradox, both based on the fact that even if we were to abstain from intro-

ducing a carbon tax today, other future climate related developments may in�uence the

resource market some time in the future and therewith the carbon emission path. Such

possible developments do not only encompass technological innovations driven by rising

fossil fuel extraction costs, but also political movements alimented by ever rising emissions

and temperature, severely a�ecting many densely populated regions all over the world.

The potential measures include, among others, backstop technologies, demand cartels,

carbon capture and storage systems or prohibitively high future carbon taxes. Both our

reservations suggest that given the possibility of such future measures, a currently intro-

duced carbon tax may be more favorable for the evolution of our climate than predicted

according to the Green Paradox:

First, if some of the mentioned future climate regime switches were to materialize at the

speci�ed time in the medium-term, then the cumulative emissions may be more relevant

than the detailed evolution of the emission path, and the analytical analysis of the optimal

behavior of the resource owners suggests that these cumulative emissions up to the time of

the regime switch may be reduced for any tax path with positive tax rates, independently

of the rate of increase of the tax level.

Second, if a future regime switch such as the introduction of a backstop technology is

stochastic, our model suggests that even the weak version of the Green Paradox does not

hold anymore: not only cumulative emissions in future periods, but also current emissions

can be reduced by carbon taxes whose levels increase more rapidly than at the real interest

rate. More precisely this is the case for any tax whose rate of increase is below the sum

of the real interest rate plus the perceived conditional probability of the introduction of

the backstop.

In addition to the impact of the taxes on the climate, the anticipation e�ects can even

be bene�cial for the consumer countries in the sense that the tax allows these countries

to extract part of the suppliers' resource rent, which may increase the carbon tax related

welfare gains for the demand countries.

Some caveats regarding the �ndings presented in the paper are in order. First, in the

framework of the stochastic regime switch, our result gives only a clear indication for

a tax whose maximal rate of increase is still limited, even, if due to the possibility of

the backstop this limit may be substantially higher than the one originally suggested

by the Green Paradox. It is clear, however, that, along the line of our argumentation

brought forward in the deterministic case, the examination of the stochastic case should

not stop here: even a tax that may rise faster than our elevated threshold rate of increase

identi�ed in the stochastic analysis, may overall be bene�cial: it may slightly rise the

initial periods' emissions, but lead to substantial emission reductions later on. In the case

where the probability distribution for the occurrence of the regime switch may indicate
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that the latter is likely to occur in the medium-term, our argumentation for the primary

relevance of the cumulative emissions should be considered as well: if the tax leads to

substantial cuts of future emissions, these reductions may more than compensate for the

smaller increases in earlier emissions.

Second, we ignored the potential endogeneity of the future climate scheme change. This is

a severe limitation, as it is clear that the eventual carbon tax a�ects virtually all variables

in�uencing the potential future regime switch, e.g. the temperature path, the consumer

price, the general economic development, or the technical progress with alternative ener-

gies.

Finally, we explained that especially for the here relevant medium-term future the cu-

mulative emissions may prime in importance over the detailed emission path. This is

only a simpli�ed view. Ideally, one would more properly weight increases of current emis-

sions against reductions of cumulative medium or long-term emissions. For this, a more

realistic model for total net present damage would be desirable: some limited discount-

ing of future damages, coupled with a non-linear mapping of cumulative emissions (resp.

concentrations) to damages would ideally be considered.

An encompassing analytical examination of all these issues seems infeasible. In order to

address them, it would thus be interesting to explore the case for the Green Paradox

about carbon taxes by means of numerical simulations. Even if many of the relevant

parameters for such an undertaking - especially the ones about the future climate regime

switch - may be subject to large uncertainties, it should allow at least some approximate

quantitative assessment of the qualitative claims brought forward by the Green Paradox

resp. by our analysis.

