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Abstract

Empirical as well as experimental evidence strongly suggests that bidders

in common value auctions typically do not conform to the requirements of per-

fect rationality. Eyster and Rabin (2005) develop a theory and an equilibrium

concept � �-cursed equilibrium � for bounded rational bidding in common

value auctions (among other situations), and also present some experimental

evidence supporting the theory. This paper comments on these �ndings of an

experiment conducted at the University of Bergen. In the experiment, par-

ticipants often demonstrate behaviour that is beyond the bounds set by the

�-cursed equilibrium theory, and I present an alternative theory that better

explains the experimental �ndings.
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1 Introduction

Economic theory often places rather tough rationality requirements on economic

agents, and the theory of common value auctions is a case in point. Rational behav-

iour in even the simplest form of a common value auction � with a given number of

risk-neutral bidders (see e.g., Wilson (1977)) � involves understanding a nexus of

intricate e¤ects. One example is the existence of adverse selection: in any symmetric

bidding equilibrium, the winner is the one who most overestimates the true value.

A rational bidder would therefore bid less than his/her estimate of the true value.1

The requirements of full rationality seem to be too much for people participating in

real-life auctions, and it should therefore not come as a surprise that empirical as

well as experimental studies have found many instances of less than perfectly ratio-

nal behaviour. In controlled experiments with inexperienced bidders in particular,

the winner�s curse turns out to be more the rule than the exception (See e.g., Kagel,

Levin, Battalio and Meyer (1989)).

When theory and reality do not match, the theory will eventually have to give in.

One problem facing scholars trying to rebuild their theories to �t better with avail-

able data is that while there is in some sense only one way to be rational, behaviour

can be boundedly rational in so many ways. An interesting attempt to mend the

theory of common value auctions is made by Eyster and Rabin (2005). They allow

their bidders to be boundedly rational in the following way: the least rational of

their bidders is able to predict the distribution of the other bidders�bids (signals)

but does not see any connection between these bids and the underlying information

about the true value. In contrast, their most rational players are perfectly ratio-

nal: they are able both to predict the distribution of bids (signals) and to infer the

underlying information, making them conform to the Nash equilibrium. To make

their analysis tractable, Eyster and Rabin assume that in any given auction, all

bidders are equally rational, somewhere in between these two extremes. They show

1Another example is the competition e¤ect of more bidders: In private value auctions, if the
number of bidders increases, competition �ares and each bidder bids more aggressively, ceteris
paribus. In common value auctions, however, the competition e¤ect may well be dominated by the
adverse selection e¤ect: more bidders also mean that the winner � the greatest optimist � will
be further from the average expectation.
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that the equilibrium bids can be expressed as a weighted average of the bids from

the two extremes, with relative weight � assigned to the least rational alternative.

Intuitively, bidders with � > 0 will be prone to su¤er the winner�s curse, and �

is therefore to be interpreted as a �cursedness�parameter. For this reason, Eyster

and Rabin let ���cursed equilibrium�denote the equilibrium corresponding to an

auction in which all bidders are of type �. Using data from other studies (Kagel

and Levin (1986)), they also present estimates of � and �nd that most of the time,

the parameter falls within the admissible interval � 2 [0; 1].
The present paper adds to the ��cursed equilibrium literature by conducting an

experiment tailored to investigate the ��cursed equilibrium. The new data demon-
strate an interesting phenomenon: the estimated � often fall outside the admissible

interval: values of � exceeding 1 are frequently observed. One interpretation could

of course be that in this experiment participants were just performing badly in the

experiment, because of their lack of experience, but there is, however, a more plausi-

ble explanation: even in the least rational version of ��cursed equilibrium (� = 1),
bidders are quite sophisticated: they cannot see the connection between other bid-

ders�bids and their underlying signals, but they are able to predict perfectly the

distribution of their bids, which is, after all, quite an achievement. I therefore sug-

gest yet another version of the theory, in which fully rational bidders still play the

Nash equilibrium, while the least rational bidders simply bid their estimate. Ac-

tual bidders are still assumed to be equally rational and somewhere in between the

new boundaries. Actual bids are then still a weighted average of the bids from the

extremes, with relative weight � assigned to the least rational alternative. This

equilibrium is dubbed ��cursed equilibrium, and the estimates of � typically fall
within the admissible interval � 2 [0; 1].
The paper is organized as follows. In the next section, I brie�y present Eyster

and Rabin�s (2005) model, including the results that are of importance to the present

paper. In Section 3, I present the experiment and demonstrate that i) for a sub-

stantial proportion of bidders, the estimated value of � exceeds 1, suggesting that

these bidders are less rational (or less sophisticated) than is possible within the

��cursed equilibrium framework; ii)there is large variation in the estimated indi-
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vidual cursedness parameters within each auction; and iii) the average high bidders

have a substantially higher � than the average bidder. In Section 4, I present the al-

ternative bidding model and the associated ��cursed equilibrium, and demonstrate
that most bidders behave according to this theory. Section 5 concludes.

2 A Common Value Auction and the Winner�s

Curse2

In the following, I will consider a �rst-price sealed-bid common value auction, in

which n risk-neutral bidders bid on an object of value s. Initially every bidder

shares the same common prior about s, which, for simplicity, is assumed to be

uniformly distributed on the real line R.3 Before bidding, each bidder i receives a

signal xi that is independently drawn from a uniform distribution over the interval

[s� a
2
; s+ a

2
], where a can be interpreted as the underlying uncertainty about the true

object value s: Bidders submit bids bi, the bidder with the highest bid is declared

the winner and pays his/her bid to receive the object, while the remaining bidders

pay and receive nothing.

