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Abstract: Two effects largely determine global warming: the well-known
greenhouse effect and the less well-known solar radiation effect. An increase
in concentrations of carbon dioxide and other greenhouse gases contributes
to global warming: the greenhouse effect. In addition, small particles, called
aerosols, reflect and absorb sunlight in the atmosphere. More pollution causes
an increase in aerosols, so that less sunlight reaches the Earth (global dim-
ming). Despite its name, global dimming is primarily a local (or regional)
effect. Because of the dimming the Earth becomes cooler: the solar radiation
effect. Global warming thus consists of two components: the (global) green-
house effect and the (local) solar radiation effect, which work in opposite
directions. Only the sum of the greenhouse effect and the solar radiation ef-
fect is observed, not the two effects separately. Our purpose is to identify the
two effects. This is important, because the existence of the solar radiation
effect obscures the magnitude of the greenhouse effect. We propose a simple
climate model with a small number of parameters. We gather data from
a large number of weather stations around the world for the period 1959–
2002. We then estimate the parameters using dynamic panel data methods,
and quantify the parameter uncertainty. Next, we decompose the estimated
temperature change of 0.73 ◦C (averaged over the weather stations) into a
greenhouse effect of 1.87 ◦C, a solar radiation effect of −1.09 ◦C, and a small
remainder term. Finally, we subject our findings to extensive sensitivity anal-
yses.

Keywords: Global warming; Dimming; Aerosols; Dynamic panel data.
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1 Introduction

The Earth is getting warmer and much or all of this process is generally
believed to be caused by humans. There is much uncertainty about global
warming. The purpose of this paper is to investigate the statistical evidence
of global warming, using econometric panel data techniques supplemented
by extensive sensitivity analyses.

We distinguish between two effects which together largely determine global
warming. First, the concentrations of carbon dioxide (CO2) and other ‘green-
house gases’ have increased. For example, the amount of CO2 in the atmo-
sphere has increased by about 36% between 1750 and 2005 (Solomon et al,
2007, Chapter 2, p. 137). These greenhouse gases act as a blanket, thus
contributing to global warming: the greenhouse effect. Because of the long
lifetime of CO2 in the atmosphere, this effect is global.

The second effect, not as well known by the general public, is the solar ra-
diation effect. Pollution consists, in part, of small particles, called ‘aerosols’,
which reflect and absorb sunlight in the atmosphere and make clouds more
reflective. More aerosols implies that less sunlight reaches the Earth: global
dimming (Power, 2003; Norris and Wild, 2007; Wild, 2009). Global dim-
ming varies in time and location. The term ‘global’ in ‘global dimming’ is
somewhat misleading, because it refers to the sum of diffuse and direct solar
radiation (global radiation), and not to a global scale of the phenomenon
(Wild, 2009, p. 1). In fact, dimming is primarily a local or regional effect,
because aerosols have a short lifetime (about one week) in contrast to green-
house gases which have a lifetime of up to 100 years (Kaufman et al, 2002).
As a result of the dimming the Earth becomes cooler: the solar radiation
effect (Haywood and Boucher, 2000; Ramanathan et al, 2001; Kaufman et
al, 2002; Bellouin et al, 2005). Global warming thus consists of two compo-
nents: the (global) greenhouse effect and the (local) solar radiation effect,
which work in opposite directions.

When we observe an increase in temperature, we observe only the sum of
the greenhouse effect and the solar radiation effect, but not the two effects
separately. Our purpose is to try and identify the two effects. This is im-
portant because policy makers are successful in reducing aerosols (which has
a local benefit) but less successful in reducing CO2 (which has a global, but
almost no local benefit). A reduction in aerosols causes cleaner air (good),
but also more solar radiation (bad). The solar radiation effect thus obscures
the magnitude of the greenhouse effect, and forecasts ignoring the solar radi-
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ation effect underestimate the increase in temperature. The size of the solar
radiation effect is uncertain (Anderson et al, 2003; Andreae et al, 2005), and
hence the solar radiation effect offsets the greenhouse effect by an unknown
amount.

Current methods to assess the effect of greenhouse gases in the presence
of aerosols typically use global climate models, requiring a large number of
parameters whose values are typically obtained by calibration rather than
estimation. The reliability of such models is reviewed in Räisänen (2007).
The values for the effect of greenhouse gases and aerosols on temperature
vary greatly (Anderson et al, 2003; Roe and Baker, 2007), thus adding to the
controversy about climate change.

Our approach is different. We propose a simple climate model with a small
number of parameters. We gather data from a large number of weather sta-
tions around the world for the period 1959–2002. We estimate the parameters
using dynamic panel data methods, and quantify the parameter uncertainty.
Then we decompose the observed temperature change into a greenhouse and
a solar radiation effect.

This paper is organized as follows. In Section 2 we discuss the energy bal-
ance, which is used to construct our climate model. In Section 3, we describe
our datasources, the construction of our dataset, and how we have dealt with
a selection problem. The econometric model is presented in Section 4. We
report our results and the decomposition in greenhouse and solar radiation
effects in Section 5, and we offer extensive sensitivity analyses in Section 6.
Section 7 concludes.

2 The energy balance

The Earth and its atmosphere receive energy from the Sun in the form of
shortwave radiation, which is partly absorbed, and the energy associated with
the absorbed radiation is returned to space as longwave radiation. As long as
the amount of incoming solar radiation absorbed by Earth and atmosphere
is balanced by Earth and atmosphere releasing the same amount of outgoing
radiation, the Earth’s temperature will remain the same. A simplified scheme
of the energy balance is given in Figure 1, which is based on Trenberth et al
(2009); see also McGuffie and Henderson-Sellers (2001).

The amount of solar radiation reaching the Earth’s atmosphere is about
341 Watts per meter squared (Wm−2). Solar radiation has a short wave-
length, and hence most of the solar radiation passes through the atmosphere
and reaches the surface of the Earth (184 Wm−2). Some of the solar radia-
tion, however, is reflected back into space (79 Wm−2) due to clouds and small
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Figure 1: The Earth’s annual energy balance (Wm−2)
(adapted from Trenberth et al, 2009)

particles (aerosols) in the atmosphere, and some is absorbed (78 Wm−2) in
the atmosphere where it is transferred to heat energy and longwave radiation.
When the Sun’s radiation reaches the Earth, part is absorbed (161 Wm−2)
and transferred to longwave radiation, and part is reflected back into space
as shortwave radiation (23 Wm−2). The Earth releases energy (494 Wm−2),
consisting of longwave radiation (396 Wm−2) and latent and sensible heat
(98 Wm−2). Most of the emitted longwave radiation is absorbed in the at-
mosphere by clouds and so-called greenhouse gases. The longwave radiation
emitted by the atmosphere goes back into space (239 Wm−2) or is radiated
back to Earth (333 Wm−2).