Broadening the perspective, we would like to conclude by stressing the implications of this

analysis for climate policy evaluation beyond the question of the Green Paradox. While

we have shown here how future independent climate-relevant developments may dramat-

ically in�uence how a carbon tax quali�es regarding the Green Paradox, the potential

future climate developments may be crucial for the net impact of any currently debated

climate measure. These potential future developments should therefore be taken into ac-

count when assessing current measures' desirability and impacts in general, as is hardly

being done so far. Predictions about future climate-relevant developments, be they policy

measures or technological developments, are intrinsically linked to large uncertainty and

complicating re�ections. Yet, the uncertainty of predictions is not truly reduced by sim-

ply ignoring its sources, rather the latter introduces some potentially large bias which, as

shown here, may crucially a�ect the conclusions about possible policies.
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9 Annex

(A) Single-crossing property for monopolist's revenue

In order to rule out some theoretically possible multiple local maxima that would be dif-

�cult to deal with analytically, we assume that the demand functions r(p), resp. their in-

verses p(r), exhibit the property that the marginal revenue of a monopolist's resource sales

at a speci�c period is falling in the current rate of extraction, i.e. that ∂[p(r)+p′(r)r]
∂r

< 0,

over the full range of considerable extraction rates. This condition guarantees that Pt(rt)

is a strictly decreasing function not only in the competitive but also in the monopolistic

case. It notably implies that, should the value of Pt(rt) decrease, its argument rt increases,

and vice versa. Note that the property represents only an absolutely mild assumption:

typically considered demand functions, be they linear, quadratic, isoelastic, or exponen-

tial, all meet this assumption in any case. For the case of the world with a monopolist

and a tax in a region covering only a fraction of the worldwide demand, stringency of the

analytically derived conclusions will require an extension of this assumption: in this case

we will assume that for any considered regional tax level τ , the worldwide demand r(p, τ),

which is the sum of the demand r1(p+ τ) in Region 1 that levies the tax and the demand

in the second, non-taxing region, r2(p), is such that ∂[p(r,τ)+p′(r,τ)r]
∂r

< 0. This condition is

rather likely to hold as well in most cases. It can analytically be shown that it notably

holds for all linear, exponential and quadratic demand forms for which the corresponding

condition from the worldwide tax case holds - for the quadratic at least for limited tax

levels. Exceptions are, however, possible for a limited subset of situations with isoelastic

demand in the case of the regional tax.

(B) Proof of Proposition 1

Consider two situations in the same model but with notably di�ering �nal multipliers,

λT . The di�erence between the two models' variables be called ∆λt, ∆At, ∆rt and ∆ct,

respectively. The claim can then be stated as

∆λT > 0⇒ ∆AT < 0, (A.1)

with the considered time span being t = [0, T ]. We will show by contradiction that the

claim in Eq. (A.1) holds unambiguously.

Assume thus the contrary,

∆λT > 0 ∧ ∆AT > 0, (A.2)

which we will proove to be inconsistent.
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All considered variables, At, λt, rt and ct, exhibit continuous time paths.

This implies that limt→T λt = λT and limt→T At = AT , i.e. limt→T ∆λt = ∆λT and

limt→T ∆At = ∆AT . Assuming Eq. (A.2) to hold, we thus know that the RHS in Eq.

(3) (with τ = 0) will be larger for t→ T in the case of the increased �nal multiplier, i.e.

∆RHS > 0. Therefore Property 5 implies that the chosen extraction rates become lower

in the region where t is close to T :

limt→T ∆rt < 0

Argument 1: If λt of both situations coincide, then knowing that either of the remaining

variables rt or At coincide as well would imply that the other of the two latter variables

must coincide as well (from Eq. (3)), and that thus the whole model paths as well, because

the similarity at t of all variables implies a similar evolution of all variables. Demand-

and extraction cost-curves are the same in both situations. Thus, it is thus easy to verify

the following rule:

∆At = 0 ∧ ∆Ȧt 6= 0⇒ sign∆rt = sign∆Ȧt ∧ sign∆λt = −sign∆Ȧt

Argument 2: ∆λt > 0 ∀
tε[0,T ]

would imply lower rather than higher cumulative emissions,

i.e. violate Eq. (A.2). limt→0 ∆λt > 0 would imply limt→0 ∆rt < 0. This would imply

decreasing ∆ct for low t, which would tend to alleviate the impact of the positive ∆λt

on ∆rt. However, the negative value of ∆ct could never fully compensate for the strictly

positive value of ∆λt in a way that could allow non-negative ∆At-values in this subcase:

as soon as ∆At would approach zero, it would again be the positive ∆λt value that

would dominate, reducing current ∆rt and therefore prevent ∆At to achieve zero or even

a positive value at any t > 0. This argument extends to any sub-period [s, s̄], and

analogously to the case of an inverted sign of ∆λt. Thus we state:

∆As = 0 ∧ ∆λt > 0 ∀
s≤t≤s̄

⇒ ∆As̄ < 0 ∀
s 6=s̄

(A.3)

∆As = 0 ∧ ∆λt < 0 ∀
s≤t≤s̄

⇒ ∆As̄ > 0 ∀
s 6=s̄

(A.4)

Argument 3: Consider the case of Argument 2, adapted in the way that the multiplier

di�erence converges to zero as time approaches s, i.e. limt→s ∆λt = 0 and ∆λs = 0. The

implied strict inequalities for ∆As do not become weak in that case: if we had ∆As = 0

simultaneously with ∆λs = 0, there would be no possibility how the extraction rates,

multipliers or cumulative extractions could have di�ered in the pre-ts̄ periods. As they
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did di�er, however, the results from Argument 2 extend to

∆As = 0 ∧ ∆λt > 0 ∀
s≤t<s̄

∧ ∆λs = 0 ⇒ ∆As̄ < 0 ∀
s 6=s̄

∆As = 0 ∧ ∆λt < 0 ∀
s≤t<s̄

∧ ∆λs = 0 ⇒ ∆As̄ > 0 ∀
s 6=s̄
.

Argument 4: Consider the case of Argument 3, adapted in the way that the multiplier

di�erence becomes zero already at some time s before s, and remains so up to time s, i.e.

∆λt = 0 ∀
s≤t≤s

. During the time where the two λt-values coincide, the di�erence between

the cumulative emissions cannot become zero at any time before s: Argument 3, if applied

to the interval [s, s], implies that ∆As 6= 0. Moreover, whenever ∆At = 0 for a speci�c

s < t ≤ s̄, i.e. for a time when ∆λt = 0, extractions and therewith the corresponding cost

curve evolved along the exact same path in both models within the whole time interval

[s, t]. (See also Argument 1 for a similar argument.) This would, however, require that

∆As = 0, which is impossible because ∆As 6= 0. Thus, the results from Argument 2 and

3 extend to

∆As = 0 ∧ ∆λt > 0 ∀
s≤t<s

∧ ∆λt = 0 ∀
s≤t≤s

⇒ ∆As̄ < 0 ∀
s<s<s̄

(A.5)

∆As = 0 ∧ ∆λt < 0 ∀
s≤t<s

∧ ∆λt = 0 ∀
s≤t≤s

⇒ ∆As̄ > 0 ∀
s<s<s̄

, (A.6)

where the signs of the inequalities for ∆As on the RHS do not switch, as in order to do

so ∆At would have to cross the value 0, which, as just shown, is impossible.

Argument 5: Closely related to what is shown in Argument 1, if ∆A0 = 0 then ∆λ0 6= 0;

otherwise we would be in the case where from time 0 onwards the two FOCs would

necessarily imply that the future evolution is the same in both cases, which notably

would not allow for the existence of any di�erence in the �nal λT -values. Thus we get

∆λT 6= 0 ⇒ ∆λ0 6= 0. (A.7)

Eq. (A.2), together with Arguments 2 (Eq. (A.3)), 4 (Eq. (A.5)) and 5 (Eq. (A.7)), imply

that there must exist some time t for which the multiplier-di�erence is strictly negative.