There are di¤erent ways to de�ne the winner�s curse. In particular, because I am

dealing with situations in which the common value and the individual signals are

random variables, I distinguish between losses that can be attributed to �bad luck�

on the one hand and losses that stem from systematic errors made by the bidders

on the other. A precise de�nition is found in Kagel and Levin (2002), which again

is based on Capen, Clapp and Campbell�s (1971) original idea.

De�nition 1 In any symmetric equilibrium, the winning bidder is the one with the

highest signal. Consequently, while the signal is an unbiased estimator for the true

value for the average bidder, the winner�s signal is an upwardly biased estimator.

2The following description follows closely that of Eyster and Rabin (2002).
3Strictly speaking, the uniform distribution over the real line is not de�ned but can be thought

of as the limit of the uniform distribution on [�K;K] as K ! 1, see Klemperer (1999). For
practical reasons, in the experiment to be described in the next section, attention is restricted to
uniform distributions over a subset of the real line.
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The winner�s curse refers to the systematic failure to account for this adverse selec-

tion e¤ect.

With this de�nition, a bidder can experience the winner�s curse even if his/her

winning bid yields positive pro�t, as long as the average pro�t is smaller than he/she

(erroneously) expected at the time of bidding. The above de�nition of the winner�s

curse is often not very useful for practical purposes, because it is very demanding of

information. Moreover, in cases in which one has the necessary data, because the

winner�s curse is associated with less than perfect rationality, the curse might be

expected to occur most of the time (or all the time), and sometimes in situations

involving substantial gains for the winners. By contrast, the perhaps more intuitive

de�nition of Eyster and Rabin (2005) is tied to whether or not the winner�s expected

pro�t is negative.

De�nition 2 Bidder i su¤ers the winner�s curse in the auction�s equilibrium if:

E
�
(s� bi(xi)) 1fbi(xi)>maxj 6=i bj(xj)g

�
< 0;

where bi(xi) is the equilibrium bidding function and 1fAg is the indicator function

that takes the value one when A occurs and zero otherwise.

This de�nition implies that a bidder su¤ers the winner�s curse if the expected

value of the object conditional on winning is less than the price conditional on

winning.

To analyse the winner�s curse, I follow Eyster and Rabin (2005) in constructing

what they call a ��-virtual�game: the perceived utility of bidder i from winning the

auction at a price p when the value of the object is s is given by:

(1� �) s+ �E [sjxi]� p: (1)

This means that bidder i�s perceived valuation of the object is a ��weighted aver-
age of the object�s true value and the bidder�s expectation of its value given his/her

signal. Completely rational bidders have � = 0 and choose the bid function to maxi-

mize the expected value of the object and the winning bid, taking into consideration
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the fact that when one�s own bid is the winning bid, all other players�bids must be

lower and therefore convey information that one�s own signal is biased (the high-

est). By contrast, naïve bidders (� = 1) choose their bid function to maximize the

di¤erence between the expected value of the object and the winning bid, but they

do not consider the bad news from having the highest bid, and therefore base their

bids on the unconditional expected value of the item. This allows for situations in

which the bidders are somewhat naïve, with � taking any value in the interval [0; 1].

However, it is assumed that all bidders are equally rational: di¤erent bidders do not

have di¤erent �.

In a �rst-price sealed-bid auction, bidder i chooses his/her bid bi to maximize:

Z b�1j (bi)

xL

[(1� �) vn (xi; y) + �r (xi)� bi] fn (yjxi) dy; (2)

where n is the number of bidders, vn(xi; y) = E[sjxi;maxj 6=ifxjg = y] is bidder i�s
expectation of the value of the object conditional on his/her signal being xi and

the highest of the other bidders� signals being y, r(xi) = E[sjxi] = xi is bidder

i�s expectation of the value of the object conditional on his/her signal xi, bj(�) is
the common equilibrium bidding function of bidders j 6= i and fn is the density

of y conditional on xi.With s being drawn from a uniform distribution on R and

the signals subsequently being independent draws from a uniform distribution on�
s� a

2
; s+ a

2

�
, I derive the following equilibrium bid function4:

bn (xi) = xi �
a

2
+ �a

n� 2
2n

: (3)

Intuitively, when � = 0; bn (xi) = xi � a
2
, which is approximately the risk-neutral

Nash equilibrium (RNNE) (see e.g., Milgrom andWeber (1982) and Kagel and Levin

(1986)). At the other extreme, if � = 1, bidders assume that there is no connection

between each bidder�s action and his/her type (he/she bids because he/she is in

a situation with positive private a¢ liated values). This is the naïve strategic dis-

counting case described by Kagel and Levin (1986), involving bn (xi) = xi � a
n
: In

4Details are found in Appendix A
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the latter case, as a response to an increase in the number of bidders, the bidders

will bid more aggressively because the competition is increasing. In the former case,

the increased competition e¤ect is exactly o¤set by the adverse selection e¤ect. For

a given object value s, the expected highest signal is given by:

E [yjs] = s� (n� 1)
(n+ 1)

a

2
: (4)

The seller�s expected revenue is increasing in n, and his/her expected revenue will

be given by:

E [bn (yjs)] = s� a

n+ 1
+ a�

n� 2
2n

: (5)

