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Abstract

This paper considers how price auctions compare with two-dimensional

bidding on price and quality, when bidders have comparative advantages.

Two-dimensional bids are evaluated by a scoring rule decided by the auction-

eer and three auction types are evaluated: a) a scoring auction re�ecting the

auctioneer�s true preferences; b) a scoring auction with �optimal�distortion

of quality in the scoring rule; and c) a price-only auction with optimal quality

threshold. The main �ndings are: 1) while the auctioneer always prefers the

scoring auction, bidders may favour the price auction to the scoring auction

and vice versa, depending on underlying conditions of the type space and cost

parameters; and 2) the auctioneer can exploit �rms�comparative advantages

to level the �eld. An optimal scoring auction can, in some circumstances, ex-

tract all rent from bidders, leaving the auctioneer with all the e¢ ciency gain

from the bidding process. There even exists a knife-edge situation where the

auctioneer can extract all rent when using his true preferences as the scoring

rule.
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1 Introduction

In recent years, both practitioners and theorists have given more focus to scoring

auctions, i.e., auctions where contestants are bidding on price and quality, and

these multidimensional bids are ranked by a scoring function that generates a single

dimensional value: �the score�.1 In the academic literature, large strides have been

taken, particularly by Che (1993), Branco (1997), and Asker and Cantillon (2008).

Nevertheless, there is still a lot to be done before we fully understand the properties

of this auction format. Milgrom (2004) points out:

�The idea that scoring can increase bidders�pro�ts without reducing the

auctioneer�s value has been one of the main appeals of multidimensional bid-

ding in procurement. Bidders (sellers) dislike bidding in price-only auctions

in which their special advantages and characteristics receive no weight. By

encouraging a more complete comparison of the attributes of suppliers and

products, scoring may increase bidders�expected pro�ts and encourage par-

ticipation by more bidders, serving the interests of all parties. The theory

does not give unquali�ed support to this intuitive argument. The conditions

under which scoring bene�ts bidders and auctioneers alike remain an open

question�.

This paper builds upon the above-mentioned papers and extends their work to

study how scoring auctions work when �rms have comparative advantages, mean-

ing that they have di¤erent costs associated with a given improvement of quality.

Three auctions are compared: a) a scoring auction re�ecting the auctioneer�s true

preferences for price versus quality; b) a scoring auction where the auctioneer is able

to distort the scoring rule away from his true preferences towards price and quality;

1Public procurement accounted for nearly 16% of GDP in Europe in 2002. In the directive
of public procurement in the EU, Article 53 states that contracting authorities can award public
contracts either by �the tender most economically advantageous�or �the lowest price only�. The
contracting authorities shall specify in the contract documents the relative weighting that it gives
to each of the criteria chosen to determine the most economically advantageous tender. In case
it is not possible to weight these criteria (for demonstrable reasons), the authorities shall, as a
minimum, rank the criteria in descending order of importance.
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and c) a price auction with minimum quality threshold. I dub the �rst format the

�naïve�scoring auction and the second the �optimal�scoring auction.2

When �rms only di¤er in marginal costs of quality, i.e., there are no �xed cost

di¤erences, both bidders and the auctioneer prefer the naïve scoring auction to

the price auction, but the auctioneer can improve his outcome by committing to

an optimal scoring auction, not preferred by the bidders. This result is shown

by Che (1993) and is replicated towards the end of section 3 of this paper.3 Che

(1993) considers a model with independent types (costs) and three variations of

scoring auctions: the �rst-score (the winning �rm delivers its bid combination); the

second-score (the winning �rm delivers any combination yielding the same score as

the runner up); and the second-preferred-o¤er (the winning �rm must deliver the

runner up�s exact combination). Che shows that with a scoring rule re�ecting the

buyer�s true preferences, these three auction types give the same expected utility

for the buyer, and, hence, it is a two-dimensional version of the revenue equivalence

theorem (RET) (Vickrey (1961), Myerson (1981), and Riley and Samuelson (1981)).

However, a scoring rule re�ecting the true preferences of the buyer entails excessive

quality under the �rst two formats, since they do not account for the informational

costs associated with higher quality. This corresponds well to the mechanism-design

literature (La¤ont and Tirole (1987), (1993)). Che therefore considers other scoring

rules and �nds that the �rst- and second-score auctions can implement the optimal

outcome (the second-preferred-o¤er is unable to do so), and this optimal scoring

rule systematically discriminates against quality.4

The papers that are closest to the present one are Asker and Cantillon (2005) and

(2008). In both papers, they study scoring auctions in which price enters linearly

into the scoring rule and suppliers�private information about costs are multidimen-

2Note the quotation mark, as I only consider one way of distorting preferences, and there may
exist more or less intricate ways to do the same.

3A path that is not followed in this paper is the e¤ect of correlated costs. Branco (1997)
studies this, and contrary to what Che (1993) �nds, one-stage multidimensional mechanisms will
not implement the �rst-best outcome. One will need a two-stage mechanism, where the �rst stage
evaluates bids according to a scoring function, and a second round where the �rst-round winner
bargains with the buyer.

4See Klemperer (2004) for a brief discussion of the similarities between La¤ont and Tirole (1987)
and Che (1993) and the connection to the Linkage Principle (Milgrom and Weber (1982))
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sional, so they are able to consider situations where �rms di¤er in their �xed and

variable (marginal) costs. In this paper, suppliers�private information about costs

are one-dimensional since I wish to highlight the e¤ect of comparative advantages.