As limt→T ∆λt > 0, this implies that there is a time t∗ in the inner of the interval for

which ∆λt∗ = 0. Moreover, if �nal cumulative emissions should grow larger as the �nal

multiplier increases, there would necessarily have a time interval [t, t], 0 ≤ t < t̄ < T , to

exist for which ∆At = 0, ∆λt < 0 ∀
t≤t<t̄

, ∆λt = 0 and ∆At > 0 ∀
tε(t,t̄]

. Together with Eq.

(5), these relations imply

∆λt =
´ t̄
t=t

eρ(t−t)∆ċtdt < 0

∆At =
´ t
t=t

∆ċtdt > 0 ∀
tε(t,t̄]

∣∣∣∣∣∣ ,
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but this is ruled out by Lemma 2 (Part C of the Annex). Therefore, an increase of the

�nal multiplier λT is necessarily associated with a decrease in cumulative emissions up to

time T , AT . �

(C) Lemma 2

Lemma 2. For any two continuous and di�erentiable functions G(t) and F (t) and their

�nite derivatives g(t) and f(t), and any T > 0 and ρ > 0,

G(0) = F (0)

G(t) > F (t) ∀
tε(0,T )

 ⇒
´ T

0
e-ρt [g(t)− f(t)] dt > 0 .

Proof. De�ne H(t) ≡ G(t) − F (t) and h(t) ≡ g(t) − f(t). We thus have H(0) = 0

and H(t) > 0 ∀
tε(0,T )

. Use further η ≡
´ T

0
e−ρth(t)dt. Then, de�ne hm as the path that

minimizes the discounted integral while respecting the imposed condition:

minhm η

s.t.
´ t

0
hm(s)ds > 0 ∀

tε(0,T )
(A.8)

By the following reasoning hm cannot contain any periods with negative values:

� If hm(t) were to contain any negative values without that they were preceded (in

terms of lower values of t) by some positive values, the condition in Eq. (A.8) would

be violated: the integral over consequentially negative values with at least some of

them being strictly negative is necessarily negative.

� If hm(t) were to contain some strictly negative values that are preceded only by

positive values, simultaneously reducing some of the preceding positive values and

increasing some of the mentioned negative values, will on one hand leave una�ected

the condition (A.8) and on the other hand reduce the value of η, as the reduction of

the earlier occurring positive values is discounted less than the increase of the later

occurring negative values, leaving a net reduction in η and therefore contradicting

that the initial hm minimized η.

As the path hm(t) can thus not contain any negative values, and in order for H(t) to take

on strictly positive values on the integral (0, T ), it is clear that η must be positive as it is

an integral of weighted positive values with some of them being strictly positive, as well

as with strictly positive weights e−ρt. Thus
´ T

0
e−ρt [g(t)− f(t)] dt > 0. �
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(D) Proof of Proposition 2

Assume an exogenously given, �x λT .

From Eq. (5) we know for the monopolistic supplier

λt = λT e
ρ(t−T ) +

ˆ T

s=t

e(t−s)ρ ·csds. (A.9)

(It will be intuitive that our analysis holds for the competitive case as well.) Inserting

Eq. (A.9) in Eq. (3) yields

pt(rt) + rtp
′
t(rt) = ct + τt + λT e

ρ(t−T ) +

ˆ T

s=t

e(t−s)ρ ·csds. (A.10)

In the following we are going to proove by contradiction that the tax necessarily reduces

cumulative extractions up to T .

Suppose thus hypothetically that the contrary would be the case, i.e. that

AT,tax > AT,no, (A.11)

where we introduced the indexes tax and no to designate the variable, here AT , in the

case with the tax resp. in the case without any tax.