The energy absorbed by the Earth’s surface thus consists of two compo-
nents: shortwave from the Sun (161 Wm−2) and longwave from the atmo-
sphere (333 Wm−2). Without the longwave component the average temper-
ature on Earth would be about −18 ◦C, while in fact it is about 13.5 ◦C.
The longwave component exists because of the presence of greenhouse gases
(and clouds), which act as a blanket for the longwave radiation coming from
the Earth’s surface (McGuffie and Henderson-Sellers, 2001): the greenhouse
effect. One of the most important greenhouse gases is carbon dioxide (CO2).
While the natural greenhouse effect is crucial for the climate on Earth, human
activities have intensified it. For example, the amount of CO2 in the atmo-
sphere has increased by about 36% between 1750 and 2005, primarily through
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the combustion of fossil fuels and tropical deforestation, and by about 15%
between 1975 and 2005; see Solomon et al (2007, Chapter 2, p. 137). The
Earth becomes warmer (global warming) and the anthropogenic greenhouse
effect is thought to be primarily responsible for the speed at which this hap-
pens (Solomon et al, 2007, Chapter 9, p. 665). The greenhouse effect is a
global effect, and hence heavy industries and deforestation in one area affect
people everywhere.

Increased pollution not only results in a higher concentration of CO2,
but also in more aerosols. An increase in aerosols implies that less sunlight
reaches the Earth’s surface (global dimming), and hence that the Earth be-
comes cooler: the solar radiation effect. Global warming thus consists of two
components: the greenhouse effect and the solar radiation effect, which work
in opposite directions.

We propose a climate model based on the simplified energy balance de-
scribed above. Our model is inspired by the energy balance models proposed
by Budyko (1969), Sellers (1969), North et al (1981), and others; see also
Gregory et al (2002), Andreae et al (2005), and Schwartz (2007) for recent
applications.

If the energy balance at the Earth would hold exactly, then (combining
the energy balances at the Earth’s surface and the atmosphere)

Esin − E lout = 0, (1)

where Esin = (161 + 78) Wm−2 denotes the incoming solar shortwave ra-
diation which reaches and is absorbed by the Earth or the atmosphere and
E lout = 239 Wm−2 is the longwave radiation emitted from the atmosphere.
In reality, the energy balance will not hold exactly and this imbalance will
result in a change in temperature, modeled as

c (TEMPt+∆t − TEMPt)

∆t
= Esin

t − E lout

t , (2)

where c is the so-called ‘heat capacity’, linking the energy surplus or deficit
to a change in temperature per unit of time (Andreae et al, 2005).

While Equations (1) and (2) refer to the Earth as a whole, we wish to
consider weather stations on the Earth’s surface. The energy balance (1)
then still applies with two modifications. First, the various energy terms
will be station-specific. Second, weather stations near the equator (latitude
zero) receive more sunlight than stations at lower or higher latitudes. Some
of this excess radiation will flow from warmer areas to colder areas, resulting
in an additional term Eexch, representing the net in- or outflow of energy.
Thus, if the energy balance would hold exactly in weather station i, then
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Esin

it −E lout

it +Eexch

it = 0, but when there is an imbalance, the discrepancy will
result again in a change in local temperature TEMPit, modeled for station i
at time t as

c (TEMPi,t+∆t − TEMPit)

∆t
= Esin

it − E lout

it + Eexch

it . (3)

Equation (3) is the starting point for our econometric climate model. The
four energy terms will depend on solar radiation, greenhouse gas concentra-
tion, and temperature.

3 Data and descriptive statistics

We require annual data at the level of weather stations. For each station we
collected monthly observations on temperature (TEMP): the average tem-
perature in degrees Celsius (◦C) at the surface (source: CRU); solar radia-
tion (RAD): the amount of sunlight (‘global solar irradiance’) that reaches
the Earth’s surface, measured in Watts per meter squared (Wm−2) (source:
GEBA); and carbon dioxide (CO2): concentration of carbon dioxide, mea-
sured in parts per million by volume (ppmv) (source: Mauna Loa Observa-
tory). In addition, we need for each station its longitude and latitude. The
data are constructed from three sources.

The Climatic Research Unit (CRU) maintains a database of monthly
climate observations based on a large number of weather stations around
the globe (land stations only, Antarctica excluded) over the period Jan-
uary 1901 to December 2002. We use the database labeled CRU TS 2.1
(http://www.cru.uea.ac.uk). Information is provided on nine climate vari-
ables including TEMP. Some areas of the Earth contain more weather sta-
tions than others. In order to obtain regularity of information, the surface
of the Earth is defined on a high-density (0.5◦) latitude-longitude grid, thus
dividing the Earth in 720 × 360 grid cells, each covering an area of about
45×45 kilometers. Each grid cell draws potential information from about 100
weather stations, both within and in the neighborhood of the grid cell. The
landmass (excluding Antarctica) covers about 26.5% of the Earth. Monthly
information is thus provided for each of the nine climate variables in each
of 67,420 cells on the landmass. The construction of the database includes
checks for inhomogeneities, the use of neighboring stations to fill in gaps, and
spatial and temporal interpolation using station data from different datasets
(Mitchell and Jones, 2005). There exist other sources for TEMP, such as
the weather station data from the National Climatic Data Center (NCDC).
The CRU dataset is, however, the most extensive, and where the CRU and
NCDC data overlap geographically we do not find systematic differences.
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Figure 2: Distribution of weather stations in the GEBA dataset

The Global Energy Balance Archive (GEBA) is project A7 of the World
Climate Programme—Water (WMO/ICSU). The GEBA database stores month-
ly means of energy fluxes which have been instrumentally measured at the
surface, and is publicly available (http://bsrn.ethz.ch/gebastatus). The qual-
ity of the energy flux monthly means is controlled. The database provides
us with monthly observations on solar radiation over the period 1950–2006,
under both cloudy and cloudfree conditions. We only consider the observa-
tions from January 1959 to December 2002, because the CO2 data are not
available before 1959 and the CRU data are not available after 2002. Over
this 44-year period the GEBA database contains monthly data from 2164
weather stations around the Earth. We delete stations on boats and stations
with a quality flag (unreliable). Of the remaining stations there are many
where some of the observations are missing. We include only those stations
which have at least one complete year of observations. This leaves us with
1337 stations. Figure 2 shows that the weather stations are not spread evenly
over the continents, and this could have implications which we discuss and
resolve in Section 6. If the solar radiation data on these 1337 stations were
complete we would have 44 × 1337 = 58, 828 complete years, while in fact
we have only 18, 604 complete years. An average weather station has thus
only about fourteen complete years of solar radiation data. The ‘holes’ can
occur at the beginning, the middle, or the end of each time series. For the
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GEBA weather stations the geographical information on longitude and lati-
tude (and elevation) is also available. See Gilgen and Ohmura (1999) for a
detailed description of the GEBA database.

TheMauna Loa Observatory (MLO) in Hawaii is one of the baseline obser-
vatories of the National Oceanic and Atmospheric Administration. The data-
set we are using is the oldest continuous carbon dioxide concentration dataset
available, and provides monthly and annual data on CO2, the concentration
of carbon dioxide, measured in parts per million volume, from January 1959
to the present. It is publicly available (http://www.mlo.noaa.gov/home.html).
Since CO2 is well-mixed in the atmosphere (Solomon et al, 2007, Chapter 2,
p. 138), we may assume that CO2 is the same for each weather station and
hence we don’t require CO2 data at station level.

