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Abstract

We propose a class of distribution-free rank-based tests for the null hypothesis of a unit

root. This class is indexed by the choice of a reference density g, which needs not co-

incide with the unknown actual innovation density f . The validity of these tests, in

terms of exact finite sample size, is guaranteed, irrespective of the actual underlying den-

sity, by distribution-freeness. Those tests are locally and asymptotically optimal under

a particular asymptotic scheme, for which we provide a complete analysis of asymptotic

relative efficiencies. Rather than asymptotic optimality, however, we emphasize finite-

sample performances. Finite-sample performances of unit root tests, however, depend

quite heavily on initial values. We therefore investigate those performances as a function

of initial values. It appears that our rank-based tests significantly outperform the tra-

ditional Dickey-Fuller tests, as well as the more recent procedures proposed by Elliot,

Rothenberg, and Stock (1996), Ng and Perron (2001), and Elliott and Müller (2006), for

a broad range of initial values and for heavy-tailed innovation densities. As such, they

provide a useful complement to existing techniques.
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1. Introduction

1.1. Autoregressive unit root models

The econometric and statistical literature dealing with near unit root asymptotics in

time series models is overabundant. The presence or absence of unit roots in economet-

ric models indeed has crucial economic policy implications. Even a short review of the

literature is impossible here, and we refer to Haldrup and Jansson (2006) for a recent

survey.

Unit root problems generally lead to non-standard asymptotics. The study of least-

squares estimators in zero-mean unit-root autoregressive processes started with White

(1958), but gained attention more widely after the publication of Dickey and Fuller

(1979); unit root testing problems were first studied in detail in Dickey and Fuller (1981).

In this paper, we restrict ourselves to the simplest possible case of a univariate AR(1)

unit root model with i.i.d. innovations. Extensions to multivariate settings, cointegration,

panel data, more elaborate trends involving covariates, and heteroskedastic innovations

fall within the general ideas of the present paper but their technical implications are not

pursued here. Examples of such extensions are Phillips (1987), Chan and Wei (1988),

Phillips and Perron (1988), Perron (1988), West (1988), Johansen (1991), Phillips (1991),

Levin, Lin and Chu (2002), Im, Pesaran, and Shin (2003), and Elliott and Jansson (2003),

to name only a few.

Within that very simple context, we are interested in the construction of “efficient”

tests of the null hypothesis of a unit root. Whether theoretical asymptotic optimality

results or simulations are considered, assessing the “efficiency” of such tests requires

embedding the null hypothesis of a unit root into a broader model of AR(1) dependence.

The literature (see, for instance, the monographs by Hamilton (1994) or Enders (2004))

traditionally considers two of them, under which the observation (Y1, . . . , Yn) either is

generated from

– Model (a) (a very simple model of the ARMAX type2)

Yt = ρYt−1 + µ + εt, (1)

2Hamilton (1994) and Enders (2004) actually consider a slightly more general equation, of the form
Yt = ρYt−1 + µ + γt + εt; see Remark 2.3.

2



or from

– Model (b) (the so-called components model)

(Yt − m) = ρ(Yt−1 − m) + εt. (2)

In both cases, it is generally assumed that {εt, t ∈ N} is an i.i.d. innovation process,

with mean zero and variance σ2
ε , and a distribution function F admitting a density f .

As for the initial value Y0, it is often assumed to be equal to zero in Model (a), or to

the stationary mean m in Model (b). It is safer, however, to leave the distribution PY0

of Y0 unspecified, provided that Y0 and the εt’s are mutually independent, and that PY0

does not depend on the parameters ρ, µ or m; Y0 then is ancillary, and inference on ρ is

naturally conducted conditionally on Y0.

Intuitively, Model (a) describes an autoregressive scheme in which the random shocks

are i.i.d. with constant mean µ, whereas in Model (b) the i.i.d. shocks have mean zero,

while the observations have (constant) mean m.

For ρ < 1, those two models, under two parameterizations, actually strictly coincide:

indeed, (1) and (2), for µ = (1 − ρ)m, describe the same autoregressive data-generating

process. As for ρ = 1, Model (a) takes the form

H0 : Yt − Yt−1 = µ + εt, µ ∈ R unspecified (3)

yielding the (first- as well as second-order nonstationary) random walk

Yt = Y0 + µt + ut, ut :=

t∑

s=1

εs (4)

with conditional drift E[Yt|Y0] = Y0+µt and conditional variance Var(Yt|Y0) = tσ2
ε . That

null hypothesis H0 strictly contains the null hypothesis

H
(b)
0 : Yt − Yt−1 = εt, m ∈ R unspecified (5)

(m under H
(b)
0 is not identified) induced by Model (b), which characterizes the second-

order nonstationary but first-order stationary random walk

Yt = Y0 + ut, ut :=

t∑

s=1

εs (6)
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with constant conditional mean E[Yt|Y0] = Y0 and variance Var(Yt|Y0) = tσ2
ε .

From the point of view of local asymptotic experiments, however, Models (a) and (b)

differ dramatically. While Model (a), as we shall see, defines local experiments that are

nicely (be it with nonstandard n3/2 consistency rates) LAN (Locally Asymptotically Nor-

mal) at the null hypothesis H0 of unit root3, Model (b) at H
(b)
0 yields a considerably

more tricky asymptotic structure, of the LABF (Locally Asymptotically Brownian Func-

tional) type, for which no uniform optimality results exist—see Elliot, Rothenberg, and

Stock (1996), Rothenberg and Stock (1997), Thompson (2004), and Jansson (2008). We

refer to Gushchin (1996), Ploberger (2004, 2008), and Jansson and Moreira (2006), for

recent developments on experiments of the LABF and the (more general) LAQ (Locally

Asymptotically Quadratic) type.

For any fixed n, thus, the differences between Model (a) and (b) are extremely tenuous:

for ρ < 1, they strictly coincide, whereas, for ρ = 1, Model (a) is more general, since H0

includes H
(b)
0 as a special case. It follows that the choice between (1) and (2) is not

really a choice between two models, but a choice between two types of asymptotics: the

debate is about (a)-asymptotics versus (b)-asymptotics rather than Model (a) versus

Model (b). This is a debate we do not enter into here. Asymptotics in this paper are

just a mathematical device, which is used to suggest “sensible” testing procedures for

the finite-sample problem at hand. Rather than parametric or semiparametric efficiency,

or ARE values, which presuppose a specific asymptotic scheme, the ultimate benchmark

for the procedures we are describing here are their finite-sample performance under the

alternative, where Models (a) and (b) coincide, so that no particular choice needs to be

made.

1.2. Outline of the paper

The remainder of the paper accordingly is organized in two main parts: Section 2,

which is devoted to asymptotics, and Section 3, dealing with finite-sample performances.

Much attention has been given, in the recent literature, to (b)-asymptotics. The anal-

ysis we are developing in Section 2 is based on (a)-asymptotics4, which, apparently, have

3with degenerate Fisher information at µ = 0, though.
4We once more emphasize that asymptotics here are just an agnostic mathematical device, the con-

sequences of which are to be evaluated (Section 3) on the basis of finite-sample performances.
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not been considered so far in this context, and suggest a class of very simple tests, for

which moreover rank-based, hence finite-sample distribution-free versions, exist. Being

distribution-free, those tests are valid, for finite sample size n, irrespective of the inno-

vation density f (no moment restrictions5), and irrespective of the model ((a) or (b)).

We provide a full analysis of the limiting properties of those tests: asymptotic null dis-

tributions and, under (a)-asymptotics, local powers and asymptotic relative efficiencies

(AREs).

Section 3 is devoted to a numerical investigation of the finite-sample performance

of the tests described in Section 2—an investigation that does not require any choice

between Model (a)- or (b), as both models describe the same data-generating processes

under the alternative. That finite-sample analysis brings into the picture an important

new feature of the problem: the influence of the initial observation Y0. Müller and Elliott

(2003) show that the deviation of Y0 from the stationary mean has a dramatic influence

on the finite-sample performance of all unit-root tests. In empirical applications it is

generally impossible to tell whether that deviation is small or large. Elliott and Müller

(2006) provide a discussion for this; in Section 3.2 below, we are following their suggestion

of evaluating empirical performances as a function of Y0−m by adopting their simulation

design. The results show that our rank tests significantly outperform all their competitors

(the traditional Dickey-Fuller procedures, as well as the tests by Elliot, Rothenberg,

and Stock (1996), Ng and Perron (2001), and Elliott and Müller (2006)) whenever the

deviation Y0−m of the initial value Y0 from the stationary mean is “large”, and whenever

the innovation distribution is heavy-tailed.

Section 4 concludes, while proofs are gathered in an Appendix.

1.3. Rank tests

Before turning to asymptotics, let us provide some details about the rank-based tests

we are proposing. Our test statistics are based on the ranks Rt of the increments ∆Yt :=

Yt − Yt−1. Let g be a given density (the so-called reference density), not necessarily

the actual underlying one f . We assume throughout that g belongs to the class F of

densities h that are absolutely continuous with a.e. continuous derivative h′ and finite

5In the absence of first-order moments, m and µ can be reinterpreted as medians rather than means.
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Fisher information for location Ih :=
∫

(h′/h)
2
dH ∈ (0,∞), and for which

lim
n→∞

1

n

n∑

i=1

{
h′

h

(
H−1

( i

n + 1

))}2

= Ih (7)

(as usual, F , G, H denote the distribution functions associated with f , g, h).

We stress again that, as far as the validity of our test is concerned, we do not make

any assumptions on f (our tests are strictly distribution-free). If, however, asymptotic

optimality, under density f and (a)-asymptotics, is to be considered, then we need to

impose f ∈ F .

Motivated by the asymptotic analysis of Section 2, our test statistics take the form

T (n)
g :=

1√
n

n∑

t=1

(
t

n + 1
− 1

2

)
ϕg

(
Rt

n + 1

)
, (8)

with ϕg(u) := −g′
(
G−1(u)

)
/g
(
G−1(u)

)
, u ∈ (0, 1). Under the null hypothesis H0, hence

also under the null hypothesis H
(b)
0 , the vector of ranks (R1, . . . , Rn), and therefore the

test statistics T
(n)
g , are distribution-free with respect to µ and f . In particular, this implies

that exact critical values for T
(n)
g -based tests can be easily computed or simulated for

finite n, despite the unspecified f and µ.