Therefore, when:

n � n � 2 + �+
p
9�2 + 4�+ 4

2�
; (6)

the seller�s expected revenue is larger than s and bidders are facing the winner�s

curse.5. From (3), one may also compute � by:

� =
bi � xi + a

2

a
�
n�2
2n

� : (7)

While Eyster and Rabin (2005) mainly focus on second-price sealed-bid auctions

in their paper, they also present data from Kagel and Levin�s (1986) experiment

to comment on the ��cursed equilibrium theory for �rst-price sealed-bid auctions.6

Eyster and Rabin �nd that in 12 of 15 auctions, � falls inside the admissible interval

� 2 [0; 1] ; and � does not seem to be sensitive to changes in the number of bidders.
In Kagel and Levin�s (1986) experiment, only 71% of the auctions were won

by the high signal holder. This is inconsistent with both RNNE and ��cursed
equilibrium, because these are both symmetric equilibria. It may stem from bidders

making errors in bidding (that is, noise), or if bidders have di¤erent �. Hence,

5In a symmetric �-cursed equilibrium, bidders do not fully account for the fact that they only
win the object if they have the most positive information of the object. Clearly, any positive �
will lead to the Winner�s Curse described in De�nition 1, while the winner�s curse in De�nition 2
will occur i¤ � and the number of bidders are high enough.

6In the working paper version of "Cursed Equilibrium", �rst-price sealed-bid auctions are stud-
ied more closely (Eyster and Rabin (2002)).
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from other experiments, it remains ambiguous whether � depends on the number of

bidders. Kagel and Levin�s (1986) results indicated that � is insensitive to changes

in the number of bidders. In the other experiments cited in Eyster and Rabin (2002),

uncertainty, a, also varied. To study these results further, the experiment in this

paper tests whether � is dependent on the number of bidders, and hence uncertainty

was held constant throughout the experiment.

3 The Experiment

The experiment was conducted with 32 undergraduate economic students at the

University of Bergen. The experiment was fully computerized using the software

z-Tree (Fischbacher (1999)). No communication between bidders was allowed. The

auction structure followed Kagel and Levin (1986), and the experiment lasted for

about 1.5 hours. Each bidder was given a paper with information and space for

his/her own notes. A short version of the information was also displayed on bid-

ders�computer screens during the experiment. Questions concerning the structure

of the experiment were asked and answered privately (on the computer). Before the

experiment started, the bidders competed in three �dry�runs that had no in�uence

on their �nal payo¤ (to ensure that they understood the structure and the way the

computer program worked). Bidders then answered some control questions before

the experiment started. First, 16 of the students (dubbed Session 1) participated in

20 auctions with n = 4 (dubbed Series 1) before they bid 20 rounds with n = 8 (Se-

ries 2). The remaining 16 students (Session 2) did the reverse. Table 1 summarizes

the experimental design.

Each auction was a �rst-price sealed-bid common value auction. In each auction,

one item (exempli�ed as a jar of pennies) was up for sale, and the bidders learned

that the true value, s; of this item was drawn from a uniform distribution on the

interval [xL; xH ] = [50; 250] (Norwegian Kroner (NOK)). Next, each bidder i drew

independent signals xi from a uniform distribution on the interval
�
s� a

2
; s+ a

2

�
where a was set to equal 50 NOK in all the auctions.7 Finally, the bidders posted

7This structure ensures that xi is an unbiased estimate of the true value s, or can be used to

8



# of bidders # of observations
Session Series Auction # (# of groups) Experience  (# of winning observations)

4 320
(4) (80)

8 Series 1 320
(2) (20 auctions) (40)

8 320
(2) (40)

4 Series 3 320
(4) (20 auctions) (80)

1280
(240)

Total

None

2 4 6180

1 2 2140

2 3 4160

1 1 120 None

Table 1: Experimental design

sealed bids, and the highest bidder won the object and paid his/her bid, and others

paid zero and received nothing.8

Compared with the auction described in the previous section, in which bidders

only know that s is drawn from a uniform distribution over the real line, bidders

in the experiment have more precise information. In particular, if they receive a

signal that is near the ends of the support for s (that is, if they draw a signal

xi 2 [50; 75] or xi 2 [225; 250]), the support of the conditional distribution shrinks.
Perhaps less intuitive at �rst glance, also for xi 2 [75; 225], equilibrium bidding

is di¤erent from what is found in the previous section, because of the fact that

bids are interlinked across signals (the optimal bidding functions are necessarily

continuous). It can be shown, however, that the equilibrium derived in the previous

section is a good approximation of equilibrium bidding in the experimental setting

for xi > xL + a
2
= 75 (see Kagel and Levin (1986) for details). I therefore use the

bidding functions derived in the previous section to calculate the value of � for each

individual bidder in each auction.

�nd an unbiased estimate with the boundary values xL; xH : Given xi; a and the boundary values,
each bidder could �nd an upper limit min

�
xi +

a
2 ; xH

	
and a lower limit max

�
xi � a

2 ; xL
	
for the

true value s. The limits associated with a given xi were reported on the screen together with xi:
The distribution of the signal values and the interval [xL; xH ]= [50; 250] and uncertainty a = 50
remained constant during the experiment and were posted as common knowledge. Before each
auction, the bidders were informed about the number of bidders in the auction. Bids had to be
non-negative and had to be given in whole NOK.

