WORKING PAPERS IN ECONOMICS

No. 06/07

S. D. FLAM, AND O. GODAL

MARKET CLEARING AND PRICE
FORMATION

Department of Economics
UNIVERSITY OF BERGEN



https://core.ac.uk/display/6886441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Market Clearing and Price Formation

S. D. FLAM* AND O. GODAL

April 16, 2007

ABSTRACT. Considered here is decentralized exchange of privately owned
commodity bundles. Voluntary transactions take the form of repeated bilat-
eral barters. Under broad and reasonable hypotheses the resulting process
converges to competitive equilibrium. Price-taking behavior is not assumed.
Prices emerge over time; they need neither be anticipated nor known at any
interim stage.
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1. INTRODUCTION

Every form of real, economic behavior is shaped by trial and error. It appears desir-
able therefore, that theories of markets and prices mirror such features. Theory has
however, found it difficult to explain how markets function and prices emerge.

Many difficulties stem from considering only perfect agents and equilibrium out-
comes.! That perspective is somewhat exclusive, and it inverts the natural order of
things. To wit, most human-like agents appear competent only after interim “mis-
takes.” And trivially, markets clear only after trade. So, static views on market
mechanisms and price formation should yield to explicit descriptions of dynamics.
Whatever be the nature of such descriptions, they had better reflect that
e information is asymmetrical, and traders may prefer to conceal own evaluations;
e nonetheless, differential information often diffuses (Grossman and Stiglitz, 1976);
e many a market is largely affected by exogenous random factors, typically having
non-identified probability distributions;
e much trade happens out of equilibrium, often without middle men or brokers;
e most parties hesitate in transacting large quantities at transient price levels;
e in mature markets participants need know little to take “reasonable” actions (Hayek,
1945);
e in fact, markets may partly substitute for individual rationality (Gode and Sunder,
1993);
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dress: Economics Department, Postboks 7802, N-5020 Bergen, Norway. Telephone: 447 55589200.
Fax: +47 55589210. E-mail: {sjur.flaam, odd.godal}@econ.uib.no. We appreciate funding from
the RENERGI program of the NFR.

!Other difficulties come with introducing a fictitious auctioneer engaged in Walrasian taton-
nement (Arrow and Hahn, 1971; Bala and Majumdar, 1992; Saari, 1985, 1995).
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e equilibrium, if any, can embody bid-ask spreads; and finally,
e as few as two agents might sometimes be around.

Studied below is an archetypical but rather general market process that incorpo-
rates all these features. Moreover, it tolerates that agents aren’t perfectly competent,
fully foresighted, or marvelously rational.

More modestly, it presumes that each agent steadily seeks to improve his economic
welfare. Instrumental for own improvement is that pairs of agents meet time and
again. During any encounter the two parties explore whether some exchange of
endowments could please both. Whenever they think so, suitably small commodity
bundles are transferred between them. Granted decreasing utility margins, we shall
identify reasonable conditions that suffice for markets to clear - and prices to emerge -
ultimately. Retrospectively, the resulting equilibrium can be seen as a price-supported
core solution of a cooperative game.

Our approach relates closely to behavioral and experimental economics (Smith,
1962, 1976, 1982). That is, we fully control the economic environment in admitting
finitely many agents, specified by their endowments and preferences. The dominating
economic institution amounts to iterated, bilateral exchange between two parties at
a time. Instead of letting human players set the process in real motion, it can be
simulated as an agent-based computer model (Tesfatsion and Judd, 2006). It turns
out that theoretical predictions fit nicely to experimental and computational results
(Klaassen et al., 2005).

We shall not model how agents communicate or negotiate. No language or list
of bid-ask messages is prescribed here. Instead, we posit that every agent invariably
attempts to better himself along his actual gradient direction. As is well known,
that direction offers him steepest welfare ascent. Presumably any two agents, each
knowing merely his own gradient direction, can negotiate a small and worthwhile
exchange. The resulting transactions are fairly easy to understand and implement.
Also, on a more technical note, they can cope with constraints, inexact computation,
non-smooth objectives, and uncertainty (Ermoliev and Wets, 1998).

All this speaks for gradient-like procedures. Added to their merits comes an extra
bonus, namely: they illuminate some central issues in cognitive sciences. Specifically:
how do real agents view their decision problems? How is information processed?
What sort of behavior facilitates and reflects individual improvement?

Of course, only experimental evidence can elucidate these questions. Casual ob-
servation indicates, however, that typical agents form local approximations and views.
Moreover, they adapt to circumstances. But! these are precisely the features that
characterize gradient methods (Ermoliev and Wets, 1998). In fact, their stochastic
versions mirror four common aspects of human behavior: First, probability distribu-
tions are frequently hard to learn or keep in mind. Second, mean values (i.e., mathe-
matical expectations) are often impossible or costly to compute. Third, information
concerning levels and rates is readily available only at the current point. Fourth,
while away from a steady state, most economic agents tolerate some approximations
- or some cutting of corners.
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The upshot is that many arguments - including several crucial ones that come
from cognitive sciences - they speak in favor of gradient methods. Here, what results
is a procedure that requires little competence or experience on the part of decision
makers. In fact, it obliges them neither to predict nor to optimize. Broadly, nobody
must ever form, use or revise any strategy.

