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1 Introduction

Most public goods in modern economies are provided by the government and

funded from revenues obtained via general taxes. But coercitive taxation has its

limits, for reasons that have to do both with the inefficient (or second-best) way

in which it is collected, and for political economy reasons. Yet, some legitimate

needs are not covered by the ordinary revenues from the state, and both private

and public entities resort to other mechanisms to fund those public goods. As

it is well known (e.g. Bergstrom, Blume, and Varian (1986)), providing them

via voluntary contributions usually leads to inefficient outcomes, so it is not

surprising that human ingenuity has devised other means to achieve the goal of

providing public goods efficiently.

One such method is a lottery in which a prize is given to the winner(s),

but a fraction of the proceeds goes to the provision of public goods. For a

while, there was a theoretical controversy about the usefulness of lotteries to

improve efficiency (see e.g. Borg, Mason, and Shapiro (1991)) or equity (see

e.g. Clotfelter and Cook (1989)) in public goods provision. This was essentially

settled when Morgan (2000) showed that lotteries can be used effectively to

solve the problem. He proved that lotteries significantly increase the level of

contributions above the one given by voluntary contributions. He also showed

that for large enough prizes, the lottery could make the provision of the public

good reach first-best levels.

The aim of this note is to establish the limits to the usefulness of lotteries in

the provision of public goods. We show that as populations get large, and with

standard preferences (for which an individual only cares about his own material

well-being), the level of contributions converges to the (inefficient) one given by

voluntary contributions. A more positive result arises when one considers people

with altruistic preferences as in the warm glow of giving model of Andreoni

(1989, 1990). In large populations, when people have these preferences the

contributions converge to a level strictly higher than those given by voluntary

contributions (still under warm glow preferences), even though in general they

do not yield first-best levels.

Our results clarify why it is so important that lottery proceeds are earmarked

to worthy causes, where warm glow is likely to be larger. In this way we

shed light on a controversy about the meaningfulness of earmarking (see e.g.
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Buchanan (1963) and Borg and Mason (1988)) because of the fungible nature of

government revenues. They also explain why in general governments do not rely

on lotteries for a large part of the revenue creation for public good provision.

Section 2 describes the reference benchmark model from Morgan (2000) and

also introduces warm glow preferences into such model. Section 3 presents the

results for large populations. Section 4 briefly concludes.

2 The Reference Model

We first recapitulate the results of Morgan (2000). He shows that his results for

the provision of public goods by means of lotteries also apply in the more gen-

eral case analyzed by Bergstrom and Cornes (1983), who provide a specification

of preferences in which income effects are present and public goods allocation

decision is separate from distributional decisions. They argue that this is essen-

tially equivalent to assuming that individual preferences can be represented as

a quasi-concave utility function of the form1,

UFBi = ωiH(G) + hi(G),

where H(·) > 0.

For the first-best benchmark, the optimal public good provision, which we

denote by G∗ solves

max
G∈R+

n∑
i=1

(ωiH(G) + hi(G)) . (1)

The individual preferences when the public good is provided by voluntary

contributions are:

UV Ci = (ωi − xi)H(G) + hi(G). (2)

Let x̂ ≡
∑n
i=1 xi and since contributions pay for the public good G = x̂. The

provision of public good by voluntary contributions, denoted by GV is the equi-

librium of the game in which each agent maximizes UV Ci with respect to his

contribution xi noting that G = x̂.
1Bergstrom and Cornes (1983) also provide a recipe for constructing quasi-concave func-

tions of this form and a diagnostic test to determine whether a given function of this form is

quasi-concave.
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Finally, in the lottery model of Morgan (2000), the utility function of agent

i takes into account that xi/x̂ represents the probability that individual i wins

the prize. Since the sum of all wagers must pay for the prize R, the public good

provision, denoted by GL, is determined by the excess of wagers over the prize,

that is:

GL = x̂−R

In this case the utility of agent i is:

ULi =
(
ωi − xi +R

xi
x̂

)
H(x̂−R) + hi(x̂−R).