8If two or more bidders had the same winning bid, they shared the pro�t or the loss.
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To cover for the possibility of losses, each bidder was given an initial endowment

of NOK 200 (approximately $32 or e25). Pro�ts and losses were added and sub-

tracted from this endowment. If a bidder�s endowment became negative, he/she had

to leave the experiment. Each bidder�s endowment after the experiment was paid

as a fee for participating in the experiment.

In each auction round, the following information was displayed on each par-

ticipant�s computer screen before bidding: a brief description of the rules of the

auction, the number of bidders, own (remaining) endowment, the individual�s signal

for the present auction, and the highest and lowest possible value of the object cor-

responding to this signal. After bidding, the following information was displayed:

the highest (winning) bid, the true value of the object, one�s own pro�t or loss, one�s

own new endowment, and a history box showing own bids, highest bids, object value

and own pro�t from previous auctions. With this information at hand, each bidder

could easily compute the winner�s pro�t, but the identity of the winner remained

secret. After the last auction, all bidders answered a questionnaire about how they

formed their strategies and how changes in the number of bidders in an auction

a¤ected their bidding.

4 Experimental Results

The bidders answered the control questions before the experiment started. In the

�rst session, 11 answered all the questions correctly, and in Session 2, 13 answered

correctly. For the bidders with incorrect answers, the error was not of a nature

that one would expect to in�uence their performance. Among the eight bidders who

answered incorrectly, six earned more than the average, and the last two earned

below average but well above the poorest result. The bidders earned a total of NOK

4824, which gives an average payment of NOK 150.75 to each bidder. None of the

bidders went bankrupt.

Auctions with signals above 225 or below 75 are not reported in the results be-

cause the bid function described in the previous section is only a good approximation

for signals in between these two values, and the bid function therefore cannot be
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used to calculate �. When removing these data, there are 176 winning observa-

tions (64 are left out), and 964 bids (316 left out). Tables 2 and 3 summarize the

experimental outcomes.

Series
(session) # auctions

Object
value

average

Signal average
(Highest signal

average)

Bid average
(Highest bid

average)
Discounted
bid average

Average profit
for winner in
each auction

1 46 139.13 137.91 130.98 6.93 4.17
(1) (142.72) (143.3)
2 34 151.29 150.15 144.06 6.19 8.18

(1) (158.71) (159.47)

3 31 174.00 172.93 168.76 3.65 9.58

(2) (181.19) (183.58)
4 65 153.59 152.22 147.43 4.78 2.55

(2) (157.32) (156.14)
151.73* 146.24*
(166.34) (158.26)

5.30*Average 176 153.00* 5.42*

*weighted by number of auctions in each series.

Table 2: Summary statistics I

Series
(sessions)

# auctions
(# bidders)

# auctions
with π >0

(%)

# auctions
won by the

high
signal

holder (%)
# bid >(4)

(%)

# auctions
with

highest
bid>(4)

(%)

Average
π in each
auction
(tvalue)

Average π
predicted
by RNNE
(st.dev)

Average π
predicted by

strategic
discounting

(st.dev)
χ

(st.dev)

1 46 13/46 22/46 129/184 46/46 4.17 21.41 8.91 2.05
(1) (4) (28.26%) (47.83%) (70.11%) (100%) (3.21)** (4.57) (4.57) (0.62)

2 34 4/34 21/34 268/272 34/34 8.18 17.59 1.16 1.37
(1) (8) (11.76%) (61.76%) (98.53%) (100%) (8.49)** (2.83) (2.83) (0.31)

3 31 3/31 15/31 237/248 31/31 9.58 17.9 1.04 1.46
(2) (8) (9.68%) (48.39%) (95.56%) (100%) (9.25)** (2.52) (2.52) (0.28)

4 65 28/65 34/65 233/260 65/65 2.55 21.26 8.76 1.91
(2) (4) (43.08%) (52.31%) (89.62%) (100%) (3.92)** (4.42) (4.42) (0.4)

48/176 92/176 867/964 176/176 5.3* 20* 5.16* 1.76*
(27.27%) (52.27%) (89.94%) (100%)

Average

* weighted by number of auctions in each series.
** statistically signi�cant di¤erent from zero 0.5% level two-tail t-test.

Table 3: Summary statistics II

Only 48 of the 176 auctions gave the winner a positive pro�t, and just 52% of

the auctions were won by the high signal holder. In all series, the average pro�t for

the winner was negative, with an average loss of NOK 5.30 in each auction. Bidders
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did on average bid less than their signal, but the average di¤erence between signal

and bid was only NOK 5.42. In this setting, the di¤erence needed to overcome the

winner�s curse was NOK 15 with four bidders and NOK 20 with eight bidders. .

This suggests that the bidders in part ignored the adverse selection problem and

faced the winner�s curse. Moreover, they did not seem to change their adjustment

signi�cantly when the number of bidders was changed. Table 4 presents subjects�

pro�t and their estimated � for each series.