To explain why it’s expedient to separate diverse issues. Section 2 provides prelim-
inaries, and Section 3 considers equilibrium, also dealt with in Appendix 1. Section
4 does some groundwork, pinning down that stability will prevail. Section 5, the
heart of the paper, spells out the exchange process and proves convergence to equi-
librium, using stochastic approximation as main vehicle (Benaim, 1996; Benveniste
et al., 1990). For simplicity, interpretation is mostly coached in terms of producers
or agents having quasi-linear utility. Section 6 gets around that limitation by accom-
modating agents with more general preferences. Section 7 illustrates the model with
emissions trading under the Kyoto Protocol. Section 8 concludes with some bibli-
ographic remarks. Proofs are found in Appendix 2. To emphasize chief structures
some signposts indicate where the reader may skip forward.

2. PRELIMINARIES
This section prepares the ground. It introduces agents, endowments, objectives, con-
straint sets, constraint qualifications, and uncertainty - in that order.

Along the way it also discusses the handling of non-smooth data. The reader
may skip (or postpone) that material, replacing generalized derivatives with ordinary
ones. If just perusing the paper, he may proceed directly to Section 3, recollecting
there that agent i € I exchanges own endowment e; € R for some z; € X; C RY so
as to maximize concave expected payoff m;(x;) = ETL;(z;, ;).

e Agents constitute a finite, fixed set I. Until further notice regard them as pro-
ducers or more generally, as agents who enjoy quasi-linear utility.

e The endowment e; of agent i € I is codified as a point in a real finite-dimensional?
vector space X. That space, common to all parties, is equipped with inner product
(-,+) and associated norm ||-||. When diverse commodities require separate mention,
let G denote the group of relevant economic goods. Any commodity vector then
comes as a G-tuple (7,) € X = R,

e The objective of agent i is to improve own payoff or profit m;(z;) € R, using fac-
tor bundle z; € X; C X. Assume decreasing returns to scale, meaning that m;(-) is
concave.

For analytical convenience one may take 7;(-) differentiable. It shouldn’t be ig-
nored though, that presence of underlying choices, technologies or tariffs tend to make

2With a view towards potential applications, notably in finance, all arguments will fit instances
where X is Hilbert.
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m; non-smooth. We only require therefore, that m; : X — R be Lipschitz continuous
with some modulus /; > 0.2

To deal with such criteria recall that y* € X is declared a supergradient at
X € X of a proper function f : X — RU{—o0}, and we write x* € 9f(x), iff
7)< f(x)+(x*, - — x); see Rockafellar (1970). The superdifferential Of () reduces
to a singleton, called the gradient, iff f is Gateaux differentiable at x. A concave func-
tion f : X — RU{—o0} has non-empty superdifferential at each point near which it
is finite-valued.

e The constraint set X; of agent ¢ accounts for his (technological) restrictions. By
assumption, that set is compact convex. Let bd.X; denote the boundary and intX;
the interior of that set. Most real instances have, for some finite index set J(7),

X; ={z; € X:¢j(z;) >0 for every j € J(i)}, (1)

each ¢; : X — R being concave, differentiable.

Anyway, an input profile (z;) € X! is declared feasible if each x; € X; and
Sier®i = Yer€i. We write A == {(z;) 1 Y, ., =D e} for the set of allo-
cations.

e A constraint qualification, called the Slater condition, is convenient (but not es-
sential): there exists a (strictly feasible) allocation i +— Z; € intX;. This condition
ensures that each agent i gets (essential) marginal profit

M;(x;) := Omi(x;) — Ni(z;), (2)

with
Ni(z;) =={neX:(n,x —x;) <0 forall ye€ X;}

denoting the outward normal cone of X; at z;. Note that N;(z;) = {0} at each
x; € intX;. Further, N;(x;) is empty whenever x; ¢ X;.

For instance (1), N;(z;) is the convex cone generated by the antigradients —c/;(x;),
j € J(i), for which ¢j(x;) = 0. The Slater condition then means that ¢;(z;) > 0 for
all j e J(i).

o Uncertainty affects welfare. More precisely, agent ¢ faces a random entity ),
the impact of which becomes clear only after x; has been committed. Thus, i’s
realized payoff is a random amount, denoted II;(z;, ;) € R. Writing F for the ex-
pectation operator, we posit that II;(z;,1,) be concave in x;, integrable in v,, and

Nothing precludes that some variates 1,7 € I, coincide. It imports that their
joint or marginal distributions may be unknown.

3For instance, when profit is a reduced function 7;(z;) := max, 7(z;,y), kinks and corners easily
emerge. Lipschitz continuity is however, preserved.
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Remarks on smoothness of data: One may think constraints more challenging,
important and relevant than non-smooth objectives. The latter is, however, more
basic. To see why, recall that 7; is assumed Lipschitz continuous with some modulus
lis e, |mi(x) — mi()| < li|lx — x|| for all x, x € X. Let

di(x) == min {||x — 2| : z; € X;}

denote the distance from x € X to X; and pick any constant L; > [;. Agent ¢ may then
just as well use the alternative objective m; — L;d; and completely ignore his constraint
x; € X;. Indeed, when y ¢ X; has closest approximation (alias projection) P;x € X,
any point Y in the half-open segment (y, P;x] lies at distance d;(Y) = d;(x) — ||[x — X/|
from X;. Therefore, m;(x) > mi(x) — L |[x — x|l > mi(x) — L; || x — X|| whence

