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Summary. Consider a random sample in the max-domain of attraction of a multivariate ex-
treme value distribution such that the dependence structure of the attractor belongs to a para-
metric model. A new estimator for the unknown parameter is defined as the value that min-
imises the distance between a vector of weighted integrals of the tail dependence function and
their empirical counterparts. The minimisation problem has, with probability tending to one,
a unique, global solution. The estimator is consistent and asymptotically normal. The spec-
tral measures of the tail dependence models to which the method applies can be discrete or
continuous. Examples demonstrate the applicability and the performance of the method.

Keywords: asymptotic statistics, factor model, M-estimation, multivariate extremes, tail depen-
dence.
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1. Introduction

As the number of variables increases, modelling tail dependence becomes more complex.
For instance, in dimension d there are d(d− 1)/2 bivariate marginals, which in general can
be different up to some consistency requirements. Therefore it is customary to model the
tail dependence parametrically. The interest in parametric tail dependence models exists
since the early sixties of the 20th century, see for example Gumbel (1960), but new models
are still being proposed, see for instance Cooley et al. (2010).

Let F be a continuous d-variate distribution function with marginal distribution func-
tions F1, . . . , Fd and quantile functions F−1

1 , . . . , F−1
d . Rather than working with a par-

ticular parametric model for F , we only assume that the stable tail dependence function
l : [0,∞)d → [0,∞), defined by

l(x) = lim
t↓0

t−1
{
1− F

(
F−1
1 (1− tx1), . . . , F

−1
d (1− txd)

)}
, x ∈ [0,∞)d, (1.1)

belongs to some parametric family, l ∈ {l(·; θ) : θ ∈ Θ}, Θ ⊆ Rp. The existing estimators of
such a θ are all likelihood based and as such, apply only to d times differentiable functions
l; see Coles and Tawn (1991); Joe et al. (1992); Smith (1994); Ledford and Tawn (1996);
de Haan et al. (2008); Guillotte et al. (2011). Although some of these estimators have been
used in dimensions higher than two, their asymptotic properties have been derived in the
bivariate case only, and not even for all estimators. A step towards the estimation of high
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dimensional tail dependence using mixtures of Dirichlet distributions has been proposed in
Boldi and Davison (2007).

In Einmahl et al. (2008) the method of moments estimator of the parametric bivariate
stable tail dependence function was introduced. Notably, this method does not require the
function l to be differentiable. Here we extend that estimator in two directions. First, we
consider models in arbitrary dimensions. Second we extend the method of moments estima-
tion to general M-estimation by allowing for more estimating equations than parameters.
The first extension addresses an important issue, since the estimation of the tail dependence
structure in higher dimensions is a challenge.

If θ ∈ Θ ⊆ Rp is the unknown parameter, g : [0, 1]d → Rq, q > p, is an auxiliary function

and if l̂n in equation (3.1) below is the nonparametric estimator of l, we define θ̂n, the
M-estimator of θ, as the minimiser of the Euclidean distance in Rq between∫

[0,1]d
g(x) l̂n(x) dx and

∫
[0,1]d

g(x) l(x; θ) dx.

The unique, global minimiser exists with probability tending to one under minimal condi-
tions. This minimiser is a consistent and asymptotically normal estimator of θ. In passing,
the asymptotic normality of l̂n in arbitrary dimensions is established, which is a result of
independent interest.

The absence of smoothness assumptions on l makes it possible to estimate the tail
dependence structure of factor models like X = (X1, . . . , Xd), with

Xj =
r∑

i=1

aijZi + εj , j = 1, . . . , d, (1.2)

consisting of the following ingredients: nonnegative factor loadings aij and independent,
heavy-tailed random variables Zi called factors; independent random variables εj whose
tails are lighter than the ones of the factors and which are independent of them. This kind
of factor model is often used in finance, for example in modelling market or credit risk; see
Fama and French (1993); Malevergne and Sornette (2004); Geluk et al. (2007).

The organisation of the paper is as follows. The basics of the tail dependence structures
in multivariate models are presented in Section 2. The M-estimator is defined in Section 3.
Section 4 contains the main theoretical results: consistency and asymptotic normality of
the M-estimator, and some consequences of the asymptotic normality result that can be
used for construction of confidence regions and for testing. This section also contains the
asymptotic normality result for l̂n. In Section 5 we apply the M-estimator to the well-known
logistic stable tail dependence function. The tail dependence structure of factor models is
studied in Section 6. Both models are illustrated with simulated and real data. The proofs
are deferred to Section 7.

2. Tail dependence

We will write points in Rd as x := (x1, . . . , xd) and random vectors as Xi := (Xi1, . . . , Xid),
for i = 1, . . . , n. Let X1, . . . , Xn be independent random vectors in Rd with common
continuous distribution function F and marginal distribution functions F1, . . . , Fd. We
assume that F has a stable tail dependence function l, that is, we assume that for all
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x = (x1, . . . , xd) ∈ [0,∞)d the following limit exists:

lim
t↓0

t−1P (1− F1(X11) 6 tx1 or . . . or 1− Fd(X1d) 6 txd) = l(x). (2.1)

The function l : [0,∞)d → [0,∞) has the following properties:

• max{x1, . . . , xd} 6 l(x) 6 x1+ · · ·+xd for all x ∈ [0,∞)d; in particular l(z, 0, . . . , 0) =
· · · = l(0, . . . , 0, z) = z for all z > 0;

• l is convex; and
• l is homogeneous of order one: l(tx1, . . . , txd) = t l(x1, . . . , xd), for all t > 0 and all
x ∈ [0,∞)d.

The function l is connected to the function V in Coles and Tawn (1991) through l(x) =
V (1/x1, . . . , 1/xd) for x ∈ (0,∞)d.