Asker and Cantillon (2008) derive two sets of results. First, they describe equilib-

rium behaviour, and show the correspondence between scoring auctions and single

dimension auctions for independent private values. Second, they compare the scoring

auctions with other commonly used procedures to buy di¤erentiated goods. They

show that from the buyer�s viewpoint, scoring auctions always strictly dominate

price-only auctions with minimum quality standards, and dominate menu auctions

and beauty contests depending on the auction format.5 However, Asker and Can-

tillon (2008) do not discuss how the auctioneer can use comparative advantages to

level the �eld through scoring auctions. In Asker and Cantillon (2005), compara-

tive advantages is studied, but restricted to discrete distributions, while this paper

looks at a continuous cost function. However, they do �nd, as this paper does, that

scoring auctions do well compared with other commonly used procedures.

This paper shows that, for a certain set of preferences and cost functions, even

the naïve scoring auction can level the �eld in such a way that all bidder pro�t is

competed away. That means that it is a �rst-best solution, and the scoring auction

re�ecting the auctioneer�s true preferences is indeed the optimal one. Moving away

from this knife-edge situation, the scoring auctions can bene�t both bidders and

the auctioneer under certain conditions. The reason being that the scoring auction

allows �rms to exploit their comparative advantages in the bidding process. This

results in an e¢ ciency gain compared with the price auction, and this can be shared

between the auctioneer and the bidders. However, in an optimal scoring auction,

the auctioneer can distort his preferences in such a way that he is able to capture

all the gains, and bidders will then prefer the price auction. This is most likely to

happen when the type space is large and there exist comparative advantages.

The paper is organized as follows: Section 2 outlines the model where two �rms

compete. In Section 3, I show the outcome in the three auction formats, when �rms

5For a discussion of price auction with quality thresholds, see Cripps and Ireland (1994) and
Cabizza and De Fraja (1998), who also discuss quality considerations in auctions.
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have comparative advantages or only di¤er in marginal costs. Section 4 concludes.

2 Model

Two risk-neutral �rms compete to win the right to deliver a speci�c project. Firms�

costs are given by:

ci = c (�i; s) =
A

�i
+ �is; (1)

where A � 0 is a common cost parameter, s is quality, and �i is the �rm�s type,

i = 1; 2. Let �i s U [�L; �H ] and types are stochastically independently drawn.

Firms have private knowledge about their own cost parameters. The �rst term

in the cost function is a type-speci�c �xed cost, while the other term is variable

costs. Costs are then not necessarily monotonically increasing in type, but can be

decreasing for a su¢ ciently large A, re�ecting comparative advantages. Some �rms

might be good at delivering high quality to a low variable cost (low �i), while others

can deliver low �xed cost, associated with the project (high �i).

A risk-neutral auctioneer seeks to maximize his utility, given as the consumer

surplus, V . The quantity delivered in the project is normalized to 1, so V is decided

by the relationship between price, p, and quality, s. Because the quality parameter,

being multidimensional by nature, can be computed as a one-dimensional number

in monetary terms, price and quality can be evaluated along the same dimension.

The consumer surplus is described as:

V (p; s) = v0 +
p
s� p; (2)

where v0 > 0 is a common parameter for the consumers�surplus function. Because

quality is concave in the consumer surplus function and linear in the cost function, I

use �rst-order conditions to search for optimal quality. Based on his preferences, the

auctioneer creates a scoring auction to maximize consumer surplus. Let the scoring

function be given by:


 (p; s; �) = �
p
s� p: (3)

5



When � = 1, the scoring function re�ects the auctioneer�s true preferences, while

� 6= 1 distorts from his true preferences. Price and quality can then be mapped into
a one-dimensional score. Because the auctioneer and the bidders are risk neutral and

the bidders�types are distributed according to an atomless continuous distribution,

it follows:

Remark 1 For any given scoring rule, �rst-score and second-score sealed bid auc-

tions, English score auctions, and Dutch score auctions will all yield the same ex-

pected revenue, hence, the RET is satis�ed.

Satisfying the RET, English auctions are used in the setup for computational

convenience. The timing of the model is as follows: �rst, the auctioneer decides

which mechanism to use and publicly announces his decision; and second, the bidders

post their bids, and the mechanism selects a winner. The competition is run as a

scoring auction (bidding on price and quality) or as a price auction with minimum

quality requirements (a quality level above the minimum requirement receives no

weight in the auction).6

In the next section, I analyse the three auction types given the setup described

above.

3 Auction Outcomes

In this section, I �rst look at the special case where A = 1
4
, and it turns out that the

naïve scoring auction and the optimal scoring auction coincide. Next, I show that

when 0 < A < 1
4
, this is no longer true, and that the optimal scoring auction yields

a higher expected consumer surplus than the naïve scoring auction and the optimal

price auction. Lastly, I brie�y show the case where �rms only di¤er in marginal

costs of quality, A = 0

6Technically, the price auction is a special case of the scoring auctions, where:


 (p; s) =

� p
s0 � p s � s0
0 otherwise;

and s0 is the minimum quality threshold.
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1) A = 1
4

a) and b): The naïve (and optimal scoring) auction First, consider the

English scoring auction where the auctioneer states his true preferences as the scoring

function (� = 1) and let tW denote the winning score. To maximize consumers�

surplus, the auctioneer needs bidders to set pi = ci; and maximize quality si. Each

bidder maximizes:

max
(p;s)

fp� c (s; �i)g s:t:
p
s� p = tW ; (4)

and by substituting for p in the objective function this simpli�es to a maximization

problem where bidders choose s condition on being the winning bidder:

max
s

�p
s� c (s; �i)� tW

	
: (5)

I de�ne:

k (�i) = max
s

�p
s� c (s; �i)

	
: (6)

