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ABSTRACT 

The introduction of technology aimed at reducing the response times of emergency medical services has 
been one of the principal innovations in crisis care over the last several decades. These substantial 
investments have typically been justified by an assumed link between shorter response times and 
improved health outcomes. But, current medical research does not actually show a significant relationship 
between response time and mortality. In this study, I explain the discrepancy between conventional 
wisdom and current medical research; existing research fails to account for the endogeneity of incident 
severity and response time. Analyzing detailed call-level information from the state of Utah's Bureau of 
Emergency Medical Services, I measure the impact of response time on mortality and hospital utilization 
using the distance of the incident from the nearest EMS agency headquarters as an instrument for 
response time. I find that response times significantly affect mortality, but not hospital utilization. A cost 
benefit analysis suggests that the anticipated benefits of a response time reduction exceed the costs and I 
discuss free-rider problems that might be responsible for the inefficiently high response times I observe. 
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1 INTRODUCTION

Emergency Medical Services (EMS) experienced dramatic technological change over the

last several decades. In the 1960�s and 1970�s, ambulance services primarily o¤ered

basic transportation to medical care. Frequently, funeral home directors doubled as

emergency-services providers, using their hearses to haul patients. These volunteers

typically had little, if any, knowledge of �rst aid.1 Since the 1980s, though, ambu-

lances have become sophisticated mobile intensive-care units that are sta¤ed by licensed

and trained professional paramedics and emergency medical technicians (O¢ ce of Rural

Health Care Policy 2006). Technological advances, such as computer-aided dispatch ser-

vices and mobile Geographic Information System (GIS) units on ambulances, allowed

ambulances to reach patients far more quickly (see Athey and Stern 2000 for an evalu-

ation of one such technology, enhanced 911).

The push to reduce response times is predicated on the widely-held belief that faster

responses will improve health outcomes. Response time is a commonly-used measure of

EMS quality (Pons, Haukoos, Bludworth, Cribley, Pons, and Markovchick 2005, Bailey

and Sweeney 2003). One of the goals of Healthy People 2010, a broad federal initiative

aimed at alleviating the major preventable threats to Americans�health, is to "increase

the proportion of people who can be reached by EMS within 5 minutes in urban areas

and within 10 minutes in rural areas" (Emergency Medical Services 2001). The National

Fire Protection Association (NFPA) recommends that, for at least 90 percent of EMS

calls, Basic Life Support (BLS) services should get to the scene of a medical incident

within four minutes. The association says that Advanced Life Support (ALS) providers

should arrive within eight minutes for all EMS calls (Ludwig 2005, Pons and Markovchick

1University of Southern Alabama 2004, Blackwell and Kaufman 2002, Reines and Bartlett and Chudy
and Kiragu and McKnew 1988, Emergency Medical Services: At the Crossroads 2006, Emergency Med-
ical Services in Frontier Areas 2006.
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2002, Blackwell and Kaufman 2002, Pons et al. 2005).

Despite the assumption that response times matter, and the substantial investments

that have been made to reduce them, very little is actually known about the impact of

response times on the mortality and morbidity of patients. In the words of two med-

ical researchers, "justi�cation of speci�c time criteria for speci�c medical or traumatic

emergencies is lacking" (Pons and Markovchick 2002). There are several reasons for this

knowledge gap. One problem is the scarcity of good data: few states maintain data-

bases that can be used to link response times to patient outcomes. Another challenge

lies in the endogeneity of response times. EMS dispatchers collect important informa-

tion about each incident that produces a call, and they can take actions that result in

lower response times for the most critical cases. Such triage makes it di¢ cult to obtain

unbiased estimates of the bene�ts of lower response times, even when data are available.

In this paper, I take advantage of comprehensive EMS records from the state of

Utah, which include detailed patient and provider information, to identify the impact

of response times on patient outcomes. I examine the direct impact of distance �mea-

sured as the length between the agency garage and the "incident," or the location where

a patient needs to be picked up �on response times. Then, using distance to closest

authorized EMS agency headquarters as an instrument for response time, I measure

the extent to which shorter response times a¤ect health outcomes, including mortality

and hospital utilization. I also examine whether the impact of response times varies de-

pending on a patient�s medical condition (i.e., strokes, falls, or fainting) and population

subgroup (for example, age and/or gender).

Section two provides a basic background on Emergency Medical Services. Section

three reviews prior research on the impact of emergency response times on health and

other outcomes. Section four describes the data. Section �ve introduces the econometric

strategy. Section six presents the main results and results for various subgroups. Section

seven explores potential mechanisms through which response times a¤ect outcomes.
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Section eight provides a cost-bene�t analysis for reducing response times, explains why

response times may be ine¢ ciently high and provides potential policy recommendations.