The form of the test statistic (8) actually follows from optimality considerations under

(a)-asymptotics and µ 6= 0. In Section 2, we derive its local power and compare it to the

efficiency bound obtained from the LAN property (derived in Section 2.3). That local

power does depend on both the reference density g and the actual underlying density f .

We show that a correctly specified reference density g = f leads to a test that achieves the

efficiency bound and thus is parametrically efficient. As a result, while our tests are valid

irrespective of the reference and underlying densities, they are locally and asymptotically

efficient, in Model (a) (with µ 6= 0), in case of a correctly specified g.

This situation thus is tantamount to quasi- or pseudo-maximum likelihood estimation,

where choosing a (Gaussian) reference density leads to an estimator that (often) remains

consistent even when the reference density is misspecified, while attaining the parametric

efficiency bound in case the actual underlying density is Gaussian. In general, the limit-

ing variance of such estimators, however, depends on both the true and the (Gaussian)

reference density. Our tests have a comparable property, with the important difference
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that we may use any density g as a reference density, while quasi or pseudo likelihood

procedures are generally restricted to a Gaussian g (when using another reference density

the estimators, in general, do not remain consistent under misspecified innovation den-

sity). Moreover, for our tests, the reference density can even be pre-estimated in order to

achieve (parametric) efficiency uniformly over a broad class of densities f—without any

sacrifice at the level of validity (see Section 2.6).

Now, in case (b)-asympotics are to be preferred, the tests based on T
(n)
g , as already

mentioned, remain valid; but their asymptotic optimality properties are lost. However,

their fixed-alternative performances are unchanged: see Section 3.

Distribution-freeness is another attractive property of our tests. The need for exact

and distribution-free inference in econometrics often has been emphasized: see, for in-

stance, Dufour (1997) or Coudin and Dufour (2009). Despite of that recognized need,

distribution-free procedures remain extremely rare in the context of time series econo-

metrics. Campbell and Dufour (1995), Campbell and Dufour (1997), and Luger (2003)

consider testing orthogonality restrictions using sign- and rank-based tests instead of

regression-based approaches. These methods are based on zero-median or symmetry as-

sumptions and, using extensive simulation, are shown to beat regression-based tests.

Hasan and Koenker (1997) extend these results using regression rank-scores in order to

deal with the nuisance parameter problem. Their focus of interest again is the zero-mean

unit root model. Hasan (2001) further allows for infinite variances; no formal optimality

analysis is given. Thompson (2004b) reconsiders these tests in order to improve their

power, especially under fat-tailed error distributions. Finally, we mention Breitung and

Gouriéroux (1997) who consider the hypothesis that some transformation of the process

exhibits a unit root. They propose a test based on the ranks of the observed time series

(not those of residuals).

2. Asymptotic theory

2.1. Rank tests: exact versus approximate scores

It turns out that deriving results on the asymptotic size and (under (a)-asymptotics)

local power of our test is easier when the test statistic (8) is slightly adjusted, replacing ϕg

by

ϕ̃g(u) := EG {ϕg (G (εt))|Rt = ⌊u(n + 1)⌋} , u ∈ (0, 1). (9)
7



Note that ϕ̃g, contrary to ϕg, depends on the number of observations n. Clearly, the
statistic based on ϕg is simpler to compute, although the function ϕ̃g is easily simu-
lated using distribution-freeness of the ranks. Whereas (8), in the literature on rank-

based inference, is known as the approximate score version of T
(n)
g , using ϕ̃g in T

(n)
g

yields the so-called exact score version. This exact score version is more convenient for
proofs as its expectation is identically zero irrespective of the true underlying density f :
E {ϕ̃g(Rt/(n + 1))} = EG {ϕg (G(εt))} = 0. Incidentally, note that the average of the
weighting constants t/(n+1)−1/2 in (8) equals zero as well. When n is large and condi-
tionally on the rank of εt being Rt = i, G (εt) is approximately equal to i/(n + 1). This

intuitively explains why the ϕg- and ϕ̃g-based versions of T
(n)
g behave similarly. This is

formalized in the following result.

Lemma 2.1 If the reference density g belongs to F , we have, as n → ∞, under the null
hypothesis H0 of unit root,

T (n)
g =

1√
n

n∑

t=1

(
t

n + 1
− 1

2

)
ϕ̃g

(
Rt

n + 1

)
+ oP(1). (10)

Proof: This is a well-known result on the asymptotic equivalence of the approximate

and exact score versions of (linear) rank statistics, which is proved at various places; see,

for instance, Theorem 13.5 in Van der Vaart (2000). 2

Remark 2.1 A consequence of the Local Asymptotic Normality result proved in Propo-
sition 2.1 below is mutual contiguity of the probability measures at the unit root (ρ = 1)
and those near the unit root (ρn = 1−O(n−3/2)). The asymptotic equivalence (10), there-
fore, is preserved under contiguous sequences. Consequently, in expressions like (10), we
do not have to worry whether oP’s are taken at the unit root or near the unit root. This
consequence of contiguity will be used throughout the paper without further mention.

Condition (7) on ϕg is satisfied for all standard reference densities g: Gaussian, lo-

gistic, double-exponential, Student (including Cauchy), etc. Under this condition, the

asymptotic equivalence in (10) implies that all results concerning asymptotic size, power

(under contiguous alternatives), and efficiency carry over from one statistic to the other:

whether exact or approximate scores are considered has no impact on asymptotic results.

2.2. Rank tests: Asymptotic size

In view of distribution-freeness, one easily constructs, via simulations, tests based on T
(n)
g

with exact finite-sample sizes, irrespective of µ and f . Asymptotic critical values can be

obtained from a normal distribution with variance Ig/12, as shown by the following result

(see the appendix for a proof).
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Theorem 2.1 Let (ε1, . . . , εn) be i.i.d. from a continuous distribution with density f
and denote by Rt the rank of ∆Yt among ∆Y1, . . . , ∆Yn. Let the reference density g
belong to F . Then, as n → ∞ and under H0,

√
12/IgT

(n)
g ⇒ N (0, 1). (11)

Note that
√

12/IgT
(n)
g is scale-free. If σ is a scale parameter associated with g (not

necessarily a standard error, though), writing gσ for g and g1 for the corresponding

standardized density (such that gσ(x) = 1
σ g1(

x
σ )), we have indeed

√
12/Igσ

T
(n)
gσ =

√
12/Ig1

T
(n)
g1

.

We insist, once again, that no assumptions are made on f which, in particular, needs

not have finite moments nor belong to F . Moreover, Theorem 2.1 is equally valid for

Model (a) as well as Model (b) as a result of the distribution-freeness also with respect

to µ. For instance, Theorem 2.1 still applies under heavy-tailed innovations such as

Cauchy or Lévy ones, while the Dickey-Fuller statistic may break down. This fact will be

confirmed in Section 3 by finite-sample simulations. Unlike their size, however, the power

of our tests depends both on the chosen reference density g and the actual underlying

density f (actually, on their standardized versions, g1 and f1); for f ∈ F , explicit values

are provided in Theorem 2.2 below.

2.3. Limit experiment and efficient inference

As mentioned in the introduction, the limiting experiments, under (a)-asymptotics,

crucially depend on the value of µ, leading to (a)-asymptotics for µ 6= 0 and to (b)-

asymptotics for µ = 0. In the latter case, the limit experiment (for the model with

single parameter ρ) is Locally Asymptotically Brownian Functional (LABF) with rate of

convergence n, as shown by Jeganathan (1995), and departures of the order of n−3/2 from

the unit-root hypothesis cannot be detected. This LABF-result is exploited in Jansson

(2008) to derive power envelopes for unit root tests.

As shown in the next result, the situation is quite different, and much simpler, under

(a)-asymptotics at rate n−3/2.

Proposition 2.1 Consider Model (a) with innovation density f ∈ F , and denote by P
(n)
(µ,ρ);f

the joint distribution of (Y1, . . . , Yn) under (1).

(i) The family
{
P

(n)
(µ,ρ);f | µ ∈ R, ρ ∈ [−1, 1]

}
is Locally Asymptotically Normal (LAN) at

any (µ, ρ = 1), for local alternatives of the form (µn = µ+h1n
−1/2, ρn = 1+h2n

−3/2),
9



with central sequence

[
∆

(n)
µ

∆
(n)
ρ

]
:=




n−1/2

n∑

t=1

−f ′

f
(∆Yt)

µn−1/2

n∑

t=1

t

n + 1

−f ′

f
(∆Yt)


 (12)

and Fisher information

If

[
1 µ/2

µ/2 µ2/3

]
. (13)

More precisely, ∆Yt = µ + εt under P
(n)
(µ,1);f , and, as n → ∞,

log
dP

(n)
(µn,ρn);f

dP
(n)
(µ,1);f

= h1n
−1/2

n∑

t=1

−f ′

f
(εt) + h2µn−1/2

n∑

t=1

t

n + 1

−f ′

f
(εt)

−If

2

(
h2

1 + µh1h2 +
µ2

3
h2

2

)
+ oP(1)

and [
∆

(n)
µ

∆
(n)
ρ

]
⇒ N

(
0, If

[
1 µ/2

µ/2 µ2/3

])
.

For µ = 0, however, this LAN result is a degenerate one, with information matrix

If

[
1 0
0 0

]
.

(ii) If f has finite variance, the subfamily
{
P

(n)
(µ,ρ);f | µ = 0, ρ ∈ [−1, 1]

}
is Locally

Asymptotically Brownian Functional (LABF) for local alternatives of the form ρn =
1 + h2n

−1.

Proof: See the Appendix. 2

Remark 2.2 The LAN result of Proposition 2.1 does not require h2 ≤ 0: all claims in
this paper can easily be rephrased in the context of testing H0 : ρ = 1 against H1 : ρ > 1
and H0 : ρ = 1 against H1 : ρ 6= 1.

Remark 2.3 In case one considers the model Yt = ρYt−1 + µ + γt + εt, i.e. a model
including a linear time-trend, the LAN result still holds true when γ 6= 0, but with
consistency rate (for ρ) n5/2 instead of n3/2.