From these three sources we obtain monthly observations on TEMP
(1901–2002); RAD and geographical variables (1950–2006); and CO2 (1959–
present). This gives a period of 44 years (1959–2002) for which all variables
are observed. To construct a consistent dataset over the 1959–2002 period we
add TEMP to the RAD dataset. Given the location of the weather stations
in the RAD dataset, and the division of the Earth into grid cells by CRU,
we determine for each RAD station the corresponding grid cell in the CRU
division, and thus allocate to each RAD station the appropriate CRU data.
We use annual data rather than monthly data in order to avoid the difficult
problem of seasonal adjustments. The annual data are obtained by simple
averaging of the monthly data, except for the CO2 series where annual data
are provided by the Mauna Loa Observatory. This results in a panel dataset
consisting of observations over 1337 weather stations during 44 years.

Monthly observations on TEMP are available, but only about 32% of
the monthly observations on RAD is available. When solar radiation is not
observed at some weather station during one of the months in a particular
year, the corresponding observation is classified as a missing item observation
(where ‘missing item’ applies to missing information on solar radiation only).
As a consequence our dataset is an unbalanced panel with 18,604 (out of a
possible 58,828) annual observations without missing items.

Table 1 presents the sample statistics for TEMP, RAD, and CO2. For
temperature we present information both for the ‘complete panel’ (the panel
including the missing item observations) and for the ‘unbalanced panel’ (the
panel without the missing item observations). For solar radiation we can only
present information for the unbalanced panel, and for CO2 we present the
sample statistics based on the annual data. The rows labeled ‘overall’ con-
sider all the data (58,828 for TEMP in the complete panel, 18,604 for TEMP
and RAD in the unbalanced panel, and 44 for CO2). The rows labeled ‘be-
tween’ consider cross-section averages (1337 stations), and the rows labeled
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Table 1: Sample statistics for TEMP, RAD, and CO2

Variable Mean Std. Min Max
TEMP overall 13.40 8.90 −22.04 31.23
complete panel between 8.89 −19.96 29.75

within 0.34 12.91 14.14
TEMP overall 11.93 8.43 −22.04 30.36
unbalanced panel between 8.90 −20.74 29.77

within 0.61 10.66 13.21
RAD overall 160.91 42.46 52.00 324.00
unbalanced panel between 44.68 55.46 316.00

within 9.09 148.77 183.21
CO2 340.88 17.55 315.98 373.10

‘within’ consider time-series averages (44 years for the complete panel and
13.91 years for the unbalanced panel.) We see from Table 1 that the sample
average of solar radiation in the unbalanced panel is 160.91 Wm−2, ranging
from a lowest year average (over weather stations) of 148.77 Wm−2 to a high-
est year average of 183.21 Wm−2, and that the level of CO2 at the Mauna
Loa Observatory increased from 315.98 ppmv in 1959, the first year of the
panel, to 373.10 ppmv in 2002, the final year.

Table 2: Sample statistics for time differences in temperature

Variable Mean Std. Min Max
∆TEMP overall 0.0142 0.7311 −4.9250 5.1583
complete panel between 0.0162 −0.0583 0.0944

within 0.2580 −0.5140 0.5726
∆TEMP overall 0.0136 0.7600 −4.9250 5.1583
unbalanced panel between 0.2802 −3.6167 1.5500

within 0.3451 −0.6495 0.8305

The average temperature in the complete panel is 13.4 ◦C, ranging from
a year average (over all weather stations) of 12.91 ◦C in the coldest year to
14.14 ◦C in the warmest year, and ranging from a station average (over all
years) of −19.96 ◦C in the coldest weather station to 29.75 ◦C in the warmest
weather station. In the unbalanced panel some of the temperature averages
are substantially lower, up to almost 1.5 ◦C. This suggests that the missing
observations may not be missing completely at random (MCAR), and hence
that a (potentially serious) sample selection problem may exist, at least in
terms of the level of temperature. We are, however, primarily interested in a
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decomposition of temperature changes (in the time period 1959 to 2002). To
investigate whether there is a selection problem due to missing item obser-
vations in terms of temperature changes we present in Table 2 the complete
and unbalanced panel for time differences in temperature. Because we take
first differences there are now only 43 years and hence 43× 13, 337 = 57, 491
observations for TEMP in the complete panel, and 15,388 in the unbalanced
panel. The average annual temperature change in the complete panel is
0.0142 ◦C, only slightly higher than the average annual temperature change
in the unbalanced panel (0.0136 ◦C). The overall difference between the two
panels is thus only 0.0006 ◦C per year, and this difference is statistically
not significant (p-value = 0.85). For individual weather stations the time
averages in the complete and unbalanced panels sometimes differ substan-
tially. This is because for some weather stations only a few years are without
missing items, implying that extreme weather conditions may have a large
impact for these stations. This is also reflected by the corresponding ‘be-
tween’ standard deviations: only 0.0162 in the complete panel, but 0.2802 in
the unbalanced panel.
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Figure 3: Average temperature change, 1960–2002

Regarding the year averages over weather stations (the two rows labeled
‘within’), we see that the difference between the complete and unbalanced
panel is small, and this is further illustrated in Figure 3, where we present
the annual temperature changes (averaged over all weather stations) in both
the complete and the unbalanced panel for 1960–2002. We tested the null
hypothesis that the mean temperature changes for each of the years from
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1960 to 2002 in both panels are equal, but could not reject the null hypothesis
(p-value = 1.00). Hence we conclude that, when dealing with temperature
changes, we may treat the missing observations as MCAR.

The average temperature change over the weather stations in our panel
is not necessarily the same as the ‘global’ average temperature change. How-
ever, a comparison of our average temperature change with the ‘global’ av-
erage temperature change based on the CRU data for land air temperature
or the CRU data for combined land and marine temperature, indicates that
the decomposition of our average temperature change (into the greenhouse
and radiation effects) will also be informative for these ‘global’ temperature
changes.

4 The econometric model

4.1 Specification of the energy flows

Our econometric model is based on Equation (3) in annual terms (∆t = 1
year):

c (TEMPi,t+1 − TEMPit) = Esin

it − E lout

it + Eexch

it , (4)

where the energy terms represent annual measurements. Let us specify the
three energy flows, following Budyko (1969) with minor modifications; see
also Sellers (1969), North (1975), and North et al (1981).

We allow for both a global and a local solar radiation effect, and we
therefore specify

Esin

it = a0 + a1RADt + a2(RADit − RADt),

where RADt denotes the average solar radiation at year t and (RADit−RADt)
the local solar radiation in excess of average solar radiation. We have a1 ≥
a2 ≥ 0, because an increase in either RADt or RADit leads to an increase
in Esin

it . The global effect is captured by a1RADt, while a2(RADit − RADt)
captures the local effect. There is no global effect if a1 = a2, and no local
effect if a2 = 0. We shall assume that changes in solar radiation are caused by
changes in anthropogenic aerosol emissions: more aerosols lead to a decrease
in solar radiation (Power, 2003; Norris and Wild, 2007). Our analysis does
not, however, depend on this assumption, and changes in solar radiation can
also be influenced by other factors, such as variations in the solar constant.