χ series 1 χ series 2 χ total χ series 3 χ series 4 χ total
 (st.dev)  (st.dev)  (st.dev)  (st.dev)  (st.dev)  (st.dev)

1.89 1.28 1.55 0.95 1.06 1.01
(0.10) (0.10) (0.32) (0.15) (0.32) (0.26)
1.27 0.89 1.07 0.46* 1.15 0.83

(0.25) (0.12) (0.28) (0.35) (0.25) (0.46)
0.54* 0.36* 0.45* 1.30 1.88 1.59
(0.27) (0.18) (0.24) (0.07) (0.10) (0.31)
0.75 0.39* 0.55* 1.20 1.84 1.53

(0.32) (0.13) (0.29) (0.20) (0.79) (0.66)
1.85 1.21 1.47 1.13 1.60 1.36

(0.07) (0.05) (0.33) (0.33) (0.18) (0.35)
1.39 1.17 1.27 0.99 1.45 1.22

(0.50) (0.26) (0.39) (0.49) (0.61) (0.59)
0.60* 0.45* 0.51* 1.18 1.76 1.47
(0.55) (0.14) (0.35) (0.41) (0.23) (0.44)
1.10 1.12 1.11 1.18 2.03 1.61

(0.73) (0.43) (0.57) (0.39) (0.30) (0.55)
1.86 0.94 1.31 1.29 1.25 1.27

(0.42) (0.35) (0.59) (0.61) (0.34) (0.48)
1.23 1.26 1.24 1.67 1.90 1.79

(0.98) (0.11) (0.65) (0.13) (0.16) (0.19)
1.35 0.89 1.09 1.28 1.66 1.47

(1.03) (0.39) (0.77) (0.47) (0.40) (0.47)
1.93 1.44 1.66 1.47 2.11 1.79

(0.41) (0.28) (0.42) (0.06) (0.12) (0.33)
2.38 1.55 1.89 0.93 1.04 0.99

(0.13) (0.07) (0.43) (0.59) (0.56) (0.56)
1.27 1.39 1.33 1.26 1.90 1.59

(0.79) (0.21) (0.54) (0.40) (0.46) (0.54)
1.92 1.16 1.49 1.39 1.32 1.35

(1.06) (0.32) (0.81) (0.34) (0.57) (0.46)
2.17 1.43 1.76 1.41 1.77 1.60

(0.76) (0.34) (0.67) (0.56) (0.69) (0.65)

Average 148.75 1.47 1.06 1.24 Average 152.75 1.2 1.6 1.40
 (st.dev) (53.42) (0.80) (0.44) (0.65)  (st.dev) (28.62) (0.46) (0.55) (0.54)

Session 1 Session 2

Bidder Profit Bidder Profit

5 209 22 200

8 209 19 198

7 200 32 173

15 200 30 170

14 188 21 169

11 183 18 167

9 173 26 161

10 166 28 161

4 165 31 158

3 148 17 150

6 126 24 138

16 114 20 136

2 102 25 129

12 84 23 121

13 82 27 119

1 31 29 94

* Statistically smaller than one at 2.5% signi�cance level one-tail t-test

Table 4: Individual chi and pro�t in the experiment
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4.1 Summary of Findings

From Table 2 - 4 there are several interesting �ndings.

1. The experiment participants did not bid in accordance with ��cursed
equilibrium. Only 3 of the 32 students were found to have their estimated

parameter within the admissible interval; for the remaining 29 students, the

estimated � was statistically signi�cantly larger than one. This suggests that

typical bidders are more naïve (or less sophisticated) than is possible within

the ��cursed equilibrium framework, which motivates me to extend the model
by allowing bidders to be even more naïve.

2. Bidders seem to be more �-cursed with four than eight bidders.

This suggests that � is sensitive to the number of bidders. From the results,

it seems that � declines with the number of bidders (cf. table 4). In the two

sessions, 27 of the 32 bidders had a lower � with eight bidders compared with

the setting with four bidders.

3. From Table 4, it is also clear that there is substantial variation in the

individual cursedness parameters within each auction series. There

seems to be an inverse relationship between individual � and individual ag-

gregate pro�t: typically, the individuals with a pro�t of 200 are the least

cursed bidders; they do not win auctions in this setting. Moreover, bidders

with above-average pro�t have a lower � on average than bidders with below-

average pro�t.

4. Winning bidders typically have a higher � than losing bidders. The

average high bidder had an estimated � of 1.76, while the average bidder�s �

was 1.33. That only 52% of the auctions were won by the bidder with the

highest signal is a further indication of this, because in a symmetric setting,

all the auctions should be won by the bidder with highest signal.

5. Bidding behaviour described by the participants also indicates het-

erogeneity in �. Descriptions from participants in the panel vary from

13



�bidding as low as possible to earn as much as possible� (earned NOK 114)

to �tried to think strategically, bid as much as possible� (earned NOK 31).

Bidding patterns varied substantially, and bidders responded to the change in

the number of participants in various ways. In the �rst session, seven bidders

responded that the change from four to eight bidders did not a¤ect their bid

behaviour. In the second session, only two bidders reported this. In Session

1 (Session 2), eight (�ve) bidders reported that the increase in the number of

bidders probably a¤ected their chance of winning.9

In summary: there is heterogeneity among bidders, because � seems to di¤er be-

tween the individuals. ��cursed equilibrium seems not to describe the behaviour of
the individuals. They fall outside the admissible interval, and ��cursed equilibrium
is not independent of the number of bidders. In the next section, I discuss these

�ndings.