Remark 2.4 The fact that the Fisher information for ρ in (13) vanishes for µ → 0
confirms that ρ indeed cannot be estimated at rate n3/2 whenever µ = 0.

Remark 2.5 An initial value Y0 with distribution depending on ρ, such as

Y0 ∼ N (µ/(1 − ρ), σ2
f/(1 − ρ2)),

10



can deteriorate the LAN result. In such situations, our LAN result still holds conditional
on Y0. In this way one ignores the statistical information possibly contained in Y0, and
restricts attention to the differenced observations ∆Y1, . . . , ∆Yn.

Local Asymptotic Normality, via the Hájek and Le Cam asymptotic theory of sta-

tistical experiments (see, e.g., Chapters 7 and 9 of Van der Vaart (2000)) completely

characterizes the local and asymptotic features of the statistical experiment under study.

Not only does it induce the asymptotic optimality bounds for statistical inference, but

it also indicates how central-sequence-based procedures achieve those bounds. Accord-

ingly, it follows from Proposition 2.1 that a locally and asymptotically optimal test for

H0 : ρ = 1, under (a)-asymptotics, in case the innovation density f is known, and con-

sidering µ 6= 0 a nuisance parameter, should be based on (any monotone transformation

of)

I−1
f

(
∆(n)

ρ − µ

2
∆(n)

µ

)
=

µ

If
n−1/2

n∑

t=1

(
t

n + 1
− 1

2

) −f ′

f
(∆Yt) (14)

(see, for instance, Section 11.9 of Le Cam (1986)). Clearly, the magnitude of the constant

factor µ/If can be ignored in the construction of that test. Since the sign of µ is unspec-

ified, both one- and two-sided versions are meaningful. In the remainder of this section,

we focus on the empirically more relevant case of µ > 0; asymptotic theory then leads to

rejecting (as the alternative is ρ < 1) for small values of the test statistic. In Section 3,

however, we evaluate finite-sample performance for µ = 0, and consider two-sided tests.

Statistics of the form

S(n)
g := n−1/2

n∑

t=1

(
t

n + 1
− 1

2

) −g′

g
(∆Yt) (15)

thus are interesting candidates as test statistics for our problem, and reach parametric

efficiency in case f = g. Unfortunately, S
(n)
g is not distribution-free.

The situation is totally different if we turn to T
(n)
g . Under f = g, indeed, it follows

from (15), (23) and Lemma A.1 that T
(n)
g = S

(n)
g +oP(1) under H0 and f = g. In case the

actual density coincides with g, T
(n)
g thus shares all the nice optimality features of S

(n)
g .

The essential difference is that, being distribution-free, its finite-sample null distribution

is the same under f 6= g as under f = g: T
(n)
g thus does not require f to be specified,

and naturally qualifies as a solution for our testing problem, while achieving efficiency

at the chosen reference density g.
11



2.4. Local powers

The asymptotic power of our rank-based test statistics T
(n)
g against local (under

(a)-asymptotics) unit root alternatives follows directly from the so-called Le Cam third
lemma, provided that f and g both satisfiy the assumptions of Proposition 2.1.

Theorem 2.2 Consider the model (1) with innovation density f ∈ F and Y0 ∼ L. Let

the reference density g also be in F . Then, under P
(n)
(µ,ρn);f , where ρn = 1 + hn−3/2,

T (n)
g ⇒ N (hµIfg/12, Ig/12) as n → ∞, (16)

with

Ifg :=

∫ 1

u=0

ϕg(u)ϕf (u)du. (17)

Proof: See the Appendix. 2

Whenever µ 6= 0, our test has power against alternatives that are at distance n−3/2

from the unit root. This is, of course, much more precise than the usual n−1/2 rate.

It is more precise, too, than the n−1 rate that can be attained in case µ = 0, see

Proposition 2.1. In that case, however, no test can have local power against alternatives

at rate n−3/2.

It is interesting to compare (still under (a)-asymptotics) the power of our test statistic

to that of the classical Dickey-Fuller test. For this comparison we choose the asymptot-

ically optimal Dickey-Fuller test for Model (a), that is, based on the least-squares esti-

mate ρ̂DF
n of ρ in (1). The asymptotic properties of this classical Dickey-Fuller statistic

are well known and we have the following corollary to Theorem 2.2.

Corollary 2.1 Let f and g belong to F ; assume µ > 0 and that f moreover has finite
variance σ2

f . The Asymptotic Relative Efficiency, for the unit root hypothesis H0 : ρ = 1,

of the one-sided rank test based on T
(n)
g with respect to the Dickey-Fuller test based on

ρ̂DF
n is, under density f ,

AREf (T (n)
g |DF) = |Ifg|3σ3

f/I3/2
g . (18)

Proof: See the Appendix 2

Remark 2.6 The AREf in (18) is defined as the limit, as n → ∞, of the ratio nDF /n,
where nDF is the number of observations needed in the Dickey-Fuller test to achieve the
same performance (in terms of power) as of our rank-based test using n observations.
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Actual density f
Reference density g Gaussian logistic DExp t3 Cauchy
Gaussian (van der Waerden) 1.00 1.07 1.44 2.10 ∞
logistic (Wilcoxon) 0.93 1.15 1.84 2.62 ∞
double exponential (Laplace) 0.51 0.75 2.83 2.06 ∞

Table 1: Asymptotic Relative Efficiencies AREf (T
(n)
g |DF) of our rank-based test based on T

(n)
g in (8)

with respect to the Dickey-Fuller test, for various choices (Gaussian, logistic, double exponential) of the
reference density g, and several values (Gaussian, logistic, double exponential, Cauchy, and t3) of the
actual density f .

Our test and the Dickey-Fuller test both have local power at rate n3/2. This explains the
exponent three in (18).

Remark 2.7 Despite the notation, AREf in (18) is a scale-free quantity. It is easy to see,
indeed, that, writing f1 for the standardized version of f (that is, f(z) = σ−1

f f1(z/σf )),

I3
fgσ

3
f = I3

f1g. Similarly, if g1 and g2 are such that, for some c > 0, g2(z) = c−1g1(z/c),

then Ifg2
/I

1/2
g2

= Ifg1
/I

1/2
g1

.

Table 1 provides, for various reference densities and various f , some numerical values

of (18). Under infinite innovation variance, those values are infinite, since Dickey-Fuller

is no longer valid6. Inspection of Table 1 reveals that, under finite innovation variance

for f , very sizeable efficiency gains also are possible, even when using a Gaussian reference

density g (van der Waerden tests).

2.5. Choosing a reference density g

Our test depends on a reference density g to be chosen by the investigator. This raises

the obvious question of how to choose this reference density.

Recall that our rank-based statistic T
(n)
g is homogeneous in the scale of the reference

distribution: rescaling a given reference density g(·) to gc(·) = c−1g(·/c), c > 0 has no

impact on the test, and one does not have to worry about choosing an appropriate scale

for g. Similarly, we have shown in Remark 2.7 that the Asymptotic Relative Efficiency

of our test with respect to the Dickey-Fuller test does not depend on the scale of the

reference density g, nor on that of the actual density f .

6Recall that for symmetric α-stable innovation distributions the Dickey-Fuller test statistic has a
limiting distribution of the Lévy-type with critical values dependent on the tail index α; see Rachev,
Mittnik, and Kim (1998), Ahn, Fotopoulos, and He (2003), and Callegari, Cappuccio, and Lubian (2003).
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The form of the reference density g, if not its scale, however, does influence the local

power of our test via the ratio |Ifg|/I
1/2
g in (17). An obvious first choice is a Gaussian

reference density g(x) ∝ exp(−x2/2), leading to the so-called normal or van der Waerden

scores. In this case,

T
(n)
vdW =

1√
n

n∑

t=1

(
t

n + 1
− 1

2

)
Φ−1

(
Rt

n + 1

)
,

where Φ denotes the standard normal distribution function, Ig = 1, and (18) reduces to

AREf (vdW|DF) =

∣∣∣∣
∫ 1

u=0

−f ′

f

(
F−1(u)

)
Φ−1(u)

∣∣∣∣
3

σ3
f . (19)

A celebrated result by Chernoff and Savage (1958) shows that the latter quantity is always

larger than one, except under Gaussian f , where it takes value one. Consequently, a

Gaussian reference density constitutes a safe choice, as it always leads to an improvement

over the Dickey-Fuller test. The magnitude of the improvement is all the more sizeable

in our situation, due to the faster rate of convergence n3/2; see the first row in Table 1.

For instance, true underlying Student t3 distributed innovations lead to more than 100%

efficiency gain, while fatter-than-t3-tailed distribution lead to even larger (infinite in the

case of infinite innovation variance) gains.

Two other popular choices for the reference density are the Double Exponential

distribution (Laplace or sign test scores), with density gL(x) = exp(−
√

2|x|)/
√

2 (for

which σ2
gL

= 1 and IgL
= 2), and the logistic distribution (Wilcoxon scores) gW (x) =

π exp(−πx/
√

3)/(
√

3(1 + exp(−πx/
√

3))2) (for which σ2
gW

= 1 and IgW
= π2/9). They

lead to the Laplace and Wilcoxon test statistics

T
(n)
L =

√
2

n

n∑

t=1

(
t

n + 1
− 1

2

)
sgn

(
Rt

n + 1
− 1

2

)
,

T
(n)
W =

π√
3n

n∑

t=1

(
t

n + 1
− 1

2

)
1 − n+1−Rt

Rt

1 + n+1−Rt

Rt

,

respectively.

It is worth emphasizing, again, that we nowhere impose that the innovations need to

have finite variances, nor even finite first-order moments: our tests remain valid under

completely unspecified innovation density f and completely unspecified shift µ (which

14



may be zero). As explained before, the Dickey-Fuller test is no longer valid in the semi-

parametric model with unspecified f .

Remark 2.8 In view of Theorem 2.2, for given f , maximum power is achieved when
the reference density g matches the actual one f (up to a possible scale transformation).
In that case, our rank-based statistic asymptotically coincides with the parametrically

optimal (under (a)-asymptotics) test statistic (14), and the T
(n)
g -based test achieves para-

metric efficiency in Model (a) with innovation density f . This implies that Model (a) (with
innovation density f) actually is adaptive: the “cost” of not knowing the innovation den-
sity in addition to not knowing µ is asymptotically nil when performing inference about
ρ. Model (b) does not exhibit such attractive limiting local structure.