The outgoing longwave energy is an increasing (nonlinear) function of
temperature, and also depends on the concentration of greenhouse gases in
the atmosphere, which we represent by the concentration of CO2. Assuming a
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constant vertical lapse rate (cf. North, 1975), the atmosphere’s temperature
depends linearly on the Earth’s surface temperature. Since greenhouse gases
are assumed to be evenly spread around the globe, we model their effect
to be constant over weather stations. Based on these considerations, we
approximate the outgoing longwave energy by the following linear function:

E lout

it = b0 + b1TEMPt + b2(TEMPit − TEMPt)− b3 log(CO2t),

where TEMPt denotes the average temperature at year t, b1 ≥ b2 ≥ 0, and
b3 ≥ 0. Again, we allow for both a local and a global effect. Finally, the
exchange energy term is modeled as

Eexch

it = c0 − c1
(
TEMPit − TEMPt

)

with c1 ≥ 0. Thus, if the local temperature in weather station i is larger
than the average temperature, then there is an outflow of energy from sta-
tion i; if the local temperature is lower than the average, there is an in-
flow. The parametrizations for E lout

it and Eexch

it are based on Budyko (1969),
North (1975), and North et al (1981). The dependence on CO2 via a log-
transformation is based on Solomon et al (2007, Chapter 2, p. 140).

With these specifications substituted into Equation (4) we obtain, after
suitable parameter transformations,

TEMPi,t+1 = β1TEMPit + β2RADit + λt, (5)

λt = γ0 + γ1TEMPt + γ2RADt + γ3 log(CO2t). (6)

We can estimate the β’s and the γ’s, but not the underlying structural pa-
rameters, unless we make further assumptions, for example, about the heat
capacity c.

4.2 Steady state

The system gives rise to a steady state temperature, both at a global and
at a local level, obtained by setting TEMPi,t+1 = TEMPit for all weather
stations i at a given year t. The global average steady state temperature at
year t will be denoted by TEMP

e

t and the local steady state temperature in
weather station i at year t by TEMPe

it. The steady state temperatures are
then given by

TEMP
e

t =
γ0 + (β2 + γ2)RADt + γ3 log(CO2t)

1− β1 − γ1
(7)

13



and

TEMPe
it = TEMP

e

t +
β2

1− β1

(
RADit − RADt

)
. (8)

The global average steady state temperature is thus determined by the global
average solar radiation level and the level of the greenhouse gases (represented
by CO2). The local steady state temperature may deviate from the global
average steady state temperature via a deviating local solar radiation level.

Using the steady state temperatures (7) and (8) we can decompose a
change in local or global steady state temperature into a solar radiation
effect and a greenhouse effect. For example, a change in global steady state
temperature is given by

∆TEMP
e

t =
β2 + γ2

1− β1 − γ1
∆RADt +

γ3
1− β1 − γ1

∆ log(CO2t), (9)

where the first term represents the change in the steady state temperature
due to a change in solar radiation (for example, caused by dimming), while
the second term represents the change in the steady state temperature due
to a change in CO2. In a similar way, we can calculate decompositions at a
local level or at a partially aggregated level (such as a continent).

Again using (7) and (8), we can rewrite Equations (5) and (6) as

TEMPi,t+1−TEMPit = (1−β1) (TEMPe
it − TEMPit)−γ1

(
TEMP

e

t − TEMPt

)
,

which reveals that the system is mean-reverting (as long as β1 ≤ 1, γ1 ≤ 0,
and the steady state temperatures are taken as the ‘means’), where −γ1
quantifies the speed of mean reversion for deviations from the global steady
state temperature, and 1− β1 quantifies the speed at the local level.

4.3 Uncertainty

In a world without uncertainty, the development of temperature over time
and weather stations is assumed to be determined by Equations (5) and (6),
where i = 1, . . . , N indexes the weather station (N = 1337) and t = 1, . . . , T
the year (T = 44). There is, however, considerable uncertainty about nonlin-
earities, omitted variables, and many other issues. Uncertainty is introduced
through three channels. We have a station-specific effect αi, which captures
any effects specific for weather station i, not changing over time (at least,
not changing over the sample period); a time-specific effect ηt, which cap-
tures those station-independent time effects not captured by TEMPt, RADt,
and log(CO2t); and a station-specific and time-dependent idiosyncratic effect
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uit. Introducing these three error terms results in the following econometric
specification for weather station i at year t:

TEMPi,t+1 = β1TEMPit + β2RADit + αi + λt + ui,t+1, (10)

λt = γ0 + γ1TEMPt + γ2RADt + γ3 log(CO2t) + ηt. (11)

Once the parameters in the two equations have been estimated, the steady
state temperatures and the decompositions discussed in the previous subsec-
tion can be calculated straightforwardly.

In order to estimate the parameters in (10) and (11) we need to im-
pose distributional assumptions. In our specification there is cross-sectional
dependence via the time effects λt. To deal with this dependence, we con-
sider (10) conditional on λt. Given λt, we assume independence over the
weather stations. The λt will then capture cross-sectional correlation. We
shall make distributional assumptions similar to those proposed in Arellano
and Bond (1991), and Blundell and Bond (1998), and this allows us to esti-
mate (in a first round) the β-parameters in (10) and also the time effects λt,
using standard panel data estimation techniques. Next, given the estimated
time effects, we use (11) together with the usual linear regression assumptions
to estimate the γ-parameters in a second round by ordinary least squares.

We now describe the distributional assumptions that we impose on (10),
in addition to assuming independence over weather stations, conditional on
the time effects. For each weather station i and time period t in our dataset
we shall assume:

E[αi + uit] = 0, (A1)

E[ui,t−s(αi + uit)] = 0 (s ≥ 1), (A2)

E[∆RADi,t−s∆uit] = 0 (s ≥ 1), (A3)

E[TEMPi,t−s∆uit] = 0 (s ≥ 2), (A4)

E[∆TEMPe
i,t−s(αi + uit)] = 0 (s ≥ 1). (A5)

Assumptions (A1) and (A2) are standard zero mean and zero correlation
assumptions for the station-specific and idiosyncratic error terms. Assump-
tions (A3) and (A4) are standard zero correlation assumptions between in-
dependent or lagged dependent variables and error terms. Assumption (A5)
concerns the change in steady state temperature, and states that future error
terms do not deviate systematically with this change. Moreover, we assume
for some τ ≤ 1, possibly far back in the past and independent of i,

TEMPi,τ = TEMPe
i,τ . (A6)

This assumption can be seen as an initial condition, stating that the system
was in a steady state at some point in the past.
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4.4 Correlation

Even though (conditional on the time effects) the idiosyncratic errors uit are
assumed to be independent over weather stations and have to satisfy (A2),
the complete error term in (10)–(11) equals αi + ηt + ui,t+1. This implies
that cross-sectional and time correlation is built into the model, and we
illustrate this fact under additional mean-independence assumptions (which
imply Assumption (A1)). We first consider correlation over time, and we
write cov (TEMPi,t+1,TEMPit) = C1 + C2, where