Section nine concludes.

2 EMERGENCYMEDICAL SERVICES BACKGROUND

Emergency Medical Services are structured and funded in a variety of ways. Services

are operated locally, generally at the town or county governmental level, although EMS

jurisdictions may not perfectly match political boundaries (Emergency Medical Services,

2001). EMS agencies are typically operated by �re departments, police forces, hospitals,

private ambulance companies (for-pro�t and not-for-pro�t), or special administrative

districts. Emergency medical systems may be "one-tier," o¤ering either advanced life

support (ALS) or basic life support (BLS) ambulances, or "two-tier," providing both BLS

and ALS. In 1996, approximately 75 percent of urban areas in the U.S. were served by

two-tier systems (Nichol, Detsky, Stiell, O�Rourke, Wells, and Laupacis 1996). In urban

areas, Emergency Medical Technicians (EMTs) and paramedics are typically full-time

professionals, while rural agencies are generally sta¤ed by trained volunteers. Emergency

Medical Services are funded through a combination of municipal taxes, cell phone and

telephone taxes, user fees, private donations, intergovernmental grants, and subscription

fees. State-level regulators typically oversee local EMS agencies by monitoring EMT

and paramedic training and licensing, but they are not involved in day-to-day agency

operations (Emergency Medical Services, 2001).2

Despite variation in the administrative structure of local EMS agencies, most follow

similar protocols when responding to calls. Typically, a caller reporting a medical emer-

gency will call 911 or a seven-digit number and reach a dispatcher. The dispatcher may

begin by providing medical advice over the phone, but most likely he or she will only

2For a more thorough introduction to Emergency Medical Services, see Nichol et al (1996), Emergency
Medical Services at the Crossroads (2006), Emergency Medical Services in Frontier Areas (2006) or
Braun, McCallion, and Fazackerley (1990).
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assess the severity of the situation, determine the patient�s address and then dispatch

relevant medical resources to the scene. If there are no ambulance units available for

this answering agency, then the dispatcher will contact another nearby community or

agency to request mutual aid.

The type of service dispatched depends on what is reported in the call. The dis-

patcher might activate a �rst responder (FR) unit of police or �re�ghters; BLS units

that are sta¤ed by EMTs; or ALS ambulances that are sta¤ed by paramedics. EMTs

provide basic �rst aid, but they can only o¤er a limited number of other treatments to

patients. Paramedics can treat severe trauma and also provide more advanced care, in-

cluding "administering drugs, inserting intravenous lines, and opening airways through

endotracheal intubation" (Emergency Medical Services 2001). After driving to the scene

and �nding the patient, the EMTs or paramedics provide medical care. Sometimes, they

aim only to stabilize the patient before transporting him or her to a higher-order care

facility. Other times, they provide life-saving treatments immediately, under the stand-

ing orders of a physician. In most cases, the patient is transported to a hospital or other

medical facility where he or she can receive more advanced care. Then, after �lling out

paperwork, the EMS personnel return to service (Emergency Medical Services 2001).

Emergency medical services in Utah, the state examined in this paper, are typical of

the services o¤ered in most states. Within Utah, there are 201 licenses for EMS. Some

agencies have multiple licenses, covering a number of territories or service levels, but

these generally do not cover territories that precisely match up with political boundaries.

Excluding air ambulances, there are 137 unique providers of ambulance services in Utah,

including both ALS and BLS providers. In Utah, EMS is primarily funded through user

fees (personal conversations with agency directors and Utah Bureau of EMS, 2006).

All EMS agencies in the state follow the same protocol in treating patients. Calls are

answered in the order in which they are received, and dispatchers follow cue cards in as-

certaining the severity of the condition. By state law, EMS agencies cannot discriminate
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on the basis of race or ability to pay (Emergency Medical Services 2001).

3 RELEVANT LITERATURE

The current evidence on the e¤ectiveness of reduced response times is extremely limited.

It was largely drawn from observational studies of patients su¤ering from a few very

speci�c medical conditions� most commonly cardiac arrest, which accounts for just one

percent of EMS calls. These studies, which often had very small samples, typically

found a negative correlation between cardiac-arrest response times and survival. A

meta-analysis of studies which reported mean response times and survivorship showed

that, on average, shorter response times were associated with higher survival likelihood

(Nichol et al. 1996). In that meta-analysis, a one-minute decrease in mean response

time was associated with an increase in survival in a one-tier system of 0.4 percentage

points (mean survival rate: 5.2 percent). In a two-tier system, the increase was 0.7

percentage points (mean survival rate: 10.4 percent) (Nichol et al. 1996).

