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Abstract

We propose a fast data-driven procedure for decomposing seasonal time series using

the Berlin Method, the software used by the German Federal Statistical Office in

this context. Formula of the asymptotic optimal bandwidth hA is obtained. Meth-

ods for estimating the unknowns in hA are proposed. The algorithm is developed

by adapting the well known iterative plug-in idea to time series decomposition.

Asymptotic behaviour of the proposal is investigated. Some computational aspects

are discussed in detail. Data example show that the proposal works very well in the

practice and that data-driven bandwidth selection is a very useful tool to improve

the Berlin Method. Deep insights into the iterative plug-in rule are also provided.
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1 Introduction

Decomposing seasonal time series into unobserved components is an important issue of

statistics. This question arises, if e.g. we want to analyze monthly data or to build models

using seasonally adjusted data. In this paper the equidistant additive time series model

Yt = g(xt) + S(xt) + εt, t = 1, 2, ..., n, (1)

will be used to perform this, where xt = (t− 0.5)/n, g is a smooth trend-cyclical compo-

nent and S is a slowly changing seasonal component with period s. To simplify detailed

discussion on bandwidth selection we assume in this paper that εt are iid random vari-

ables with E(εt) = 0 and var(εt) = σ2. The results can be easily extended to models
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with dependent errors. Model (1) can be treated as a nonparametric regression with an

additional (deterministic) seasonal component. A traditional approach for estimating g

and S is local regression with polynomials and trigonometric functions as local regressors

(Heiler, 1970). This became the basis of the so-called Berlin Method (BV: Berliner Ver-

fahren), which in its fourth version (BV4) is being used by the German Federal Statistical

Office since 1983 (Speth, 2004, 2006). A great advantage of BV4 is its mathematical

clarity. Hence BV4 is user-friendly (Cieplik, 2006). Moreover, it allows us to apply the

recent developments in modern nonparametric regression to improve this approach.

A crucial problem by the use of BV4 is the selection of the bandwidth. This method

performs better than related approaches only if the bandwidth is suitably selected. Heiler

and Feng (2000) proposed to select the bandwidth under model (1) using a double-

smoothing procedure. However, the running time of this procedure is very long, which

hinders its application in the practice. In this paper a very fast and practically relevant

algorithm for selecting bandwidth under model (1) is developed based on the iterative

plug-in idea (Gasser et al., 1991). To our knowledge this is the first detailed study on

plug-in bandwidth selection for time series decomposition. Moreover, results of this paper

also provide deep insights into the iterative plug-in idea. Asymptotic behaviour of the

proposal is investigated. Some computational aspects are discussed in detail. Application

to different data example shows that the proposal works very well in the practice and

that data-driven bandwidth selection is a very useful tool to improve the Berlin Method.

The paper is organized as follows. The estimators and related properties are described

in Section 2. Estimation of the unknowns for bandwidth selection is discussed in Section

3. The plug-in algorithm is proposed and discussed in detail in Section 4. Data examples

in Section 5 illustrate the practical usefulness of the proposal. Final remarks in Section 6

close the paper. Proofs of the results are put in the appendix.

2 The local regression approach

2.1 The estimators

Assume that g is at least (p+1) times continuously differentiable, so that it can be ex-

panded in a Taylor series around a point xt. Similarly, S can be locally modelled by a
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Fourier series. Denote by m = g + S the mean function. A general version of BV4 is

defined as follows. For more details see Feng (1999), and Heiler and Feng (2000). Let

λ1 = 2π/s be the seasonal frequency and λj = jλ1, for j = 2, ..., q, where q = [s/2] with

[·] denoting the integer part. Let K(u) be a second order kernel function with compact

support [−1, 1]. Let h denote the (half) bandwidth. The locally weighted regression

estimators of g, S and m at xt are obtained by solving the least square problem

Q =
n∑
i=1

{Yt −
p∑
j=0

β1j(xi − xt)j

−
q∑
j=1

(β2j cosλj(i− t) + [β3j sinλj(i− t)])}2K
(
xi − xt
h

)
⇒ min . (2)

The solutions of (2) are ĝ(xt) = β̂10, Ŝ(xt) =
q∑
j=1

β̂2j and m̂(xt) = ĝ(xt) + Ŝ(xt), where the

coefficients and their estimators are defined locally and hence depend on xt.

Let

X1 =


1 x1 − xt · · · (x1 − xt)p
...

...
. . .

...

1 xn − xt · · · (xn − xt)p


and

X2 =


cosλ1(1− t) sinλ1(1− t) · · · cosλq(1− t) [sinλq(1− t)]

...
...

. . .
... [

...]

cosλ1(n− t) sinλ1(n− t) · · · cosλq(n− t) [sinλq(n− t)]

 .