Asker and Cantillon (2008) dub k (�i) the bidders� pseudotypes, which show the

maximum score that bidder i can generate, and will be well-de�ned once the scoring

rule is given. Inserting for the cost function in the maximization problem, and

solving with respect to quality, s, yields the expression for the pseudotypes:

k (��i ) =
1� 4A
4�i

: (7)

Consumers�surplus is increasing in �i if A > 1
4
and decreasing if A < 1

4
. If A = 1

4
,

the consumer surplus is independent of �i and the naïve scoring auction yields a

�rst-best outcome. Hence, the naïve scoring auction is the optimal one.

c) The optimal price auction Now, assume that A = 1
4
and turn to the

price auction. Assume that the auctioneer has announced a quality threshold, s0;

that all bids must meet to compete, and that the winner is determined solely by the
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lowest price. When bidding, �rms optimize with respect to costs given s0 and �i:

@ci
@�i

= � 1

4�2i
+ s0 = 0, �i =

1

2
p
s0
: (8)

So, unlike the scoring auction, there is only one type that can maximize consumer

surplus given the chosen quality threshold, s0. I can then state the following:

Proposition 1 If A = 1
4
, all �rms are able to deliver the same maximal consumer

surplus in a naïve scoring auction. This is independent of their type and the distri-

bution of types. In a price auction, only the type �i = 1
2
p
s0
is able to deliver this

surplus.

Proof. See Appendix B.

Regardless of the type distribution, there exists a knife-edge situation where the

auctioneer, using his true preferences as a scoring function, is able to level the �eld

resulting in a �rst-best outcome. The scoring auction allows �rms to exploit their

comparative advantages when posting bids, with the consequence that there is no

expected pro�t for the winning �rm. However, in a price auction, the auctioneer

needs to design the auction to �t the most e¢ cient �rm to reach �rst-best, and

to ensure competition adjusting quality is needed; thus, the auctioneer is forced to

leave some rent to the most e¢ cient �rm.

The result for the scoring auction is quite intriguing since it makes apparently

di¤erent �rms compete the pro�t away. This is, however, dependent of the shape of

the auctioneer�s preferences and the �rms�cost functions. Nevertheless, it indicates

that the scoring auction has properties that make, at least, the auctioneer better o¤.

The next sections discuss how this result carries over when 0 < A < 1
4
and A = 0:7

2) 0 < A < 1
4

For notational ease, denote the expected score from a naïve scoring auction

E (
 (p; s)) = 
s; and let 
� denote the expected score in an optimal scoring auc-

tion E (
 (p; s; �)). Expected consumer surplus E (V (p; s; �)) is written as V s; V �,

7I do not discuss the situation where A > 1
4 as this mirrors the results for 0 < A <

1
4 .
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and V p for the three auctions. Let the expected pro�t for the bidders be given by,

�s; ��; and�p for the naïve score, optimal score, and optimal price auction, respec-

tively.

a) The naïve scoring auction First, consider the naïve scoring auction re-

�ecting true preferences, � = 1 in (3). Generally, the expected score from the

auction is given by:


s =

Z �H

�L

Z �H

�L

min (k (��i )) dF (�1) dF (�2) i = 1; 2; (9)

where the double integral is the expected maximum score that the pseudotype ranked

as second best can deliver. Types are independently uniformly distributed over the

square [�L; �H ] � [�L; �H ] : The type space is illustrated in Figure 1, and I use the
symmetry to focus on the area above the diagonal, i.e., where �1 < �2, and write (9)

as:


s =
2

�2

Z �H

�L

Z �H

�L

min k (��i ) d�1d�2 i = 1; 2; (10)

where � = �H � �L: Because A < 1
4
; k (��1) > k (�

�
2) ; and the winning score, t

W ; is

then the maximum score �rm 2 can deliver, his pseudotype is:

tW = k (��2) =
1� 4A
4�2

: (11)

Equation (10) then simpli�es to:


s =
(1� 4A)
2�2

(�� �L�) ;

where � = ln �H
�L
: The corresponding expected consumers�surplus is thus given as:

V s = v0 +
(1� 4A)
2�2

(�� �L�) : (12)

Turning to the bidders, the expected pro�t is generally given by:

�s =

Z �H

�L

Z �H

�L

(max k (��i )�min k (��i )) dF (�1) dF (�2) ; i = 1; 2; (13)
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which, with the uniformly distributed cost parameters, yields:

�s =
1� 4A
2�2

((�H + �L)�� 2�) : (14)

θ2

θH

θL θH θ1

Figure 1: Illustration of the type space [�L; �H ]� [�L; �H ] :The shaded area represent
the interval where �1 < �2:

b) The optimal scoring auction As pointed out by Che (1993), the auc-

tioneer can, in certain environments, improve upon this outcome by distorting from

his true preferences for quality. Speci�cally, the auctioneer distorts his preferences

for quality downwards to limit the information rent associated with higher quality

(La¤ont and Tirole (1993)). In this case, let � in (3) take any value, and let �� be

the optimal �. Pseudotypes are given by:

k (�i) = max
s

�
�
p
s� A

�i
� �is

�
k (��i ) =

�2 � 4A
4�i

; (15)

and since 0 < A < 1
4
, �rm 1 will have the lowest cost, and the winning score will

be decided by �rm 2�s maximal score. The expected score in an optimal scoring
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auction is then given by:


� =
(�2 � 4A)
2�2

(�� �L�) : (16)

Firm 1�s pro�t maximization problem is:

��1 = max
p;s

�
p� A

�1
� �1s

�
s.t. �

p
s� p = tW =

�2 � 4A
4�2

(17)