Only a handful of studies have examined the relationship between response times

and outcomes for people su¤ering from conditions other than cardiac arrest, even though

these patients generate the vast majority of EMS calls. These studies have generally

found no association between response times and survival. One of them analyzed out-

comes for trauma patients who were transported to one particular trauma center over

a two-year period. It found that, after controlling for the trauma category, age group,

and other factors, there was no di¤erence in survival based on response times (Pons and

Markovchick 2002). Patients who might have been most a¤ected by response times�

speci�cally, those who were dead on arrival�were excluded from the study.3 Pons and

Markovchick also found that ambulance drivers who take longer to arrive at the scene

3Other studies of trauma patients have found no association between total out-of-hospital time and
survival (Pepe, Wyatt, Bickell, Bailey, and Mattox 1987). However, this evidence is di¢ cult to interpret,
since out-of-hospital time includes both response time to the scene and time spent treating the patient
at the scene.
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take longer to get from the scene to the hospital. This evidence is consistent with

discretion on the part of ambulance drivers, which I discuss below.

Just two studies have looked at the impact of response times on a broad selection

of EMS calls, rather than examining only incidents involving trauma or cardiac arrest

(Pons et al. 2005, Blackwell and Kaufman 2002). Like the examination of trauma

patients discussed above, these studies �nd no association between response times and

patient survival. However, both studies su¤er from signi�cant weaknesses. One is that

they examine only patients who were admitted to hospitals. Blackwell and Kaufman

focus solely on patients experiencing "emergencies" who were transported to a particular

trauma hospital. Both studies exclude patients who were dead on arrival. Pons et

al. (2005) do not control for incident location or any characteristics of the incident

location; Blackwell and Kaufman (2002) do not control for any community or individual

characteristics �such as illness or demographic indicators �that might have in�uenced

both response times and outcomes. Despite these methodological shortcomings, Pons et

al. conclude that "there is no e¤ect of paramedic response time on patient outcomes."4

Blackwell and Kaufman state that "there is little evidence to support reducing the

current adopted emergency response times," although they did detect a slight bene�t

when response times are less than �ve minutes

None of these studies account for a key factor that almost certainly impacts response

times: EMS personnel may respond more quickly to the most serious and life-threatening

situations. If this endogeneity of response time is ignored, then estimates of the "ef-

fects" of response times on patient outcomes will be biased downwards. There are many

reasons to think that endogeneity of response times is a very real problem in doing such

analyses. Even detailed call reports cannot capture all of the information communicated

by dispatchers to ambulance drivers� communication which may be as subtle as the dis-

4Pons et al. �nd no survival bene�t from a paramedic response time of less than 8 minutes, but
do �nd a survival bene�t for response times of less than four minutes for a subset of patients (those
considered to be of "intermediate" or "high" risk of mortality, as de�ned by the study authors).
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patcher�s tone of voice. Dispatchers tell drivers and paramedics the basic circumstances

of incidents, including information which allows drivers to determine whether or not to

rush to the scene. Because riding "hot" can carry signi�cant risks for EMS personnel,

the decision about whether to activate lights and sirens and travel quickly to the scene is

almost always at the discretion of the paramedics. A study of one community supports

the idea that EMS personnel do adjust their response times in response to the severity

of the incident. After this community instituted a priority dispatch system, response

times for more severe calls dramatically decreased, but they increased signi�cantly for

less severe calls (Slovis, Carruth, Seitz, and Elsea 1985).

One way to account for endogeneity of response times is to examine how technolog-

ical changes that a¤ected response times altered patients�outcomes. This approach is

taken by Athey and Stern, who examine how 911 and enhanced 911 services in�uence

the outcomes of heart patients (Athey and Stern 1998, 2000, 2002). The adoption of

911 capacities may improve outcomes by reducing response times. One paper�s results

indicate that enhanced 911 services signi�cantly reduce average response time but, in

the reduced form, do not signi�cantly a¤ect mortality (Athey and Stern 1998, Table 6

and Table 9). The most recent Athey and Stern paper, which uses a somewhat di¤erent

speci�cation, indicates that 911 services do improve outcomes for heart patients (Athey

and Stern 2002). However, this article does not present evidence on the e¤ects of 911

on response times. One potential problem with this general identi�cation strategy is

that the expansion of 911 services re�ects policy decisions and technological advances,

and policy decisions could be in�uenced by factors correlated with patient health. In

addition, as discussed above, heart incidents represent only a small fraction of EMS

calls.