mi(X) = Lidi(X) > mi(x) = Li [x = Xl = Li{di(x) — lIx = X1} = mi(x) — Ladi(x)-

In other words: the term L;d; serves as an exact penalty function for the constraint
x; € X;. That term totally alleviates the need to account separately for restrictions;
see Clarke et al. (1998). There is, however, no escape from non-smooth data. In fact,
d; isn’t differentiable at the boundary of X;. So, “ignoring” constraints cause no loss
of generality provided we use non-smooth functions to meter out “exact” penalties.
We record that the distance d; is convex with subdifferential (Rockafellar, 1970)

o Nix)NB when y € X;
9di(x) = { (x — Pix)/d;(x) otherwise. (3)

Here B denotes the closed unit ball in X, and F; is the projection onto X;.

3. EQUILIBRIUM

We emphasize that the environment is decomposable (i.e., free of externalities). Also,
it qualifies as informationally decentralized. That is, knowledge about the triple
(I1;, X;, e;) remains quintessentially private, available merely to ¢, and maybe to a
degree unrecorded. To complicate matters further, neither the distributions nor the
realized values of 1, need be known by any party.

Suppose now that these imperfectly informed, self-interested agents i € [ ex-
change resources. Their dealings are completely decentralized and voluntary. Posit
that each good g € G be perfectly divisible and non-perishable. Our interest is first
with price-supported equilibria:

Definition (Equilibrium). A feasible allocation (x;) is declared a market equi-
librium supported by price p iff for all i

In essence, (4) says the price should equal the marginal profit of each agent. To see
this, suppose 7; differentiable at x;. If z; € intX;, (4) means the customary condition
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p = m,(x;); that is, p, = 8%7@-(@-) for each good g. Otherwise, when z; € bdX;, a
ig
normal n € N;(z;) yields n = 7(x;) — p whence the variational inequality

(mi

(zi) = p,x — ;) <0 forall y € X;,

saying that no variation y — x; away from x; is worthwhile under net price 7’(x;) — p.

More material on equilibrium is given in Appendix 1. Equilibrium is, of course,
static in nature, displaying the (possibly boring) tranquillity of a steady state. Our
interest is more with attainability of such distinguished outcomes than with their
persistence. So we ask: can some reasonable process eventually bring about equilib-
rium? The next section displays an attractive process. For its implementation and
statement two matters must first be taken care of:

1) The normal cone N;(x;) cannot practically be handled. It is too large when
x; € bdX;, and it is empty when z; ¢ X;. Replace the said cone therefore, with the
truncated, globally defined, non-empty counterpart L;0d;(x;); see (3).

2) The other query is that the troublesome operator E in m;(x;) := ETL;(z;,;)
may make agent ¢ unable to compute his current “margin” Om;(x;). As said, to
execute E is often “hard”, be it mentally or numerically. And, of course, when
the underlying distribution is unknown, no mean value is offhand computable. To
alleviate these difficulties suppose agent i simply replaces Om;(x;) with the “realized
margin” OIL;(z;,1,), the partial differential being taken with respect to ;.

After such replacements the preceding object M;(x;) (2) gives way for the some-
what more “naive” but tractable version

Mi(w, ;) = Ol;(zi, ;) — LiOd;(x;). (5)

This sort of realized margin becomes crucial next. Broadly, “gradient” v, € M;(x;, ;)
will affect revision of z;.

In our opinion, to pick at least one v, € M;(z;,1,) requires modest skill. Agent
i must merely notice own marginal payoff OII;(x;,1),;) and the feasible choice Px;
closest to z;; see (3).

4. CONTINUOUS-TIME EXCHANGE
Under simple hypotheses about market efficiency - found say, in finance - prices and
quantities should respond correctly and instantly to new information. Ample evidence
and several studies tell though, that this need not happen. On the other hand,
under stable conditions, experiments indicate that good approximation to market
equilibrium obtains within reasonable time.

To reinforce the last point, and to prepare for subsequent modelling, this section
verifies the stability of an auxiliary, purely theoretical, highly stylized process. A
reader who takes stability on faith, may proceed directly to the next section.

In this part of the paper uncertainty is ignored, and time is continuous. At instant
t > 0 the process to be modeled has just reached allocation z(t) = [z;(t)] € A.
Suppose agent ¢ finds it attractive there to move x; = z;(¢) in “direction”
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The penalty term L;d; reflects of course his concerns with maintaining or restoring
z; € X;. So, direction D;(x;) mirrors incentive compatible, decentralized choice. Most
likely though, an overall displacement D(z) := [D;(z;)] would violate material bal-
ances. Therefore, D(x) must possibly be bent, via a projection Pr,, so as to become
aligned with A. The upshot is that a differential inclusion

& € Pr,D(x), (7)

moves x(t) in continuous time ¢t > 0, (Aubin and Cellina, 1984). It starts at some
2(0) € A and keeps z(t) € A thereafter. @ is shorthand for <z (¢). As said, the
operator Pr, projects D(z) onto the tangent space Ty = {(v;) € XT: 37, v; = 0} of
A.