Let ∆d−1 := {w ∈ [0, 1]d : w1 + · · ·+ wd = 1} be the unit simplex in Rd. A finite Borel
measure H on ∆d−1 satisfying the d moment conditions∫

∆d−1

wjH(dw) = 1, j = 1, . . . , d, (2.2)

is called a spectral or angular measure. It follows from the moment conditions that H/d
is a probability measure. There is a one-to-one correspondence between the stable tail
dependence function and the spectral measure: it holds that there exists a unique spectral
measure H such that

l(x) =

∫
∆d−1

max
j=1,...,d

{wjxj}H(dw). (2.3)

It can be shown that there exists a measure Λ on [0,∞]d \ {(∞, . . . ,∞)} such that

(1) l(x) = Λ
(
{u ∈ [0,∞]d : u1 6 x1 or . . . or ud 6 xd}

)
,

(2) Λ(tA) = tΛ(A), for any t > 0 and any Borel set A ⊂ [0,∞]d \ {(∞, . . . ,∞)}, with
tA := {tx : x ∈ A},

see for example Resnick (1987); Beirlant et al. (2004); de Haan and Ferreira (2006). The
measure Λ is called the exponent measure and it is yet another way of defining the tail
dependence structure. Property (1) connects the exponent measure to the function l. If µ
is the measure Λ after the transformation (x1, . . . , xd) 7→ (1/x1, . . . , 1/xd), the relationship
between the spectral measure H and the exponent measure Λ (and µ) is given by

H(B) = µ
({
x ∈ [0,∞)d :

∑d
j=1xj > 1, x

/∑d
j=1xj ∈ B

})
,

for any Borel set B on ∆d−1. By property (2) we get that for any t > 0 and any Borel set
B on ∆d−1,

1

t
H(B) = µ

({
x ∈ [0,∞)d :

∑d
j=1xj > t, x

/∑d
j=1xj ∈ B

})
,

which is a version of the spectral decomposition of the exponent measure, see de Haan and
Resnick (1977) or Resnick (1987).
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The right-hand partial derivatives of l always exist; indeed, by bounded convergence it
follows that for j = 1, . . . , d, as h ↓ 0,

1

h

(
l(x1, . . . , xj−1, xj + h, xj+1, . . . , xd)− l(x1, . . . , xj−1, xj , xj+1, . . . , xd)

)
=

∫
∆d−1

1

h

(
max{wjxj + wjh,max

s ̸=j
{wsxs}} −max{wjxj ,max

s ̸=j
{wsxs}}

)
H(dw)

→
∫
∆d−1

wj1{wjxj > max
s ̸=j

{wsxs}}H(dw). (2.4)

Similarly, the left-hand partial derivatives exist for all x ∈ (0,∞)d. By convexity, the
function l is almost everywhere continuously differentiable, with its gradient vector of (the
right-hand) partial derivatives as in (2.4).

3. Estimation

Let Rj
i denote the rank of Xij among X1j , . . . , Xnj , i = 1, . . . , n, j = 1, . . . , d. For k ∈

{1, . . . , n}, define a nonparametric estimator of l by

l̂n(x) :=
1

k

n∑
i=1

1

{
R1

i > n+
1

2
− kx1 or . . . or Rd

i > n+
1

2
− kxd

}
; (3.1)

see Huang (1992) and Drees and Huang (1998) for the bivariate case. When we study
asymptotic properties of this estimator, k = kn is an intermediate sequence, that is, k → ∞
and k/n→ 0 as n→ ∞.

In the literature, the stable tail dependence function is often modelled parametrically.
We impose that the stable tail dependence function l belongs to some parametric family
{l( · ; θ) : θ ∈ Θ}, where Θ ⊂ Rp, p > 1. Note that this is still a large, flexible model since
there is no restriction on the marginal distributions and also the copula is only modelled
through l, see (1.1). We propose an M-estimator of θ. Let q > p. Let g ≡ (g1, . . . , gq)

T :
[0, 1]d → Rq be a column vector of integrable functions such that φ : Θ → Rq defined by

φ(θ) :=

∫
[0,1]d

g(x)l(x; θ) dx (3.2)

is a homeomorphism between Θ and its image φ(Θ). Let θ0 denote the true parameter

value. The M-estimator θ̂n of θ0 is defined as a minimiser of the criterion function

Qk,n(θ) = ∥φ(θ)−
∫
gl̂n∥2 =

q∑
m=1

(∫
[0,1]d

gm(x)
(
l̂n(x)− l(x; θ)

)
dx

)2

,

where ∥ · ∥ is the Euclidean norm. In other words, if Ŷn = argminy∈φ(Θ) ∥y −
∫
gl̂n∥, then

θ̂n ∈ φ−1(Ŷn). Later we show that θ̂n is, with probability tending to one, unique.

4. Results

Let Θ̂n be the set of minimisers of Qk,n,

Θ̂n := argmin
θ∈Θ

∥φ(θ)−
∫
gl̂n∥2.
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Note that Θ̂n may be empty or may contain more than one element. We show that under
suitable conditions, the minimiser exists, that it is unique with probability tending to one,
and that it is a consistent and asymptotically normal estimator of θ0. In addition, we show
that the nonparametric estimator l̂n in (3.1) is asymptotically normal.

4.1. Notation
LetWΛ be a mean-zero Wiener process indexed by Borel sets of [0,∞]d \{(∞, . . . ,∞)} with
“time” Λ: its covariance structure is given by

E[WΛ(A1)WΛ(A2)] = Λ(A1 ∩A2), (4.1)

for any two Borel sets A1 and A2 in [0,∞]d \ {(∞, . . . ,∞)}. Define

Wl(x) :=WΛ({u ∈ [0,∞]d \ {(∞, . . . ,∞)} : u1 6 x1 or . . . or ud 6 xd}). (4.2)

Let Wj , j = 1, . . . , d, be the marginal processes

Wj(xj) :=Wl(0, . . . , 0, xj , 0, . . . , 0), xj > 0. (4.3)

Define lj to be the right-hand partial derivative of l with respect to xj , where j = 1, . . . , d,
see (2.4); if l is differentiable, lj is equal to the corresponding partial derivative of l. Write

B(x) :=Wl(x)−
d∑

j=1

lj(x)Wj(xj), B̃ :=

∫
[0,1]d

g(x)B(x) dx. (4.4)

The distribution of B̃ is zero-mean Gaussian with covariance matrix

Σ := E
[∫

[0,1]d
g(x)B(x) dx ·

∫
[0,1]d

g(y)T B(y) dy

]

=

∫∫
([0,1]d)2

E[B(x)B(y)] g(x) g(y)T dxdy ∈ Rq×q. (4.5)

Note that if l is parametric, Σ depends on the parameter, that is Σ = Σ(θ).
Let ∇Qk,n(θ) ∈ Rp×1 be the gradient vector of Qk,n at θ; for every x ∈ [0, 1]d let

∇l(x; θ) ∈ Rp×1 be the gradient vector of l(x; ·) in θ; let φ̇(θ) ∈ Rq×p be the total derivative
of φ at θ; and put

V (θ) := 4 φ̇(θ)T Σ(θ) φ̇(θ) ∈ Rp×p.

Further let Hk,n(θ) ∈ Rp×p denote the Hessian matrix of Qk,n in θ. Let H(θ) be the
deterministic, symmetric p× p matrix whose (i, j)-th element, i, j ∈ {1, . . . , p}, is equal to

(H(θ))ij = 2

(
∂

∂θi
φ(θ)

)T (
∂

∂θj
φ(θ)

)
− 2

(
∂2

∂θi∂θj
φ(θ)

)T (
φ(θ0)− φ(θ)

)
.