Then X = (X1
...X2) is the n× (p+ s)-design matrix. Entries in (2) and X2 marked by [ ]

only apply to odd s, for even s they have to be omitted due to λq = π. Let y = (y1, ... , yn)′

be the observation vector and K denote a diagonal matrix with

ki = K
(
xi − xt
h

)
.

Furthermore, denote the j-th (p + 1) × 1 unit vector by ej and let Φs be an (s − 1) × 1

vector having 1 in its odd entries and 0 elsewhere. Then we have

m̂(xt) = (e′1,Φ
′
s)(X

′KX)−1X′Ky =: w′y, (3)

ĝ(xt) = (e′1,0
′)(X′KX)−1X′Ky =: w′1y, (4)

and

Ŝ(xt) = (0′,Φ′s)(X
′KX)−1X′Ky =: w′2y, (5)
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where 0 is a vector of zeros of appropriate dimension.

The vectors w = (w1, ..., wn)′, w1 = (w11, ..., w1n)′ and w2 = (w21, ..., w2n)′ are called

weighting systems of m̂, ĝ and Ŝ respectively. We have w = w1 + w2,
∑
wi =

∑
w1i = 1

and
∑
w2i = 0. The local regression approach makes m̂, ĝ and Ŝ exactly unbiased, if g is

a polynomial of order no larger than p and S is exactly periodic with period s.

2.2 Asymptotic properties

From here on it is assumed that p is odd so that ĝ has automatic boundary correction.

For the development of a plug-in bandwidth selector we need to discuss the asymptotic

behaviour of ĝ, Ŝ and m̂. Put k = p+ 1 and assume that

A1. h→ 0 and nh→∞ as n→∞.

A2. g is at least k times continuously differentiable.

A3. S is exactly periodic with period s.

A1 and A2 are the same as in nonparametric regression without seasonality. A3 is only

made to avoid the estimation of the bias in Ŝ. But model (1) works well in the case of

slowly changing seasonality and a fixed selected bandwidth. Under A1 it can be showed

that ĝ is asymptotically equivalent to some kernel estimator. Hence the same asymptotic

results in local polynomial fitting hold for ĝ under model (1). The equivalent kernel for

estimating g will be denoted by Kp(u), which is of order k.

To deal with Ŝ, we will introduce a kernel estimator of S. Let

Qs(i) =

 (s− 1), if (i− t)/s is an integer,

−1, otherwise ,
(6)

and

w̌2i = (nh)−1Qs(i)K
(
xi − xt
h

)
. (7)

A kernel estimator of S is defined by

Š(xt) =
n∑
i=1

w̌2iyi =: w̌′2y. (8)

Note that {w̌2i} are asymptotically periodic with the same period s. Suppose that corre-

sponding boundary correction is done for Š, then it can be shown that, under A1, Ŝ and

Š are asymptotically equivalent, too (see Feng, 1999).
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As an error criterion for bandwidth selection the mean averaged squared error (MASE)

is used. Define R(K) =
∫ 1
−1K

2(u)du. Let B denote the bias of an estimator. We have

Lemma 1 Assume that A1 to A3 hold, then:

1. The asymptotic bias of m̂ is

B[m̂(xt)]
.
= B[ĝ(xt)]

.
=

1

(k!)

{[∫
ukKp(u)du

]
g(k)(xt)

}
hk. (9)

2. The asymptotic variance of m̂ is

var(m̂(xt)) = (nh)−1σ2{R(Kp) + (s− 1)R(K)}{1 +O[(nh)−1]}. (10)

3. The MASE of m̂ is

MASE(m̂) :=
1

n

n∑
t=1

[E(m̂(xt))−m(xt)]
2

.
=

σ2

nh
{R(Kp) + (s− 1)R(K)} (11)

+
1

(k!)2

{∫
{g(k)(x)}2dx

[∫
ukK(u)du

]2}
h2k.

A sketched proof of Lemma 1 is given in the appendix, where it is shown in particular that:

1. ĝ and Ŝ are asymptotically uncorrelated and 2. the bias in Ŝ is negligible compared to

that in ĝ. The asymptotically optimal bandwidth, which minimizes the dominant part of

the MASE is given by

hA =

(
(k!)2

2k

σ2 {R(Kp) + (s− 1)R(K)}∫
{g(k)(x)}2dx{

∫
ukKp(u)du}2

)1/(2k+1)

n−1/(2k+1), (12)

where it is assumed that I =
∫
{g(k)(x)}2dx > 0. The change in hA due to S is just an

additional term (s−1)∗R(K) in the kernel depending constant of the variance of m̂. For

s = 1 the above formulae reduce to known results in nonparametric regression (see e.g.

Ruppert and Wand, 1994, and Fan and Gijbels, 1996).