= max
s

�
�
p
s� �

2 � 4A
4�2

� A

�1
� �1s

�
:

The maximization of this yields the o¤ered quality:

s1 =
�2

4�21
; (18)

and, using the restriction in (17), yields the price:

p1 = �
p
s1 � tW =

�2

2�1
� �

2 � 4A
4�2

; (19)

and the expected pro�t is:

��1 =
(�2 � 4A)

4

�
1

�1
� 1

�2

�
: (20)

The corresponding expected consumer surplus is:

V � = v0 +
2

�2

Z �H

�L

Z �2

�L

�p
s� p

�
d�1d�2;

and rewriting this yields:

V � = v0 +
2

�2

Z �H

�L

Z �2

�L

�
� (2� �)� 4A

4�1
� (�

2 � 4A)
4

�
1

�1
� 1

�2

��
d�1d�2: (21)

The �rst term of the integrand in (21) relates to preferences towards quality, and

the term is maximized when � = 1: The last term re�ects rent extraction. The

auctioneer must balance his wish for optimal quality, on the one hand, against
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limiting the pro�t for the winning �rm on the other. Also, from the last term in the

integrand and (20), it becomes evident that the auctioneer can extract all rent from

the bidders if he sets � = 2
p
A: To see this, let ~� be the distortion that completely

levels the �eld between pseudotypes:

k (��1) = k (��2) (22)
~�2 � 4A
4�1

=
~�2 � 4A
4�2

:

For this to be the case, ~� = 2
p
A; and the playing �eld is completely levelled. Bid-

ders then compete all pro�t away, similar to the knife-edge result from proposition

1, where �rms use their comparative advantages to win the price at the cost of not

obtaining any expected pro�t. If the auctioneer sets �� = 2
p
A; the expected score

is equal to zero, and the consumer surplus is:

V �
�
�� = 2

p
A
�
= v0 +

2
�p
A� 2A

�
�2

Z �H

�L

Z �2

�L

1

�1
d�1d�2

= v0 +
2
�p
A� 2A

�
�2

(�H���) : (23)

If he sets �� > 2
p
A, he will maximize (21) with respect to �. Let �̂ denote this

value. Integrating (21) yields the expected consumer surplus:

V � = v0 +
1

2�2

�
2� (�H���)� �2 ((2�H + �L)�� 3�)� 4A (�� �L�)

�
: (24)

Maximizing (24) with respect to � yields:

dV �

d�
= 0

m (25)

� = �̂ � ��H ��
(2�H + �L)�� 3�

;
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and, hence, the expected consumer surplus can be written as:

V � (�� = �̂) = v0 +
1

2�2
(�̂ (�H���)� 4A (�� �L�)) ; (26)

and the expected score will be:


� =

�
�̂2 � 4A

�
(�� �L�)

2�2
; (27)

with bidders having an expected pro�t of:

�� =
2
�
�̂2 � 4A

�
4�2

Z �H

�L

Z �2

�L

�
1

�1
� 1

�2

�
d�1d�2 (28)

=

�
�̂2 � 4A

�
2�2

((�H + �L)�� 2�) :

Note that the auctioneer will never set �� < 2
p
A, as this would reverse the ranking

of the �rms, and make the �rm with the highest cost the highest pseudotype. So

�� � 2
p
A: However, since �̂ is independent of A, �̂ may be lower than 2

p
A, and,

if that is the case, the auctioneer will prefer to set �� = ~� = 2
p
A. If �̂ > 2

p
A,

the auctioneer will prefer to set �� = �̂ since this yields a higher expected consumer

surplus. The reason for �̂ being independent of A is that it relates to marginal cost,

while A relates to �xed costs. The conditions for which the auctioneer will choose

to level the �eld completely rather than let �rm 1 receive some rent is dependent

on:

2
p
A >

��H ��
(2�H + �L)�� 3�

� �̂: (29)

Holding �L in (29) �xed and taking limits indicate that when �H ! �L; �̂! 1, and

when �H !1; �̂! 1
2
. When A! 0; 2

p
A �! 0, and when A! 1

4
; 2
p
A �! 1 :

So when the type space is small, there are smaller comparative advantages and the

auctioneer will set �� = �̂, and in the limit his true preferences will be used in the

optimal scoring auction. When the type space increases and there are comparative

advantages (A increases) ; the auctioneer will be able to level the �eld and extract
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all rent. For this to be the case, A > 1
16
: So for low values of A, the auctioneer will

always use �̂: Based on this, the auctioneer will set:8

�� = max
�
2
p
A; �̂

�
= max

�
2
p
A;

��H ��
(2�H + �L)�� 3�

�
: (30)

The expected consumer surplus in the optimal scoring auction is:

V � =

8<: v0 +
1
2�2

�
(��H��)2

(2�H+�L)��3� � 4A (�� �L�)
�
if �� = ��H��

(2�H+�L)��3�

v0 +
2(
p
A�2A)
�2

(�H���) if �� = 2
p
A;

(31)

and the expected pro�t for the winner is:

�� =

8><>:
 �

��H��
(2�H+�L)��3�

�2
�4A

!
2�2

((�H + �L)�� 2�) if �� = ��H��
(2�H+�L)��3�

0 if �� = 2
p
A:

(32)

Proposition 2 The optimal scoring auction generates a higher expected consumer

surplus than the naïve scoring auction, and a lower expected pro�t for the bidders.

The optimal scoring auction extracts all pro�t from bidders if 2
p
A � �̂:

Proof. See Appendix B.

The auctioneer is thus able to raise the expected consumer surplus by using an

optimal scoring auction instead of a scoring auction re�ecting his true preferences.