C1 = cov (E (TEMPi,t+1 | Iit) ,E (TEMPit | Iit)) ,

C2 = E (cov (TEMPi,t+1,TEMPit | Iit))

represent the covariance captured by the systematic part, and the covariance
due to the error terms (conditional upon Iit), respectively, and

Iit =
{
TEMPi,t−1,RADit,RADi,t−1,CO2t,CO2t−1,TEMPt−1,RADt,RADt−1

}
.

denotes the conditioning set. We are interested in C2 and we shall show in
Section 5.1 that C2 is relatively small. The additional mean-independence
assumption is E (αi + ηt + ui,t+1 | Iit) = 0, which implies that the average
conditional expectation equals the unconditional expectation. Given our
distributional assumptions,

C2 = β1 var (αi + uit) + γ1 cov (α + ut, αi + uit) + (β1 + γ1) var (ηt−1)

+ var (αi) + cov (αi, ui,t+1) . (12)

This shows that the error structure generates time correlation in two ways,
due to the autoregressive nature of the model (‘state dependence’) captured
by the first three terms (if β1 6= 0 or γ1 6= 0), and due to the correlation of the
individual effect with itself and with the idiosyncratic error term (‘unobserved
heterogeneity’) captured by the final two terms.

Next, we consider spatial correlation. We decompose cov(TEMPi,t+1,TEMPj,t+1)
in the same way as before, but with a different conditioning set, namely

Ĩijt =
{
TEMPit,RADit,TEMPjt,RADjt,TEMPt,RADt,CO2t

}
.

The mean-independence assumption now reads E(αi + ηt + ui,t+1 | Ĩt) = 0,
and, using our distributional assumptions, the second term in the covariance
decomposition is equal to var (ηt). Thus, the error term in the time effect
captures the error-term-specific cross-sectional correlation.
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4.5 Moment restrictions with missing observations

Some solar radiation observations are missing and this may cause a selection
problem. We now describe how the distributional assumptions (A1)–(A6) can
be manipulated to construct moment restrictions such that the parameters
in (10) can be estimated by the Generalized Method of Moments (GMM) in
the presence of missing observations.

We introduce selection variables rit, such that rit = 0 if observation (i, t)
on solar radiation is missing, and rit = 1 if the observation is present. Con-
ditional on the time effect, we combine the distributional assumptions (A1)–
(A6) with the assumption that the missing observations are MCAR, except
possibly for the level. By this we mean that, under the assumption that
the selection variables are independent of the random variables appearing
in (A1)–(A6), the moment restrictions are valid in terms of the parameters
appearing in (10), except possibly for the level. Since the level will be cap-
tured by the time effects λt, our assumption implies that we may not be able
to estimate the level of the time effects consistently, but we will be able to
estimate, for example, λt − λ1 consistently.

We use the following moment restrictions in estimating the parameters
of (10):

E
T∑

t=2

[ri,t−1(αi + uit)] = 0, (M1)

E[ri,t−1ri,t−2∆uit] = 0 (t = 3, . . . , T ), (M2)

E
T∑

t=3

[ri,t−1ri,t−2∆RADi,t−1∆uit] = 0, (M3)

E[ri,t−1ri,t−2TEMPi,t−s∆uit] = 0 (t = 3, . . . , T ; s = 2, . . . ,min (t− 1, 4)),
(M4)

E[ri,t−1(αi + uit)∆TEMPi,t−1] = 0 (t = 3, . . . , T ). (M5)

Restrictions (M1) and (M2) are derived from (A1) and the MCAR assump-
tion, where (M2) is obtained by taking time differences of (A1). Restric-
tions (M3) and (M4) are derived from (A3) and (A4), respectively, together
with the MCAR assumption. Restriction (M5) follows from taking time dif-
ferences of (10) (until reaching t = τ), combined with (A2), (A3), the initial
condition (A6), and the MCAR assumption. The restrictions (M1)–(M4) are
based on the moment conditions in Arellano and Bond (1991); the additional
restriction (M5) is based on Blundell and Bond (1998).

The first round provides consistent estimates of λt − λ1 (t = 2, . . . , T −
1), and we use these estimates in Equation (11). We calculate the global
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averages of both temperature and solar radiation, using the differences in the
unbalanced panel in the following way. Let TEMP1 be the global average
temperature in the first year of the ‘complete panel’ (the panel including the
missing observations), and let RAD1 be the global average solar radiation
in the first year of the ‘unbalanced panel’ (the panel without the missing
observations). Then, TEMPt is calculated as

TEMPt = TEMPt−1 +
1

∑N

i=1
ritri,t−1

N∑

i=1

ritri,t−1∆TEMPit, (13)

for t = 2, . . . , T . RADt is calculated similarly.
When estimating (11) we impose the usual linear regression assumptions,

and we assume that applying least squares yields unbiased estimates, except
again for the level. This implies that the constant term may be biased. When
calculating the standard errors of the linear regression coefficients, we ignore
the first-round inaccuracy, because the number of observations in the first
round (N weather stations) is much larger than the number of observations
in the second round (T − 1 years).

5 Empirical results

We now present the empirical results. In Section 5.1 we discuss the estimation
results. In Section 5.2 we investigate the 1991 eruption of Mount Pinatubo
to test the performance of our model. In Sections 5.3 and 5.4 we present
the decomposition of the temperature change into a greenhouse and a solar
radiation effect, both in terms of observed and steady state temperatures.
We also consider this decomposition at regional levels (continents).

5.1 Parameter estimates

The estimation results for our model, based on Equations (10) and (11), are
presented in Table 3. The first two columns give the estimates and standard
errors of the β’s in Equation (10), while the next three columns contain the
estimates and standard errors of the γ’s in Equation (11). All estimates
have the expected signs and are statistically significantly different from zero
(at the 5% level). The panel-data based estimates of Equation (10) are far
more accurate than the time-series based estimates of Equation (11), and
this supports our approach to ignore the first-round inaccuracy in the second
round. In the subsequent subsections we shall use these parameter estimates
to characterize our climate model.
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Table 3: Parameter estimates and standard errors

TEMPit (β1) RADit (β2) TEMPt (γ1) RADt (γ2) log CO2t (γ3)
0.9063 0.0087 −0.8235 0.0614 10.6955
(0.0046) (0.0008) (0.1839) (0.0219) (2.3958)

For a dynamic model such as our econometric model, it is standard prac-
tice to use the Arellano-Bond estimator, that is, to apply GMM to the mo-
ment restrictions (M1)–(M4); see Arellano and Bond (1991). This estimator
performs poorly, however, when the autoregressive coefficient β1 or the vari-
ance ratio var(αi)/ var(uit) is large (Blundell and Bond, 1998). Including
moment restriction (M5) may then yield better results. In our case the es-
timate of the autoregressive coefficient is β̂1 = 0.91 and the estimate of the
variance ratio is 0.98. Both are ‘large’, thus motivating our choice to use all
moment restrictions (M1)–(M5).