Observe that
H(θ0) = 2φ̇(θ0)

T φ̇(θ0),

and define

M(θ) :=
(
φ̇(θ)T φ̇(θ)

)−1
φ̇(θ)T Σ(θ) φ̇(θ)

(
φ̇(θ)T φ̇(θ)

)−1 ∈ Rp×p. (4.6)
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4.2. Results
We state the asymptotic results for the M-estimator, θ̂n, and the asymptotic normality of l̂n.
The proofs can be found in Section 7. We require subsets of the following list of conditions:

(C1) θ0 is in the interior of the parameter space, φ is twice continuously differentiable and
φ̇(θ0) is of full rank;

(C2) t−1P (1− F1(X11) 6 tx1 or . . . or 1− Fd(X1d) 6 txd) − l(x) = O(tα), uniformly in
x ∈ ∆d−1 as t ↓ 0, for some α > 0 ;

(C3) k = o
(
n2α/(1+2α)

)
, for the positive number α of (C2) and k → ∞ as n→ ∞;

(C4) For all j = 1, . . . , d, the first-order partial derivative of l with respect to xj exists and
is continuous on the set of points x such that xj > 0.

Theorem 4.1 (Existence, uniqueness and consistency of θ̂n). Let g : [0, 1]d →
Rq be integrable.

(i) If φ is a homeomorphism from Θ to φ(Θ) and if there exists ε0 > 0 such that the set
{θ ∈ Θ : ∥θ − θ0∥ 6 ε0} is closed, then for every ε such that ε0 > ε > 0, as n→ ∞,

P
(
Θ̂n ̸= ∅ and Θ̂n ⊆ {θ ∈ Θ : ∥θ − θ0∥ 6 ε}

)
→ 1.

(ii) If in addition to the assumptions of (i), condition (C1) holds, then, with probability

tending to one, Qk,n has a unique minimiser θ̂n. Hence

θ̂n
P→ θ0, as n→ ∞.

In part (i) of this theorem we assume that the set {θ ∈ Θ : ∥θ − θ0∥ 6 ε0} is closed for
some ε > 0. This is a generalisation of the usual assumption that Θ is open or closed, and
includes a wider range of possible parameter spaces.

We prove the asymptotic normality of l̂n. This result is of independent interest and can
be found in the literature for d = 2 only and under stronger smoothness conditions on l:
see Huang (1992), Drees and Huang (1998), and de Haan and Ferreira (2006). Here it is

a necessary part of the proof for asymptotic normality of θ̂n. Note that under assumption
(C4), the process B in (4.4) is continuous, although lj may be discontinuous at points x
such that xj = 0.

The result is stated in an approximation setting, where l̂n and B are defined on the same
probability space obtained by a Skorohod construction. The random quantities involved are
only in distribution equal to the original ones, but for convenience this is not expressed in
the notation.

Theorem 4.2 (Asymptotic normality of l̂n in arbitrary dimensions). If con-
ditions (C2), (C3), and (C4) hold, then for every T > 0, as n→ ∞,

sup
x∈[0,T ]d

∣∣∣√k (l̂n(x)− l(x)
)
−B(x)

∣∣∣ P→ 0. (4.7)
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Theorem 4.3 (Asymptotic normality of θ̂n). If in addition to the assumptions of
Theorem 4.1(i), conditions (C1), (C2), and (C3) hold, then as n→ ∞,

√
k(θ̂n − θ0)

d→ N(0,M(θ0)). (4.8)

The following consequence of Theorem 4.3 can be used for the construction of confidence
regions.

Corollary 4.4. If in addition to the conditions of Theorem 4.3, the map θ 7→ Hθ is
weakly continuous at θ0 and if the matrix M(θ0) is non-singular, then as n→ ∞,

k(θ̂n − θ0)
TM(θ̂n)

−1(θ̂n − θ0)
d→ χ2

p. (4.9)

Let 1 6 r < p and θ = (θ1, θ2) ∈ Θ ⊂ Rp, where θ1 ∈ Rp−r, θ2 ∈ Rr. We want to test

θ2 = θ∗2 against θ2 ̸= θ∗2 , where θ
∗
2 corresponds to a submodel. Denote θ̂n = (θ̂1n, θ̂2n), and

let M2(θ) be the r × r matrix corresponding to the lower right corner of M , as below,

M =

(
· · · · · ·
· · · M2

)
∈ Rp×p. (4.10)

Corollary 4.5 (Test). If the assumptions of Corollary 4.4 are satisfied, and θ0 =
(θ1, θ

∗
2) ∈ Θ for some θ1, then as n→ ∞,

k(θ̂2n − θ∗2)
TM2(θ̂1n, θ

∗
2)

−1(θ̂2n − θ∗2)
d→ χ2

r. (4.11)

The above result can be used for testing for a submodel. For example, we could test for
the symmetric logistic model within the asymmetric logistic one, see Section 5.

Remark 4.6. The matricesM andM2 are needed for the computation of the confidence
regions and the test statistics. However, computing these matrices can be challenging.
To compute M , we first need the q × p matrix φ̇(θ), whose (i, j)-th element is given by∫
gi(x)(∂/∂θj)l(x; θ)dx. The expression itself will depend on the model in use, but usually

the (right-hand) partial derivatives of l can be computed explicitly, whereas the integral is
to be computed numerically in most cases. Secondly, we need to calculate the covariance
of the process B̃. We see from (4.5) that the most difficult part will be the expression
E[B(x)B(y)]. It holds that

E[B(x)B(y)] = E[Wl(x)Wl(y)]−
d∑

j=1

lj(y)E[Wl(x)Wj(yj)]−
d∑

i=1

li(x)E[Wl(y)Wi(xi)]

+
d∑

i=1

d∑
j=1

li(x)lj(y)E[Wi(xi)Wj(yj)].

Using (4.1), (4.2), (4.3), and the relation between Λ and l, we can express this in l and its
partial derivatives. Numerical integration is then performed to obtain Σ.
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5. Example 1: Logistic model

The multivariate logistic distribution function with standard Fréchet margins is defined by

F (x1, . . . , xd; θ) = exp

{
−
(∑d

j=1x
−1/θ
j

)θ}
,

for x1 > 0, . . . , xd > 0 and θ ∈ [0, 1], with the proper limit interpretation for θ = 0. The
corresponding stable tail dependence function is given by

l(x1, . . . , xd; θ) =
(
x
1/θ
1 + · · ·+ x

1/θ
d

)θ
. (5.1)

Introduced in Gumbel (1960), it is one of the oldest parametric models of tail dependence.