2.6. Pre-estimating the reference density g

As the power of the test depends on the chosen reference density, and is maximal if

the reference density coincides with the actual density f up to a scale transformation,

one may want to pre-estimate the reference density to use. An important additional

advantage of our test is that this can be done without any changes in the asymptotic

analysis.

To be more precise, consider an estimated reference density ĝn with values in F that

depends on the order statistics of the increments ∆Yt, as is, for example, the case for

traditional kernel density estimators. Recall that the order statistics are stochastically in-

dependent of the ranks Rt of the innovations. Therefore, we can easily study the behavior

of T
(n)
ĝn

conditionally on the order statistics, that is, as if ĝn ∈ F were a given reference

density. In particular, if (conditionally on the order statistics) exact α-critical points are

computed for the estimated-score version of (8), conditional size, hence also the uncondi-

tional one, is exactly α too. The resulting tests moreover have Neyman α-structure with

respect to the order statistics, hence are similar and unbiased. An analogous reasoning

can be applied to show that the power properties of our test with estimated reference

density are as if the reference density were correctly specified. In order to make sure

that Iĝn
converges to Ig a construction as in Proposition 7.8.1 in Bickel, Klaassen, Ritov,

and Wellner (1993) can be considered.

Summing up, the tests based on T
(n)
ĝn

remain conditionally distribution-free; they are

parametrically efficient (under (a)-asymptotics), uniformly over the family of all µ 6= 0

and all f such that, under f , T
(n)
ĝn

−T
(n)
f = oP(1) —without losing finite-sample validity

over that broader class of all µ and f .
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3. Finite-sample performance

As mentioned in the introduction, the ultimate benchmark for any statistical proce-

dure is its finite-sample performance. This is all the more true in the present context,

where two distinct and plausible asymptotic schemes are coexisting, roughly on the same

statistical model. This section is totally agnostic in that respect, and does not make any

choice between (a)- and (b)-asymptotics. Nevertheless, the description of the simulated

data-generating process requires a parameterization, and, without any loss of generality,

the (ρ, m) parameterization (2) is adopted throughout.

Section 3.1 deals with the finite-sample behavior of our tests under H0, hence, a

fortiori, also under H
(b)
0 . Section 3.2 discusses their behavior under alternatives (where

Model (a) and Model (b) coincide).

3.1. Finite-sample sizes

It follows from Theorem 2.1 that the rank-based test statistic T
(n)
g is asymptoti-

cally N (0, Ig/12) under the null hypothesis. This section studies the finite-sample null

distribution of T
(n)
g . Recall once more that our rank-based test statistics are distribution-

free under the null hypothesis. This means that the finite-sample distribution of T
(n)
g only

depends on the number n of observations and the choice of the reference density g. Such

distributions can easily be tabulated.

To illustrate the convergence to a N (0, Ig/12) distribution under the null hypothesis,

Figure 1 presents a scaled histogram of simulated values of T
(n)
vdW along with its limiting

Gaussian density for n = 25, 50, 100. From the figure we conclude that the convergence to
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Figure 1: Simulated (50,000 replications) finite-sample (n = 25, 50, 100) distributions of the van der

Waerden test statistic T
(n)
vdW (reference density g = φ), compared to its limiting distribution under the

null hypothesis.

the limiting distribution is quite fast. This is common for rank-based statistics. Moreover,
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in view of distribution-freeness, this convergence is uniform over the family of possible

underlying innovation densities f , irrespective of µ. Note that the limiting distribution

seems to be overestimating tail probabilities, hence produces conservative critical values.

This is confirmed by Table 2, where simulated quantiles are presented for various sample

sizes n and various reference densities g, along with (in the rows labeled “n = ∞”) the

asymptotic ones. As the distributions are symmetric with respect to the origin, only

right-tail quantiles are presented.

Although the convergence is fast, we thus recommend using simulated critical values

rather than the asymptotic ones.

Reference density g Gaussian logistic double exponential
(van der Waerden) (Wilcoxon) (Laplace)

n = 25 0.62 0.71 0.99
n = 50 0.68 0.75 1.02

q = 0.5% n = 100 0.70 0.76 1.04
n = 250 0.73 0.77 1.04
n =∞ 0.74 0.78 1.05

n = 25 0.49 0.56 0.76
n = 50 0.52 0.57 0.78

q = 2.5% n = 100 0.54 0.58 0.79
n = 250 0.55 0.59 0.80
n =∞ 0.57 0.59 0.80

n = 25 0.41 0.47 0.65
n = 50 0.44 0.48 0.66

q = 5% n = 100 0.45 0.49 0.67
n = 250 0.46 0.49 0.67
n =∞ 0.47 0.50 0.67

Table 2: Simulated (1 − q)-quantiles (based on 50,000 replications) for the van der Waerden, Wilcoxon,
and Laplace rank-based test statistics, various values of n and q, under H0, hence, a fortiori, also under

H
(b)
0 . The rows labeled “n = ∞” contain the critical values calculated from the limiting Gaussian

distribution.

3.2. Finite-sample powers

As discussed in the introduction, the ultimate benchmark for any statistical proce-

dure is its finite-sample performance. This is all the more true in the present context,

where several distinct and plausible asymptotic schemes are coexisting, roughly on the

same statistical model. This section is totally agnostic in that respect, and does not

make any choice between Models (a) and (b), nor between the corresponding asymp-

totics. Nevertheless, the description of the simulated data-generating process requires a
17



parameterization, and the (ρ, m) parameterization (2) is adopted throughout. As men-

tioned in the introduction, the initial value Y0 or, more precisely, its deviation Y0 − m

from the stationary mean (a quantity which, in practice, is not known), heavily influences

the power of all unit-root tests. Following Elliott and Müller (2006) we therefore explore

powers for various values of Y0, of the form Y0 = m + aσε/
√

1 − ρ2 with a = 0, 1, . . . , 6

(ρ < 1) measuring the amplitude of the deviation of Y0 from the stationary mean in

terms of the stationary standard deviation7.

Tables 3-10 below provide rejection frequencies, over 25,000 replications of the data-

generating process, and sample sizes n = 50 and n = 100, of three of the rank-based

tests (van der Waerden, Wilcoxon, and Laplace, associated with Gaussian, logistic and

double-exponential reference density g, respectively) considered in this paper, along with

those of the traditional Dickey-Fuller procedure, the PT -test (c = −7) ERS-PT from

Elliot, Rothenberg, and Stock (1996), the MGLS tests NP-MZGLS
α , NP-MZGLS

t , and

NP-MSBGLS (with p = 0 and c̄ = −7.0), from Ng and Perron (2001), and the Q̂µ

tests EM-Q̂µ(10, 1) and EM-Q̂µ(10, 3.8) from Elliott and Müller (2006). Throughout, the

nominal level is α = 5%, with simulated critical values for the rank-based tests and

asymptotic critical values for the other ones. As all tests are invariant with respect to

m (under the null as well as under the alternative), we only consider m = 0. For each

combination of an innovation density f (four densities: Gaussian, double-exponential,

Cauchy, and skew-normal) and a ρ value (four values: 1, 0.99, 0.975, and 0.95), following

Elliott and Müller (2006), seven starting values (Y0 = aσε/
√

1 − ρ2 for a = 0, 1, . . . , 6)

have been considered.8 All simulations were carried out in Matlab 7.10; codes are available

upon request.

In each table, rejection frequencies significantly larger than 10% (at probability level

α = 5%, that is, larger than or equal to 0.097) are printed in boldface; among them, the

winners in each column (still at level α = 5%) are starred.

Before commenting the results, some further details about the implementation of

Dickey-Fuller are in order. The Dickey-Fuller tests actually are the (standard) t-tests

7For ρ = 1, that deviation is not well-defined; all test statistics, however, only depend on the obser-
vations via ∆Y1, . . . , ∆Yn which, under the null, coincide with ε1, . . . , εn, so that, without any loss of
generality, we put Y0 = 0, in simulations under the null.

8For the Cauchy density, we use σε = 3 in the definition of Y0.
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Table 3: n = 50; 25, 000 replications; f = N (0, 1)

Test a

0 1 2 3 4 5 6

ρ = 1
Dickey-Fuller 0.081 0.081 0.081 0.081 0.081 0.081 0.081
ERS-PT 0.048 0.048 0.048 0.048 0.048 0.048 0.048
NP-MZGLS

α 0.058 0.058 0.058 0.058 0.058 0.058 0.058
NP-MSBGLS

α 0.053 0.053 0.053 0.053 0.053 0.053 0.053
NP-MZGLS

t 0.052 0.052 0.052 0.052 0.052 0.052 0.052

EM-Q̂µ(10, 1) 0.025 0.025 0.025 0.025 0.025 0.025 0.025

EM-Q̂µ(10, 3.8) 0.026 0.026 0.026 0.026 0.026 0.026 0.026
van der Waerden 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Laplace 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Wilcoxon 0.050 0.050 0.050 0.050 0.050 0.050 0.050

ρ = 0.99
Dickey-Fuller 0.081 0.080 0.081 0.080 0.080 0.081 0.080
ERS-PT 0.060 0.054 0.038 0.020 0.009 0.003 0.001
NP-MZGLS

α 0.072 0.066 0.044 0.025 0.010 0.004 0.001
NP-MSBGLS

α 0.065 0.060 0.042 0.024 0.011 0.004 0.002
NP-MZGLS

t 0.067 0.060 0.040 0.022 0.009 0.003 0.001

EM-Q̂µ(10, 1) 0.031 0.029 0.021 0.011 0.006 0.002 0.001

EM-Q̂µ(10, 3.8) 0.029 0.032 0.026 0.018 0.013 0.007 0.003
van der Waerden 0.047 0.047 0.048 0.049 0.052 0.055 0.058
Laplace 0.049 0.050 0.050 0.050 0.053 0.055 0.058
Wilcoxon 0.047 0.048 0.049 0.051 0.052 0.055 0.060

ρ = 0.975
Dickey-Fuller 0.084 0.085 0.084 0.082 0.079 0.075 0.073
ERS-PT 0.084 0.064 0.026 0.006 0.001 0.000 0.000
NP-MZGLS