In this case the provision of public good using the lottery scheme, GL, is the

equilibrium of the game in which each agent maximizes ULi . For simplicity of

exposition we will assume that for all games Γ we will describe in what follows

Assumption 1 UΓ
i satisfies:

1. It is twice continuously differentiable and concave in the decision variable

xi

2. ∂UΓ
i

∂xi

∣∣∣
xi=0,xj=ωj

> 0, ∂UΓ
i

∂xi

∣∣∣
xi=ωi

< 0

Using 1. in assumption 1 we can characterize equilibria using first order

conditions, and using 2. we guarantee solutions are interior. We can now show

that:

Proposition 2 GV , G∗ and GL satisfy:

1. GV < G∗.

2. GV < GL.

3. GL → G∗ as R→∞.

Proof. See the Appendix.

2.1 Incorporating the warm glow of giving in the reference

model

We now incorporate the warm glow approach of Andreoni (1989, 1990) into the

reference model by assuming that individual preferences can be represented as

follows,
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Uwgi = (ωi − xi)H(G) + hi(G)g(xi), (3)

where the function g(·) represents the warm glow of giving. Setting

g(xi) = g1xi + g0

the particular case where g1 = 0 and g0 = 1 corresponds to (2), the model used

by Morgan (2000) to show the robustness of his results.

The provision of public good by voluntary contributions when preferences

are as in (3), denoted by Gwg, is the equilibrium of the game in which each

agent maximizes Uwgi . For this game we can show that:

Proposition 3 GV < Gwg

Proof. See the appendix.

In Temimi (2001) the author shows that the introduction of warm-glow af-

fects both the equilibrium level as well as the efficient level of public good

provision. The condition determining the efficient level of provision for public

good case requires as usual that the sum of the marginal rates of substitution

(between the public good and the net private good) is equal to one. In our case

this is true when,
n∑
i=1

∂Uwg
i

∂G
∂Uwg

i

∂(ωi−xi)
− ∂Uwg

i

∂xi

= 1

Applied to the model in (3), the efficient level of public good provision under

warm-glow, Gwg∗, is given by the solution to:

n∑
i=1

(ωi − xi)H ′(Gwg∗) + g(xi)h′i(G
wg∗)

H(Gwg∗)− hi(Gwg∗)g1
= 1 (4)

2.2 Lottery in the warm-glow model and the efficient level

of contributions

Now we incorporate the lottery mechanism of Morgan (2000) into the above

model of warm glow. Individual i now chooses xi to maximize

UwgLi =
(
ωi − xi +R

xi
x̂

)
H(x̂−R) + hi(x̂−R)g(xi) (5)

As before, wagers pay for the prize R, so the public good provision, denoted by

GwgL, is:

GwgL = x̂−R
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Proposition 4 1. Gwg < GwgL.

2. When hi(·) = h(·), GwgL → Gwg∗ as R→∞ ⇐⇒ g1 = 0.

Proof. See the appendix.

3 The case of large populations

One result in Morgan (2000) shows that wagers in the unique equilibrium pro-

vide levels of public good close to first-best as the lottery prize increases. How-

ever, we have shown that this does not hold when g1 6= 0 (i.e. with warm glow)

for the impure public good case, at least when agents are homogenous. And

even when g1 = 0, if we allow the prize to reach arbitrarily large sizes, the prize

R will eventually be greater than nω, the maximum aggregate bid for given n

and ω. However, R is only useful if chosen so that in an interior symmetric

equilibrium the level of provision nx−R is positive (where x is the contribution

for each person). That is, a lottery prize yielding social benefits in terms of the

public good must have R = nρ with x > ρ.

In what follows we analyze the effect of increasing the prize in proportion to

the group size with homogeneous agents.

3.1 The linear case with identical agents

In order to illustrate the main point, let us first see what happens when the

utility function of agent i is as in (3) and H(·) and h(·) are increasing and linear

functions.