In terms of the implied correlation structure as described in Section 4.4,
we estimate that the temporal correlation, calculated from (12), is 0.017
with 0.011 due to state dependence and 0.006 to unobserved heterogeneity.
Since the total temporal correlation is 0.996, the error terms contribute only
a small part; most is captured by the systematic part of the model. The
estimate of the final term in (12), cov (αi, ui,t+1), is very close to zero, im-
plying that, given the assumptions in Section 4.4, the autocorrelation in the
idiosyncratic error terms uit is also estimated to be zero (using (A2)). The
cross-sectional correlation, given by var (ηt) / var (TEMPi,t+1), is estimated
to be 0.002, and the estimate of the total cross-sectional correlation is 0.16.
Again, the contribution of the error terms is small.

Using the estimated β’s and γ’s we can investigate whether dimming is
a local or a global effect or both. If H0 : a1 = a2 holds then dimming is
only a local effect. In terms of our reduced-form parameters we need to test
H0 : γ2 = 0. Since γ̂2 is significantly different from zero, we reject H0 and
conclude that there is evidence for a global dimming effect. On the other
hand, if H0 : a2 = 0 holds then dimming is only global. Here we need to
test H0 : β2 = 0 and this is also rejected. Hence, we find both a local and a
global dimming effect, but since a1 is much larger than a2, the local effect is
much more important than the global effect.

The specification (10)–(11) is linear in the independent variables. This
linear specification should be seen as a linear approximation to a nonlinear
structure. To test the validity of the linear approximation, we performed
a number of specification tests. In particular, we calculated the in-sample
predictions according to the specification (10)–(11), and compared these to
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three in-sample predictions, where in each case one of the linear terms in (11)
was replaced by a fully flexible specification in this variable, estimated non-
parametrically using Robinson’s (1988) semiparametric regression approach.
Only in case of CO2 do we find some statistically significant differences be-
tween our linear specification and the alternative partial nonparametric re-
gression in-sample predictions, indicating that, at least in-sample, the linear
specification performs well.

5.2 Mount Pinatubo

How confident can we be that our results are driven by and identified in
the data, and not just an artifact of model choice? A natural environment
for studying this question is to consider a shock in one of the explanatory
variables, say solar radiation. If the model is correctly specified, then this
should lead to a shock in the prediction of the dependent variable (tempera-
ture), but not to a shock in the residuals. A large volcanic eruption provides
the ideal environment, and the June 1991 eruption of Mount Pinatubo on
the island of Luzon in the Philippines was the largest eruption in our data
period, in fact the largest disturbance of the stratosphere since the eruption
of Krakatau in 1883. An estimated 30 Teragrams (Megatonnes) of aerosols
were released into the atmosphere.

1965 1970 1975 1980 1985 1990 1995 2000

-10

-5

0

5

10

15

20

Global

Near Pinatubo

(a) Solar radiation

1965 1970 1975 1980 1985 1990 1995 2000

0.0

-0.5

0.0

0.5

1.0

Global

Near Pinatubo

(b) Temperature and residuals

Figure 4: Analysis of the Mount Pinatubo eruption

Figure 4 summarizes our analysis. In panel (a) we present the solar
radiation time series for the 100 stations closest to Mount Pinatubo (‘Near
Pinatubo’) and compare this series with the solar radiation time series for all
stations in our dataset (‘Global’). Both series are normalized so that their
average over the period is zero. The two vertical lines indicate the years
1991 (the year of the eruption) and 1992. The ‘Pinatubo effect’ is clearly
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visible: the global average in 1991 is 5.33 Wm−2 lower than the average over
1959–1990, and near the Pinatubo even 12.95 Wm−2 lower. This effect is
largest near Mount Pinatubo, since the eruption lasted until August, with
episodic eruptions in September. But there is also a global effect due to
the fast dispersion of the aerosols across the globe: the aerosol cloud moved
westward and circled the globe in approximately 22 days (McCormick et al,
1995).

Our model predicts that there should be a temperature shock in 1992,
and this negative effect on temperature is visible from panel (b), not just
in 1992 but also in 1993. We should be a little careful in our conclusions,
because both solar radiation and temperature are volatile (especially the
graphs based on only 100 stations).

The key graph is at the bottom of panel (b) where we plot the (scaled)
residuals, averaged over the stations close to Mount Pinatubo. There is no
sign of any anomaly in the residuals. It seems justified therefore to have
confidence that our results are driven by and identified in the data.

5.3 Greenhouse and solar radiation effects
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Figure 5: Decomposition of temperature change, 1960–2002

The purpose of this paper is to try and decompose the observed (in-
sample) total change in temperature into a change that can be attributed to
a change in the concentration of greenhouse gases, and a change caused by
a change in the solar radiation reaching the surface. Our econometric model
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enables us to do this, and Figure 5 illustrates the resulting decomposition.
The dots represent the observed global average temperature, calculated using
Equation (13), and setting TEMP1 equal to the average temperature in the
first year of the complete panel. The solid curve gives the expected global
average temperature according to our model, conditional on the observed
development of carbon dioxide and solar radiation. We set the level of this
curve such that its time average equals the time average of the observed
temperature series. The in-sample change in average temperature equals
0.66 ◦C (1960–2002), while the model predicts the slightly higher temperature
change of 0.73 ◦C. The solid curve follows the actual series closely, and hence
our model is able to reproduce the pattern of in-sample temperature changes
well.

Two further temperature series are presented in Figure 5, and these rep-
resent the decomposition. The lower curve shows the expected temperature
if carbon dioxide is assumed to remain at its 1959 level (the start of our
dataset). The upper curve shows the expected temperature if solar radia-
tion is assumed to remain at the level of 1959. The difference between the
lower curve and the solid curve can be interpreted as the greenhouse effect
for the period 1959–2002, while the difference between the upper curve and
the solid curve can be interpreted as the solar radiation effect. The figure
shows that, without the increase in greenhouse gases, the expected global
average temperature would have been 1.87 ◦C lower (with standard error
0.32): the greenhouse effect. Also, if global average solar radiation is un-
changed from its initial level, then the expected global average temperature
would have been 1.09 ◦C higher (standard error 0.31): the solar radiation
effect. The predicted temperature change of 0.73 ◦C thus decomposes as
0.73 = 1.87−1.09−0.05, where 0.05 is a remainder term due to the fact that
we are not in a steady state. We conclude that the solar radiation effect is
important, masking 58% of the increase due to the greenhouse effect.

Let us compare these findings with the literature. Such a comparison
should be interpreted with some care, because existing studies use different
time periods than our study, and some focus on specific regions. Furthermore,
our solar radiation effect includes factors other than aerosols that influence
the amount of incoming solar radiation. Taking these caveats into account,
we find that the existing findings broadly agree with ours. Tett et al (2002)
report a greenhouse effect of 0.9 ◦C per century. Stott et al (2006) find that
0.7–1.3 ◦C of warming is due to greenhouse gases, and that 0.33–0.49 ◦C of
cooling is due to aerosols. Allen et al (2006) find that the twentieth century
greenhouse effect is in the range of 0.3–1.2 ◦C, with a cooling of 0.7 ◦C due
to aerosols. Our results imply a more important greenhouse effect.