Eq. (A.11) implies

cT,tax > cT,no.

We have limt→T
´ T
s=t

e(t−s)ρ ·csds = 0 and, from Eq. (A.11), limt→T cT,tax > limt→T cT,no.

Therefore, the RHS of Eq. (A.10) is strictly larger in the tax case (note that limt→T λt =

λT in both, the tax as well as the no-tax case), and thus Property 5 (see Section 2) implies

lim
t→T

rt,tax < lim
t→T

rt,no. (A.12)

Because all our variables evolve smoothly over time Eqs. (A.11) and (A.12) imply that

there exists a t∗ that meets the de�nition that the two variants' extraction rates equate

each other for the last time in the pre-T period, i.e. such that

rt∗,tax = rt∗,no, (A.13)

and

rt,tax < rt,no ∀t∗<t≤T . (A.14)

Relation Eq. (A.14) implies that the di�erence At,tax −At,no is strictly decreasing during
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the time between t∗ and T , which, considering Eq. (A.11) can only hold if

ct,tax > ct,no ∀t∗≤t≤T . (A.15)

Eq. (A.13) and Eq. (A.10), as well as the fact that τt ≥ 0 imply

ct∗,tax +

ˆ T

t=t∗
eρ(t∗−t) ·ct,taxdt ≤ ct∗,no +

ˆ T

t=t∗
eρ(t∗−t) ·ct,nodt, (A.16)

and thus ˆ T

t=t∗
eρ(t∗−t)(

·
ct,no −

·
ct,tax)dt ≥ ct∗,tax − ct∗,no. (A.17)

As according to Eq. (A.15) the RHS of Eq. (A.17) is strictly positive, it is easy to see

that Lemma 2 (Part C of the Annex) implies that Eqs. (A.15) and (A.17) cannot be

reconciled, which concludes our proof by contradiction. �

(E) Proof of Lemma 1

First, note that from Property 5 (see Section 2) we know that, for a �xed tax, an increase

in the value of the RHS of the �rst order condition yields a decrease of the momentary

extraction rate.

Suppose that the value of the LHS expression in the FOC decreases when rt is �xed and

the tax τt is increased from zero to a positive value. Consider further a no-tax case, where

the RHS has an initial value, called RHS0, yielding an initial extraction rate rt,0 at which

the RHS and the LHS of the FOC are equalized. As we suppose, adding a tax τt decreases

the value on the LHS of the FOC when rt,0 is hypothetically held constant in a �rst step.

We thus would need to have a lower hypothetical RHS-value, RHS1 in order for the FOC to

be equalized in the new situation with the tax. Now, the RHS-value is however given and

will not really be reduced to RHS1 but remain at RHS0. In order to see what this implies

for the instantaneous extraction rate, we then consider in a second step a hypothetical re-

increase of the RHS-value from RHS1 to RHS0. Along with this hypothetical re-increase of

the RHS, we, however, will have to decrease the instantaneous extraction rate in order for

both sides of the FOC to still be equalized. This shows that if adding an instantaneous

tax τt decreases the LHS-value of the FOC, then the extraction rate at that time will have

to decrease, given that the value on the RHS remains unchanged. We are now proceeding

to show that the tax τt will indeed decrease the LHS-value at time t, which therefore

implies that it will decrease the extraction rate rt. This will conclude our proof. Note

that showing this property is not as obvious as it may seem at �rst sight, as adding a tax

in region 1 and leaving worldwide demand unchanged, does not simply mean to decrease

a demand, but to eventually decrease demand in Region 1 and simultaneously increase
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the demand in Region 2.