Operator Pr,, by enforcing the aggregate resource constraint, doesn’t quite square
with our modelling philosophy. Indeed, who undertakes that operation? We shall see
below that the said operator practically disappears. Until then, continuous-time
dynamic (7) serves merely to identify where and how stability comes about.

For simplicity in stating that property let X := Il;c; X; be the product of individ-
ual domains. Denote by n := |I| the number of players. Recall that 7; has Lipschitz
modulus [; < L;. Let 6 := min;er(L; — [;).

el

Theorem 1 (Asymptotic stability). e From any initial allocation x(0) € A, there
emanates a unique, infinitely extendable solution 0 <t — x(t) € A to system (7).

e When 2(0) ¢ X, that solution satisfies x(t) € X for all t > \/nd(x(0))/0.

o [f the state is feasible at some time, it stays feasible forever after. That is, the set
X is absorbing.

e x(t) converges to a price supported equilibrium. [

5. DISCRETE-TIME REPEATED EXCHANGE
Theorem 1 inspires some faith in the attainability and stability of equilibrium. It
motivates us to model repeated exchanges between random pairs of agents, operating
within a stationary albeit stochastic setting.

For good reasons, the requirement ), , x; = .-, ¢; must hold throughout; that
is, (x;) € A at each stage. Also, because e; ¢ X; isn’t precluded, individual feasibility
will not always be enforced. Ultimately however, agent ¢ must settle on some x; € X;.

The main part of the exchange mechanism functions as follows. Suppose agent
i, while owning x; € X, meets another agent j, who has z; on his hand. They
perceive then gradients v, € M;(x;,1;) and v; € M;(x;,v;) respectively; see (5).
If commodity component g € G of v, — ~; is positive, agent ¢ might convince his
interlocutor j to transfer some amount of that good. In return j could receive another
good for which the corresponding difference is negative. If this sort of bilateral barter
amounts to scale v; —; by a factor s > 0, the two parties acquire updated holdings

r; — 2 +5(y; — ;) and x; — x5+ s(y; —74), (8)
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respectively. Clearly, such updating preserves material balance; it never exits from
the allocation space A.*

For supplementary interpretation of (8), suppose agent ¢ actually regards ~, as his
“private price”. If so, he assigns value v; := <fyz-, ¥ — fyj> to the gradient difference.
Similarly, agent j comes up with evaluation v; := <7j,7j — %->. Since v; + v; =
H% — 7jH27 the value sum is positive whenever v, # 7,. We shall say nothing on
value transfers between traders. We require however, that a net commodity transfer
s(v; — ;) goes to agent .

No trading platform is described. Nothing is specified as to whether or how agents
bargain. It’s left open who among {7, j} proposes and who responds. In particular,
the parties need neither identify nor report entities v;,v;. What imports is merely
that both perceive the same difference ; — ~; and use it as guideline.

Update (8) happens with newly selected agents time and again. Instead of stating
the procedure as an algorithm we prefer to depict it as an

Exchange process: It starts with some stepsize and allocation (z;) € A. It proceeds
iteratively, in discrete time, with four events happening at each stage:

1) Two producers i,j (i # j) then meet by chance. They are chosen independently,
in equiprobable manner.

2) An independent pair (¢;,;) is sampled according to its fixed joint distribution.
3) “Gradients” y; € M;(x;,1;) and y; € Mj(x;,1);) are selected.

4) Endowments are updated by (8).

Note that multitudes of random factors impinge the exchanges from outside. Pres-
ence of noise often makes data smoothing necessary, this operation usually causing

some delays. Here however, it will be made part of the process, as follows. The scale
factor or stepsize s = s, > 0, used at stage k, is updated subject to

Zsk = 400 and Zsi < +o0. (9)
k=0 k=0

Broadly, the effect of (9) is to take moving averages. Thus agents will ultimately see
mean values. Our main result, stated next, substantiates this:

Theorem 2 (Global asymptotic stability of price-supported market equilibrium).
Under (9) the stochastic allocation process generated by iterated bilateral exchanges,
converges almost surely to a price-supported equilibrium. [

4Thus, as said before, the projection P4 onto the allocation space A becomes superfluous.
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To interpret (9) suppose “time” 7 := sg+- - -+ $x_1 has accumulated prior to stage k.
The divergence condition in (9) simply says that 7, — +o0o whereas the convergence
condition implies A7y, := 74,1 — 7x = s, — 0. Broadly, numerical integration of (7)
must proceed with stepsizes which dwindle but not too fast. While (9) constrains
how the sequence (s;) behaves asymptotically, it imposes no restrictions in the short
or medium run. Accordingly, agents may, for long time, respond strongly to exchange
opportunities.

Traders were matched randomly here. Numerous other protocols could govern
dynamic matching (Gale, 2000). For example, agent 7 might encounter j periodically
or only when H% — ﬂyjH is maximal. Qualitatively, all reasonable regimes give the
same results.

6. ENTER UTILITY MAXIMIZERS
In this section each agent i derives utility u;(m;(x;)) of payoff. To reflect non-satiation
and decreasing margins we posit that u; : R — R be concave and differentiable with
w, > some positive ¢;. Then the composite function u; o m; is also concave with
superdifferential Ou; o m;(x;) = u}(m;(x;))0m;(z;).