5 A Model for Less Sophisticated Bidders

As shown above, ��cursed equilibrium does not give a good description of the

inexperienced bidders�behaviour. In particular, most of the participants turn out

to be more naïve than what is possible within the ��cursed equilibrium framework.
I here propose an alternative model, based on a di¤erent description of the most

naïve bidders: they simply bid their signals. Next I follow Eyster and Rabin (2005)

in assuming that partly naïve bidders have a bid function that is a weighted average

of the RNNE bid function and the bidder�s individual signal xi.10 Bidders will

then, in a worst-case scenario, not only ignore the adverse selection problem but

also ignore the distribution of signals, and will only focus on their own signal as

9An interesting bid pattern was described by one of the bidders (earned NOK 173): �In the �rst
rounds, I focused on my signal, and this led to losses. I recognized that there were losses in almost
every run, and then decided to play strategically: �rst I bid NOK 5 over the lowest possible value.
Then I changed this to NOK 7 above, then 10 and in the end NOK 12 above the lowest possible
value�. This bidder did not change her bidding behaviour when the number of bidders increased.
It seems that the bidder was on the way to the Nash Equilibrium, but aggressive bidding from
others drove her away from this.
10True, this may seem a rather extreme description of bidding, but 10% of bids in series 1 and

15% of bids in series 3 were within +/- 1 of the bidders signal.

14



an unbiased estimator of the true value of the object. The weight assigned to the

most naïve bid function will be denoted �; and the corresponding equilibrium will

be called a ��cursed equilibrium.
Let bn�=0 = bn�=0 = xi � a

2
denote the RNNE bid function and let bn�=1 = xi

denote the bid function of our most naïve bidders. Then the ��cursed equilibrium
bid function is a weighted average of bn�=0 and b

n
�=1, the symmetric bid function

given by:

b(xi) = (1� �)(xi �
a

2
) + �xi (8)

= xi � (1� �)
a

2
;

when � = 0; the bid function is described by RNNE, and bidding behaviour is

independent of the number of bidders (as in the ��cursed equilibrium). When
� = 1, the bid is independent of the number of bidders and of uncertainty. The

bidders only focus on their signal as an unbiased estimator of the true value of the

object.

We can now use the bid function in (8) on the experimental data to calculate the

values of � for each bidder in each auction, just as when calculating �. Alternatively

one may exploit the functional relationship between the two parameters: because

the two bid functions give rise to the same bid in each auction, the following must

hold:

xi �
a

2
+ �a

n� 2
2n

= b(xi) = xi � (1� �)
a

2
(9)

m

� =
n� 2
n

�; (10)

that is, � is proportional to �, where the proportionality factor n�2
n
is either 1

2
(for

n = 4) or 3
4
(for n = 8). The seller�s expected income in a ��cursed equilibrium is

given by:

E [bn(y)js] = s� a

n+ 1
+ �

a

2
: (11)
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The seller�s expected income will then be larger than s and bidders will face the

winner�s curse when:

n >
2� �
�

; (12)

so, when � = 1, the bidders face the winner�s curse even when there are only two

bidders. Because � allows for less-rational bidders than �; it is clear that it should

capture more of the bidder�s behaviour than does �. This is con�rmed in the scatter

plot in Figure 1, where more bid data fall within the �-model than within the �-

model.

Table 5 summarizes the estimated � in the experiment, and Table 6 compares

the results for winning bidders and all bidders for � and �:11 By examining these

tables, it is apparent that � is less in�uenced by n than is �. This is con�rmed in

our data by a paired t-test; � is signi�cantly larger with eight bidders compared

with four bidders in both Sessions 1 and 2 at 1% signi�cance level. Applying this

test to � gives less signi�cant results: the di¤erence for the bidders in Session 1 is

insigni�cant, while in Session 2 it is signi�cant at a 5% signi�cance level.

5.1 Summary of Findings

1. By applying this model, 27 of the 32 bidders fall inside the de�nition area.

The ��cursed equilibrium seems to give a better description of bidders�
behaviour. They are far away from that prescribed by the RNNE (� = 0)

and seem to apply a strategy where their own signal is given much weight

when they post their bid. Using the connection:

� = �
n� 2
n

,

in auctions with four bidders, 28 of the 32 bidders have a � that is smaller than

1 (corresponding to � � 2), and in auctions with eight bidders, 24 bidders have
� smaller than 1 (� � 1; 33). This is not surprising given the fact that the

��cursed equilibrium allows bidders to be �less�rational than the ��cursed
11Note that winning bids are included in the �all bidders average�.
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Figure 1: Scatter plot of bid data
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ø series 1 ø series 2 ø total ø series 3 ø series 4 ø total
 (st.dev)  (st.dev)  (st.dev)  (st.dev)  (st.dev)  (st.dev)

0.95* 0.96* 0.95* 0.71* 0.53* 0.61*
(0.05) (0.01) (0.04) (0.11) (0.16) (0.17)
0.63* 0.67* 0.65* 0.35* 0.57* 0.47*
(0.13) (0.09) (0.11) (0.26) (0.13) (0.23)
0.27* 0.27* 0.27* 0.97* 0.94* 0.96*
(0.13) (0.13) (0.13) (0.05) (0.05) (0.05)
0.38* 0.29* 0.33* 0.90* 0.92 0.91
(0.16) (0.10) (0.13) (0.15) (0.40) (0.30)
0.93* 0.91* 0.91* 0.85* 0.80* 0.82*
(0.03) (0.03) (0.04) (0.25) (0.09) (0.19)
0.69* 0.88 0.80* 0.75* 0.72* 0.73*
(0.25) (0.19) (0.24) (0.37) (0.31) (0.33)
0.30* 0.34* 0.32* 0.88 0.88* 0.88*
(0.28) (0.10) (0.18) (0.31) (0.12) (0.23)
0.55* 0.84 0.71* 0.89 1.02 0.95
(0.37) (0.32) (0.37) (0.29) (0.15) (0.24)
0.93 0.70* 0.80* 0.97 0.62* 0.79*