I contribute to the existing literature in several ways. First, I resolve an empirical

puzzle. Despite the widespread belief that response times matter, existing medical re-

search shows no signi�cant impact from response times on outcomes except in a few
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very special cases. I explain why this is so. Second, I introduce a new way of handling

the endogeneity of response times which does not rely upon policy changes which might

themselves be endogenous. I instrument for response times with the distance from the

incident location to the provider. Third, I provide more accurate estimates of the impact

of response times for all conditions, not only cardiac incidents, by controlling for covari-

ates including census block group characteristics not previously available to researchers.

I also look at the impact of response times for particular population subgroups, as well

as for many health outcomes never previously studied. Fourth, I suggest a mechanism

through which response times a¤ect health outcomes. Finally, I provide an explanation

for the ine¢ ciently high response times which I observe in the data.

4 THE DATA

The primary data in this study came from the 2001 Utah Prehospital Incident Dataset,

a collection of all prehospital incident reports collected in Utah between January 1,

2001 and December 31, 2001 (Utah Prehospital Incident Data 1999-2005). In Utah,

every dispatched ambulance is required to complete a detailed incident report which

includes patient demographics (such as age, race, name, and birth date), the incident

address, a description of the patient�s major complaint, the medications and treatments

administered, the patient�s vital signs at the scene, and the outcome of the incident.5

I de�ned response time as the di¤erence between the time that the ambulance is

dispatched and the time that the ambulance arrives at the scene. This de�nition was

consistent with the work of several other researchers (Athey and Stern 1998, Key et al.

2002, Lerner, Billittier, Moscati, and Adolf 2002, Cummins at al. 1991, Stueven, Waite,

Troiano, and Mateer 1989, Grossman, Kim, Macdonald, Klein, Copass, and Maier 1997,

Scott, Factor, and Gorry 1978). For a small proportion of the Prehospital Incident

sample, I knew the time of the initial call, when the dispatcher was noti�ed, and when

5Appendix A contains a more detailed description of this data.
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the paramedic or EMT arrived at the patient�s side (Utah Prehospital Incident Data).

On average, as shown in Table 3, two of these three additional response-time components

added 0 minutes or less to the total response time. The third additional response-time

component (time from arrival at scene to arrival at patient�s side) is measured for less

than 300 patients and isn�t from a representative population of patients. Therefore, it

is likely that these unrecorded response-time components would increase total response

times by a small amount, an assumption that makes sense because most homes and

businesses in the Salt Lake City metropolitan area are not in densely populated areas

or tall buildings.6

I used two sources of outcome data: the Utah Emergency Department Encounter

Dataset (2001) and Utah mortality records (2001-2002). Utah law requires that all

hospitals in the state provide reports of every Emergency Department (ED) admission

to the state Department of Health. These reports contain the name, admission date,

admission time, birthdate, mortality risk, condition severity, outcome, total charge,

number of procedures, and primary diagnosis for each patient.7

The Utah death data, which come from the state O¢ ce of Vital Statistics, include

the name, age, race, time and location of death for all deaths of Utah residents that

occur within the state. These death records allowed me to capture mortality outcomes

for all patients, not just those who died within hospitals, so that my analysis includes

patients who were dead when EMS arrived.

I merged the Utah Emergency Department data and mortality records with the pre-

hospital records using probabilistic linking software LinkPlus (Utah Prehospital Incident

Data 1999-2005, Utah Death Data 1999-2005). I include complete details of this merging

6Morrison et al. documented a median scene-to-patient time of 1.43 minutes in a study of ambulance
response times for high-priority patients in an area with high population density and a high density of
high-rise buildings, suggesting that even if there were many calls to tall buildings, the additional cost
in response time would not be very high (Morrison, Angelini, Vermeulen, and Schwartz 2005). Other
studies have found similar results (Campbell, Gratton, Salomone, and Watson 1993).

7The Utah Department of Health is currently merging records from Emergency Department data with
Utah Ambulatory Surgery and Hospital Discharge data records, so that I can look at other outcomes.
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process in Appendix B.

To construct the instrument for response time, I standardized and geocoded each

incident, provider and hospital address using ARCMap Version 9.1. I used the latitude

and longitude of each of these locations to calculate the distance between the patient

and the provider and the patient and the hospital (if admitted). Using ARCMap, I also

identi�ed the census block group for each incident, and merged census 2000 demographic

summary data with incident information (Census 2000 Summary File 3 2000).