It is natural now to declare an allocation (x;) a market equilibrium supported by
price p if for every i it holds that w}(m;(z;))p € Ju; o w;(x;) — N;(z;). But evidently,
the latter inclusion is equivalent to (4).

Replace now (5) with

Li

Mi(wi, ;) o= Omilwi, ;) — u(mi(2:))

and proceed exactly as before.

Theorem 3 (Convergence under non-transferable utility). The stochastic process,
generated by iterated exchanges, still converges almost surely to an equilibrium. [J

Proposition 1 (Equilibrium and the representative agent). Suppose there is a unique
equilibrium (Z;) (as happens when all u; o 7; are strictly concave). Then that point
solves the following planning problem of the representative agent

maxz

7. AN ILLUSTRATION: THE KyoTO EMISSION MARKET
Exchange of rights to emit greenhouse gases is guided by the Kyoto Protocol (UN-
FCCC, 1997). For simplicity, we consider only one good - the right to pollute - and
there is no uncertainty besides matching.

uz o m;(x;) subject to each x; € X; and le Zez

i el el
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Parameters are taken from Godal and Klaassen (2006) and originate from the com-
putable general equilibrium model MERGE of Manne and Richels (1992).

A global carbon tax ranging from 0 to 250 US dollars per ton carbon (USD/tC) was
introduced in MERGE for the year 2010. The emission response was computed and
used to estimate marginal payoff functions via OLS regression. Affine approximations
were good for positive taxes. Since emissions are finite when no tax is imposed,
marginal payoff functions take the form

7, (x;) = max{0, a; — b;z;}

for all 7+ € I, where a;, b; > 0.

The endowment of permits for any Party to the Protocol is not specified as a
physical quantity, only as a number to be multiplied with that party’s 1990 emission.
To fix endowments, the 1990 emission level given by MERGE were scaled by the
factors listed in the Protocol (UNFCCC, 1997). The agents i € I, and their triples
(ai, b, e;) are presented in Table 1.

Table 1. Parameters. Marginal payoffs are measured in US dollars per ton carbon and
endowments are in million tons carbon per year.

Agents Payoff functions | Endowments
1 a; bl €;
USA 1003 0.551 1251
OECD Europe | 1883 1.813 860
Japan 1727 4.933 258
CANZ 693 2.216 251
EEFSU 1410 1.569 1314

CANZ is short for Canada, Australia and New Zealand, while EEFSU collects the
countries in Eastern Europe and the Former Soviet Union. The parameters displayed
imply a perfectly competitive equilibrium price with (without) the participation of
the USA that equals 142.8 (0 respectively) USD/tC. All simulations presented below

were terminated when the bid-ask spread max; { (7} (z;)),c; } — min{(7} (z;)),; } was
< 5 USD/tC.

Simulations of exchange guided by the gradient difference: Trade was first
modeled by adopting (8) with stepsizes s, = ﬁ A simulation featuring those
countries that signed the Kyoto agreement in 1997 (including the USA) is given in

"MERGE (A Model for Evaluating the Regional and Global Effects of Greenhouse Gas Re-
duction Policies) is an intertemporal computable general equilibrium model with a relatively de-
tailed representation of the energy sector (a prime emitter of greenhouse gases). Only the energy-
related CO4, emissions were accounted for in the applied version, calibrated to the B2 scenario

made for the Intergovernmental Panel on Climate Change (Nakicenovic et al., 2000). See also
www.stanford.edu/group/MERGE/.
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Figure 1.9
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Figure 1: Bilateral permit exchange including the USA.

Figure 1 demonstrates that marginal payoffs converge to a competitive price. Since
the USA hasn’t yet ratified the Kyoto Protocol, the following picture better reflects
the current state of affairs:

6The data behind Figures 1 to 4 are obviously discrete. The dots have been connected to improve
presentation.
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Figure 2: Bilateral permit exchange excluding the USA.

Without the USA, marginal payoffs are eventually nil because total supply exceeds
aggregate demand. Specifically, > ;cp\ (psay (€ — ai/b;) = 2647 — 2600 > 0, where
a;/b; is commonly referred to as agent i’s “business as usual emissions”.

Alternative simulations: In place of (8) we now apply the normalized versions

T X + sM
1% = |
In the single good case, this alternative approach has the advantage of relieving
traders from assessing gradient differences. It suffices that they identify the sign
of that difference. The reason is that normalized forces, as studied in Ruszczynski
(2006, Chap. 7), then amounts to using the sign function. With stepsizes s = 12%,
k =0,1,.. a simulation of trade with the USA is depicted in Figure 3,
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Figure 3: Bilateral permit exchange including the USA.

while exchange excluding the USA is given in Figure 4.
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Figure 4: Bilateral permit exchange excluding the USA.

13
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Again, marginal payoffs converge to competitive prices.