(0.21) (0.26) (0.26) (0.46) (0.17) (0.38)
0.61* 0.94* 0.80* 1.25 0.95* 1.09
(0.49) (0.08) (0.37) (0.10) (0.08) (0.18)
0.67 0.66* 0.67* 0.96 0.83* 0.89

(0.52) (0.29) (0.40) (0.35) (0.20) (0.29)
0.96 1.08 1.03 1.11 1.05 1.08

(0.20) (0.21) (0.21) (0.04) (0.06) (0.06)
1.19 1.16 1.17 0.70* 0.52* 0.60*

(0.06) (0.05) (0.06) (0.44) (0.28) (0.36)
0.63* 1.04 0.87* 0.94 0.95 0.95
(0.40) (0.16) (0.35) (0.30) (0.23) (0.26)
0.96 0.87 0.91 1.04 0.66* 0.84*

(0.53) (0.24) (0.39) (0.25) (0.28) (0.33)
1.09 1.07 1.08 1.06 0.89 0.97

(0.38) (0.25) (0.31) (0.42) (0.35) (0.39)

Average 148.75 0.74* 0.80* 0.77* Average 152.75 0.90* 0.80* 0.85*
 (st.dev) (53.42) (0.40) (0.33) (0.27)  (st.dev) (28.62) (0.34) (0.27) (0.17)

Session 1 Session 2

Bidder Profit Bidder Profit

5 209 22 200

8 209 19 198

7 200 32 173

15 200 30 170

14 188 21 169

11 183 18 167

9 173 26 161

10 166 28 161

4 165 31 158

3 148 17 150

6 126 24 138

16 114 20 136

2 102 25 129

12 84 23 121

13 82 27 119

1 31 29 94

* Statistically smaller than one at 2.5% signi�cance level one-tail t-test

Table 5: Individual phi and pro�t in the experiment.

1 1 2.05 1.47 1.03 0.74
1 2 1.37 1.06 1.03 0.80
2 3 1.46 1.20 1.10 0.90
2 4 1.91 1.60 0.96 0.80

Total 1,76* 1,33* 1,02* 0,81*

Winning
bidder

average ø
All bidders
average  øSession Series

Winning
bidder

average χ
All bidders
average χ

* Weighted by the number of observations

Table 6: chi and phi for winning bidder and all bidders
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equilibrium.

2. A change in the number of bidders does not seem to in�uence �,

suggesting that bidders focus on their own signal and not the adverse selection

problem they face. Eyster and Rabin (2002) comment that � seems to be

insensitive to changes in the number of bidders using the data of Kagel and

Levin (1986). In this experiment, this is not true: � decreases as the number

of bidders increases. This is also con�rmed by a paired t-test for individual

bidders in each session.

6 Concluding Remarks

Empirical as well as experimental evidence strongly suggests that bidders in common

value auctions typically do not conform to the requirements of perfect rationality.

Therefore, descriptive models of such auctions should allow for less than perfectly

rational bidding. What is less clear, however, is how this should be done. The start-

ing point for this paper is one suggested way to model less-than-perfect rationality,

Eyster and Rabin�s (2005) notion of ��cursed equilibrium. They assume that bid-
ders maximize what they call a virtual utility function, which is a weighted average

of an assessment of utility based on a naïve belief about the relationship between

one�s own signal and the true value on the one hand and an assessment based on

the rational belief on the other hand. Eyster and Rabin proceed to demonstrate

that the equilibrium bid function then becomes a weighted average (with the same

weights) of the corresponding �naïve�and �rational�bid functions.

The participants in the experiment reported in this paper turned out not to �t

the ��cursed equilibrium model very well: the estimated weights were often outside
the admissible interval, a �nding that is not very surprising, keeping in mind that

even the completely naïve version of ��cursed equilibrium (� = 1) bidders are

assumed to be quite sophisticated: they perfectly predict the distribution of their

competitors�bids. I also �nd that the estimated cursedness parameters are shown

to depend on the number of bidders, a �nding that does not �t the theory.

19



The broader version of the theory, ��cursed equilibrium, proposed in this paper,
in which fully rational bidders still play the Nash equilibrium while the least rational

bidders possible simply bid their signals, turns out to �t the experimental data

better: most of the out-of-range parameters disappear, and the new cursedness

parameter turns out to be more stable across the number of bidders.
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Appendix

A The Bid Strategy in �-Cursed Equilibrium

In the �rst-price sealed-bid auction, bidder i chooses his/her bid bi to maximize:

Z b�1j (bi)

xL

[(1� �) vn (xi; y) + �r (xi)� bi] fn (yjxi) dy; (13)

where vn(xi; y) = E[sjxi;maxj 6=ifxjg = y] is bidder i�s expectation of the value

of the object conditional on his/her signal being xi and the highest of the other

bidders�signals being y, r(xi) = E[sjxi] = xi is bidder i�s expectation of the value of
the object conditional on his/her signal xi, bj() is the common equilibrium bidding

function of bidders j 6= i and fn is the density of y conditional on xi.
Maximizing (2) with respect to the bid bi yields the following �rst-order condition

(after simpli�cation and exploiting the symmetry condition b�1j (bi) = xi):

dbn(xi)

dxi
= ((1� �)vn(xi; xi) + �r(xi)� bn(xi))

fn(xijXi = xi)

Fn(xijXi = xi)
; (14)

where Fn is the C.D.F. that corresponds to the density fn. With s being drawn

from a uniform distribution on R and the signals subsequently being independently

drawn from a uniform distribution on
�
s� a

2
; s+ a

2

�
:

Fn(xijxi) =
Z xi+

a
2

xi�a
2

�
1

2
+
xi � s
a

�n�1
1

a
ds =

1

n
; (15)

and:

fn(xijxi) =
Z xi+

a
2

xi�a
2

(n� 1)
�
1

2
+
xi � s
a

�n�2
1

a2
ds =

1

a
: (16)

Moreover, vn(xi; xi) = xi � a
2
+ a

n
(see Eyster and Rabin, ((2002)) and r(xi) = xi.