Proposition 5 Suppose R = nρ and H(·) and h(·) are increasing and linear

functions with H−hg1 > 0. Then for any symmetric equilibrium where the indi-

vidual contribution x satisfiess ρ < x, we have that lim supn÷∞
∣∣Gwg∗ −GwgL∣∣ /n >

0.

Proof. See the appendix.

3.2 A more general model

Now, let us consider a general case in which H(·) and h(·) are general increasing,

differentiable and strictly concave functions. That is, H ′(·) > 0, h′(·) > 0 and
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H ′′(·) < 0, h′′(·) < 0. With H ′(·) − h′(·)g1 > 0. The function g(·) remains a

linear function. Now we have:

Proposition 6 ∂Gwg

∂n > 0.

Proof. See the appendix.

Remark 7 From the proof of Proposition 6 one can see that under quasi-linear

preferences with H (·) ≡ 1 and in the absence of warm glow (as in one of

the benchmark models of Morgan (2000)) the provision of the public group is

invariant with respect to n.

If we introduce lotteries in the proposed model, we obtain that:

UwgLi =
(
ωi − xi +R

xi
x̂

)
H(x̂−R) + h(x̂−R)g(xi)

Proposition 8 Suppose R = nρ and ρ < x for any symmetric equilibrium with

individual contribution x. Then if H(·) and h(·) are such that

limy→∞H (y) /h (y) = k, and 1 > kg1 in a symmetric equilibrium

lim
n→∞

x =
ρ

1− kg1

Proof. See the appendix.

As a result, if k = 0 or g1 = 0 then x approaches the corner solution x = ρ.

4 Conclusions

In this note we have shown that lotteries have limits as a tool to achieve efficient

public good provision in large populations. But we also show that lotteries are

clearly more effective than voluntary contributions when individuals experience

a warm glow of giving to public goods. One concrete empirical implication from

our analysis is that goods likely to produce a warm glow are more likely financed

in this way. This could be useful to analyze empirically the extent to which the

effects characterized in this paper are present in the field.
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5 Appendix

Proof of Proposition 2

Proof. This proposition is already shown in Morgan (2000), we merely add it

here for completeness.

G∗ solves
n∑
i=1

h′i(G
∗) = H(G∗)−H ′(G∗)

(
n∑
i=1

ωi −G∗
)
. (6)

and we also obtain GV by adding first-order conditions of optimization problems

for each agent i,
n∑
i=1

h′i(G
V ) = nH(GV )−H ′(GV )

(
n∑
i=1

ωi −GV
)
. (7)

It is then easy to verify that GV < G∗. Also GL, solves the sum of first-order

conditions.
n∑
i=1

h′i(G
L) = H(GL)

(
n− (n− 1)

R

R+GL

)
−H ′(GL)

(
n∑
i=1

ωi −GL
)

(8)

Comparing expressions (7) and (8), Morgan (2000) shows that GV < GL, and

that as R→∞, expression (8) becomes identical to (6).

Proof of Proposition 3

Proof. At an interior maximum, the first-order condition of (3) with respect

to x,

−H(G) + (ωi − xi)H ′(G) + h′i(G)(g1xi + g0) + hi(G)g1 = 0 (9)

The equilibrium level of public good provided by voluntary contributions with

the presence of warm glow giving, solves the sum of first-order conditions,

n∑
i=1

h′i(G
wg)(g1xi + g0) +

n∑
i=1

hi(Gwg)g1 = nH(Gwg)

− H ′(Gwg)(
n∑
i=1

ωi −Gwg)

Then, we have
n∑
i=1

h′i(G
wg)g0 = nH(Gwg)−H ′(Gwg)(

n∑
i=1

ωi −Gwg) (10)

−
n∑
i=1

h′i(G
wg)g1xi −

n∑
i=1

hi(Gwg)g1
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Without loss of generality, set g0 = 1 and compare expressions (7) and (10) to

verify that the result holds.