8. CONCLUDING REMARKS

Markets and prices occupy center stage in economic theory. Their functioning or for-
mation is however, hard to model. It appears that some difficulties can be resolved
by specifying how economic agents, while out of equilibrium, meet and trade. This
paper opens up a simple vista on these things. It regards markets as recurrent en-
counters between potential traders. Each concerned agent holds a private resource
bundle, and hesitates, at any stage, to reveal his marginal exchange rates. Also, he
has limited and localized knowledge about the prospects for own improvement. This
notwithstanding, any two meeting agents will detect whether a “small” transaction
can benefit both. That is, they detect whether there are attractive prospects for a
bilateral barter. Then, they exchange a moderate volume - most likely at implicit,
idiosyncratic prices. In short: differences in substitution rates drive transactions.
Granted transferable utility and decreasing margins, iterated exchange may even-
tually clear the market - and moreover, generate prices that support competitive
equilibrium.

The paper differs fairly much from the received literature. No auctioneer or central
agent directs or facilitates trade. Walrasian tAtonnement is therefore not an issue
(Arrow and Hahn, 1971; Bala and Majumdar, 1992; Ermoliev et al., 2000a; Goree
et al., 1998; Hurwitz et al., 1975a,b; Saari, 1985, 1995). Money might be present -
and instrumental, say as a numeraire (Shapley and Shubik, 1977) - but its role is not
explicit. Reliable prices will emerge therefore, only when all trade is completed and
the market clears.

As usual, that outcome qualifies as core solution. We have however, not let coali-
tions play any role. Jevon’s spirit dominates here in that pairwise interactions are
main events (Ermoliev et al., 2000b). The flock of traders is fixed though; nobody
arrives; nobody leaves. In that respect we are at variance with some models of
sequential bargaining (Gale, 2000; Kunimoto and Serrano, 2004; McLennan and Son-
nenschein, 1991; Rubinstein and Wolinsky, 1985, 1990). Most important, we dispense
with the assumption that each party learns the type and current bundle of his in-
terlocutor. Also different is that traders contend with “minor” transactions on each
round. Transactions may occur that later are regretted. Such features of exchange
have been observed in experiments; see Klaassen et al. (2005). Unlike Gintis (2006)
no agent (or strategy) imitates, reproduces, or mutates. The paper that in parts
comes closest to ours is Ermoliev et al. (2000b).
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Appendix 1: On the Equilibrium

Collected here is material on characterization/existence/uniqueness of equilibrium,
core solutions, the inverse demand curve, the price slope, bid-ask spreads, normal
cone representation, Lispschitz continuity, and interior point methods - in that order.
None of these issues interfere with the chief line of the paper.

Characterization, existence and uniqueness of equilibrium obtain easily from
the hypotheses:

Proposition 2 (Characterization/existence/uniqueness of price-supported market
equilibrium).

e Gliven aggregate endowment ey =), e;, an input profile (x;) is a price-supported
market equilibrium iff it solves the problem

mr(er) == max {Zm(mz) : le =er and each x; € XZ} . (10)

icl icl
e There exists at least one such equilibrium. It is unique if all 7; are strictly concave.

Proof: For any set C let the extended indicator d¢ equal 0 on C' and +oo else-
where. Profile x = (x;) solves problem (10) iff

0€e 8{Z[m — 0x,] —5A} (2),

el

where the total superdifferential 0 is taken with respect to x. The constraint qualifi-
cation ensures that

9 {Z [mi — 0i] — 5A} (z) = [0mi(2:) — Ni(@i)l;c; — Na

el

where Ny = {(p,p,...) : p € X} is the normal cone to A at every (z;) € A. So, an
allocation (z;) is optimal iff there exists a price p such that (4) holds for each i. This
takes care of the first bullet.

For the second bullet note that (x;) — >, ., mi(z;) is continuous on a non-empty
compact domain. (In fact, the Slater profile (Z;) is feasible.) Existence of a maximum
is then guaranteed. The assertion about uniqueness derives from the strict concavity
of the objectives. [J

Equilibrium as a core solution to a cooperative game:
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Proposition 3 (Equilibrium as a core solution, Evstigneev and Flam, 2001). Define
a transferable-utility game with player set I and characteristic function

ID S+ mg(es) = sup{Zm(xi) € X, and sz = Zei = 65}.

€S €S €S
Then, each equilibrium price p defines a core solution ¢ = (¢;) € RY by

c; == sup {m(x) — (0, x) : x € Xi} + (p,e)

n that

Zci > ms(es) for all S C I with equality for S =1. O

i€s
In fact, >, g c;i > mg(eg) for any price vector p. This inequality mirrors that access
to a competitive market can harm no coalition S C I. To preclude ., ¢; > 7 (er)
an equilibrium price must be used, meaning a p for which

i€l

mr(er) > Zsup {mi(z;) + (p,e; — ) - x; € X;}.

icl
The "price curve" p = P(} ., ¢;) satisfies the “law of demand”:
Proposition 4 (Properties of the derived price curve).

e At least one price supports a market equilibrium.
e A price applies for such support iff it belongs to Omy(ey).

e In particular, the price varies only with the aggregate supply e =Y ., €;.
e The price curve P(-) := On(-) “slopes downwards”:
(p—p,er —ér) <0 forall pe Pler) and p € Pler). (11)

e If some function p — sup {m;(x;) — (p, z;) : x; € X;} is strictly convez, then P(er)
s unique and continuous.

Proof. The function 7; defined in (10) is concave. Moreover, by the constraint
qualification, 7; is finite-valued near the given aggregate e;.” For that reason, there
exists at least one p € dmr(es). By Proposition 2 some allocation (z;) solves problem
(10). Consequently, p € 0 [m; — dx,| (z;) = Omi(x;) — N;i(x;) for all i; see Laurent
(1972). The concavity of 7; implies that dr; must be monotone decreasing as ex-
pressed in (11).