Regarding the solar radiation masking effect, Crutzen and Ramanathan
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(2003) report a masking effect of 45% from 1850 to the present. Applying
their reasoning to the results in Anderson et al (2003) yields values in the
range 37%–56% for the same time period. Similarly, applying their reasoning
to Bellouin et al (2005) and Myhre (2009) yields values of 70% and 11%,
respectively. For 1930–2002, Ramanathan et al (2005) find that aerosols
may have masked as much as 50% of the surface warming due to the global
increase in greenhouse gases. Our findings in terms of the relative importance
of the solar radiation effect are in line with this literature.

Actual changes may be different from steady state changes to which they
will converge. Therefore we investigate the steady state effects next.

5.4 Steady state effects

We decompose the steady state temperature change in the period 1960–2002
into a solar radiation and a greenhouse effect, both globally and regionally,
at the level of continents. At the global level, the change in average steady
state temperature equals 0.92 ◦C (standard error 0.18). The global average
steady state temperature would have been 1.90 ◦C (0.35) lower without the
increase in CO2, while the average steady state temperature would have
been 0.98 ◦C (0.31) higher if global average solar radiation would still be
at its initial level. Notice that the decomposition in steady state contains
no remainder term: 0.92 = 1.90 − 0.98. Our results imply that the global
mean-reverting coefficient −γ1 equals 0.82 (0.18). The mean-reverting speed
at the global level is therefore high, and convergence to the global steady
state temperature is fast.

At the regional (continent) level, the changes in steady state tempera-
ture may differ, due to local dimming. These regional effects, calculated
using (8), are illustrated in Figure 6, where we show the decomposition for
four continents: Africa, Asia, Europe, and North America. The graphs are
similar to Figure 5, except that the curves now show steady state tempera-
tures. In North America the average steady state temperature would have
been 1.73 ◦C higher in the case where solar radiation would still be at the
1960 level. In Asia the temperature would be 1.73 ◦C higher, and in Africa
even 2.23 ◦C. The uncertainty of these effect estimates are similar to those
in Figure 5, since they are based on the same parameter estimates. One
would perhaps expect that the solar radiation effect in Asia becomes larger
in comparison with North America in the 1990s, due to the expansion of the
Asian economies and the associated increase in sulfur emissions. However,
external data on sulfur emissions reveal that Chinese sulfur emissions leveled
off after 1989, and this is consistent with Figure 6. These results demon-
strate that the local solar radiation effect may be different from the global
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Figure 6: Decomposition of temperature change by continent, 1960–2002

effect, and also much more important than the greenhouse effect, masking
even more than 100% of the temperature increase due to the greenhouse ef-
fect. The local mean-reverting coefficient 1−β1 equals 0.094 (standard error
0.005). The local mean-reverting speed is thus much lower than the global
mean-reverting speed, implying that convergence at local levels can be slow.

6 Sensitivity analysis

Our benchmark model is based on a large number of assumptions, in par-
ticular about the climate model, about the statistical model, and about the
data. Any or all of these assumptions may be incorrect. In this section
we ask whether small deviations from our assumptions will cause large or
small changes in our conclusions. In the former case the conclusions are
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apparently sensitive to a particular assumption; in the latter case they are
not. Obviously we prefer that our conclusions are not sensitive, but this is
something that needs to be investigated, especially in the context of climate
change where there is much uncertainty about the process. We organize our
sensitivity analyses in three groups: climate model issues, statistical model
issues, and data issues. In our sensitivity analysis we focus on Figure 5, that
is, we ask the following question: How sensitive to our assumptions is the
decomposition of the total temperature change into a change due to green-
house gases represented by CO2 (the greenhouse effect) and a change due to
dimming (the solar radiation effect)? Table 4 summarizes our results.

6.1 Climate model issues

We consider two ways to change the climate model. The first is to make the
solar radiation effect latitude-dependent. The second is to consider a static
model.

Table 4: Sensitivity analysis: solar radiation and greenhouse effects

Method Solar radiation Greenhouse
1 Benchmark −1.09 (0.31) 1.87 (0.32)
Climate model issues
2a Albedo −0.92 (0.34) 2.34 (0.41)
2b −1.20 (0.29) 2.24 (0.28)
3 Static −0.78 (0.15) 1.59 (0.17)
Statistical model issues
4a Lags Two lags −1.05 (0.31) 1.84 (0.32)
4b Four lags −1.08 (0.31) 1.88 (0.32)
5 Arellano-Bond −0.78 (0.29) 1.73 (0.30)
6 One round −0.07 (0.03) 1.08 (0.03)
Data issues
7 Definition of TEMP −1.16 (0.25) 1.78 (0.24)
8 Spatial Independence −1.07 (0.32) 1.95 (0.33)
9 Weights −1.43 (0.28) 1.71 (0.25)
10a 1/2 most complete stations −0.88 (0.30) 1.73 (0.30)
10b 2/3 most complete stations −1.10 (0.31) 1.86 (0.31)

In our benchmark model we made the assumption that the solar radiation
effect is the same for each weather station. One might argue however that
the solar radiation effect depends on the latitude, due to a latitude-specific
albedo effect. We investigate two methods to allow for this dependency.
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In the first method (model 2a), we divide the Earth into six latitude zones
of equal size. We let RADl

it = RADit if station i is in zone l, and 0 otherwise
(l = 1, . . . , 6), and we replace β2RADit in (10) by

∑6

l=1
β2lRAD

l
it. We find

that all radiation coefficients are positive, and that they are lower for zones
further away from the equator. The implications for the decomposition are
that, compared to our benchmark results, the solar radiation effect decreases
and the greenhouse effect increases.

In the second method (model 2b), we let the radiation coefficient be a
linear function of the distance to the equator, that is, β2,i = a0+a1|LATi/90|,
where a1 is allowed to be different per hemisphere. We find that both the solar
radiation effect and the greenhouse effect increase. Hence, if we assume that
the solar radiation effect is latitude-dependent, then the magnitude of the
solar radiation effect does not change systematically, but may become smaller
or larger than the benchmark, depending on the way the dependence on
latitude is modeled. But since in both models the greenhouse effect increases,
we find that the solar radiation effect only masks 39% or 53% of the increase
due to the greenhouse effect.

Our climate model is based on the idea that a surplus or a deficit in the
energy balance causes a change in temperature. This results in our dynamic
specification (10)–(11). Alternatively, one could set up a climate model by
linking the temperature to the energy level. Such an approach leads to a
static panel data model, for example our model (10)–(11), but then with
β1 = γ1 = 0 and with TEMPit as dependent variable instead of TEMPi,t+1.
We estimate this static model (model 3) imposing moment restrictions analo-
gous to the benchmark model. We find lower solar radiation and greenhouse
effects, where the solar radiation effect becomes, relatively speaking, some-
what less important (49%). Without a dynamic autoregressive part, the
individual station-specific effect becomes much more important than in the
benchmark model, capturing 0.918 (instead of 0.012) of the total temporal
autocorrelation of 0.996. In this case the individual effects also capture some
of the station-specific trends over time, leading to lower solar radiation and
greenhouse effects. Overall, we conclude that the decomposition of the to-
tal temperature change into a change due to greenhouse gases represented by
CO2 (the greenhouse effect) and a change due to dimming (the solar radiation
effect) is not very sensitive to our assumptions.