Simulation study: Five-dimensional logistic model. We simulate 500 samples of size n =
3000 from a five-dimensional logistic distribution function with θ0 = 0.5. We obtain θ̂n, the
M-estimator of θ0, by choosing g1 ≡ 1 and g2(x) = 25x1 · · · · · x5. The bias and the Root
Mean Squared Error (RMSE) of this estimator are shown in the upper panels of Figure 1.

Also, we consider the estimation of l(1, 1, 1, 1, 1; θ), based on this M-estimator θ̂n. From

(5.1) it follows that l(1, 1, 1, 1, 1; θ) = 5θ. The estimator of this quantity is then 5θ̂n . Since
θ0 = 0.5, the true parameter is

√
5. We compare the bias and the RMSE of this estimator

and of the nonparametric estimator l̂n(1, 1, 1, 1, 1), see (3.1). Figure 1, lower panels, shows
that the M-estimator performs better than the nonparametric estimator for almost every k.

Real data: Testing and estimation. We use the bivariate Loss-ALAE data set, consisting
of 1500 insurance claims, comprising losses and allocated loss adjustment expenses, see
Frees and Valdez (1998). The scatterplots of the data and their joint ranks are shown
in Figure 2. We consider the asymmetric logistic model described below for their tail
dependence function and we test whether a smaller symmetric logistic model suffices to
describe the tail dependence of these data. The asymmetric logistic tail dependence function
was introduced in Tawn (1988) as an extension of the logistic model. In dimension d = 2 it
is given by

l(x, y; θ, ψ1, ψ2) = (1− ψ1)x+ (1− ψ2)y +
(
(ψ1x)

1/θ + (ψ2y)
1/θ
)θ
, (5.2)

with the dependence parameter θ ∈ [0, 1] and the asymmetry parameters ψ1, ψ2 ∈ [0, 1].
This model yields a spectral measure H with atoms at (1, 0) and (0, 1) whenever ψ1 < 1
and ψ2 < 1. When ψ1 = ψ2 =: ψ, we have the symmetric tail dependence function

l(x, y; θ, ψ) = (1− ψ)(x+ y) + ψ
(
x1/θ + y1/θ

)θ
. (5.3)

For the given data, we test whether the use of this symmetric model is justified, as
opposed to the wider asymmetric logistic model. Setting η1 := (ψ1 + ψ2)/2 ∈ [0, 1] and
η2 := (ψ1 − ψ2)/2 ∈ [−1/2, 1/2], we reparametrize the model in (5.2) so that testing for
symmetry amounts to testing whether η2 = 0. By Corollary 4.5, the test statistic is given
by

Sn :=
k η̂22

M2(θ̂, η̂1, 0)
.
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Fig. 1: Logistic model, d = 5, θ0 = 0.5, l(1, 1, 1, 1, 1; θ0) =
√
5.

The table below shows the obtained values of Sn for the Loss-ALAE data for selected values
of k:

k 50 100 150 200 250
Sn 0.041 0.139 0.294 0.477 0.681

Since the critical value is 3.84, the null hypothesis is clearly not rejected. Hence we adopt the
symmetric tail dependence model (5.3) and we compute the M-estimates of (θ, η1) = (θ, ψ),
the auxiliary functions being g1(x, y) = x and g2(x, y) = 2(x+ y). For k = 150, we obtain

(θ̂, ψ̂) = (0.65, 0.95) with estimated standard errors 0.032 for θ̂ and 0.014 for ψ̂.

6. Example 2: Factor model

Consider the r-factor model, r ∈ N, in dimension d: X ′ = (X ′
1, . . . , X

′
d) and

X ′
j =

r∑
i=1

aijZi + εj , j ∈ {1, . . . , d}, (6.1)

with Zi independent Fréchet(ν) random variables, εj independent random variables which
are lighter tailed than the factors and independent of them, ν > 0, and aij nonnegative
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Fig. 2: The insurance claims Loss-ALAE data.

constants such that
∑

j aij > 0 for all i. Factor models of this type are common in various
applications, for examples in finance see Fama and French (1993); Malevergne and Sornette
(2004); Geluk et al. (2007). However, for the purpose of studying the tail properties, it is
more convenient to consider the (max) factor model: X = (X1, . . . , Xd) and

Xj = max
i=1,...,r

{aijZi}, j ∈ {1, . . . , d}, (6.2)

with aij and Zi as above. Note that X ′ and X have the same tail dependence function l.
Let Wi = Zν

i , i = 1, . . . , r, and note that the Wi are standard Fréchet random variables.
Define a d-dimensional random vector Y = (Y1, . . . , Yd) by

Yj := Xν
j = max

i=1,...,r
{aνijWi}, j ∈ {1, . . . , d}.

It is easily seen that, as x→ ∞,

1− FYj (x) = 1− exp

{
−
∑r

i=1 a
ν
ij

x

}
∼
∑r

i=1 a
ν
ij

x
.

Since the Xj are increasing transformations of the Yj , the (tail) dependence structure
of X and Y is the same. We will determine the tail dependence function l and the spectral
measure H of X.

Lemma 6.1. Let X follow a factor model given by (6.1) or (6.2). Then its stable tail
dependence function is given by

l(x1, . . . , xd) =

r∑
i=1

max
j=1,...,d

{bijxj}, (x1, . . . , xd) ∈ [0,∞)d,

where bij := aνij/
∑r

i=1 a
ν
ij .
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Next, we are looking for a measure H on the unit simplex ∆d−1 = {w ∈ [0,∞)d :
w1 + · · ·+ wd = 1} such that for all x ∈ [0,∞)d,

r∑
i=1

max
j=1,...,d

{bijxj} = l(x1, . . . , xd) =

∫
∆d−1

max
j=1,...,d

{wjxj}H(dw).

This H is a discrete measure with r atoms given by(
bi1∑
j bij

, . . . ,
bid∑
j bij

)
, i ∈ {1, . . . , r}, (6.3)

the atom receiving mass
∑

j bij , which is positive by assumption. Note that H is indeed a
spectral measure, for∫

∆d−1

wj H(dw) =
r∑

i=1

bij = 1, j ∈ {1, . . . , d}. (6.4)

Every discrete spectral measure can arise in this way.
The spectral measure is completely determined by the r × d parameters bij , but by the

d moment conditions from (6.4), the actual number of parameters is p = (r − 1)d. The
parameter vector θ ∈ Rp, which is to be estimated, can be constructed in many ways. For
identification purposes, the definition of θ should be unambiguous. We opt for the following
approach. Consider the matrix of the coefficients bij , b11 · · · br1

...
. . .

...
b1d · · · brd

 ∈ Rd×r.