However, this limits the information rent of the winning �rm, which would prefer

the naïve scoring auction. Because of the rent extraction, there will be an e¢ ciency

loss using the optimal auction, so the auctioneer needs strong commitment to be

able to use the optimal form, for example, through legislation as within the EU

directive for public procurement.

c) The optimal price auction The next question is then how the scoring

auctions compare with the optimal price auction. In the optimal price auction, the

auctioneer optimizes the quality threshold, s0; before conducting the auction, i.e.,

8Note that for 0 < A � 1
4 , the auctioneer will set � � 1 with strict equality only when A =

1
4 ,

as the optimal scoring auction and the naive scoring auction then coincide.
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he is maximizing the expected consumer surplus with respect to s0: This auction is

rather hard to solve analytically since what is the most cost e¢ cient �rm depends on

the interval [�L; �H ]� [�L; �H ], the quality threshold, s0, and the common �xed-cost
parameter, A. To see this, assume that �rm 1 has lower cost than �rm 2:

A

�1
+ �1s0 <

A

�2
+ �2s0:

For this to be the case, the following must hold:

�1 >
A

s0�2
:

It is clear that this will not always hold, and there might be intervals where �rm

2 has the lowest cost. The optimal price auction then needs to be solved for four

di¤erent intervals in the [�L; �H ] � [�L; �H ] space; for s0 > A
�2L
; A
�2L
> s0 >

A
�L�H

,
A

�L�H
> s0 >

A
�2H
, and A

�2H
> s0: For the intervals s0 > A

�2L
and A

�2H
> s0, I can �nd

the expected consumer surplus and expected pro�t explicitly, while for the intervals
A
�2L
> s0 >

A
�L�H

and A
�L�H

> s0 >
A
�2H
, I need to use numerical simulations to solve

the problem. The maximization problems are as follows:

V P =

8>>>>>><>>>>>>:

v0 +
p
s0 � 2

�2
v1 if A

�2L
< s0

v0 +
p
s0 � 2

�2
v2 if A

�L�H
< s0 < A

�2L

v0 +
p
s0 � 2

�2
v3 if A

�2H
< s0 < A

�L�H

v0 +
p
s0 � 2

�2
v4 if s0 < A

�2H

; (33)

and for expected pro�t:

�p =

8>>>>>><>>>>>>:

2
�2
�1 if A

�2L
< s0

2
�2
�2 if A

�L�H
< s0 < A

�2L
2
�2
�3 if A

�2H
< s0 < A

�L�H

2
�2
�4 if s0 < A

�2H

; (34)

the terms v1�v4 and �1��4 are de�ned in Appendix A, where a full description of the
solution and numerical simulation is given. The solution is also shown graphically in
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Appendix A (Figures 2 - 5) Based on the numerical simulations of the price auction,

I state the following:

Conjecture 1 In an auction where bidders have comparative advantages, the op-

timal scoring rule always generates higher surplus than the naïve scoring rule and

the optimal price auction for a given interval [�L; �H ] and A < 1
4
: The bidders can,

however, realize a higher expected pro�t in the optimal price auction when A ! 1
4

and the type interval grows larger.

Summing up, I have found that there exist situations where both the auctioneer

and bidders prefer the naïve scoring auction to the optimal price auction with quality

threshold. However, the auctioneer can improve on the outcome by changing the

weight attached to quality in the scoring auction. Then he can extract some, if not

all, the rent from the bidders. This is done by allowing the �rms to compete harder

along their comparative advantages; thus, he is levelling the �eld and toughens

competition.

3) A = 0:

To highlight some of the features of the scoring auction and show the relationship to

Che (1993), I now turn to the case where �rms only di¤er with respect to marginal

costs, so A = 0. In this situation, the �rms�cost function is given by:

ci = �is; i = 1; 2: (35)

a) The naïve scoring auction Assuming as above that �1 < �2, we focus on

the shaded area above the 45� line in Figure 1. In the scoring auctions, the winning

score will then be decided by �rm 2�s pseudotype. By setting A = 0 in equations

(12) and (14), I �nd the expected consumer surplus and bidders�expected pro�t in

the naïve scoring auction to be:

V s = v0 +
1

2�2
(�� �L�) ; (36)

�s =
1

2�2
((�H + �L)�� 2�) : (37)
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b) The optimal scoring auction By the same reasoning, I �nd the expected

consumer surplus and expected pro�t in the optimal scoring auction by settingA = 0

in equations (31) and (32):9

V � = v0 +
(��H ��)2

2�2 ((2�H + �L)�� 3�)
; (38)

�� =
(�� �H�)2 ((�H + �L)�� 2�)
2�2 (3�� (2�H + �L)�)2

: (39)

c) The optimal price auction In this case, I can also solve the optimal price

auction directly. The auctioneer maximizes the expected consumer surplus to �nd

the quality threshold, s0; before conducting the auction. Given the uniform distri-

bution and �rm 1 being the most cost e¤ective one, the auctioneer must maximize

the following expression:

V p = v0 +
p
s0 �

2

�2

Z �H

�L

Z �2

�L

(s0�2) d�1d�2 (40)

= v0 +
p
s0 �

(2�H + �L) s0
3

:

Optimizing with respect to s0 yields a quality threshold of:

s0 =
9

4 (2�H + �L)
2 ; (41)

which, in turn, gives us an expected consumer surplus of:

V p = v0 +
3

4 (2�H + �L)
: (42)

9Note that the auctioneer, in this case, always will set �� = b�; (see equation (25)) since this is
always higher than 2

p
A = 0:
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Because higher �i indicates higher costs, the auctioneer should lower the quality

threshold if �L or �H increases. Expected pro�t for the bidders will be given by:

�p =
2s0
�2

Z �H

�L

Z �2

�L

(�2 � �1) d�1d�2 (43)

=
3�

4 (2�H + �L)
2 :

I can then compare the three auction formats when A = 0, and state the following:

Proposition 3 When there are only marginal cost di¤erences, the expected con-

sumer surplus is higher in an optimal scoring auction than in a naïve scoring auc-

tion, which, in turn, dominates the optimal price auction with quality threshold.