3 Estimating the unknown parameters

3.1 Estimation of the variance

In order to develop a plug-in bandwidth selector based on (12), the unknowns σ2 and

I have to be estimated. It is well known that the variance in nonparametric regression
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can be estimated by difference-based methods (see e.g. Rice, 1984, Gasser et al., 1986

and Hall et al., 1990). This idea can be extended to seasonal-difference-based variance

estimators under model (1) (see e.g Heiler and Feng, 2000). Here a sequence Dms =

{dj| j = 0, 1, ... ,m} is called a seasonal difference sequence, if

m∑
j=0

dj = 0,
m∑
j=0

d2j = 1, m = 1, 2, ... (13)

and

Si =
m∑
j=0

djδij = 0, i = 0, 1, ... , s− 1, (14)

where

δij =

 1, if (j − i)/s is an integer,

0, otherwise.

A seasonal-difference-based variance estimator is then defined by

σ̂2
D = (n−m)−1

n−m∑
i=1

(
m∑
j=0

djYi+j)
2. (15)

Following Hall et al. (1990) it can be shown that under A2 and A3 σ̂2
D is root n consistent.

In this paper the following seasonal difference sequence

Dm,s =
1

12
{−1, 2,−1, 0, ..., 0,︸ ︷︷ ︸

s−3

1,−2, 1}

defined for s ≥ 3 will be used to estimate σ2, where m = s+ 2.

3.2 Estimation of I

Similar to local polynomial fitting the k-th derivative of g can be estimated with a local

polynomial of order pI and a bandwidth hI with pI > k and pI − k odd. And we set

l = pI + 1. A simple choice is pI = k + 1 with l = k + 2. Let now (2) be defined with

p being replaced by pI. Let K, y and ej are the same as defined in Section 2. Let X be

defined similarly as before. Then ĝ(k) = k!β̂k estimates g(k), which is given by

ĝ(k)(t) = k!(e′k+1,0
′)(X′KX)−1X′Ky =: (wk)′y, (16)

where 0 is the same as in (4) and wk = (wk1 , ..., w
k
n)′ is the weighting system of ĝ(k). Then

I may be estimated by

Î[g(k)(x;hI)] = n−1
n∑
i=1

{ĝ(k)(xi;hI)}2. (17)
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In the following some results on Î, which are important for the development of a plug-

in bandwidth selector, will be given without proof, since we are only interested in the

magnitude orders and these orders are the same for models with or without seasonality.

Assume now that

A1′. h→ 0 and nh2k+1 →∞ as n→∞.

A2′. g is at least l times continuously differentiable.

Under Assumptions A1′, A2′ and A3 we have

B(Î)
.
= O(h

(l−k)
I ) +O[(nhI)

−1h
−(2k)
I ] (18)

and

var(Î)
.
= O(n−1) +O(n−2h−4k−1I ). (19)

A1′ implies that hI is of a larger order than hA, i.e. (hI)
−1 = o[(hA)−1], which ensures that

ĝ(k) and hence Î are at least consistent. See Ruppert et al. (1995) for related results in

nonparametric regression without seasonality. The following remarks show how hI should

be chosen.

Remark 1. The largest order hI should take is O(n−1/(4k+2)) = O[(hA)1/2]. Under this

choice the second term on the right hand side of (18) and the standard deviation of Î

achieve the fastest root n convergence rate at the same time. An hI of a larger order will

increase the bias without improving the variance (in terms of the magnitude order).

Remark 2. The optimal bandwidth for estimating g(k) itself is of order O(n−1/(2l+1)).

This order is smaller than that in Remark 1, but larger than that in Remark 3. The

choice hI = O(n−1/(2l+1)) is hence also reasonable.

Remark 3. Observe that the MSE (mean squared error) of Î is dominated by the squared

bias part. By balancing the orders of the two terms on the right hand side of (18) we

obtain hI = O(n−1/(k+l+1)), which may be considered to be the (asymptotically) optimal

choice of hI. This order is smaller than both orders mentioned above.
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4 The main proposal

4.1 The basic algorithm

From here on only p = 1 and 3 with k = 2 and 4 will be considered. Following the iterative

plug-in idea of Gasser et al. (1991), Îj, the estimate of I in the j-th iteration, is calculated

with a bandwidth hI,j, which is obtained from hj−1, the bandwidth for estimating m in

the (j-1)-th iteration, by means of an inflation method. Here an inflation method is a

function hI,j = f(hj−1) such that (hI,j)
−1 = o[(hj−1)

−1]. That is hI,j will be of a larger

order than hA, if hj−1 is at least of order O(hA). Now A1′ is satisfied so that Î and ĥ will

be both consistent in the j-th iteration. Two inflation methods will be considered.

The original idea, called a multiplied inflation method (MIM) (Gasser et al., 1991) is

to set hI,j = f(hj−1) = chj−1n
α with some α > 0, called the inflation factor. This idea

is discussed in detail by Herrmann and Gasser (1994). There are some unknowns in the

function f such as c, α and a starting bandwidth h0, which have to be fixed beforehand.