The coefficients corresponding to the i-th factor, i = 1, . . . , r, are in the i-th column of
this matrix. We define θ by stacking the above columns in decreasing order of their sums,
leaving out the column with the lowest sum. (If two columns have the same sum, we order
them then in decreasing order lexicographically.)

The definition of the M-estimator of θ involves integrals of the form∫
[0,1]d

gm(x)l(x) dx =
r∑

i=1

∫
[0,1]d

gm(x) max
j=1,...,d

{bijxj}dx,

where gm : [0, 1]d → R is integrable and m = 1, . . . , q. A possible choice is gm(x) = xsk,
where k ∈ {1, . . . , d} and s > 0.

Lemma 6.2. If l is the tail dependence function of a factor model such that all bij > 0,
then ∫

[0,1]d
xskl(x) dx =

r∑
i=1

d∑
j=1

bij
1 + s(1− δjk)

∫ 1

0

(
bij
bik

x ∧ 1

)s d∏
l=1

(
bij
bil
x ∧ 1

)
dx,

where δjk is 1 if j = k and 0 if j ̸= k.

The integral on the right-hand side is to be computed numerically.
We illustrate the performance of the M-estimator on two factor models: a four-dimen-

sional model with 2 factors (p = 1× 4 = 4), and a three-dimensional model with 3 factors
(p = 2× 3 = 6).
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Simulation study: Four-dimensional model with two factors. We simulated 500 samples of
size n = 5000 from a four-dimensional model

X1 = 0.2Z1 ∨ 0.8Z2

X2 = 0.5Z1 ∨ 0.5Z2

X3 = 0.7Z1 ∨ 0.3Z2

X4 = 0.9Z1 ∨ 0.1Z2,

with independent standard Fréchet factors Z1 and Z2. We have θ = (0.2, 0.5, 0.7, 0.9).
In Figure 3 we show the bias and the RMSE of the M-estimator based on q = 5 moment

equations, with auxiliary functions gi(x) = xi, for i = 1, 2, 3, 4 and g5 ≡ 1. Estimation in
this particular example benefited from the extension of the method of moments estimator
to the M-estimator. Adding a fifth moment equation via g5 ≡ 1 reduced the RMSE of the
estimator in most cases and for most values of k. The M-estimator performs very well.
For relatively small k, the four components of θ are estimated equally well, whereas for
larger k the estimator performs somewhat better for parameter values in the “middle” of
the interval (0, 1) than for values near 0 or 1.
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Fig. 3: Four-dimensional 2-factor model, estimation of θ = (0.2, 0.5, 0.7, 0.9).

Real data: Three-dimensional model with three factors. We consider monthly returns of
three industry portfolios (Telecommunications, Finance and Oil) over the period July 1,
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1963, until December 31, 2009. The data are available at http://mba.tuck.dartmouth.
edu/pages/faculty/ken.french. We are interested in modelling the losses (negative re-
turns) by a factor model. See Figure 4(a) for the scatterplot of the losses; the sample size
n = 1002.

Based on Fama and French (1993), in which three main stock-market factors are pro-
posed, we consider a three-factor model for the three industry portfolios above. To estimate
the parameter vector with p = 2 × 3 = 6 components, we need to find a minimum of a 6-
dimensional nonlinear criterion function. To solve such a difficult minimisation problem, it
is important to have good starting values. We find a starting parameter vector by applying
the 3-means clustering algorithm (see for example Pollard (1984), page 9) to the following
pseudo-data: we transform the data (Telcm, Fin, Oil) to

(n/(n+ 1−RTi), n/(n+ 1−RFi), n/(n+ 1−ROi)) , i = 1, . . . , n,

where RTi, RFi and ROi are the ranks of the components of the i-th observation. Only
the entries such that the sum of their values is greater than the threshold n/75 are taken
into account, and subsequently normalized such that they belong to the unit simplex ∆3−1,
see Figure 4(b). Then we compute the 3-means cluster centers for these data. Using
equation (6.3), we compute from these three centers the 6-dimensional starting parameter
[as described below equation (6.4)] for the minimisation routine.
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Fig. 4: (a) Scatterplot of the original data; (b) Plot of the pseudo-data and the three centers.

For the criterion function we use q = 7 functions gi as follows: gi(x) = xi for i = 1, 2, 3,
gi(x) = x2i−3 for i = 4, 5, 6, and g7 ≡ 1. For different choices of k, we obtain the estimates
presented in the table below. The ones in parentheses follow from the other ones by the
moment conditions.
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k = 60 k = 90
0.394 0.593 (0.013) 0.344 0.616 (0.040)
0.691 0.211 (0.098) 0.701 0.216 (0.083)
0.358 0.062 (0.580) 0.368 0.052 (0.580)

k = 120 k = 150
0.387 0.586 (0.027) 0.388 0.581 (0.031)
0.695 0.215 (0.090) 0.699 0.211 (0.090)
0.348 0.058 (0.594) 0.364 0.086 (0.550)

Estimates for the factor loadings bij in the three-factor model fitted to the tail of the
Telcm/Fin/Oil data.

Observe that the estimates do hardly depend on the choice of k. We see that all three
portfolios load substantially on the first factor, but Telecommunications loads more on the
second factor and Oil more on the third factor. This shows that even for only these three
portfolios three factors are required.

Remark 6.3. The examples we have presented show good performance and wide appli-
cability of the estimator. Its performance, however, depends on the function g. The optimal
choice of g is a difficult issue, which is beyond the scope of the present paper. The choices
of g in Sections 5 and 6 is driven by computational feasibility, cf. Lemma 6.2.

7. Proofs

The asymptotic properties of the nonparametric estimator l̂n are required for the proofs of
the asymptotic properties of the M-estimator θ̂n. Consistency of l̂n, see (7.1), for dimension
d = 2 was shown in Huang (1992), cf. Drees and Huang (1998). In particular, it holds that
for every T > 0, as n→ ∞, k → ∞ and k/n→ 0,

sup
(x1,x2)∈[0,T ]2

|l̂n(x1, x2)− l(x1, x2)|
P→ 0.

The proof translates straightforwardly to general dimension d, and together with integra-
bility of g yields consistency of

∫
gl̂n for

∫
gl = φ(θ0). For the proof of Theorem 4.1, a

technical result is needed.