The winning bidder�s expected pro�t is higher in a naïve scoring than in the optimal

scoring and price auction.

Proof. See Appendix B

This means that both auctioneer and bidders will prefer the scoring auction

to a price-only auction with quality threshold when there are only marginal cost

di¤erences. The reason is that there is an e¢ ciency gain to be split between the

auctioneer and the winning bidder by allowing quality to vary freely. So both the

auctioneer and bidders can bene�t from using a scoring auction instead of a price

auction. For the auctioneer, this will always be the case even if he is not able to

commit to an optimal scoring auction. The bidders will always prefer the naïve

scoring auction to the optimal price auction. However, if the auctioneer is able

to commit to an optimal scoring auction, there exist situations where the bidders

would prefer an optimal price auction. It should come as no surprise that the naïve

scoring auction results in higher total welfare than the two other mechanisms as

these optimal mechanisms involve rent extraction from the bidders at the expense

of an e¢ ciency loss.
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4 Conclusion

This paper shows that there exist situations where scoring auctions can bene�t

both the auctioneer and the bidders. When �rms have comparative advantages,

the scoring mechanism allows the bidders to exploit these advantages when forming

their bids and toughens competition. If the auctioneer uses his true preferences

as the scoring function, then both bidders and the auctioneer prefer the scoring

auction to the optimal price auction when �xed costs are not too high and the type

interval is small. There even exists a situation where the mechanism results in a

�rst-best outcome and leaves the bidders with no expected pro�t. If the auctioneer

can commit to an optimal scoring auction, then zero expected pro�t for the winners

can be sustained for a broader interval, exploiting �rms�comparative advantages.

This will typically be the case when the common �xed-cost parameter is high (close

to 1
4
) and the type space is large. For an auctioneer who maximizes consumer

surplus, the optimal scoring auction dominates the naïve scoring auction that, in

turn, dominates the optimal price auction. Bidders�pro�t will always be higher in

a naïve scoring auction compared with an optimal scoring auction, and, up to a

certain level of �xed cost, compared with the optimal price auction. Total welfare

will always be higher in the naïve scoring auction since the two optimal mechanisms

involve quality distortion and, thus, an e¢ ciency loss.

References

Asker, J., and E. Cantillon (2005): �Optimal Procurement when Both Price and

Quality Matter,�CEPR Discussion Paper, No. 5276.

(2008): �Properties of Scoring Auctions,�RAND Journal of Economics, 39,

69�85.

Branco, F. (1997): �The Design of Multidimensional Auctions,� RAND Journal of

Economics, 28, 63�81.

19



Cabizza, M. M., and G. De Fraja (1998): �Quality Considerations in Auctions for

Television Franchises,�Information Economics and Policy, 10, 9�22.

Che, Y. (1993): �Design Competition Through Multidimesional Auctions,� RAND

Journal of Economics, 24, 668�680.

Cripps, M., and N. Ireland (1994): �The Design of Auctions and Tenders with

Quality Thresholds: The Symmetric Case,�The Economic Journal, 104, 316�

326.

Klemperer, P. (2004): Auctions: Theory and Practice. Princeton University Press.

Laffont, J.-J., and J. Tirole (1987): �Auctioning Incentives Contracts,�Journal of

Political Economy, 95, 921�937.

(1993): A Theory of Incentives in Procurement and Regulation. MIT Press.

Milgrom, P. (2004): Putting Aution Theory to Work. Cambridge University Press.

Milgrom, P., and R. J. Weber (1982): �A Theory of Auctions and Competitive

Bidding,�Econometrica, 50, 1089�1122.

Myerson, R. (1981): �Optimal Auction Design,�Mathematics of Operations Research,

6, 58�73.

Riley, J., and W. Samuelson (1981): �Optimal Auctions,� American Economic

Review, 77, 375�387.

Vickrey, W. (1961): �Counterspeculation, Auctions and Competitive Sealed Tenders,�

Journal of Finance, 16, 8�37.

20



Appendices

A Optimal price auction

The full description of the maximization problems in (33) and (34) is for the con-

sumer surplus:

V P =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

v0 +
p
s0 � 2

�2

Z �H

�L

Z �2

�L

c2d�1d�2| {z }
v1

if A
�2L
< s0

v0 +
p
s0 � 2

�2

0BBBBBBB@

Rq A
s0

�L

R �2
�L
c1d�1d�2

+
R A

�Ls0q
A
s0

0@ R A
�2s0
�L

c1d�1

+
R �2

A
�2s0

c2d�1

1A d�2
+
R �H

A
�Ls0

R �2
�L
c2d�1d�2

1CCCCCCCA
| {z }

v2

if A
�L�H

< s0<
A
�2L

v0 +
p
s0 � 2

�2

0BBBB@
R p

Ap
s0

�L

R �2
�L
c1d�1d�2

+
R �Hp

Ap
s0

0@ R A
�2s0
�L

c1d�1

+
R �2

A
�2s0

c2d�1

1A d�2
1CCCCA

| {z }
v3

if A
�2H
< s0<

A
�L�H

v0 +
p
s0 � 2

�2

Z �H

�L

Z �2

�L

c1d�1d�2| {z }
v4

if s0<
A
�2H

;
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and for expected pro�t:

�p =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

2
�2

Z �H

�L

Z �2

�L

(c2 � c1) d�1d�2| {z }
�1

if A
�2L
< s0

2
�2

0BBBBBBB@

Rq A
s0

�L

R �2
�L
(c2 � c1) d�1d�2

+
R A

�Ls0q
A
s0

0@ R A
�2s0
�L

(c2 � c1) d�1
+
R �2

A
�2s0

(c1 � c2) d�1

1A d�2
+
R �H

A
�Ls0

R �2
�L
(c1 � c2) d�1d�2

1CCCCCCCA
| {z }

�2

if A
�L�H

< s0 <
A
�2L

2
�2

0BBBB@
R p

Ap
s0

�L

R �2
�L
(c2 � c1) d�1d�2

+
R �Hp

Ap
s0

0@ R A
�2s0
�L

(c2 � c1) d�1
+
R �2

A
�2s0

(c1 � c2) d�1

1A d�2
1CCCCA

| {z }
�3

if A
�2H
< s0 <

A
�L�H

2
�2

Z �H

�L

Z �2

�L

(c1 � c2) d�1d�2| {z }
�4

if s0 <
A
�2H

:

In case A > 0, the optimal price auction is di¢ cult to solve analytically since the

most cost-e¢ cient �rm will change in the interval [�L; �H ]�[�L; �H ] depending on the
relationship between the quality threshold s0 and the common �xed-cost parameter,

A. Therefore, I have solved the problem by numerical simulations. Performing the

integrations given in equations (33) and (34) ; the expected consumer surplus and

expected pro�t are given by:

V p =

8>>>>>><>>>>>>:

v0 +
3

4(2�H+�L)
� 2A(���L�)

�2
if A

�2L
< s0

v0 +
p
s0 � 2

�2
(a+ b+ c+ d) if A

�L�H
< s0 < A

�2L

v0 +
p
s0 � 2

�2
(e+ b+ f + d) if A

�2H
< s0 < A

�L�H

v0 +
3

4(�H+2�L)
� 2(A(�H���))

�2
if s0 < A

�2H

; (44)
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�p =

8>>>>>><>>>>>>:

3�
4(2�H+�L)

2 � 2A((�H+�L)��2�)
�2

if A
�2L

< s0
2
�2
(g + h+ i+ j) if A

�L�H
< s0 < A

�2L
2
�2
(k + l +m+ j) if A

�2H
< s0 < A

�L�H

2A((�H+�L)��2�)
�2

� 3�
4(�H+2�L)

2 if s0 < A
�2H

; (45)

where a�m is:

a = A

�
�H + �L � �L

�
ln �H � ln

A

s0�L

��
;

b =
1

6
s0
�
2�3H + 2�

3
L � 3�2H�L

�
;

c =
1

2

A2

s0�L
;

d = �8
3

A
3
2

p
s0
;

e = A

�
�H + �L + �H

�
ln

A

s0�H
� ln �L

��
;

f =
1

2

A2

s0�H
;

g = A (2 (�H + �L) + 2�L (lnA� ln s0)� �H�� �L (ln �H + 3 ln �L)) ;

h =
1

6
s0�

3
H +

1

6
s0�

3
L +

1

2
s0�H�

2
L �

1

2
s0�

2
H�L;

i =
A2

s0�L
;

j = �16
3

A
3
2

p
s0
;

k = A

�
2 (�H + �L) + 2�H ln

A

s0
� �L�� �H (3 ln �H + ln �L)

�
;

l =
1

6
s0�

3
H +

1

6
s0�

3
L �

1

2
s0�H�

2
L +

1

2
s0�

2
H�L;

m =
A2

s0�H
:

Note that for the intervals s0 > A
�2L
and A

�2H
> s0, I have found s0 explicitly, while

for the two intermediate intervals, s0 is found by numerical simulations by solving
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the following two equations:10

d

ds0
= 0,

8>>>>>>>>>>><>>>>>>>>>>>:

0BB@
6A2+12As0�

2
L�4s20�4L�4s20�3H�L

+6s20�
2
H�

2
L+3s

3
2
0 �

3
L�6s

3
2
0 �H�

2
L

+3s
3
2
0 �

2
H�L�16A

3
2
p
s0�L= 0

1CCA if A
�L�H

< s0 < A
�2L

0BB@
6A2+12As0�

2
H�4s20�4H�4s20�H�3L

+6s20�
2
H�

2
L+3s

3
2
0 �

3
H+3s

3
2
0 �H�

2
L

�6s
3
2
0 �

2
H�L�16A

3
2
p
s0�H= 0

1CCA if A
�2H

< s0 < A
�L�H

:

Solving these two equations numerically and combining with the explicit solu-

tions for the two other intervals yields the expected consumer surplus and expected

pro�t for the optimal price auctions. The results are illustrated in Figures 2-5.

In Figure 2 and 3, I give a short summary of the simulations where I �x �L = 1

and �rst let �H vary between [1; 20] and change A exogenously between
�
0; 1

4

�
. In

Figure 4 and 5, I �x �L = 1, let A vary between
�
0; 1

4

�
, and change �H exogenously

between [2; 20] : These simulations give rise to the conjecture 1.