6.2 Statistical model issues

We investigate the sensitivity of the decomposition with respect to three
deviations in the statistical model. First, for restriction (M4), we have chosen
a maximum of three lags of TEMP to be used as instruments. We consider
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as alternatives two lags (model 4a) and four lags (model 4b). This has
only a small effect on the decomposition results. Second, we use the moment
restrictions (M1)–(M4) in our benchmark model, based on Arellano and Bond
(1991), extended with the moment restriction (M5) as in Blundell and Bond
(1998). Model 5 is obtained by estimating the model using only (M1)–(M4).
Even though the underlying parameter estimates change significantly, the
results in terms of the decomposition are close to those of the benchmark
model.

Third, we consider a restricted version of our benchmark model, where
we do not estimate the model in two rounds, but in one round (model 6).
We use Equations (10)–(11), but set the time-specific parameter to zero,
thus ignoring possible cross-sectional correlations. We estimate the model
using the moment conditions (M1)–(M5). In terms of the decomposition, we
find a substantial decrease in the greenhouse effect, while the solar radiation
effect becomes quite small (although still statistically significantly different
from zero). The high accuracy of the estimates is due to the single-round
estimation, based solely on the large number of weather stations. Without
the time-specific intercepts, the imposed time structure does not seem to
allow for sufficient flexibility, resulting in findings quite different from the
other specifications.

6.3 Data issues

Finally, we consider four data issues. In the benchmark model we have cal-
culated the mean temperatures TEMPt and the mean solar radiation levels
RADt using differences in the unbalanced panel, in order to avoid potential
sample selection problems caused by missing observations. But these aver-
ages can be calculated in various ways. In model 7 we take, as an alternative,
the following temperature and solar radiation means in the second round:

TEMPt =
1

N

N∑

i=1

TEMPit, RADt =

∑N

i=1
ri,t+1RADit∑N

i=1
ri,t+1

.

Thus we take the average in year t in the complete panel to calculate TEMPt,
and the average in year t in the unbalanced panel to calculate RADt. This
changes the levels, in particular the level of temperature. The correspond-
ing decomposition effects (which are changes) are close to the benchmark.
Hence, the alternative way of calculating the means affects the levels, but
not the changes in a statistically significant way, and this is in line with our
assumption that the unbalanced sample is representative for the complete
panel in terms of (temperature) changes.
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When we calculate the spatial correlation using the model-based idiosyn-
cratic error terms ui,t+1 and uj,t+1, we find that this correlation is negligible
for weather stations further apart, in line with our assumptions. Only for
weather stations close to each other, we find spatial correlation, which dis-
appears rapidly with increasing distance. This spatial correlation between
weather stations that are close is due to the construction of the dataset,
where weather stations in the same grid cell share the same temperature
data. To see whether our decomposition results are sensitive to this spatial
correlation in the idiosyncratic error terms of nearby weather stations, we
consider a subsample of our sample, by drawing randomly one weather sta-
tion from each temperature grid cell. This reduces the number of weather
stations by 153, while the number of observations becomes 16949 instead of
18395 (model 8). The resulting changes in the solar radiation and greenhouse
effects are minor.

In the benchmark model we assume a random sample, conditional upon
the time effects. However, the weather stations are not evenly spread over
the continents. For example, the ratio of South American weather stations
to its landmass is too low, while for Europe it is too high. To deal with
this uneven spread of weather stations over the continents, we estimate a
weighted version (model 9) of the benchmark model, with weights wi (i =
1, . . . , N) defined as the proportional size divided by the proportional number
of observations of the continent where station i is located. We adapt the
definition of TEMPt and RADt accordingly. In this model, the solar radiation
effect is larger (and estimated more accurately), while the greenhouse effect
is slightly smaller (and also estimated more accurately). However, we find no
statistically significant differences between the decomposition effects of the
weighted and unweighed versions.

For most weather stations we do not have full records on solar radiation
during the whole sample period. For some weather stations we observe solar
radiation only during some years, while for other weather stations we observe
solar radiation during most years. Our assumption is that this unbalanced
structure of our panel is not causing a selection effect. A recommended way
to check this, is to compare the estimation results with a more balanced
subpanel, including only the weather stations with (more) complete records;
see Verbeek and Nijman (1992). We consider the more balanced subpanel,
containing one-half of the weather stations with the most complete solar radi-
ation records (model 10a). Both the solar radiation effect and the greenhouse
effect become smaller. As a result, the solar radiation effect now masks 51%
(instead of 58% in the benchmark model) of the increase due to the green-
house effect. If we chose 2/3 instead of 1/2, then the results in Table 4
(model 10b) are almost identical to our benchmark results. The missing ob-
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servations do therefore have an effect on our results, as one would expect,
but this effect is small.

7 Conclusions

In this paper we propose a climate model based on the Earth’s energy bal-
ance. We then modify this climate model to obtain an econometric model,
and we estimate its parameters using dynamic panel data methods. Our
data consist of solar radiation, temperature, and carbon dioxide concentra-
tions from 1337 weather stations around the world for the period 1959–2002.

During the 43 years 1960–2002 temperature increased by an estimated
0.73 ◦C, which we decompose as 0.73 = 1.87− 1.09− 0.05, namely a green-
house effect of 1.87 ◦C (standard error 0.32), a solar radiation effect of 1.09 ◦C
(0.31), and a remainder term of 0.05. Hence, if aerosols and solar radiation
would have remained at the 1959 level, then the expected global average tem-
perature would have been 1.09 ◦C higher. The solar radiation effect is there-
fore important, masking 58% of the increase due to the greenhouse effect.
Ignoring dimming thus causes a serious underestimation of the greenhouse
effect.

Our approach has several strengths and several weaknesses. The weak
points are that some important climate processes (for example, carbon stor-
age in the ocean) are not modeled; that only land stations and no sea sta-
tions are considered; and finally that data availability limits our time horizon.
Some would also criticize our frequentist (as opposed to Bayesian) approach.
While modeling environmental data based on Bayesian hierarchical models
has become popular and such models provide a clear framework for dealing
with the various aspects of the climate system and with data issues, we have
not chosen for this approach because of the much more restrictive distribu-
tional assumptions that have to be made on the sources of uncertainty, and
on the variable that contains the missings.

The strong points are that our model is simple enough to allow estimation
rather than calibration of the reduced-form parameters and their uncertain-
ties, that the reduced-form parameters are all that is needed for our analysis,
and that analysis at all levels of aggregation is possible. Our main result
is contained in Figure 5, where we present the decomposition in greenhouse
and solar radiation effects. An important aspect of the paper is the sensitiv-
ity analysis. We present not only Figure 5, but we also ask how the figure
would change if we make small adjustments to our underlying assumptions.
Climate models are often criticized for not being robust. Extensive sensitiv-
ity analysis demonstrates that our conclusions are relatively robust against
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small changes in a variety of assumptions.
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