α 0.100
∗ 0.076 0.032 0.008 0.001 0.000 0.000

NP-MSBGLS
α 0.088 0.069 0.031 0.008 0.002 0.000 0.000

NP-MZGLS
t 0.092 0.069 0.028 0.007 0.001 0.000 0.000

EM-Q̂µ(10, 1) 0.044 0.035 0.015 0.004 0.001 0.000 0.000

EM-Q̂µ(10, 3.8) 0.036 0.036 0.029 0.019 0.010 0.004 0.001
van der Waerden 0.037 0.039 0.047 0.059 0.079 0.106

∗

0.139
∗

Laplace 0.042 0.044 0.049 0.059 0.073 0.091 0.111

Wilcoxon 0.038 0.041 0.048 0.061 0.080 0.105
∗

0.139
∗

ρ = 0.95
Dickey-Fuller 0.094 0.094 0.091 0.091 0.088 0.086 0.083
ERS-PT 0.141 0.080 0.015 0.001 0.000 0.000 0.000
NP-MZGLS

α 0.162
∗

0.097
∗ 0.022 0.002 0.000 0.000 0.000

NP-MSBGLS
α 0.139 0.087 0.021 0.003 0.000 0.000 0.000

NP-MZGLS
t 0.151 0.089 0.019 0.001 0.000 0.000 0.000

EM-Q̂µ(10, 1) 0.074 0.048 0.011 0.001 0.000 0.000 0.000

EM-Q̂µ(10, 3.8) 0.047 0.047 0.044 0.034 0.021 0.010 0.004
van der Waerden 0.019 0.025 0.045 0.080 0.139

∗

0.221
∗

0.326
∗

Laplace 0.028 0.035 0.049 0.076 0.113 0.166 0.230

Wilcoxon 0.020 0.027 0.047 0.083 0.139
∗

0.220
∗

0.321
∗
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Table 4: n = 50; 25, 000 replications; f = DE

Test a

0 1 2 3 4 5 6

ρ = 1
Dickey-Fuller 0.078 0.078 0.078 0.078 0.078 0.078 0.078
ERS-PT 0.045 0.045 0.045 0.045 0.045 0.045 0.045

NP-MZGLS
α 0.056 0.056 0.056 0.056 0.056 0.056 0.056

NP-MSBGLS
α 0.052 0.052 0.052 0.052 0.052 0.052 0.052

NP-MZGLS
t 0.051 0.051 0.051 0.051 0.051 0.051 0.051

EM-Q̂µ(10, 1) 0.025 0.025 0.025 0.025 0.025 0.025 0.025

EM-Q̂µ(10, 3.8) 0.027 0.027 0.027 0.027 0.027 0.027 0.027
van der Waerden 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Laplace 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Wilcoxon 0.050 0.050 0.050 0.050 0.050 0.050 0.050

ρ = 0.99
Dickey-Fuller 0.079 0.080 0.079 0.078 0.077 0.077 0.077
ERS-PT 0.058 0.051 0.035 0.019 0.009 0.003 0.001
NP-MZGLS

α 0.070 0.062 0.045 0.025 0.012 0.004 0.001

NP-MSBGLS
α 0.063 0.057 0.042 0.025 0.013 0.004 0.001

NP-MZGLS
t 0.063 0.056 0.040 0.023 0.011 0.004 0.001

EM-Q̂µ(10, 1) 0.030 0.027 0.018 0.011 0.005 0.002 0.001

EM-Q̂µ(10, 3.8) 0.031 0.028 0.023 0.018 0.012 0.007 0.003
van der Waerden 0.048 0.049 0.050 0.052 0.055 0.060 0.065
Laplace 0.049 0.050 0.052 0.054 0.059 0.064 0.070
Wilcoxon 0.048 0.049 0.050 0.053 0.058 0.064 0.069

ρ = 0.975
Dickey-Fuller 0.083 0.082 0.081 0.078 0.076 0.072 0.070
ERS-PT 0.081 0.058 0.025 0.007 0.001 0.000 0.000
NP-MZGLS

α 0.097
∗ 0.074 0.033 0.009 0.001 0.000 0.000

NP-MSBGLS
α 0.084 0.068 0.032 0.009 0.001 0.000 0.000

NP-MZGLS
t 0.088 0.068 0.030 0.008 0.001 0.000 0.000

EM-Q̂µ(10, 1) 0.043 0.031 0.015 0.004 0.001 0.000 0.000

EM-Q̂µ(10, 3.8) 0.037 0.033 0.027 0.018 0.009 0.004 0.002
van der Waerden 0.037 0.042 0.053 0.071 0.098 0.132 0.176

Laplace 0.044 0.049 0.062 0.082 0.111
∗

0.151
∗

0.197
∗

Wilcoxon 0.039 0.044 0.055 0.076 0.105 0.145 0.195
∗

ρ = 0.95
Dickey-Fuller 0.090 0.091 0.088 0.086 0.084 0.081 0.080
ERS-PT 0.134 0.076 0.016 0.001 0.000 0.000 0.000

NP-MZGLS
α 0.156

∗

0.097
∗ 0.023 0.002 0.000 0.000 0.000

NP-MSBGLS
α 0.135 0.086 0.022 0.002 0.000 0.000 0.000

NP-MZGLS
t 0.144 0.088 0.020 0.002 0.000 0.000 0.000

EM-Q̂µ(10, 1) 0.071 0.042 0.011 0.001 0.000 0.000 0.000

EM-Q̂µ(10, 3.8) 0.046 0.045 0.043 0.032 0.019 0.009 0.005
van der Waerden 0.019 0.027 0.054 0.105 0.186 0.294 0.420

Laplace 0.032 0.044 0.076 0.131
∗

0.213
∗

0.311 0.421

Wilcoxon 0.021 0.029 0.061 0.120 0.211
∗

0.328
∗

0.460
∗
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Table 5: n = 50; 25, 000 replications; f Cauchy

Test a

0 1 2 3 4 5 6

ρ = 1
Dickey-Fuller 0.077 0.077 0.077 0.077 0.077 0.077 0.077
ERS-PT 0.025 0.025 0.025 0.025 0.025 0.025 0.025

NP-MZGLS
α 0.035 0.035 0.035 0.035 0.035 0.035 0.035

NP-MSBGLS
α 0.048 0.048 0.048 0.048 0.048 0.048 0.048

NP-MZGLS
t 0.029 0.029 0.029 0.029 0.029 0.029 0.029

EM-Q̂µ(10, 1) 0.014 0.014 0.014 0.014 0.014 0.014 0.014

EM-Q̂µ(10, 3.8) 0.049 0.049 0.049 0.049 0.049 0.049 0.049
van der Waerden 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Laplace 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Wilcoxon 0.050 0.050 0.050 0.050 0.050 0.050 0.050

ρ = 0.99
Dickey-Fuller 0.078 0.078 0.078 0.078 0.078 0.078 0.078
ERS-PT 0.033 0.031 0.029 0.025 0.022 0.019 0.015
NP-MZGLS

α 0.042 0.042 0.038 0.033 0.027 0.023 0.019

NP-MSBGLS
α 0.056 0.055 0.051 0.045 0.039 0.033 0.029

NP-MZGLS
t 0.036 0.036 0.033 0.028 0.024 0.020 0.016

EM-Q̂µ(10, 1) 0.017 0.018 0.015 0.013 0.011 0.009 0.007

EM-Q̂µ(10, 3.8) 0.047 0.046 0.042 0.039 0.036 0.033 0.030
van der Waerden 0.149 0.150 0.151 0.155 0.159 0.164 0.170

Laplace 0.178
∗

0.178
∗

0.181
∗

0.185
∗

0.189
∗

0.198
∗

0.209
∗

Wilcoxon 0.167 0.167 0.170 0.174 0.180 0.187 0.196

ρ = 0.975
Dickey-Fuller 0.080 0.080 0.079 0.079 0.078 0.077 0.076
ERS-PT 0.046 0.042 0.034 0.027 0.020 0.016 0.013
NP-MZGLS

α 0.056 0.054 0.043 0.034 0.025 0.020 0.015

NP-MSBGLS
α 0.070 0.066 0.056 0.045 0.035 0.030 0.023

NP-MZGLS
t 0.049 0.048 0.038 0.030 0.022 0.018 0.013

EM-Q̂µ(10, 1) 0.023 0.021 0.018 0.013 0.010 0.007 0.005

EM-Q̂µ(10, 3.8) 0.028 0.028 0.028 0.028 0.027 0.024 0.023
van der Waerden 0.201 0.204 0.215 0.236 0.263 0.299 0.338

Laplace 0.254
∗

0.259
∗

0.275
∗

0.299
∗

0.333
∗

0.376
∗

0.422
∗

Wilcoxon 0.233 0.238 0.253 0.277 0.308 0.348 0.394

ρ = 0.95
Dickey-Fuller 0.084 0.084 0.082 0.080 0.080 0.079 0.078
ERS-PT 0.074 0.064 0.049 0.035 0.024 0.019 0.014

NP-MZGLS
α 0.090 0.080 0.058 0.040 0.029 0.021 0.016

NP-MSBGLS
α 0.100 0.091 0.070 0.051 0.039 0.031 0.025

NP-MZGLS
t 0.082 0.072 0.052 0.036 0.025 0.019 0.014

EM-Q̂µ(10, 1) 0.038 0.032 0.023 0.016 0.011 0.007 0.005

EM-Q̂µ(10, 3.8) 0.026 0.026 0.028 0.030 0.030 0.028 0.026
van der Waerden 0.225 0.232 0.261 0.305 0.366 0.434 0.507

Laplace 0.301
∗

0.311
∗

0.343
∗

0.394
∗

0.455
∗

0.521
∗

0.584
∗

Wilcoxon 0.270 0.281 0.311 0.363 0.430 0.502 0.577
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Table 6: n = 50; 25, 000 replications; f skew-Normal (shape-parameter -10, mean 0, variance 1)

Test a

0 1 2 3 4 5 6

ρ = 1
Dickey-Fuller 0.076 0.076 0.076 0.076 0.076 0.076 0.076
ERS-PT 0.047 0.047 0.047 0.047 0.047 0.047 0.047
NP-MZGLS