Lemma 7.1. If k/n→ 0 and if in addition to the assumptions of Theorem 4.1 condition
(C4) holds, then as n→ ∞ and k → ∞, on some closed neighbourhood of θ0:

(i) Hk,n(θ)
P→ H(θ) uniformly in θ, and

(ii) P (Hk,n(θ) is positive definite) → 1.
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Proof. (i) The Hessian matrix of Qk,n in θ is a p × p matrix Hk,n(θ) with elements
(Hk,n(θ))ij = ∂2Qk,n(θ)/∂θj∂θi for i, j ∈ {1, . . . , p} given by

(Hk,n(θ))ij = 2

q∑
m=1

∫
[0,1]d

gm(x)
∂

∂θj
l(x; θ)dx ·

∫
[0,1]d

gm(x)
∂

∂θi
l(x; θ)dx

−2

q∑
m=1

∫
[0,1]d

gm(x)
∂2

∂θj∂θi
l(x; θ)dx ·

∫
[0,1]d

gm(x)(l̂n(x)− l(x; θ))dx

= 2

(
∂

∂θi
φ(θ)

)T (
∂

∂θj
φ(θ)

)
− 2

(
∂2

∂θi∂θj
φ(θ)

)T

·

(∫
[0,1]d

g(x)l̂n(x)dx− φ(θ)

)
.

The consistency of
∫
gl̂n for φ(θ0) implies

(Hk,n(θ))ij
P→ 2

(
∂

∂θi
φ(θ)

)T (
∂

∂θj
φ(θ)

)
− 2

(
∂2

∂θi∂θj
φ(θ)

)T

(φ(θ0)− φ(θ))

=: (H(θ))ij .

Since we assumed that there exists ε0 > 0 such that the set {θ ∈ Θ : ∥θ − θ0∥ 6 ε0} =:
Bε0(θ0) is closed, and since φ is assumed to be twice continuously differentiable, the second
derivatives of φ are uniformly bounded on Bε0(θ0), and hence, the convergence above is
uniform on Bε0(θ0).

(ii) For θ = θ0 we get

(H(θ0))ij = 2

(
∂

∂θi
φ(θ)

∣∣∣
θ=θ0

)T (
∂

∂θj
φ(θ)

∣∣∣
θ=θ0

)
,

that is,
H(θ0) = 2φ̇(θ0)

T φ̇(θ0).

Since φ̇(θ0) is assumed to be of full rank, H(θ0) is positive definite. For θ close to θ0, H(θ)
is also positive definite. Due to the uniform convergence of Hk,n(θ) to H(θ) on Bε0(θ0), the
matrix Hk,n(θ) is also positive definite on Bε0(θ0) with probability tending to one. �

Proof of Theorem 4.1. (i) Fix ε > 0 such that 0 < ε 6 ε0. Since φ is a homeomor-
phism, there exists δ > 0 such that θ ∈ Θ and ∥φ(θ)− φ(θ0)∥ 6 δ implies ∥θ − θ0∥ 6 ε. In
other words, for every θ ∈ Θ such that ∥θ − θ0∥ > ε, we have ∥φ(θ) − φ(θ0)∥ > δ. Hence,
on the event

An = {∥φ(θ0)−
∫
gl̂n∥ 6 δ/2},

for every θ ∈ Θ with ∥θ − θ0∥ > ε, necessarily

∥φ(θ)−
∫
gl̂n∥ > ∥φ(θ)− φ(θ0)∥ − ∥φ(θ0)−

∫
gl̂n∥ > δ − δ/2 = δ/2 > ∥φ(θ0)−

∫
gl̂n∥.

As a consequence, on the event An, we have

inf
θ:∥θ−θ0∥>ε

∥φ(θ)−
∫
gl̂n∥ > min

θ:∥θ−θ0∥6ε
∥φ(θ)−

∫
gl̂n∥.
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Hence, on the event An, the “argmin” set Θ̂n is non-empty and is contained in the closed ball
of radius ε centered at θ0. Finally, P(An) → 1 by weak consistency of

∫
gl̂n for

∫
gl = φ(θ0).

(ii) In the proof of (i) we have seen that with probability tending to one the proposed
M-estimator exists and it is contained in a closed ball around θ0. In Lemma 7.1 we have
shown that the criterion function is with probability tending to one strictly convex on such
a closed ball around θ0, and hence, with probability tending to one, the minimiser of the
criterion function is unique. �

For i = 1, . . . , n let

Ui := (Ui1, . . . , Uid) := (1− F1(Xi1), . . . , 1− Fd(Xid)),

and denote

Qnj(uj) := U⌈nuj⌉:n,j , j = 1, . . . , d,

Snj(xj) :=
n

k
Qnj

(
kxj
n

)
, j = 1, . . . , d,

Sn(x) := (Sn1(x1), . . . , Snd(xd)),

where U1:n,j 6 . . . 6 Un:n,j are the order statistics of U1j , . . . , Unj , j = 1, . . . , d, and ⌈a⌉ is
the smallest integer not smaller than a. Write

Vn(x) :=
n

k
P
(
U11 6 kx1

n
or . . . or U1d 6 kxd

n

)
,

Tn(x) :=
1

k

n∑
i=1

1

{
Ui1 <

kx1
n

or . . . or Uid <
kxd
n

}
,

L̂n(x) :=
1

k

n∑
i=1

1

{
Ui1 <

k

n
Sn1(x1) or . . . or Uid <

k

n
Snd(xd)

}
,

=
1

k

n∑
i=1

1
{
R1

i > n+ 1− kx1 or . . . or Rd
i > n+ 1− kxd

}
,

and note that
L̂n(x) = Tn(Sn(x)).

Since

sup
x∈[0,1]d

√
k
∣∣∣l̂n(x)− L̂n(x)

∣∣∣ 6 d√
k
→ 0, (7.1)

the asymptotic properties of l̂n and L̂n are the same. With the notation vn(x) =
√
k(Tn(x)−

Vn(x)), we have the following result.

Proposition 7.2. Let T > 0 and denote Ax := {u ∈ [0,∞]d : u1 6 x1 or · · · or ud 6
xd}. There exists a sequence of processes ṽn such that for all n ṽn

d
= vn and there exist a

Wiener process Wl(x) :=WΛ(Ax) such that as n→ ∞,

sup
x∈[0,2T ]d

|ṽn(x)−Wl(x)|
P→ 0. (7.2)
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The result follows from Theorem 3.1 in Einmahl (1997). From the proofs there it fol-
lows that a single Wiener process, instead of the sequence in the original statement of the
theorem, can be used, and that convergence holds almost surely, instead of in probability,
once the Skorohod construction is introduced. From now on, we work on this new (Skoro-
hod) probability space, but keep the old notation, without the tildes. In particular we have
convergence of the marginal processes:

sup
xj∈[0,2T ]

|vnj(x)−Wj(xj)| → 0 a.s., j = 1, . . . , d,

where vnj(xj) := vn((0, . . . , 0, xj , 0, . . . , 0)). The Vervaat (1972) lemma implies

sup
xj∈[0,2T ]

|
√
k(Snj(xj)− xj) +Wj(xj)| → 0 a.s., j = 1, . . . , d. (7.3)

Proof of Theorem 4.2. Write

√
k
(
L̂n(x)− l(x)

)
=

√
k
(
Tn(Sn(x))− Vn(Sn(x))

)
+
√
k
(
Vn(Sn(x))− l(Sn(x))

)
+
√
k
(
l(Sn(x))− l(x)

)
= D1(x) +D2(x) +D3(x).