While pR(rt, τt) unambiguously decreases with an increasing tax for a given rt, this cannot

be claimed to necessarily be the case for the second term of the LHS of the corresponding

FOC, ∂pR(rt,τt)
∂r

, without any further assumptions about the demand function. Here, we

show that the reduction of pR induced by a tax, i.e. - [pR(rt, τt)− pR(rt, 0)], unambiguously

dominates the potential increase of the second term, i.e.
[
rt
∂pR(rt,τt)

∂r
− rt ∂pR(rt,0)

∂r

]
, at least

for not too large tax levels and demand curves with �nite derivatives, wherewith the

direct e�ect of the tax at time t unambiguously reduces the extraction rate in the current

period, rt.

Be r(p), the worldwide demand curve for the resource, a continuous, strictly decreasing

function with a third derivative that is �nite for any p > 0. The worldwide demand is

split into the regional demands r1 and r2, such that for a worldwide equal price, demand

in Region 2 corresponds to x times the demand in Region 1:

r1 + r2 = r

r2(p) = x · r1(p) (A.18)

Eq. (A.18) implies that all derivatives of the regional demand function di�er by a factor

x as well:

r
(i)
2 (p) = x · r(i)

1 (p), (A.19)

where the indice (·)(i) denotes the ith derivative.

When Region 1 introduces a tax, the consumer price for the resource in that region, p1,

exceeds the consumer price in the tax free Region 2, p2, as well as the sales price for the

resource owners, pR, by the tax rate τ :

p1 = p2 + τ = pR + τ

The aggregate demand for a given sales price and a speci�c tax rate is

r(pR, τ) = r1(p1) + r2(p2) = r1(pR + τ) + r2(pR). (A.20)

As the demand curves in the two regions are continuous and strictly decreasing, Eq.

(A.20) directly implies that the worldwide demand is strictly decreasing as well in pR as

in τ . It is therefore clear that the inverse demand curve, here the sales price which for a

given tax yields a speci�c aggregate demand, pR(r, τ), is strictly decreasing in r.

In the following, we will use the syntax ∆var in order to express the discrete change of
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the value of the variable var resulting from the introduction of the tax:

∆var ≡ vartax − varno tax

Consider the hypothetical case where a consumer tax is introduced in Region 1 and the

sales price demanded by the resource owners is adapted accordingly in a way that overall

the introduction of the tax does imply an unchanged global consumption. In this case,

demand in Region 1 would have to decline by exactly the same amount as the demand

in Region 2 would increase, and the corresponding changes in the regions' sales, denoted

∆r, would have to exactly have the size that implies that the price di�erence between the

two regions amounts to the level of the tax,

∆p1 + ∆p2 = τ. (A.21)

Consider the illustration in Fig. A.1.
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Figure A.1: Hypothetical situation of regional tax which is neutral for global emissions

In a �rst approximation we have:

∆r ≈ ∆p1 · r′1(p0) (A.22)

∆r ≈ ∆p2 · r′2(p0) (A.23)

With the inclusion of Eq. (A.19), using Eqs. (A.22) and (A.23) in Eq. (A.21) implies

∆p2 ≈
τ

1 + x
, (A.24)
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wherewith

pb ≈ p0 −
τ

1 + x
. (A.25)

Eq. (A.25) expresses that, in order to keep aggregate demand constant, the sales price

for the resource owner must decease by a value that is approximately proportional to the

tax rate.

From Eqs. (A.24) and (A.21) follows

∆p1 ≈ x ·∆p2. (A.26)

In order to be able to make a statement about the corresponding change of the global

demand, ∂pR(r,τ)
∂r

, we again develop two Taylor approximations:

r′1(p1) ≈ r′1(p0) + ∆p1 · r′′1(p0) +
(∆p1)2

2
r′′′1 (p0) (A.27)

r′2(p2) ≈ r′2(p0)−∆p2 · r′′2(p0) +
(∆p2)2

2
r′′′2 (p0) (A.28)

≈ x · r′1(p0)−∆p1 · r′′1(p0) +
(∆p1)2

2x
r′′′1 (p0), (A.29)

where the minus sign for the second term on the right hand side in Eq. (A.28) is due to

the fact that ∆p2 is de�ned in absolute terms, and where Eq. (A.29) follows from Eq.