α 0.056 0.056 0.056 0.056 0.056 0.056 0.056
NP-MSBGLS

α 0.052 0.052 0.052 0.052 0.052 0.052 0.052
NP-MZGLS

t 0.051 0.051 0.051 0.051 0.051 0.051 0.051

EM-Q̂µ(10, 1) 0.024 0.024 0.024 0.024 0.024 0.024 0.024

EM-Q̂µ(10, 3.8) 0.025 0.025 0.025 0.025 0.025 0.025 0.025
van der Waerden 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Laplace 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Wilcoxon 0.050 0.050 0.050 0.050 0.050 0.050 0.050

ρ = 0.99
Dickey-Fuller 0.075 0.077 0.077 0.078 0.078 0.078 0.077
ERS-PT 0.060 0.052 0.035 0.016 0.007 0.002 0.001
NP-MZGLS

α 0.070 0.062 0.042 0.026 0.011 0.003 0.001
NP-MSBGLS

α 0.064 0.058 0.042 0.026 0.011 0.003 0.001
NP-MZGLS

t 0.063 0.056 0.039 0.022 0.009 0.002 0.000

EM-Q̂µ(10, 1) 0.030 0.025 0.019 0.009 0.004 0.001 0.000

EM-Q̂µ(10, 3.8) 0.029 0.029 0.027 0.020 0.013 0.007 0.004
van der Waerden 0.049 0.049 0.049 0.051 0.054 0.058 0.064
Laplace 0.050 0.050 0.050 0.052 0.053 0.055 0.058
Wilcoxon 0.049 0.047 0.049 0.050 0.055 0.059 0.063

ρ = 0.975
Dickey-Fuller 0.079 0.081 0.081 0.081 0.082 0.082 0.078
ERS-PT 0.083 0.060 0.021 0.004 0.001 0.000 0.000
NP-MZGLS

α 0.097 0.072 0.032 0.006 0.001 0.000 0.000
NP-MSBGLS

α 0.084 0.067 0.032 0.007 0.001 0.000 0.000
NP-MZGLS

t 0.089 0.066 0.028 0.005 0.000 0.000 0.000

EM-Q̂µ(10, 1) 0.042 0.030 0.012 0.002 0.000 0.000 0.000

EM-Q̂µ(10, 3.8) 0.034 0.034 0.032 0.021 0.012 0.005 0.001
van der Waerden 0.038 0.038 0.047 0.064 0.089 0.125

∗

0.167
∗

Laplace 0.043 0.045 0.049 0.057 0.070 0.085 0.106

Wilcoxon 0.038 0.039 0.048 0.064 0.087 0.116 0.154

ρ = 0.95
Dickey-Fuller 0.087 0.090 0.093 0.095 0.095 0.092 0.093
ERS-PT 0.136 0.074 0.011 0.001 0.000 0.000 0.000
NP-MZGLS

α 0.157
∗ 0.095 0.019 0.001 0.000 0.000 0.000

NP-MSBGLS
α 0.135 0.088 0.020 0.001 0.000 0.000 0.000

NP-MZGLS
t 0.146 0.087 0.016 0.000 0.000 0.000 0.000

EM-Q̂µ(10, 1) 0.070 0.041 0.008 0.000 0.000 0.000 0.000

EM-Q̂µ(10, 3.8) 0.043 0.046 0.048 0.040 0.025 0.013 0.006
van der Waerden 0.019 0.021 0.043 0.087 0.164

∗

0.274
∗

0.406
∗

Laplace 0.031 0.033 0.046 0.074 0.111 0.163 0.231

Wilcoxon 0.021 0.024 0.044 0.087 0.156 0.256 0.379
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Table 7: n = 100; 25, 000 replications; f = N (0, 1)

Test a

0 1 2 3 4 5 6

ρ = 1
Dickey-Fuller 0.063 0.063 0.063 0.063 0.063 0.063 0.063
ERS-PT 0.047 0.047 0.047 0.047 0.047 0.047 0.047
NP-MZGLS

α 0.058 0.058 0.058 0.058 0.058 0.058 0.058
NP-MSBGLS

α 0.052 0.052 0.052 0.052 0.052 0.052 0.052
NP-MZGLS

t 0.054 0.054 0.054 0.054 0.054 0.054 0.054

EM-Q̂µ(10, 1) 0.037 0.037 0.037 0.037 0.037 0.037 0.037

EM-Q̂µ(10, 3.8) 0.036 0.036 0.036 0.036 0.036 0.036 0.036
van der Waerden 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Laplace 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Wilcoxon 0.050 0.050 0.050 0.050 0.050 0.050 0.050

ρ = 0.99
Dickey-Fuller 0.064 0.065 0.064 0.063 0.063 0.061 0.060
ERS-PT 0.078 0.064 0.032 0.010 0.002 0.000 0.000
NP-MZGLS

α 0.091 0.073 0.039 0.013 0.003 0.000 0.000
NP-MSBGLS

α 0.081 0.068 0.036 0.013 0.003 0.000 0.000
NP-MZGLS

t 0.086 0.068 0.035 0.011 0.002 0.000 0.000

EM-Q̂µ(10, 1) 0.056 0.046 0.026 0.009 0.002 0.000 0.000

EM-Q̂µ(10, 3.8) 0.052 0.045 0.033 0.018 0.009 0.004 0.001
van der Waerden 0.039 0.042 0.047 0.057 0.071 0.088 0.110

∗

Laplace 0.044 0.046 0.050 0.056 0.065 0.076 0.090
Wilcoxon 0.040 0.042 0.047 0.055 0.069 0.085 0.104

∗

ρ = 0.975
Dickey-Fuller 0.075 0.075 0.075 0.073 0.070 0.069 0.068
ERS-PT 0.143 0.085 0.016 0.001 0.000 0.000 0.000
NP-MZGLS

α 0.165
∗

0.100
∗ 0.023 0.001 0.000 0.000 0.000

NP-MSBGLS
α 0.146 0.090 0.022 0.001 0.000 0.000 0.000

NP-MZGLS
t 0.156 0.092 0.021 0.001 0.000 0.000 0.000

EM-Q̂µ(10, 1) 0.103 0.067 0.019 0.002 0.000 0.000 0.000

EM-Q̂µ(10, 3.8) 0.073 0.066 0.052 0.032 0.016 0.007 0.002
van der Waerden 0.018 0.023 0.044 0.083 0.142

∗

0.228
∗

0.330
∗

Laplace 0.030 0.032 0.047 0.075 0.113 0.163 0.228

Wilcoxon 0.019 0.024 0.043 0.079 0.138
∗

0.214 0.314

ρ = 0.95
Dickey-Fuller 0.104 0.104 0.108 0.113

∗

0.126 0.142 0.164

ERS-PT 0.319 0.132 0.007 0.000 0.000 0.000 0.000
NP-MZGLS

α 0.355
∗

0.162
∗ 0.014 0.000 0.000 0.000 0.000

NP-MSBGLS
α 0.311 0.145 0.013 0.000 0.000 0.000 0.000

NP-MZGLS
t 0.339 0.151 0.012 0.000 0.000 0.000 0.000

EM-Q̂µ(10, 1) 0.223 0.131 0.023 0.001 0.000 0.000 0.000

EM-Q̂µ(10, 3.8) 0.123 0.125 0.122
∗

0.110
∗ 0.090 0.068 0.048

van der Waerden 0.002 0.006 0.022 0.067 0.162
∗

0.311
∗

0.501
∗

Laplace 0.012 0.019 0.036 0.071 0.126 0.208 0.311

Wilcoxon 0.003 0.007 0.022 0.065 0.154 0.291 0.466
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Table 8: n = 100; 25, 000 replications; f = DE

Test a

0 1 2 3 4 5 6

ρ = 1
Dickey-Fuller 0.063 0.063 0.063 0.063 0.063 0.063 0.063
ERS-PT 0.050 0.050 0.050 0.050 0.050 0.050 0.050

NP-MZGLS
α 0.058 0.058 0.058 0.058 0.058 0.058 0.058

NP-MSBGLS
α 0.053 0.053 0.053 0.053 0.053 0.053 0.053

NP-MZGLS
t 0.053 0.053 0.053 0.053 0.053 0.053 0.053

EM-Q̂µ(10, 1) 0.036 0.036 0.036 0.036 0.036 0.036 0.036

EM-Q̂µ(10, 3.8) 0.037 0.037 0.037 0.037 0.037 0.037 0.037
van der Waerden 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Laplace 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Wilcoxon 0.050 0.050 0.050 0.050 0.050 0.050 0.050

ρ = 0.99
Dickey-Fuller 0.066 0.066 0.065 0.063 0.063 0.062 0.062
ERS-PT 0.080 0.060 0.029 0.009 0.002 0.000 0.000
NP-MZGLS

α 0.092 0.070 0.035 0.012 0.003 0.000 0.000

NP-MSBGLS
α 0.083 0.065 0.033 0.013 0.003 0.000 0.000

NP-MZGLS
t 0.085 0.064 0.032 0.011 0.003 0.000 0.000

EM-Q̂µ(10, 1) 0.058 0.046 0.023 0.007 0.002 0.000 0.000

EM-Q̂µ(10, 3.8) 0.051 0.047 0.034 0.020 0.009 0.003 0.001
van der Waerden 0.040 0.043 0.051 0.062 0.080 0.101 0.128

Laplace 0.045 0.049 0.058 0.074 0.095 0.123
∗

0.158
∗

Wilcoxon 0.041 0.044 0.051 0.066 0.084 0.108 0.140

ρ = 0.975
Dickey-Fuller 0.075 0.075 0.075 0.072 0.071 0.069 0.068
ERS-PT 0.145 0.081 0.015 0.001 0.000 0.000 0.000
NP-MZGLS

α 0.163
∗ 0.094 0.021 0.002 0.000 0.000 0.000

NP-MSBGLS
α 0.144 0.086 0.020 0.002 0.000 0.000 0.000

NP-MZGLS
t 0.154 0.087 0.018 0.002 0.000 0.000 0.000

EM-Q̂µ(10, 1) 0.105 0.065 0.016 0.002 0.000 0.000 0.000

EM-Q̂µ(10, 3.8) 0.070 0.066 0.052 0.033 0.016 0.007 0.003
van der Waerden 0.018 0.024 0.050 0.101 0.182 0.292 0.426