Therefore, the �rst-order condition (3) can be written:

dbn(xi)

dxi
=

�
xi � (1� �)a

n� 2
2n

� bn(xi)
�
n

a
: (17)
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This is a linear �rst-order di¤erential equation with solution:

bn (xi) = xi �
a

2
+ �a

n� 2
2n

: (18)

Intuitively, when � = 0; bn (xi) = xi � a
2
, which is the RNNE as described by, for

example, Milgrom and Weber (1982). At the other extreme, if � = 1, we have a

situation where the bidders assume that there is no connection between each bidder�s

action and his/her type. This is the naïve strategic discounting case described by

Kagel and Levin (1986), involving bn (xi) = xi � a
n
: In the latter case, as a response

to an increase in the number of bidders, the bidders will bid more because the

competition is increasing. In the former case, the increased competition e¤ect is

exactly o¤set by the adverse selection e¤ect.

B Instructions for the experiment

Below is a translation of the information provided to participants in the experiment

before the experiment started. The original information was given in Norwegian.

Introduction

You are now going to participate in a series of auctions. The information lea�et

consists of three pages and you can consult this lea�et throughout the experiment.

All participants receive the same information. No communication is allowed during

the experiment. If you have any practical questions about the information or the

experiment, raise your hand and you will be assisted. On the back of this lea�et

you can make your own notes if necessary.

Auction background

In the experiment you are going to participate in a series of auctions. In total

there are 40 auctions. That implies that you are going to make 40 bids. The

experiment is divided into two parts, each with 20 auctions. At the start of each

auction, you are told how many participants (including yourself) will be taking part
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in the auction. In the �rst part you will face the same opponents in all 20 auctions.

In the second part you will get new opponents for the �nal 20 auctions.

After the 40 auctions you will be asked to �ll out a questionnaire with background

information and questions relating to the experiment.

Before we start the experiment everybody has to read through these pages. We

will also arrange a trial round with three auctions that is without implications for

the results, so that you gain an impression of how the experiment will work. You

will also be given some control questions.

Execution of the auction

In all auctions a jar of pennies is sold. The glass itself is worthless; it is just the

money in the jar that is of value. The person with the highest bid wins the auction.

The person who wins gets the money in the jar but has to pay his/her bid.

Example: If the value in the jar is NOK 100 and highest bid is NOK 80, the

winner wins NOK 20. However, if the value in the jar is NOK 100 and the highest

bid is NOK 120, the winner loses NOK 20.

Exactly how much money there is in the jar is UNKNOWN and is changed for

every auction. The value will always be between NOK 50 and NOK 250. It is the

same probability for all whole NOK values between NOK 50 and NOK 250. By that

it is meant that it is just as likely that the value is NOK 64 as it is 225.

Before each auction you each get an own signal on the value in the jar. The signal

could be higher or lower than the true value in the jar. The signal is maximally

NOK 25 above the true value and maximally NOK 25 below the true value. This

signal on how much is in the jar tells you what is the highest and lowest value of

the jar.

Example: On the computer screen you get a signal: NOK 75. The value that

actually is in the jar can then vary over all whole NOK values from NOK 50 to

NOK 100. The lowest possible value based on this signal is NOK 50, while the

highest possible value based on this signal is NOK 100.

Bids have to be in whole NOK.

Example: One may bid NOK 58 but not NOK 58.50
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Everybody gets NOK 200 to use in the experiment. The money is split evenly

between the two series, so that one gets NOK 100 for the �rst 20 auctions and then

another NOK 100 for the last 20 auctions. This money does not limit how much

you may bid; it is used to compute gains or losses for the winner of the auction.

Hence, you may each bid whatever NOK amount you wish.

Example: It is the �rst auction and the signal one gets is NOK 175. The lowest

possible value based on this signal is NOK 150 and the highest possible value is NOK

200. One may bid whatever one wishes; you are not limited by only having NOK

100 in endowment. If the highest bid is NOK 175 and it turns out that the true

value is NOK 180, the person with the highest bid wins NOK 5. This sum is added

to the NOK 100 in endowment, so that person now has NOK 105. If the highest bid

instead were NOK 185, that person would have lost NOK 5 and had NOK 95 when

the next auction started.

If you lose all your money you will be eliminated from the experiment.

The money you have when all auctions are completed is your own and will be

paid after the experiment is over. Only the winner�s endowment is changed in each

auction. Those whose bid was not highest in an auction see no change in their

endowment. (If there is more than one highest bid, these share the gain or loss

evenly.)

After each auction you will be told: how much money there was in the jar, what

the highest bid was, your eventual gain/loss and your new endowment. In addition

an information box appears that shows the history from previous auctions. Here

you are told: your bid, the highest bid, the value in the jar and the winner�s pro�t.

After you have read this information a new round begins.

No communication is allowed during the experiment. If you have any

questions raise your hand and you will be assisted.

Good luck.
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