Proof of supx∈[0,T ]d |D1(x)−Wl(x)|
P→ 0.

We have

D1(x) =
√
k (Tn(Sn(x))− Vn(Sn(x))) = vn(Sn(x)).

It holds that

sup
x∈[0,T ]d

|D1(x)−Wl(x)|

6 sup
x∈[0,T ]d

|D1(x)−Wl(Sn(x))|+ sup
x∈[0,T ]d

|Wl(Sn(x))−Wl(x)| .

Because of (7.3), this is with probability tending to one less than or equal to

sup
y∈[0,2T ]d

|vn(y)−Wl(y)|+ sup
x∈[0,T ]d

|Wl(Sn(x))−Wl(x)| .

Both terms tend to zero in probability, the first one by Proposition 7.2, the second one
because of the uniform continuity of Wl and (7.3).

Proof of supx∈[0,T ]d |D2(x)|
P→ 0.

Because of (7.3), with probability tending to one, supx∈[0,T ]d |D2(x)| is less than or equal

to supy∈[0,2T ]d

√
k|Vn(y)− l(y)|, which in turn, because of conditions (C2) and (C3), is equal

to
√
kO

((
k

n

)α)
= O

((
k

n2α/(1+2α)

) 1
2+α

)
= o(1).

Proof of supx∈[0,T ]d |D3(x) +
∑d

j=1 lj(x)Wj(xj)|
P→ 0.
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Due to the existence of the first derivatives, we can use the mean value theorem to write

1√
k
D3(x) = l (Sn(x))− l(x) =

d∑
j=1

(Snj(xj)− xj) · lj(ξn),

with ξn between x and Sn(x). Therefore

sup
x∈[0,T ]d

|D3(x) +
d∑

j=1

lj(x)Wj(xj)| 6
d∑

j=1

|lj(ξn)
√
k(Snj(xj)− xj) + lj(x)Wj(xj)|.

Note that all the terms on the right-hand side of the above inequality can be dealt with
in the same way. Therefore we consider only the first term. For δ ∈ (0, T ), this term is
bounded by

sup
x∈[0,T ]d

|l1(ξn)| · sup
x1∈[0,T ]

|
√
k(Sn1(x1)− x1) +W1(x1)|

+ sup
x∈[δ,T ]×[0,T ]d−1

|l1(ξn)− l1(x)| · sup
x1∈[0,T ]

|W1(x1)|

+ sup
x∈[0,δ]×[0,T ]d−1

|l1(ξn)− l1(x)| · sup
x1∈[0,δ]

|W1(x1)|

=: D4 ·D5 +D6 ·D7 +D8 ·D9.

Observe that 0 6 l1 6 1. Also, since l1 is continuous on [δ/2, T ]× [0, T ]d−1, it is uniformly

continuous on that region. We have D5
P→ 0 by (7.3), so D4 · D5

P→ 0. The uniform

continuity of l1 and the fact that almost surely D7 < ∞ yield D6 · D7
P→ 0. Finally, for

every ε > 0, we can find a δ such that, with probability at least 1 − ε, D9 < ε and hence
D8 ·D9 < ε.

Applying (7.1) completes the proof. �

Proposition 7.3. If the conditions (C1), (C2) hold, then as n→ ∞ and k → ∞,

√
k

∫
[0,1]d

g(x)
(
l̂n(x)− l(x)

)
dx

d→ B̃. (7.4)

Proof. Throughout the proof we write l(x) instead of l(x; θ0). Also, since l does not
need to be differentiable, we will use notation lj(x), j = 1, . . . , d, to denote the right-hand
partial derivatives here. Let D1(x), D2(x), D3(x) be as in the proof of Theorem 4.2 and
take T = 1. Then∣∣∣√k(∫

[0,1]d
g(x)L̂n(x)dx−

∫
[0,1]d

g(x)l(x)dx
)
− B̃

∣∣∣
6 sup

x∈[0,1]d
|D1(x)−Wl(x)|

∫
[0,1]d

|g(x)|dx+ sup
x∈[0,1]d

|D2(x)|
∫
[0,1]d

|g(x)|dx

+

∫
[0,1]d

|g(x, y)| ·

∣∣∣∣∣∣D3(x) +
d∑

j=1

lj(x)Wj(xj)

∣∣∣∣∣∣ dx.
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The first two terms on the right hand side converge to zero in probability due to integrability
of g and uniform convergence of D1(x) and D2(x), which was shown in the proof of Theorem
4.2. The third term needs to be treated separately, as the condition on continuity (and
existence) of partial derivatives is no longer assumed to hold.

Let ω be a point in the Skorohod probability space introduced before the proof of
Theorem 4.2 such that for all j = 1, . . . , d,

sup
xj∈[0,1]

|Wj(xj)| < +∞ and sup
xj∈[0,1]

|
√
k(Snj(xj)− xj) +Wj(xj)| → 0.

For such ω we will show by means of dominated convergence that∫
[0,1]d

|g(x)| ·

∣∣∣∣∣∣√k (l(Sn(x))− l(x)) +
d∑

j=1

lj(x)Wj(xj)

∣∣∣∣∣∣ dx→ 0. (7.5)

Proof of the pointwise convergence. If l is differentiable, convergence of the above inte-
grand to zero follows from the definition of partial derivatives and (7.3). Since this might
fail only on a set of Lebesgue measure zero, the convergence of the integrand to zero holds
almost everywhere on [0, 1]d.

Proof of the domination. Note that from expressions for (one-sided) partial derivatives
(2.4), and the moment conditions (2.2) it follows that 0 6 lj(x) 6 1, for all x ∈ [0, 1]d and
all j = 1, . . . , d.

We get

|g(x)| ·

∣∣∣∣∣∣√k (l (Sn(x))− l(x)) +
d∑

j=1

lj(x)Wj(xj)

∣∣∣∣∣∣
6 |g(x)| ·

√
k|l(Sn(x))− l(x)|+

d∑
j=1

|Wj(xj)|

 .

Using the definition of function l and uniformity of 1−Fj(X1j), we have for all j = 1, . . . , d

|l(x1, . . . , xj−1, xj , xj+1, . . . , xd)− l(x1, . . . , xj−1, x
′
j , xj+1, . . . , xd)| 6 |xj − x′j |.