The rate of convergence of ĥ does not depend on c and h0. In this paper we will simply

choose c = 1. The choice of h0 will be discussed in Section 4.3. Let l = k + 2. Following

Remarks 1 through 3, we have three reasonable choices of α for the MIM respectively:

1. α1 = 1/(4k + 2) so that the variance term of Î is minimized,

2. α2 = 4/[(2k + 1)(2k + 5)] so that ĝ(k) is optimized and

3. α3 = 2/[(2k + 1)(2k + 3)] so that the MSE of Î is minimized,

when convergence is reached, where α1 > α2 > α3 and α3 is the asymptotically optimal

choice of α.

It is well known that the required number of iterations (J0, say) by the MIM is very

large, especially for k > 2. For example, if k = 4, it is J0 = 5k + 1 = 21 for α1

and J0 = (k + 1)(2k + 1) = 45 for α3 (see Herrmann and Gasser, 1994). Beran and Feng

(2002a) introduced another inflation method hI,j = f(hj−1) = chβj−1, called an exponential

inflation method (EIM). This idea is studied by Beran and Feng (2002b) in detail. They

show that, in order to inflate hA to a given order, the required number of iterations by the

EIM is much smaller than by the MIM. In the following the EIM with c = 1 will hence
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be used. Following Beran and Feng (2002b), the choices of β corresponding to α1, α2 and

α3 above are:

1. β1 = 1/2,

2. β2 = (2k + 1)/(2k + 5) and

3. β3 = (2k + 1)/(2k + 3),

where β1 < β2 < β3 and β3 is the asymptotically optimal choice of β.

In the following we will propose a basic iterative plug-in algorithm for selecting band-

width in time series decomposition, which is defined for k = 2 and k = 4 separately.

i) Start with a possible bandwidth h0.

ii) For j = 1, 2, ... set hI,j = hβj−1 with β = β3 = 5/7 for k = 2 and β = β2 = 9/13 for

k = 4. Calculate

hj =

(
(k!)2

2k

σ̂2 {R(Kp) + (s− 1)R(K)}∫
{ĝ(k)(x;hI,j)}2dx{

∫
ukKp(u)du}2

)1/(2k+1)

n−1/(2k+1). (20)

iii) Increase j by 1 and repeat Step ii) until convergence is reached at some j0 and set

ĥ = hj0 .

For related plug-in bandwidth selectors in nonparametric regression without seasonality

see Gasser et al. (1991), Herrmann et al. (1992), Herrmann and Gasser (1994) and

Rupper et al. (1995).

Theoretically, β3 is the asymptotically optimal choice of β. Our experience show that,

for k = 2, this choice works well in the practice. Hence we choose β3 = 5/7 for k = 2.

However, β3 = 9/11 for k = 4 is too close to one and for small samples the bandwidth

could not be inflated correctly. For k = 4 it is hence proposed to use the slightly stronger

inflation factor β2. Now, the variance of ĥ with k = 2 and k = 4 is almost of the same

order and ĥ is hence in both cases stable (see Theorem 1 in the next subsection). The

most stable inflation factor β1 = 1/2 by the EIM is too strong and does not work well for

small samples.
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4.2 Asymptotic behaviour

The iterative plug-in algorithm is motivated by fixed point search. Here the procedure

is started with a bandwidth h0 and stopped, if a convergent output (a fixed point) is

achieved. The inflation process behind an iterative plug-in algorithm is described by the

following lemma according to the relationship between h0 and hA.

Lemma 2 Under assumptions A2′ and A3, an iterative plug-in algorithm processes as

follows:

Case 1. Start with an h0 = op(hA), then

Step 1. hj = Op(hI,j), if hI,j = op(hA).

Step 2. hj = Op(hA), if hI,j = Op(hA).

Step 3. hj = hA[1 + op(1)], if hA = op(hI,j).

Case 2. Start with an h0 such that (h0)
−1 = op[(hA)−1], then

Step 1′. hj = Op(hA), if hI,j = Op(1).

Step 2′. The same as Step 3 in case 1.

The proof of Lemma 2 is given in the appendix. Related results may be found in Herrmann

and Gasser (1994, p. 8) and Beran and Feng (2002b). Note in particular that A1′ does

not apply to Lemma 2.

Case 1 in Lemma 2 shows that, by starting with a small bandwidth, hj−1 will be

inflated in the j-th iteration, if hj−1 = op(hA). This will be repeatedly carried out until

hj′ = Op(hA) is reached in the j′-th iteration. And hj′+1 in the next iteration will be a

consistent bandwidth selector. Some further iterations are required to improve the finite

sample property of ĥ.