Each function f : X — RU{—o0} has a conjugate

fH @) = sup{f(z) — (z*,x) : x € X}.

"It suffices for having 7;(-) finite near e; that some feasible allocation (Z;) has 2; € intX; for at
least one i.
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Because 77(p) = >,/ [mi— 96 %] (p), with at least one term strictly convex, the
final assertion follows from Theorem 4.1.1, page 79 in Hiriart-Urruty and Lemaréchal
(1993). O

The slope of inverse demand sometimes obtains as follows. Suppose m(es) is
uniquely attained by a feasible allocation (z;). (This happens for instance if all 7;
are strictly concave.) Then, under suitable regularity conditions, the price curve P(-)
is differentiable at e; with “slope”

Pl(er) = {Zw;'m)l} , (12)

see Crouzeix (1977). Like each 7/ (z;) the “slope” P’(es) is a negative definite G x G
Jacobian matrix. Interpret 77(x;) as a sort of “resistance.” Accordingly, 7!/ (x;)~*
reflects corresponding “conductance.” Formula (12) points to electrical engineering
in saying that the conductance of a parallel circuit equals the sum of conductances
(Dorf and Svoboda, 1999). In general, we cannot expect that P(-) be differentiable.
It appears though, that generalized, second-order derivatives are applicable (Rock-
afellar and Wets, 1998).

Bid-ask spreads may occur as illustrated next. At x; € intX; agent ¢ would bid

B, < iz d) == lim (2 + sd) — mi(x;)

s—0F S

for additional resources in direction d, ||d|| = 1. Similarly, he would ask a; >
—mh(x;; —d) for giving away resources along that direction. Then, by concavity,

Bi < milwid) < —mi(w; —d) < o
the middle inequality being strict when 7;(-) has a kink at z; along direction d.

The normal cone N;(x;) at x; € X;, when Xj is given by (1), consists of all vectors
=D jesiiy Aic(w) with each A; > 0, and Ajc;(z;) = 0.

Lipschitz continuity of 7;, if absent, could be ensured as follows: Take any positive
number r; and replace 7; by the regularized counterpart

#i(a:) := sup {mi(x) — i [x — mil*: x € Xi},

embodying adjustment costs 7; ||x — 2;|°. That substitute function #; is bounded

above, concave, Fréchet differentiable and Lipschitz continuous on the entire space;
see Theorem 1.5.1 in Clarke et al. (1998).
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Interior point methods offer alternative procedures to any agent ¢ € [ whose
domain X; has non-empty interior. That agent could add a barrier term b;(x;) to
m;(x;) to maintain own feasibility. Specifically, the barrier function b;, defined and
concave on intX;, should tend towards —oo whenever x; € intX; approaches bd.X;.
For example, if X; = [0, 1], the function b;(x;) = ¢; {log z; + log(1 — x;)} would do
for any ¢; > 0. This approach has the advantage of dispensing with the distance
function, but the drawback of merely producing approximate equilibria.

Closer scrutiny shows that our method applies even if intX; is empty. It requires
merely that M, (5) be replaced by

M (i, ;) := O [IL(+,v;) — Lidy] ().
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Appendix 2: Proofs

Proof of Theorem 1. e (For existence and uniqueness of solutions) Note that D(x)
is monotone decreasing, meaning

(D(x) = D(z),2 — T) := Y _(Dyi(x;) — Dy(%;), 2 — Z;) <0

el

for any z = (z;),7 = (z;) € X!. In fact, monotonicity derives from 7; — L;d; being
concave. Consequently, its “derivative” D; = J [m; — L;d;] decreases:

<Dz(l’z) — Dz<a_:z)7xz — .fz> S O fOI‘ any .Iz‘,i’i - X

By an infinitely extendable solution is understood an absolutely continuous function
z(+) : Ry — A that satisfies (7) for almost every ¢. It is known that solutions coincide
with those of & € D(z) — Na(z) where N4(z) denotes the normal cone to A at z € A.
The latter system remains monotone - in fact, maximal as such - hence has a unique,
infinitely extendable solution; see Aubin and Cellina (1984). This takes care of the
first bullet.

o (For feasibility in finite time) Endow X! with the natural inner product (z,7) :=
> icr (i, T;) and associated norm ||-||. The distance d(z) := ||z — Z| from a point
x ¢ X to its closest approximation z € X has derivative d'(z) = (x — z)/d(z). Let
I(z):={i€l:x; € X;}. While z(t) ¢ X, consider the function

A(t) = d(x(1)/2 = |la(t) — ()] /2. (13)
During that phase, omit repeated mention of time to get
A = d@)(d(x), i) = (x—7,%) € (x — 7, D(x) — NA(?»
< (z—2,D(z)) = Z) <x — 7, 0mi(7;) — Ly C;i(x )Z>

1¢1(z
= > (&~ 3, 0mi(x)) — Lidi(z:)} ()
i¢1(x)
< Z(z,. — L)di(;) < —6Zdi(:1:i) < —dmaxd(z;) < —%d(m).