Proof of Proposition 4

Proof. Take the first-order conditions of (5) with respect to xi to find(
R
x̂− xi
x̂2

− 1
)
H(x̂−R) +

(
ωi − xi +R

xi
x̂

)
H ′(x̂−R) +

h′i(x̂−R)(g1xi + g0) + hi(x̂−R)g1 = 0

The public goods provision GwgL solves the sum of the first-order conditions,
n∑
i=1

h′i(G
wgL)(g1xi + g0) +

n∑
i=1

hi(GwgL)g1 = H(GwgL)
(
n− (n− 1)

R

R+GwgL

)

−H ′(GwgL)

(
n∑
i=1

ωi −GwgL
)

We have

n∑
i=1

h′i(G
wgL)g0 = H(GwgL)

(
n− (n− 1)

R

R+GwgL

)
−H ′(GwgL)

(
n∑
i=1

ωi −GwgL
)

(11)

−
n∑
i=1

h′i(G
wgL)g1xi −

n∑
i=1

hi(GwgL)g1

Notice that expressions (10) and (11) differ by the term associated to the

negative externality of the lottery multiplied by H(G). Similar to the model

without warm-glow, the public goods provision under the lottery is greater than

under voluntary contributions. That is, Gwg < GwgL.

When R→∞, we obtain the expression
n∑
i=1

h′i(G
wgL)g0 = H(GwgL)−H ′(GwgL)

(
n∑
i=1

ωi −GwgL
)

(12)

−
n∑
i=1

h′i(G
wgL)g1xi −

n∑
i=1

hi(GwgL)g1

From (4), we have that,

n∑
i=1

h′i(G
wg∗)

H(Gwg∗)− hi(Gwg∗)g1
g0 = 1−H ′(Gwg∗)

n∑
i=1

ωi − xi
H(Gwg∗)− hi(Gwg∗)g1

(13)

− g1

n∑
i=1

xih
′
i(G

wg∗)
H(Gwg∗)− hi(Gwg∗)g1
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When hi(·) = h(·) and g1 6= 0, expressions (12) and (13) respectively reduce to:

nh′(GwgL)g0 = H(GwgL)−H ′(GwgL)

(
n∑
i=1

ωi −GwgL
)

− g1h
′(GwgL)GwgL − ng1h(GwgL)

nh′(Gwg∗)g0 = H(Gwg∗)−H ′(Gwg∗)

(
n∑
i=1

ωi −Gwg∗
)

− g1h
′(Gwg∗)Gwg∗ − g1h(Gwg∗)

It is easy to verify that GwgL does not converge to Gwg∗ as R→∞. However,

as we have already seen when g1 = 0, the result is identical to Morgan (2000)

in which GL → G∗ as R→∞.

Proof of Proposition 5

Proof. Solving (13) to obtain the optimal level of provision, we have

Gwg∗ = n
Hω + hg0

2(H − hg1)

The first-order condition of (5) with respect to x assuming symmetry and R =

nρ is,(
nρ
n− 1
n2x

− 1
)
Hn(x−ρ) +

(
ω − x+ nρ

1
n

)
H +hg1x+hg0 +hn(x−ρ)g1 = 0

Hence,(
nρ
n− 1
n2x

− 1
)
Hn(x− ρ) + (ω − x+ ρ)H + hg1x+ hg0 + hn(x− ρ)g1 = 0

ρ
n− 1
x

H(x− ρ)−Hn(x− ρ) + (ω − x+ ρ)H + hg1x+ hg0 + hn(x− ρ)g1 = 0

dividing by n and letting n→∞

ρH(x− ρ)
1
x
−H(x− ρ) + h(x− ρ)g1 = 0

(x− ρ)
(
ρH

1
x
−H + hg1

)
= 0

This equation has two solutions, one is x1 = ρ. But since we require that

x− ρ > 0, it is not a valid one. The other solution solves

ρH
1
x
−H + hg1 = 0
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Then

x2 =
H

H − hg1
ρ

where x2 > 0 since H − hg1 > 0. This is an interior solution since x2 > ρ. In

this case, the level of public good is:

GwgL = nx2 −R = nx2 − nρ = n
hg1

H − hg1
ρ.