Hence, we can write

sup
x∈[0,1]d

√
k|l(Sn(x))− l(x)| 6 sup

x∈[0,1]d

√
k|l(Sn(x))− l(x1, Sn2(x2), . . . , Snd(xd))|

+ sup
x∈[0,1]d

√
k|l(x1, Sn2(x2), Sn3(x3), . . . , Snd(xd))

− l(x1, x2, Sn3(x3), . . . , Snd(xd))|
+ · · ·
+ sup

x∈[0,1]d

√
k|l(x1, . . . , xd−1, Snd(xd))− l(x)|

6
d∑

j=1

sup
xj∈[0,1]

√
k|Snj(xj)− xj | = O(1).

Since for all j = 1, . . . , d we have supxj∈[0,1] |Wj(xj)| < +∞, the proof of (7.5) is complete.
This together with (7.1) finishes the proof of the proposition. �
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Lemma 7.4. If in addition to assumptions of Theorem 4.1, conditions (C1), (C2), (C4)
hold, then as n→ ∞ and k → ∞,

√
k∇Qk,n(θ0)

d→ N(0, V (θ0)).

Proof. The gradient vector of Qk,n with respect to θ in θ0 is

∇Qk,n(θ0) =

(
∂

∂θ1
Qk,n(θ)

∣∣∣
θ=θ0

, . . . ,
∂

∂θp
Qk,n(θ)

∣∣∣
θ=θ0

)T

,

where for i = 1, . . . , p,

∂

∂θi
Qk,n(θ)

∣∣∣
θ=θ0

= −2

q∑
m=1

∫
[0,1]d

gm(x)
∂

∂θi
l(x; θ)

∣∣∣
θ=θ0

dx

·
∫
[0,1]d

gm(x)(l̂n(x)− l(x; θ0))dx.

Using vector notation we obtain

∇Qk,n(θ0) = −2φ̇(θ0)
T ·
∫
[0,1]d

g(x)(l̂n(x)− l(x; θ0))dx.

Equation (7.1) and the proof of Proposition 7.3 imply that

√
k∇Qk,n(θ0) = −2φ̇(θ0)

T ·
∫
[0,1]d

g(x)
√
k
(
l̂n(x)− l(x; θ0)

)
dx

d→ −2φ̇(θ0)
T B̃.

The limit distribution of
√
k∇Qk,n(θ0) is therefore zero-mean Gaussian with covariance

matrix V (θ0) = 4φ̇(θ0)
TΣ(θ0)φ̇(θ0). �

Proof of Theorem 4.3. Consider the function f(t) := ∇Qk,n(θ0 + t(θ̂n − θ0)),
t ∈ [0, 1]. The mean value theorem yields

∇Qk,n(θ̂n) = ∇Qk,n(θ0) +Hk,n(θ̃n)(θ̂n − θ0),

for some θ̃n between θ0 and θ̂n. First note that with probability tending to one, 0 =
∇Qk,n(θ̂n), which follows from the fact that θ̂n is a minimiser of Qk,n and that with prob-

ability tending to one θ̂n is in an open ball around θ0. By the consistency of θ̂n we have

that θ̃n
P→ θ0, and since the convergence of Hk,n to H is uniform on a neighbourhood of θ0,

we get that Hk,n(θ̃n)
P→ H(θ0). Hence,

√
k(θ̂n − θ0)

d→ N(0,M(θ0)). �

Proof of Corollary 4.4. As in Lemma 7.2 in Einmahl et al. (2008), we can see
that if θ 7→ Hθ is weakly continuous at θ0, then θ 7→ Σ(θ) is continuous at θ0. This,
together with condition (C4), yields that θ 7→ V (θ) is continuous at θ0. Assumption (C4)
also implies that θ 7→ H(θ) is continuous at θ0, which, with the positive definiteness of
H(θ) in a neighbourhood of θ0, shows that if θ 7→ Hθ is weakly continuous at θ0, then
θ 7→M(θ) = H(θ)−1V (θ)H(θ)−1 is continuous at θ0. Hence, we obtain

M(θ̂n)
−1/2

√
k(θ̂n − θ0)

d→ N(0, Ip),

which yields (4.4). �
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Proof of Theorem 4.5. Theorem 4.3 and the arguments used in the proof of Corol-
lary 4.4 imply that as n→ ∞,

M
−1/2
2 (θ̂1, θ

∗
2)
√
k(θ̂2 − θ∗2)

d→ N(0, Ir), (7.6)

and hence (4.11). �

Proof of Lemma 6.1. We have

l(x1, . . . , xd) = lim
t→∞

tP (1− F1(X1) 6 x1/t or . . . or 1− Fd(Xd) 6 xd/t)

= lim
t→∞

tP (1− FY1
(Y1) 6 x1/t or . . . or 1− FYd

(Yd) 6 xd/t)

= lim
t→∞

tP
(
Y1 > t

∑r
i=1 a

ν
i1

x1
or . . . or Yd > t

∑r
i=1 a

ν
id

xd

)

= lim
t→∞

tP

 ∪
16j6d

∪
16i6r

{
Wi >

t
∑r

i=1 a
ν
ij

aνijxj

}
= lim

t→∞
tP

 ∪
16i6r

{
Wi > min

16j6d

t
∑r

i=1 a
ν
ij

aνijxj

}
= lim

t→∞
t

r∑
i=1

P

(
Wi > min

16j6d

t
∑r

i=1 a
ν
ij

aνijxj

)

= lim
t→∞

r∑
i=1

t

(
1− exp

{
−1

t
max
16j6d

aνijxj∑r
i=1 a

ν
ij

})

=
r∑

i=1

max
16j6d

{
aνijxj∑r
i=1 a

ν
ij

}
=:

r∑
i=1

max
16j6d

{bijxj}

as required. �

Proof of Lemma 6.2. Fix i ∈ {1, . . . , r}. We have∫
[0,1]d

xsk max
16j6d

{bijxj}dx =
d∑

j=1

∫
[0,1]d

xsk(bijxj)1

(
bijxj > max

l ̸=j
{bilxl}

)
dx.

Write the integral as a double integral, the outer integral with respect to xj ∈ [0, 1] and the
inner integral with respect to x−j = (xl)l ̸=j ∈ Rd−1 over the relevant domain. We find∫

[0,1]d
xsk max

16j6d
{bijxj}dx =

d∑
j=1

∫ 1

0

bijxj

∫
0<xl<

bij
bil

xj∧1

xsk dx−j dxj .

After some long, but elementary computations, this simplifies to the stated expression. �
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