Case 2 in Lemma 2 shows how such an algorithm works, if a starting bandwidth h0,

which is at least of order Op(hA), is used. On the one hand, if h0 = op(1), then h1 is

already consistent, since A1′ is satisfied. In this case Step 1′ will not appear. On the

other hand, if h0 = Op(1), then h1 = Op(hA), which is already of the correct order but not

yet consistent. Now, h2 will be consistent. Again, some further iterations are required to

reduce the influence of h0.
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The following theorem hold for the algorithm proposed in Section 4.1.

Theorem 1 Under the assumptions of Lemma 2 we have

i) For k = 2 with β3 = 5/7

ĥ = hA
{

1 +O(n−2/7) +Op(n
−5/14)

}
. (21)

ii) For k = 4 with β2 = 9/13

ĥ = hA
{

1 +O(n−2/13) +Op(n
−9/26)

}
. (22)

A sketched proof of Theorem 1 is given in the appendix.

Let hM denote the optimal bandwidth, which minimizes the MASE. Theorem 1 also

holds, if hA on the right hand sides of (21) and (22) is replaced by hM. This is due to

the fact that |hM− hA|/hM = O(h2M) (see Beran et al., 2009), which is of orders O(n−2/5)

for k = 2 and O(n−2/9) for k = 4 and is hence negligible. Furthermore, the advantage

of a plug-in bandwidth selector compared with a double-smoothing bandwidth selector

is that it suns very fast. But the rate of convergence of a plug-in bandwidth selector

is usually slower than a corresponding double-smoothing bandwidth selector (Feng and

Heiler, 2009). This disadvantage is not so serious, because a slight change in the rate

of convergence of a bandwidth selector will not affect the goodness-of-fit of the resulting

nonparametric regression estimators.

4.3 Computational aspects

This subsection deals with such computational aspects as the decision of j0, the choice of

h0 and so on. A more practical procedure will be proposed at the end of this subsection.

The estimators in Section 2.1 are defined with a fixed bandwidth h. In this case

the number of observations used at xt decreases when xt moves from the interior to the

boundary. To solve this problem the k-NN idea will be used. For a given h we define a

left bandwidth hl and a right one hr so that hl = hr = h in the interior, hl = xt at a left

boundary point and hr = 1 − xt at a right boundary point. hr (rep. hl) at a boundary

point is determined by hl + hr = 2h. The estimates at a boundary point are calculated

similarly but with h in (2) being replaced by max(hl, hr).
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In our software only bandwidths h ∈ [hmin, hmax] with hmin = s/n and hmax = 0.5−1/n

will be considered, which includes practically all reasonable possibilities of h. Further-

more, two bandwidths h and h′ will be considered to be the same, if |h − h′| < 1/n,

because a difference of such an order is for any bandwidth selector negligible. In the

software the bandwidth actually used is an integer bh = [nh + 0.5], which is the (half)

bandwidth w.r.t. the observation time t. The total number of observations used at each

time point is Nh = 2bh+1. Let bhI,j = [nhI,j +0.5]. Then we obtain a natural criterion for

stopping the computing procedure, i.e. the procedure will be stopped, if bhI,j0 = bhI,j0−1

in the j0-th iteration. This implies Î0j = Îj0−1 and ĥ = hj0 = hj0−1. Further iterations are

not necessary. Note that, even the j0-th iteration is just a repetition of the (j0-1)-th.

In the following the choice of h0 will be considered. In most cases h0 does not play

any role. However, in some cases, when the finite sample MASE has more than one local

minima or when the MASE changes very slowly around its minimum, then ĥ may depend

on h0 in some way. To explain this we will introduce some concepts. A bandwidth hf

is called a fixed point (of the procedure proposed in Section 4.1), if ĥ = hf , when the

procedure is started with h0 = hf itself. A fixed point hf is called left stable, if for all

h0 ≤ hf in a neighbourhood of hf we have ĥ = hf . A fixed point hf is called right stable,

if for all h0 ≥ hf in a neighbourhood of hf we have ĥ = hf . A fixed point hf is called

stable, if it is both left and right stable. A fixed point is called unstable, if it is only

achievable by starting with itself. An interval of bandwidths [hlf , h
r
f ] is called an interval

of fixed points, if hlf is a left stable fixed point, hrf is a right stable fixed point and all

points between them are unstable fixed points. Denote by ĥl the bandwidth selected with

h10 = hmin and by ĥr the bandwidth selected with h20 = hmax. Then ĥl is a left stable fixed

point, if ĥl > hmin and ĥr is a right stable fixed point, if ĥr < hmax.