In (*) we used the Cauchy-Schwarz inequality and the fact that each supergradient in
Om;(x;) is bounded in norm by the Lipschitz constant [; of ;. The very last inequality
follows from

L 2 1/2 2 1/2 1
\/_(nr?ealxd (x;)) ;d ) \/ﬁ d(x).
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Because A\ = d(z)d(z) the proven inequality A < —dd(z)/y/n implies d(z(t)) <
—§/y/n while z(t) ¢ X. During that phase

t
da(t) = da©) + [ d< dGa(0) - t5/v/m (14)
0

whence ¢t < y/nd(x(0))/6. This proves the second bullet.

e (Absorption) Suppose x leaves X at some time. Then reset the clock to 0. From
(14) follows that d(z(t)) immediately thereafter goes negative - an absurdity.

e (For convergence to equilibrium) Consider next the “ultimate” phase during which
feasibility prevails all the time. In that regime let () denote the equilibrium closest
to z(t) and consider again a function A of the form (13). Arguing as above we get

zeI i€l

Since {z; — Z;,0 [m; — Lid;] (Z;)} < 0 for each i, we get A < 0. Strict inequality holds
while x # Z. Indeed, then x; # Z; for some 7, and

This completes the proof. []

Proof of Theorem 2. Let n > 2 denote the number of agents. Under equiprobable
choice of agent pairs, the chance of selecting any specific pair (,7) is p :== 1/(}) =
2/{n(n—1)}.

Write ¢ = (¢;) to indicate the exogenous state of the world. Consider the ex-
tended event space 2 composed of elementary outcomes w = (i,7,1). Each such
triple features two distinct agents 7, j and the exogenous state ). Endow {2 with the
product sigma-algebra and the corresponding probability measure. That is, for any
measurable outside event ¥, composed of elementary exogenous outcomes v, and for
any agent pair (i, j) of distinct players, let

Pr(i,j) x U] = p Pr[¥]

be the associated probability. Here Pr[W¥] is the time-invariant probability already
assigned to the set .

Consider any stage k£ > 0. For simpler notation suppress mention of k. What
enters that stage is stepsize s, prevailing profile = (x;), random event w = (i, j, 1),
and gradients v; € M;(x;,v;), 7; € M;(z;,9;). Define a new profile 2! by

at = it s(y - )
vt o= @ity — ) (15)

x;" = x;wheni#i,j
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Expectation with respect to ¢, in (5) yields
EM;(xi, ;) = 0[mi — Lidi] (z:) = Di(z;).
Taking expectation with respect to (i, j) as well in (15) gives

Exft ez + MSZ {D;(z;) — Dj(x;)} for eachi e I. (16)

jel

For any non-empty closed convex set C', let Po be the orthogonal projection op-
erator onto that set. Given any allocation z € A and vector v € X!, we have

Pylx+snv] =z +s [Zje[ {v; — vj}} . Thus, in terms of the tangent cone Ty =
i€l
{(2;) e X! : 3", ;2 = 0} of the allocation space A we get

PA[:L‘—f-snv]—x PA[I+STLU—ZE

lim
s—07T S

S {o - vj}] — Pr, o]

Jel

As before D(x) := [D;(x;)],c; - Substituting D(z) for v in the last string gives

% [Z {Di(x;) —Dj(l’j)}] = Pr, [D(z)].

jel
Thus, at stage k (16) assumes the form
Ex** € o + spnuPr, [D(2)],

showing that exchange amounts - in expectation - to an explicit Euler step of size
sgnp of the differential inclusion

i € nuPr, [D(x)]. (17)

Clearly (17) is just a scaled version of (7), inheriting the same qualitative properties.

Having now related iterated exchange via (16) to the asymptotically stable system
(17), convergence of the exchange process follows from received results in stochastic
approximation theory; see Benaim (1996) and Benveniste et al. (1990). This com-
pletes the proof. [J

Proof of Theorem 3. The demonstration of Theorem 2 also applies here. We
provide however, an alternative demonstration (applicable for Theorem 2 as Well)

Let 2 be the optimal solution to (10) closest to 2% and define a; := ||z — ka

When the event w* = (i, j*, ") is sampled at stage k, use (15) to define

k1. ok k .
;T = + sgv; for all .
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Here vf = vf(af,wh) € M;(x, ;) — Mj(zj,,) if {i, j} = {i*, j*} , 0 otherwise, and
> ier VF = 0. Clearly,

aipn < || — 2 = (b — 2 4 b = a4+ 28 (08, 2F — )+ &2 [oF|. (18)

In terms of the sigma-field 7, generated by w?, ..., w*~! take conditional expectations
to define

b= B [(0%,2" = 2% | 7] = (B [0 F] 2" = 2%) 20 and o = B |[o]*1 5]

Since ¢ < C(1 + ay) for some constant C| taking the same conditional expectation
E[-|Fy] through (18) gives

FE [ak+1 |fk] S (1 + C’si)ak — 2Skbk + siC

The assumption Y s7 < +oo implies that a;, — a and Y, syb, < +00 almost surely;
see Chap. 5 in Benveniste et al. (1990). We claim that a = 0 a.s. Indeed, whenever
a # 0 along some scenario, by, is - along that same scenario - eventually bounded away
from zero. Then ) s, = +00 entails the contradiction ), spby = +o00. O
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