(A.28) using Eq. (A.19) as well as Eq. (A.26).

As ∂r
∂p

= ∂r1
∂p

+ ∂r2
∂p
, relying on continuity of all relevant functions we know that ∂p

∂r
=[

∂r1
∂p

+ ∂r2
∂p

]−1

and we can therefore write

∆

[
∂pR
∂r

]
=

1

r′1(pR + τ) + r′2(pR)
− 1

r′1(p0) + r′2(p0)
.

By using Eqs. (A.27) and (A.29), as well as Eq. (A.19), we can thus approximate this

response of the �rst derivative of the selling-price, ∂pR
∂r

, to the introduction of the tax as

∆

[
∂pR
∂r

]
≈ 1

(1 + x)r′1(p0) + (∆p1)2 (1 + 1
x

)
r′′′1 (p0)/2

− 1

(1 + x)r′1(p0)
.

For relatively small (∆p1)2 this approximates to

∆

[
∂pR
∂r

]
≈ - (∆p1)2 r′′′1 (p0)

2x(1 + x)r′1(p0)2
,

which is proportional to the square of the tax induced price change.

The response of the seller price which leaves the global demand unchanged to the intro-
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duction of the tax, ∆p = pR − p0, can be approximated using Eq. (A.25):

∆p ≈ -
τ

1 + x

Using Eqs. (A.24) and (A.26) we therefore have the following ratio between the direct

e�ect of the tax on the seller price which leaves global demand unchanged and the corre-

sponding change of the price's derivative with respect to r:

∆
[
∂pR
∂r

]
∆p

≈ τ · x · r′′′1 (p0)

2 (1 + x)2 r′1(p0)2
, (A.30)

whose sign depends on the not speci�ed sign of r′′′(p0).

As the ratio in Eq. (A.30) is proportional to the tax rate, and the factor by which this

tax rate is multiplied cannot be in�nite due to the boundedness of our derivatives of

the demand function, we thus know that ∆p is larger in absolute terms than any �nite

multiple of ∆
[
∂pR
∂r

]
for taxes that are not too large, which proves our claim. �

(F) Proof of Proposition 5

Having a constant periodic probability (ψ) that a backstop technology may arise, we know

from Dasgupta and Heal (1974) that the resource owners' maximization problem di�ers

from the deterministic case without backstop solely by a corresponding increase of the

discount factor. The �rst order conditions can thus be written as

Pt(rt) = c(At) + τeθt + λt (A.31)

λ̇t = λt(ρ+ ψ)− ċt.

De�ning δ ≡ (ρ+ ψ), we get

λt = λT e
δ(t−T ) +

ˆ T

s=t

eδ(t−s)
·
csds. (A.32)

We are considering an exponentially increasing tax, τt = τ0e
θt, where θ may exceed ρ, as

long as θ < δ.

We use the same syntax as in the proof for Lemma 1: ∆var ≡ vartax − varno tax, where

var can be a single variable or a combined mathematical term.

Note that, as the no-tax case corresponds to simply setting τt,no tax = 0 ∀
t≥0

and in the tax

case we have τt,tax > 0 ∀
t≥0

, we know that ∆τt > 0 ∀
t≥0

.

In the next step we are going to show by contradiction that the described tax path cannot

lead to increased cumulative emissions for any point in time:
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Assume thus, hypothetically, that the contrary holds, i.e. ∆At > 0 for some t.

We treat two possible subcases separately:

-Subcase 1: Suppose, ∃t0 s.t.