When the finite sample MASE has only one minimum, then there exits a unique stable

fixed point or a unique interval of fixed points. In the first case we will obtain the same

selected bandwidth ĥ by starting with any h0. In the second case we have ĥ = hl for all

h0 ≤ hl, ĥ = hr for all h0 ≥ hr and ĥ = h0 for hl < h0 < hr. Now all bandwidths in

[hl, hr] are reasonable to be used as the optimal bandwidth, since now the change of the

MASE over [hlf , h
r
f ] is negligible. In this case we also say that the result is unique and will

set ĥ := (ĥl + ĥr)/2. In the following the words a stable fixed point also means sometimes

an interval of fixed points. In the case when the finite MASE has more than one local
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minima, then we may obtain different ĥ by starting with different h0. Now, there may

also be some unstable fixed points corresponding to a local maximum between two local

minima. If this is the case, we should find out all possible stable fixed points and then

select one of them as the bandwidth to use by analyzing the smoothing results further.

An S-Plus function called DeSeaTS (Decomposing Seasonal Time Series) is developed

based on the following quasi-data-driven procedure.

1. Carry out the algorithm in Section 5.1 twice with h10 = hmin and h20 = hmax, respec-

tively.

2. Calculate the decomposition results automatically, if ĥ is unique.

3. Show detailed information about all stable fixed points, when ĥ is not unique.

If 3 occurs, further subjective analysis is required.

For choosing p, we propose to carry out the above procedure with p = 1 and p = 3

respectively. If the smoothing results with p = 1 and p = 3 are both satisfactory, we can

choose either p = 1 or p = 3. However, it is more preferable to use p = 3, since now the

selected bandwidth is in general slightly larger, which does not increase the bias of ĝ but

will improve Ŝ. Sometime one p is more reasonable than the other, now the reasonable

one should be chosen (see the examples given in the next section). An objective criterion

for choosing p is not given here, because we do not have an estimate of the MASE at the

end of the procedure.

5 Practical performance

The following data examples are chosen to show the practical performance of the proposal.

1. The Series “CAPE” – Time series of the quarterly final consumption expenditure

in Australia (total private, millions of dollars, 1989/90 prices) from September 1959

to June 1995 with n = 144. Source: Australian Bureau of Statistics.

2. The Series “Strom” – The monthly time series of produced electricity in Germany

from 1955 to 1979 with n = 300. Source: Schlittgen and Streitberg (1994, p. 82).
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3. The Series “IFOR” – The monthly time series of the indices of the foreign orders

received in Germany from 1978 to 1994 (1985 = 100) with n = 204. Source: IFO-

Institute for Economic Research in Munich.

4. The Series “Hsales” – Monthly sales of new one-family houses sold in the USA from

January 1973 to November 1995 with n = 275. Source: Makridakis, Wheelwright

and Hyndman (1998).

All of these time series are analyzed with p = 1 and p = 3 respectively. Throughout

the application the bisquare kernel is used. The selected bandwidths and the number of

iterations with the smallest starting bandwidth h10 = hmin = s/n and the largest starting

bandwidth h20 = hmax = 0.5 − 1/n, together with the answer, if the two bandwidth are

the same or not, are listed in Table 1 for all data examples. From Table 1 we see that

the two selected bandwidths in most of the cases are unique. For the series Hsales with

p = 3 we obtained an interval of fixed points [0.094, 0.105]. As mentioned before, we will

consider such a result to be unique and now ĥ = (0.105 + 0.094)/2 = 0.10 will be used.

Two unusual cases should be mentioned: Firstly, the selected bandwidths for the series

IFOR with p = 1 are not unique. Secondly, although the selected bandwidth for the series

Strom with p = 3 is unique, which is however much smaller than that selected for the

same series with p = 1. This means that the proposal does not work well for Strom series

with p = 3. For the final smoothing we hence propose to use p = 1 for Strom series and

Table 1: ĥl, ĥr and other parameters for the data examples

Time p = 1 p = 3

Series ĥl j0 ĥr j0 uniq. ĥl j0 ĥr j0 uniq.

CAPE 0.084 7 0.086 6 Yes 0.089 6 0.089 8 Yes

Strom 0.160 7 0.160 7 Yes 0.101 7 0.102 13 Yes

IFOR 0.113 6 0.262 3 No 0.140 7 0.141 6 Yes

Hsales 0.066 4 0.067 8 Yes 0.094 7 0.105 4 Int

p = 3 for the others. Data-driven decomposition results for these examples are shown

in Figures 1a through d, where corresponding location changes are introduced for the

seasonal component so that the figures look more clear. We see that the results given in

Figure 1 look quite well. This shows the practical usefulness of the proposed procedure.
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Figure 1: Optimal decomposition results for the data examples. Upper: the data together

with the estimated trend (dashes). Below: the estimated seasonal component.
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Note that the selected bandwidths for the examples given in Figure 1a through d are quite

different, which adapt automatically to the structure of the data. The largest is ĥ = 0.16

by the series Strom. This is not surprising, because the trend in this time series can almost

be modelled by a parametric model (see Schlittgen and Streitberg, 1994). Although the

trend in the time series CAPE is also regular, the selected bandwidth ĥ = 0.089 is however

the smallest one, since s = 4 for this time series but for the other s = 12. Table 1 also

shows that j0 changes from case to case.