As a result, we can verify that

Gwg∗ −GwgL(x2)
n

=
Hω + hg0

2(H − hg1)
− hg1

H − hg1
ρ

Now

lim sup
n→∞

Gwg∗ −GwgL(x2)
n

=
Hω + hg0

2(H − hg1)
− hg1

H − hg1
ρ

Hence in the case where

Hω + hg0

2(H − hg1)
− hg1

H − hg1
ρ 6= 0

the result follows. If
Hω + hg0

2(H − hg1)
− hg1

H − hg1
ρ = 0

then the inequality

x2 − ω =
H

H − hg1

Hω + hg0

2hg1
− ω

= ω
(H − hg1)2 + (hg1)2

(H − hg1) 2hg1
+

Hhg1

(H − hg1) 2hg1
> 0

which contradicts x < ω and the result follows.

Proof of Proposition 6

Proof. As we have shown in section 2.1, the first order condition of (3) is

−H(G) + (ωi − xi)H ′(G) + h′i(G)(g1xi + g0) + hi(G)g1 = 0

For the symmetric case,

−H(G) + (ω − x)H ′(G) + h′(G)(g1x+ g0) + h(G)g1 = 0

Comparative statics

−H ′(G)
∂G

∂n
+ (ω − x)H ′′(G)

∂G

∂n
− ∂x

∂n
H ′(G) +

h′′(G)
∂G

∂n
(g1x+ g0) + h′(G)g1

∂x

∂n
+ h′(G)

∂G

∂n
g1 = 0
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Then

∂G

∂n
[(ω−x)H ′′(G)+h′′(G)(g1x+g0)−H ′(G)+h′(G)g1] =

∂x

∂n
[H ′(G)−h′(G)g1]

We have that

(ω − x)H ′′(G) + h′′(G)(g1x+ g0)−H ′(G) + h′(G)g1 < 0

and

H ′(G)− h′(G)g1 > 0

then

sign
∂G

∂n
6= sign

∂x

∂n

Since ∂Gwg

∂n = ∂(nx)
∂n = x+ n ∂x∂n . Then, ∂x

∂n < 0 and ∂Gwg

∂n > 0.

Proof of Proposition 8

Proof. The first-order condition,(
R
x̂− xi
x̂2

− 1
)
H(x̂−R) +

(
ωi − xi +R

xi
x̂

)
H ′(x̂−R) +

h′i(x̂−R)(g1xi + g0) + hi(x̂−R)g1 = 0

where x̂ =
∑
xi and by symmetry and assuming that R = nρ, we have(

nρ
n− 1
n2x

− 1
)
H(nx− nρ) +

(
ω − x+ nρ

1
n

)
H ′(nx− nρ) +

h′(nx− nρ)(g1x+ g0) + h(nx− nρ)g1 = 0

This is equivalent to(
ρ
n− 1
nx

− 1
)
H(nx− nρ) + (ω − x+ ρ)H ′(nx− nρ) + (14)

h′(nx− nρ)(g1x+ g0) + h(nx− nρ)g1 = 0

Returning to (14) and letting H ′ and h′ tend to 0 as n→∞, we obtain

ρH(nx− nρ)
1
x
−H(nx− nρ) + h(nx− nρ)g1 = 0

That is,

ρH(nx− nρ)− x[H(nx− nρ)− h(nx− nρ)g1] = 0

x =
ρH(nx− nρ)

H(nx− nρ)− h(nx− nρ)g1
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Since H ′ − h′g1 > 0 then H − hg1 > 0. Rewriting,

x =
ρ

1− h(nx−nρ)
H(nx−nρ)g1

If we assume that h(nx−nρ)
H(nx−nρ) → k as n→∞ with k > 0, then the unique interior

equilibrium can be written as,

x =
ρ

1− kg1
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