In the top part of Figure 2, A = 0; so I am considering the case where the

cost function is given by ci = �is; in the bottom, A = 1
16
: In the top part of

Figure 3, A = 3
16
, and the bottom, A = 1

4
: When A is getting closer to 1

4
, the

price auction generates higher pro�t than the naïve scoring auction. Note also that

the auctioneer is able to extract all pro�t from the bidders in the optimal scoring

auction (the dotted black line) as A increases. So bidders might prefer the price-only

auction when their comparative advantages are of a character so that they will be

moving towards �pseudotype� equality in the scoring auctions, while they, in any

price auction, are very di¤erent. Next, in Figure 4, in the top part, �H = 2; and,

in the bottom, �H = 5: In Figure 5 �H = 10 and �H = 20 in the top and bottom

respectively.

10The numerical simulations were done by using Excel spreadsheets and are available from the
author upon request.
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B Proofs

Proof of proposition 1 In the scoring auction, if A = 1
4
; v� (�i; s) = v0 , which is

independent of �i. For the price auction, inserting �i = 1
2
p
s0
and A = 1

4
in the

surplus function yields v0:�

Proof of proposition 2 I �rst prove that the expected consumer surplus in the op-

timal scoring auction is equal to or larger than the expected consumer surplus

in the naïve scoring auction, and that the reverse holds for bidders�expected

pro�ts. For the expected consumer surplus in optimal scoring auctions to be

larger than in the naïve scoring auction, it must hold that:

V � � V s

m

v0 +
1

2�2
(�̂ (�H���)� 4A (�� �L�)) � v0 +

(1� 4A)
2�2

(�� �L�) :

Inserting for �̂ = (�H���)
((2�H+�L)��3�) and rearranging this inequality yields:

(ln �H � ln �L) �
2 (�H � �L)
(�H + �L)

: (46)

This expression holds with equality if �H = �L; and di¤erentiation of �H yields:

d

d�H
(ln �H � ln �L) � d

d�H

�
2 (�H � �L)
(�H + �L)

�
m

1

�H
� 4�L

(�H + �L)
2 :

Which, after rearranging the terms, gives:

(�H � �L)2 � 0:

This shows that if �H > �L; the left-hand side increases faster than the left-

hand side in equation (46) ; hence, I have proved that the expected consumer
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surplus in the optimal scoring auction is larger than in the naïve scoring auc-

tion. For the expected pro�t for bidders to be higher in the naïve scoring

auction compared with the optimal scoring auction, the following must hold:

�s � ��

m
(1� 4A)
4�2

((�H + �L)�� 2�) �
�
�̂2 � 4A

�
4�2

((�H + �L)�� 2�) :

Rearranging this yields:

(ln �H � ln �L) > 2
(�H � �L)
(�H + �L)

:

Which is the same condition as in (46) above, and, hence, the expected pro�t

for bidders in the naïve scoring auction is higher than that in the optimal

scoring auction.�

Proof of proposition 3 When there are only marginal cost di¤erences (A = 0),

for the expected consumer surplus to be higher in the optimal scoring auction

compared with the naïve scoring auction, the following must hold:

V � � V s

m

v0 +
� (�� �H�)

2�2
� v0 +

�� �L�
2�2

:

Inserting for � = (�H���)
((2�H+�L)��3�) ; and rearranging this inequality yields:

(ln �H � ln �L) �
2 (�H � �L)
(�H + �L)

:

This is the same condition as (46) in the proof above; hence, it follows that

V � � V s: For the expected consumer surplus in the naïve scoring auction to
be higher than the expected consumer surplus in the optimal price auction,
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the following must hold:

V s � V p

m

v0 +
�� �L�
2�2

� v0 +
3

4 (2�H + �L)
:

Rearranging the inequality yields:

�� �L� �
3�2

2 (2�H + �L)
:

This holds with equality if �H = �L: Di¤erentiating both sides with respect to

�H yields:

d

d�H
(�� �L�) � d

d�H

�
3�2

2 (2�H + �L)

�
m

(�H � �L)2 � 0:

So, if �H > �L, the following ranking is true: V � > V s > V p: Bidders�

expected pro�ts in the naïve scoring auction are higher than in the optimal

scoring auction if:

�s � ��

m
(�H + �L)�� 2�

4�2
� �2 ((�H + �L)�� 2�)

4�2
:

This holds with strict equality if �H = �L and � < 1; the optimal distortion

� < 1, if:

(ln �H � ln �L) �H � (�H � �L)
(2�H + �L) (ln �H � ln �L)� 3 (�H � �L)

< 1

(ln �H � ln �L) > 2
(�H � �L)
(�H + �L)

:
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Which, after rearranging, yields:

(ln �H � ln �L) > 2
(�H � �L)
(�H + �L)

:

This is the same condition as (46) ;and I can conclude that � < 1 =) �s � ��.
For the naïve scoring auction to yield a higher expected pro�t than the optimal

price auction, the following must hold:

�s � �p

m
(�H + �L)�� 2�

�2
� 3�

2 (2�H + �L)
2 :

Rearranging yields:

(ln �H � ln �L) �
(�H � �L)

�
10�H�L + 19�

2
H + 7�

2
L

�
2 (�H + �L) (2�H + �L)

2 :

If �H = �L, this holds with equality. Di¤erentiation of both sides with respect

to �H yields:

d

d�H
(ln �H � ln �L) � d

d�H

 
(�H � �L)

�
10�H�L + 19�

2
H + 7�

2
L

�
2 (�H + �L) (2�H + �L)

2

!
m

1

�H
>

�
47�3H + 16�

3
L + 15�H�

2
L + 30�

2
H�L

�
�L

(2�H + �L)
3 (�H + �L)

2

�3
�
8�2H + 5�H�L � �2L

�
> 0:

This is the same as:

(�H � �L)3
�
8�2H + 5�H�L � �2L

�
> 0:

This is true if �H > �L > 0�
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