Furthermore, it is easy to calculate that the above bandwidths for the four examples

correspond to 27 seasons, and 97, 57, 59 months, respectively. The selected bandwidths

in the first two cases are much larger than the bandwidths used in the current version of

BV4 (BV4.1). See Speth (2004, 2006). This shows that the performance of BV4.1 may be

improved clearly, if it can be combined with the proposed bandwidth selection algorithm.

Finally, we want to show some detailed properties of the iterative plug-in algorithm

so that the reader can understand the proposal well. Following Lemma 2 we have ĥl ≤
hA ≤ ĥr in probability. From Table 1 we see that this is true for all examples. Lemma

2 also ensures that, in probability, hj is nondecreasing in j by starting with h10 and hj

is nonincreasing in j by starting with h20. The detailed search processes with starting

bandwidths h10 and h20 respectively are shown in Figure 2, where the results are for the

time series Strom with p = 1 (solid line) and CAPE with p = 3 (dashed line). From Figure

2 we can see although the selected bandwidth for Strom with p = 1 is much larger than

l

l
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l l l l

u

u
u u u u u

l

l

l
l l l l l

u
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Search processes for the series Strom with p=1 and CAPE with p=3

Number of iteration

Figure 2: Search processes for Strom (p = 1, solid line) and CAPE (p = 3, dashed line).

The letters“l” and “u” indicate results with h10 = hmin and h20 = hmax, respectively.
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that for CAPE with p = 3, h1 with h20 in the second case is however slightly larger than

that in the first case. But, after a few iterations both of them achieve their corresponding

fixed points.

6 Final remarks

This paper proposes an iterative plug-in algorithm for decomposing seasonal time series

using the Berlin Method. Computational aspects of the proposal are discussed in detail.

A few nice properties of the iterative-plug rule were found. Data examples show that

the proposal works very well in the practice. The facts that the selected bandwidths

vary from one series to another very strongly and that all of the selected bandwidths are

clearly larger than the default bandwidth used in BV4 indicate that the introduction of a

suitable bandwidth selector into the current BV4 is necessary. This will help to improve

the quality of this software clearly. This study is the first detailed study on bandwidth

selection for decomposing economic time series. There are still quite a lot open questions

in this context. For instance, the proper combination of the proposed algorithm with

BV4.1, the adaptation of the algorithm according to the dependence structure of the

errors, bandwidth selection under consideration of the bias in Ŝ and selection of two

separate bandwidths for estimating g and S, respectively.
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Appendix: Proofs of the results

A sketched proof of Lemma 1: The proof of this lemma based on some desirable

standardizing and orthogonal finite sample properties of ĝ and Ŝ. These properties are

quantified by the following properties of w1 and w2.

a.
n∑
i=1

w1i(xi − xt)j =

 1,

0,

j = 0,

1 ≤ j ≤ p,

a′.


n∑
i=1

w1i cos(λj(i− t)) = 0,
n∑
i=1

w1i sin(λj(i− t)) = 0,
j = 1, ... , q.

b.
n∑
i=1

w2i(xi − xt)j = 0, 0 ≤ j ≤ p,

b′.


n∑
i=1

w2i cos(λj(i− t)) = 1,
n∑
i=1

wi sin(λj(i− t)) = 0,
j = 1, ... , q.

(A.1)

Note that w′1 = (e′1,0
′)(X′KX)−1X′K and w′2 = (0′,Φ′s)(X

′KX)−1X′K. Hence we have

w′1X = (e′1,0
′) and w′2X = (0′,Φ′s). Observing the definition of e1 and Φs we obtain the

results in (A.1). Note that (A.1) ensures that ĝ, Ŝ and hence m̂ are exactly unbiased,

if m is the sum of a polynomial of order no larger than p and S is an exactly periodic

component with period s.

1. Under A2 and A3 we have, in the neighbourhood of xt,

g(x) =
p∑
j=0

g(j)(xt)

j!
(x− xt)j +

g(k)(xt + θ(x− xt))
k!

(x− xt)k, (A.2)

where 0 < θ < 1 and

S(xi) =
q∑
j=1

(β2j cosλj(i− t) + [β3j sinλj(i− t)]). (A.3)

This leads to S(xt) =
q∑
j=1

β2j. Following a′, we have

B[ĝ(xt)] =
n∑
i=1

w1i[g(xi) + S(xi)]− g(xt) =
n∑
i=1

w1ig(xi)− g(xt), (A.4)

since
n∑
i=1

w1iS(xi) = 0. For B(Ŝ) we have

B[Ŝ(xt)] =
n∑
i=1

w2i[g(xi) + S(xi)]− S(xt) =
n∑
i=1

w2ig(xi), (A.5)
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since
n∑
i=1

w2iS(xi) =
q∑
j=1

β2j = S(xt) following b′ and (A.3). Property a′ results in

n∑
i=1

w2i


p∑
j=0

g(j)(xt)

j!
(x− xt)j

 = 0. (A.6)