Laplace 0.030 0.043 0.080 0.147
∗

0.237
∗

0.354
∗

0.483
∗

Wilcoxon 0.019 0.028 0.058 0.114 0.208 0.331 0.472

ρ = 0.95
Dickey-Fuller 0.102 0.102 0.106 0.113 0.126 0.144 0.168

ERS-PT 0.317 0.127 0.008 0.000 0.000 0.000 0.000

NP-MZGLS
α 0.348

∗

0.153
∗ 0.013 0.000 0.000 0.000 0.000

NP-MSBGLS
α 0.305 0.138 0.013 0.000 0.000 0.000 0.000

NP-MZGLS
t 0.332 0.144 0.012 0.000 0.000 0.000 0.000

EM-Q̂µ(10, 1) 0.217 0.124 0.020 0.001 0.000 0.000 0.000

EM-Q̂µ(10, 3.8) 0.120 0.123 0.121
∗

0.107 0.088 0.068 0.048
van der Waerden 0.003 0.007 0.029 0.093 0.222 0.419 0.627

Laplace 0.018 0.033 0.082 0.170
∗

0.299
∗

0.448 0.599

Wilcoxon 0.004 0.010 0.040 0.119 0.270 0.474
∗

0.677
∗
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Table 9: n = 100; 25, 000 replications; f Cauchy

Test a

0 1 2 3 4 5 6

ρ = 1
Dickey-Fuller 0.067 0.067 0.067 0.067 0.067 0.067 0.067
ERS-PT 0.026 0.026 0.026 0.026 0.026 0.026 0.026

NP-MZGLS
α 0.033 0.033 0.033 0.033 0.033 0.033 0.033

NP-MSBGLS
α 0.048 0.048 0.048 0.048 0.048 0.048 0.048

NP-MZGLS
t 0.028 0.028 0.028 0.028 0.028 0.028 0.028

EM-Q̂µ(10, 1) 0.019 0.019 0.019 0.019 0.019 0.019 0.019

EM-Q̂µ(10, 3.8) 0.053 0.053 0.053 0.053 0.053 0.053 0.053
van der Waerden 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Laplace 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Wilcoxon 0.050 0.050 0.050 0.050 0.050 0.050 0.050

ρ = 0.99
Dickey-Fuller 0.069 0.070 0.070 0.070 0.070 0.071 0.071
ERS-PT 0.041 0.041 0.038 0.035 0.030 0.027 0.023
NP-MZGLS

α 0.051 0.051 0.047 0.041 0.034 0.028 0.025

NP-MSBGLS
α 0.066 0.066 0.061 0.053 0.046 0.040 0.035

NP-MZGLS
t 0.044 0.045 0.041 0.036 0.029 0.025 0.022

EM-Q̂µ(10, 1) 0.030 0.029 0.026 0.023 0.020 0.017 0.014

EM-Q̂µ(10, 3.8) 0.045 0.045 0.042 0.039 0.037 0.035 0.033
van der Waerden 0.277 0.280 0.286 0.296 0.313 0.334 0.359

Laplace 0.339
∗

0.341
∗

0.351
∗

0.366
∗

0.387
∗

0.412
∗

0.442
∗

Wilcoxon 0.314 0.319 0.326 0.339 0.357 0.381 0.410

ρ = 0.975
Dickey-Fuller 0.074 0.074 0.074 0.074 0.074 0.073 0.073
ERS-PT 0.078 0.074 0.062 0.051 0.041 0.032 0.026
NP-MZGLS

α 0.092 0.086 0.072 0.057 0.046 0.036 0.029

NP-MSBGLS
α 0.104 0.098 0.083 0.068 0.055 0.046 0.038

NP-MZGLS
t 0.083 0.078 0.064 0.050 0.040 0.032 0.026

EM-Q̂µ(10, 1) 0.055 0.050 0.040 0.033 0.025 0.020 0.015

EM-Q̂µ(10, 3.8) 0.042 0.041 0.040 0.039 0.038 0.036 0.034
van der Waerden 0.353 0.360 0.381 0.414 0.462 0.517 0.576

Laplace 0.437
∗

0.443
∗

0.466
∗

0.502
∗

0.549
∗

0.597
∗

0.647

Wilcoxon 0.404 0.413 0.438 0.475 0.525 0.580 0.638

ρ = 0.95
Dickey-Fuller 0.082 0.082 0.080 0.081 0.083 0.084 0.085
ERS-PT 0.197 0.177 0.141 0.110 0.086 0.069 0.057

NP-MZGLS
α 0.218 0.196 0.155 0.117 0.092 0.074 0.060

NP-MSBGLS
α 0.208 0.189 0.151 0.117 0.091 0.075 0.061

NP-MZGLS
t 0.207 0.184 0.146 0.109 0.087 0.070 0.056

EM-Q̂µ(10, 1) 0.123 0.112 0.087 0.065 0.050 0.039 0.030

EM-Q̂µ(10, 3.8) 0.066 0.065 0.067 0.068 0.069 0.069 0.068
van der Waerden 0.382 0.389 0.413 0.453 0.505 0.564 0.620

Laplace 0.460
∗

0.470
∗

0.494
∗

0.528
∗

0.566
∗

0.608 0.646

Wilcoxon 0.440 0.448 0.478 0.517 0.565
∗

0.618
∗

0.664
∗
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Table 10: n = 100; 25, 000 replications; f skew-normal (shape-parameter -10, mean 0, variance 1)

Test a

0 1 2 3 4 5 6

ρ = 1
Dickey-Fuller 0.063 0.063 0.063 0.063 0.063 0.063 0.063
ERS-PT 0.051 0.051 0.051 0.051 0.051 0.051 0.051
NP-MZGLS

α 0.060 0.060 0.060 0.060 0.060 0.060 0.060
NP-MSBGLS

α 0.053 0.053 0.053 0.053 0.053 0.053 0.053
NP-MZGLS

t 0.056 0.056 0.056 0.056 0.056 0.056 0.056

EM-Q̂µ(10, 1) 0.037 0.037 0.037 0.037 0.037 0.037 0.037

EM-Q̂µ(10, 3.8) 0.037 0.037 0.037 0.037 0.037 0.037 0.037
van der Waerden 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Laplace 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Wilcoxon 0.050 0.050 0.050 0.050 0.050 0.050 0.050

ρ = 0.99
Dickey-Fuller 0.065 0.065 0.064 0.062 0.062 0.062 0.061
ERS-PT 0.079 0.062 0.028 0.009 0.001 0.000 0.000
NP-MZGLS

α 0.092 0.071 0.034 0.010 0.002 0.000 0.000
NP-MSBGLS

α 0.082 0.066 0.033 0.010 0.002 0.000 0.000
NP-MZGLS

t 0.087 0.066 0.031 0.008 0.002 0.000 0.000

EM-Q̂µ(10, 1) 0.058 0.046 0.023 0.007 0.001 0.000 0.000

EM-Q̂µ(10, 3.8) 0.050 0.049 0.036 0.022 0.010 0.004 0.001
van der Waerden 0.042 0.042 0.048 0.060 0.077 0.100

∗

0.131
∗

Laplace 0.044 0.044 0.047 0.053 0.061 0.071 0.082
Wilcoxon 0.043 0.043 0.049 0.058 0.073 0.092

∗

0.117

ρ = 0.975
Dickey-Fuller 0.075 0.074 0.074 0.074 0.074 0.073 0.071
ERS-PT 0.145 0.080 0.014 0.000 0.000 0.000 0.000
NP-MZGLS

α 0.166
∗ 0.094 0.017 0.001 0.000 0.000 0.000

NP-MSBGLS
α 0.145 0.086 0.017 0.001 0.000 0.000 0.000

NP-MZGLS
t 0.154 0.087 0.015 0.001 0.000 0.000 0.000

EM-Q̂µ(10, 1) 0.104 0.065 0.015 0.001 0.000 0.000 0.000

EM-Q̂µ(10, 3.8) 0.069 0.070 0.056 0.038 0.020 0.008 0.003
van der Waerden 0.018 0.021 0.044 0.096

∗

0.177
∗

0.294
∗

0.443
∗

Laplace 0.030 0.032 0.045 0.069 0.104 0.155 0.219

Wilcoxon 0.020 0.024 0.046 0.089 0.158 0.260 0.389

ρ = 0.95
Dickey-Fuller 0.105 0.105 0.109 0.118

∗

0.129 0.146 0.167

ERS-PT 0.324 0.125 0.004 0.000 0.000 0.000 0.000
NP-MZGLS

α 0.350
∗

0.154
∗ 0.008 0.000 0.000 0.000 0.000

NP-MSBGLS
α 0.307 0.141 0.009 0.000 0.000 0.000 0.000

NP-MZGLS
t 0.333 0.143 0.007 0.000 0.000 0.000 0.000

EM-Q̂µ(10, 1) 0.222 0.130 0.016 0.000 0.000 0.000 0.000

EM-Q̂µ(10, 3.8) 0.122 0.124 0.126
∗

0.115
∗

0.096 0.075 0.055
van der Waerden 0.002 0.004 0.020 0.077 0.202

∗

0.408
∗

0.635
∗

Laplace 0.013 0.019 0.036 0.071 0.130 0.218 0.336

Wilcoxon 0.003 0.006 0.023 0.078 0.191 0.373 0.584
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for testing the hypothesis ρ = 1. Accordingly, different versions exist, depending on

the regression equation to be considered. These versions are presented, for example, in

Hamilton (1994, Table 17.1). Two Dickey-Fuller tests are suited for both models (1) and

(2). One possibility is to regress Yt on a constant term and Yt−1 (as in (24)). In Hamilton

(1994, Table 17.1), the behavior of this test is summarized in Case 2 and Case 3; denote

by DF1 the resulting Dickey-Fuller statistic. Another possibility is to regress Yt also

on a linear time-trend; in Hamilton (1994, Table 17.1) this is called Case 4; denote by

DF the resulting Dickey-Fuller statistic. It is well-documented, however, that DF1 yields

non-similar tests—see, for example, Bhargava (1986), Hylleberg and Mizon (1989), or

Dios-Palomares and Roldan (2006). Therefore, we rather use DF.