∆At0 = 0 (A.33)

and ∆At > 0 ∀
t0<t<∞

. (A.34)

This requires ∆rt0 ≥ 0, and therefore, due to Eq. (A.31) and Property 5, that ∆[λt0 +

τt0 ] ≤ 0, wherewith we have

∆λt0 < 0. (A.35)

However, from Eq. (A.32) (and the transversality condition), we know that λt0 =´∞
t=t0

eδ(t0−t)
·
ctdt, which can be rewritten as

λt0 = eδt0
ˆ ∞
t=t0

e−δt
·
ctdt. (A.36)

It is, however, straightforward to see that Eqs. (A.33) through (A.36) are not reconcilable

with Lemma 2 (Part C of the Annex). Therewith it is shown by contradiction that subcase

1 is impossible. �Subcase 1.

-Subcase 2: Suppose ∃t1, t2, t1 < t2, s.t.

∆At1 = 0 ∧ ∆rt1 ≥ 0, (A.37)

∆At2 = 0 ∧ ∆rt2 ≤ 0, (A.38)

and ∆At ≥ 0 ∀
t1<t<t2

. (A.39)

Eqs. (A.37) and (A.38) imply

∆ct1 = 0 ∧ ∆ct2 = 0, (A.40)

and therewith also

∆[λt1 + τt1 ] ≤ 0, (A.41)

and ∆[λt2 + τt2 ] ≥ 0.

Eq. (A.39) indicates that

∆ct > 0 ∀
t1<t<t2

. (A.42)
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From Eq. (A.32) we know

λt1 = λt2e
δ(t1−t2) +

ˆ t2

t1

eδ(t1−t)ċtdt.

De�ning µt ≡ λte
-θ(t−t1), which yields µt1 = λt1 and λt2 = µt2e

θ(t2−t1), we can write

µ0 = λ0 = µt2e
[δ−θ](t1−t2) +

ˆ t2

t1

eδ(t1−t)ċtdt.

Consider

∆[λt2 + τt2 ] ≥ 0⇒ e-θ(t2−t1)∆[λt2 + τt2 ] ≥ 0⇒ ∆[µt2 + τt1 ] ≥ 0. (A.43)

As ∆τt1 > 0 the last expression in Eq. (A.43) implies

∆[aµt2 + τt1 ] > 0 ∀
0≤a<1

. (A.44)

From Eq. (A.41) we know ∆[µt1 + τt1 ] ≤ 0, which we can rewrite as

∆[µt2e
[δ−θ](t1−t2)︸ ︷︷ ︸

<1

+

ˆ t2

t1

eδ(t1−t)ċtdt+ τt1 ] ≤ 0. (A.45)

Eqs. (A.44) and (A.45) imply

∆[

ˆ t2

t1

eδ(t1−t)ċtdt] ≤ 0. (A.46)

However, Eqs. (A.46), (A.40) and (A.42) violate Lemma 2 (Part C of the Annex), a

contradiction. �Subcase 2.

If the tax were to increase cumulative emissions for some period, either subcase 1 or

subcase 2 would have to hold: we have A0 = 0 in any case, and for any t∗ where ∆At∗ > 0

there must exist a latest preceding period, t, t < t∗, for which the tax does not impact the

cumulative emissions, ∆At = 0 (t may be 0). Then, there exist two possibilities: either

the tax will increase cumulative emissions for all periods after time t - this is subcase 1 -,

or there exists some future period for which the cumulative emissions are not a�ected by

the tax - this is subcase 2. Therefore, the shown inconsistency of both subcases prooves

that the considered taxes cannot increase the cumulative emissions, At, for any period t.

In addition, it is impossible that the tax does not change any periods' emissions: if this

were the case, then λt would be unchanged as well, but in this case the tax τt would a�ect

the extraction rate rt in Eq. (A.31). Thus, the considered tax necessarily reduces the

32



emissions, at least in some periods.

We conclude that the considered tax (i) does not increase any period's cumulative emis-

sions, (ii) reduces cumulative emissions at least for some periods, and (iii) thus unam-

biguously reduces the expectancy of the cumulative emissions, QED. �
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