Hence

B[Ŝ(xt)] =
n∑
i=1

w2i
g(k)(xt + θ(xi − xt))

k!
(xi − xt)k

.
=

g(k)(xt)

k!
hk

n∑
i=1

w2i

(
xi − xt
h

)k
= o(hk), (A.7)

where the last equation is due to the fact

n∑
i=1

w2i(
xi − xt
h

)k
′
= o(1), for any k′ ≥ 0. (A.8)

Equation (A.8) holds, since the weights w2i are asymptotically periodic (see (7)). This

shows that B(Ŝ) is only due to the k-th order term in the Taylor expansion of g. And

the contribution of this term to B(Ŝ) is negligible compared with B(ĝ). We obtain

B[Ŝ(xt)] = o(B[ĝ(xt)])

and

B[m̂(xt)]
.
= B[ĝ(xt)].

Observe that B(ĝ) is the same as for a local polynomial fitting of order p, we obtain (9).

2. Detailed proof of (10) may be found in Feng (1999), where is it shown in particular

that the two weighting systems w1 and w2 are asymptotically orthogonal in the sense that
n∑
i=1

w1iw2i = o(
n∑
i=1

w2
1i) = o(

n∑
i=1

w2
2i). This follows from (A.8), since Kp(u) is a polynomial

kernel.

3. Formula (11) follows from (9) and (10). Lemma 1 is proved. 3

In the following, it will be explained, why Lemma 2 and Theorem 1 should hold.

Detailed proofs are omitted, since these results are similar to those in nonparametric

regression without seasonality.

A sketched proof of Lemma 2: Case 1. Note that the two terms on the right hand side

of (18) are due to the contribution ofB(ĝ(k)) and var(ĝ(k)) (see e.g. the proof of Proposition
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1 in Beran and Feng, 2002a). In step 1 we have hI,j = o(hA) in the j-th iteration. In

this case B(ĝ(k) is negligible and Î is dominated by var(ĝ(k)), which tends to infinite as

n→∞. Observe that wki = O[(nhk+1
I,j )−1], we have var(ĝ(k)) = O(n−1h

−(2k+1)
I,j ) and hence

Î = Op(n
−1h

−(2k+1)
Ij ). Inserting this in the formula for hj we obtain hj = Op(hIj), i.e. in

this case hj−1 is inflated to a bandwidth of order Op(hIj). Step 1 is proved. Results in

Steps 2 and 3 are clear.

Case 2. Note that Step 1′ will not appear, if h0 is of a larger order than hA such

that h0 → 0, since now A1′ is satisfied in the first iteration. In this case h1 is already

consistent and only Step 2′ will appear. Step 1′ occurs, only if 0 < h0 < 0.5 is taken to

be a constant. Now B(Î1) is a constant and hence Î1 = Op(1) = Op(I). Now we obtain

h1 = Op(hA), which is of the correct order but not yet consistent. The process will then

be changed into Step 2′ in the second iteration. Lemma 2 is proved. 3

Remark A1. Theoretically, if the procedure is started with an h0 such that hA = o(h0)

and h0 → 0 as n → ∞, then h1 will already be consistent. Hence such a starting band-

width is asymptotically more preferable. Now the asymptotic behaviour of an iterative

plug-in bandwidth selector is easy to understand. If the sample size is small and the data

have a special structure, a too large starting bandwidth, e.g. h20 = hmax may perhaps lead

to Î1
.
= 0. Now hj could not be deflated to the optimal bandwidth. In the application

we did not yet find such a phenomenon. If this occurs, it is no problem for our proposal,

because it will be discovered by starting with the other bandwidth h10.

A sketched proof of Theorem 1: The proof of Theorem 1 can be carried out based

on a formula given in the appendix in Beran and Feng (2002a). See also Beran and Feng

(2002b). They showed that, when convergence is reached, the rate of convergence of an

iterative plug-in bandwidth selector is quantified by:

(ĥ− hA)/hA
.
= − 1

2k + 1− 2δ
I−1(Î − I). (A.9)

Equation (A.9) shows that B(ĥ) and var(ĥ) at the end of the proposed procedure are of

the corresponding orders as those of Î. var(ĥ) is dominated by the second term in (19)

of order O(n−1h−4k−1I ), where hI denotes the bandwidth for estimating I used at the end

of the procedure, which is of order Op(n
−1/7) for k = 2 and Op(n

−1/13) for k = 4. In both

cases, i.e. k = 2 with β3 and k = 4 with β2, the order of the second term on the right hand

side of (18) is no larger than that of the first. Hence we have B(ĥ) = O[B(Î)] = O(h−2I ).

Straightforward calculation leads to the results of Theorem 1. 3
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