Turning to Tables 3-10, the figures speak for themselves:

(a) (validity) Irrespective of series lengths, starting values and underlying densities,

Dickey-Fuller significantly over-rejects. The ERS-test PT and NP-MGLS tests are

close to the nominal level, except for the Cauchy case, under which they are severely

biased. The EM-test Q̂µ(10, 1) is uniformly and severely biased, as well as the EM-

test Q̂µ(10, 3.8) which, however, has a much better behavior under Cauchy densities.

The rank tests, as expected, perfectly match the nominal level.

(b) (short series lengths) Although of econometric practical relevance, n = 50 in this

context is a very short series length, for which only the ERS-PT and NP-MGLS tests

have some power at ρ = 0.95 and small Y0 − m values. Rank-based tests, however,

have power under large values of Y0 − m, and spectacularly outperform all their

competitors under Cauchy densities.

(c) (heavy-tailed densities) All “classical” techniques, and, particularly so, Dickey-Fuller,

fail miserably under Cauchy densities, while all rank-based ones are doing extremely

well. This is all the more remarkable as the scores (van der Waerden, Wilcoxon,

Laplace) considered here are not adapted to a heavy-tailed context, and Cauchy

scores (see Hallin, Swan, Verdebout, and Veredas, 2011) are likely to perform even

better.

(d) (impact of the starting value) Roughly, the deviation of Y0 from the stationary

mean m has a negative impact on the power of ERS-PT , NP-MGLS, EM-Q̂µ(10, 1)

and EM-Q̂µ(10, 3.8) tests, and a positive impact on the rank-based ones; Tables 7, 8
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and 10, for ρ = 0.95, are quite typical in that respect. The two families of procedures

thus nicely complement each other (the deviation Y0 − m, of course, is unknown in

practice).

4. Conclusions

The rank-based tests we are proposing for the unit root hypothesis offer all the usual

advantages of rank-based tests: distribution-freeness, exact finite sample sizes, and ro-

bustness. Moreover, they are flexible and efficient, in the sense that a reference density g

can be chosen, which is such that semiparametric efficiency is achieved under density g.

That reference density g can even be estimated, without affecting the validity of the test.

Moreover, choosing a Gaussian reference density guarantees that our tests (of the van

der Waerden type) are, (under (a)-asymptotics), uniformly locally more powerful than

Dickey-Fuller test.

In finite samples, our simulation study shows that rank-based tests outperform the

traditionally used Dickey-Fuller test, as well as several more recent competitors, for a

broad range of initial values. Efficiency gains are particularly large when the underly-

ing innovation density has fat tails. Our rank-based procedures thus nicely complement

existing techniques.

The present paper focusses on the simplest setting possible. In particular, we assume

the underlying innovations of the process to be i.i.d. This is needed in order to define

optimality of testing procedures. However, extensions to models that allow for, e.g.,

parametric forms of heteroskedasticity are easily imagined.
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A. Proofs

For ease of reference, we first provide a lemma on the joint convergence of a partial sum
process and its rank-based version. Although based on existing results in the literature,
this lemma as such does not seem to have been provided. The bottom line is that, where
the partial sum process converges to a Brownian motion, its rank-based version converges
to the Brownian bridge generated by that Brownian motion.

Lemma A.1 Let (U1, . . . , Un) be i.i.d. standard uniformly distributed random variables
and denote by Rt the rank of Ut. Let ϕ : [0, 1] → R be a measurable function satisfying∫ 1

0
ϕ(v)dv = 0 and

∫ 1

0
ϕ(v)2dv < ∞. Define the partial sum processes W

(n)
ϕ and W̃

(n)
ϕ ,

both on [0, 1], by

W (n)
ϕ (u) =

1√
n

⌊un⌋∑

t=1

ϕ (Ut) and W̃ (n)
ϕ (u) =

1√
n

⌊un⌋∑

t=1

E {ϕ (Ut)|Rt} . (20)

Then, we have [
W

(n)
ϕ

W̃
(n)
ϕ

]
⇒
[

W

W̃

]
, (21)

where W denotes a zero-drift Brownian motion with variance
∫ 1

0 ϕ(v)2dv per unit of

time and W̃ its associated Brownian bridge: W̃ (u) = W (u) − uW (1), u ∈ [0, 1]. The
convergence in (21) is on D2[0, 1] equipped with the uniform topology.

Proof: It is well-known that weak convergence in D2[0, 1] under the uniform topology

follows from establishing convergence of marginals and asymptotic tightness, see, for

example, Van der Vaart and Wellner (1993), Theorem 1.5.4.

Convergence of marginals for the partial sum process W
(n)
ϕ is easily obtained from the

central limit theorem. This implies also (joint) convergence of the marginals of its rank-

based version W̃
(n)
ϕ using what is sometimes known as Hájek’s representation theorem:

W̃ (n)
ϕ (u) = W (n)

ϕ (u) − uW (n)
ϕ (1) + oP(1), (22)

see Van der Vaart (2000), Theorem 13.5. In the notation of Van der Vaart (2000), we have

i = t, N = n, CNi = I{t ≤ un}, and aNi = E {ϕ (Ut)|Rt = i}. From
∫ 1

0 ϕ(v)dv = 0 we

find āN = 0. Moreover, we have c̄N = ⌊un⌋/n → u.

Since marginal tightness implies joint tightness, the proof is concluded once we show

that W̃ϕ is tight in D[0, 1] under the uniform topology. This follows from Shorack and

Wellner (1986). Take cni = E {ϕ (Ut)|Rt = i} and note that c̄n = n−1
∑n

i=1 cni = 0,

n−1
∑n

i=1 c2
ni ≤

∫ 1

0
φ2(u)du. From this it easily follows that the conditions to Shorack and
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Wellner (1986, Theorem 3.1) are satisfied: maxi=1,...,n c2
ni/cT

ncn → 0 and c̄n/
√

c2
nn → 0. 2

Proof of Theorem 2.1: First recall that g ∈ F implies
∫ 1

u=0 ϕg(u)du = 0 and
∫ 1

u=0
ϕg(u)2du = Ig, with ϕg := −g′/g. Moreover, under H0, we have ∆Yt = µ + ǫt, so

that the rank of ∆Yt amongst ∆Y1, . . . , ∆Yn is the same as that of ǫt amongst ǫ1, . . . , ǫn.

Now, using W̃
(n)
ϕg as defined in Lemma A.1 and (10) with Ut = F (εt), we obtain the

asymptotic representation

T (n)
g =

∫ 1

u=0

(
u − 1

2

)
dW̃ (n)

ϕg
(u) + oP(1). (23)

Lemma A.1 and the continuous mapping theorem thus imply that T
(n)
g is asymptotically

distributed as

∫ 1

u=0

(
u − 1

2

)
dW̃ (u) ∼ N

(
0, Ig

∫ 1

u=0

(
u − 1

2

)2

du

)
= N

(
0,

Ig

12

)
.

2

Proof of Proposition 2.1: Case (ii) has been established in Jeganathan (1995, Sec-

tion 7). For Case (i), the proof is analogous to that in Drost, Klaassen, and Werker (1997)

for a pure location model. The rates of convergence obviously have to be adapted, as well

as the form of the Fisher information matrix. Also, µ in our model (1) is a pure location

parameter and its Fisher information, therefore, is If . The Fisher information for ρ is

given by the limit of n−3
∑n

t=1 Y 2
t−1ε

2
t , analogously to the standard regression framework.

Note that, under the null hypothesis (µ 6= 0, ρ = 1), the drift µt in Yt dominates the

stochastic part, as

1

n3

n∑

t=1

(Yt − µt)
2

=
1

n3

n∑

t=1

(
t∑

s=1

εs

)2

≤ 1

n

n∑

t=1

(
1

t

t∑

s=1

εs

)2

→ 0 a.s.,

where the last convergence follows from a Cesàro mean argument and the strong law of

large numbers. Consequently, we have

lim
n→∞

n−3
n∑

t=1

Y 2
t−1 = lim

n→∞
n−3

n∑

t=1

(µt)2 = µ2/3 (a.s.),
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which in turn leads to the Fisher information µ2If/3 for ρ. 2

Proof of Theorem 2.2: The Hájek Asymptotic Representation result (23), combined

with Lemma A.1, implies

T (n)
g =

∫ 1

u=0

(
u − 1

2

)
dW (n)

ϕg
(u) + oP(1),

as ∫ 1

u=0

(
u − 1

2

)
d
[
W (n)

ϕg
− W̃ (n)

ϕg

]
(u) ⇒

∫ 1

u=0

(
u − 1

2

)
d
[
W − W̃

]
(u) = 0.

Also, Proposition 2.1 implies that

log dP
(n)
(µ,ρn);f/dP

(n)
(µ,1);f = hµ

∫ 1

u=0

udW (n)
ϕf

(u) − h2µ2If/6 + oP(1).

As a result, the statistic T
(n)
g and the log likelihood ratio are asymptotically jointly

normal, with limiting covariance

hµIfg

∫ 1

u=0

u(u − 1/2)du = hµIfg/12.

Le Cam’s third lemma, see, e.g., Van der Vaart (2000), Section 6.7, now readily im-

plies (16). 2

Proof of Corollary 2.1: The asymptotic distribution of the Dickey-Fuller test statis-

tic is well-studied. For instance, it follows from Chapter 17 in Hamilton (1994) that,

letting Ȳn := n−1
∑n

t=1 Yt−1,

n3/2
(
ρ̂DF

n − 1
)

=
n−3/2

∑n
t=1

(
Yt−1 − Ȳn

)
∆Yt−1

n−3
∑n

t=1

(
Yt−1 − Ȳn

)2 (24)

= n−1/2 12

µ

n∑

t=1

(
t

n + 1
− 1

2

)
εt + oP(1).

The null limiting distribution of n3/2
(
ρ̂DF

n − 1
)

thus is N (0, 12σ2
f/µ2). As in Theo-

rem 2.2, it follows from Le Cam’s third lemma that its limiting distribution under the near

(under (a)-asymptotics) unit root alternatives H
(n)
1 : ρn = 1+hn−3/2 is N (h, 12σ2

f/µ2),

using the fact that Ef (−f ′/f)(εt)εt = 1. Incidentally, this shows that the least-squares

estimator is (also) regular in this situation. 2
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