I identi�ed weather, tra¢ c and daylight conditions for each incident. To capture

weather conditions, I merged hourly weather readings from the Utah weather station

closest to each incident (Integrated Surface Hourly Database 2001). To capture local

tra¢ c conditions, I linked hourly measures of tra¢ c congestion (volume) from the clos-

est Utah Department of Transportation tra¢ c station (Utah Automatic Tra¢ c Counter

Data 1990-2005). I identi�ed whether an incident occurred before or after sunrise and

sunset using the latitude and longitude of the county of each incident and daily sun-

rise and sunset data provided by the Canadian government (Sunrise/Sunset/Sun Angle

Calculator 2007).

I restricted the regression sample in several ways. I excluded cancelled and standby

calls, and I dropped duplicated prehospital reports. In some cases, EMTs and para-

medics from more than one ambulance may provide care to the patient. When this

occurred, there were multiple reports for the same patient from the same incident. I

included only the report from the �rst EMS on scene, following Nichol et al (1996), and

Fischer, O�Halloran, Littlejohns, Kennedy, and Butson (2000). However, using di¤erent

individual incident reports for cases in which there were multiple reports did not a¤ect

the results of my analysis.8

In some cases, multiple individuals were involved in one incident, i.e. a tra¢ c acci-

8My results are not sensitive to using other reports taken at the scene, including the report with
the longest measured time at scene, longest time to arrival at scene, and the report with fewest missing
values.
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dent. In such cases, there would be even greater reason for concern about the endogeneity

of response times. If there were ten people at the scene, presumably the EMS would

�rst help the patient who was most severely injured. Even though I measured response

times from dispatch to arrival at scene (and not arrival at the patient), this might still

be a concern for my analysis. However, regressions which excluded patients involved in

incidents with multiple patients produced results very similar to the original regressions.

Finally, I observed all patients who used any EMS in Utah in 2001. I saw some

patients more than once. If patient outcomes within individual are correlated across

time, then by treating each incident as an independent event, I may be overstating

the true variation in the dataset. As a speci�cation check, I excluded individuals who

appeared in the dataset more than once (in di¤erent incidents) and my results were

una¤ected.9

I excluded calls which did not have descriptions of the patients�major complaints,

the response times, or geocoded incident addresses. For reasons discussed below, I ex-

cluded patients outside of the Salt Lake City metropolitan area, de�ned by the following

counties: Weber, Morgan, Davis, Salt Lake, Summit, Utah, and Toelle. These repre-

sented 86 percent of the calls in the prehospital database. Appendix Table 9A contains

a count of the number of observations lost due to each of these restrictions.

Figure 1 provides a visual representation of a typical community in the Salt Lake

City metropolitan area; census block groups are outlined with a thin line, EMS incidents

are identi�ed with diamonds, circles identify hospitals, and EMS agency headquarters

are represented with squares. The boundary for each EMS territory is identi�ed with a

thick line.
9 I also clustered the observations along the following dimensions: individual ID; incident ID; emer-

gency medical technician id; block group; tract; zip code; and county. In these cases when I clustered
along a single dimension, the results were similar to the current regression speci�cation, which does
not involve clustering. In addition, I experimented with clustering on multiple dimensions (Cameron,
Gelbach, and Miller 2006). And in all cases, the variance estimate had negative elements on the diago-
nal, which according to Cameron et al., "primarily occurs when there is actually no need to cluster in
more than one dimension" (Cameron et al. 2006). For this reason, all results are reported using robust
standard errors.
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Table 1 shows demographic characteristics for the Utah Prehospital Regression Sam-

ple. Patients using EMS are much more likely to be over age 65 and slightly more likely

to be white and female than the general population of Utah. Utah is considerably

younger, more homogenous, and more white than the rest of the United States.

Table 2 presents the distribution of patient complaints and shows how I combine

these descriptions into larger categories of complaints, as well as the 1-year mortality

rates for each complaint. The most common patient complaints are tra¢ c accidents

(16 percent of all calls) and transfers between hospitals (nine percent of calls). It may

not be obvious why I include transfers in the analysis. In fact, EMS are often used

to transport trauma patients (or patients who are otherwise very ill) from hospitals or

clinics to trauma centers, and not just for scheduled "non emergency" transfers.10 Heart

and breathing problems, fainting, and trauma are also quite common.

Table 3 provides summary statistics on response time, the distance from the closest

provider agency to the incident, and the distance from the incident to the intake hospital.

Patients admitted to hospital emergency departments (EDs) are, on average, closer to

their EMS providers than to their hospitals. In general, paramedics and EMTs spend

more than twice as much time (18 minutes) at the scene as they do getting to the scene

(eight minutes); it also takes longer to arrive at the �nal destination than it did to arrive

at the scene (12.9 minutes, on average).

Table 4 supplies summary statistics for several outcome variables. First, I report

mortality within one, two, 30, and 90 days and 1 year and four years of the incident.

Approximately two percent of EMS patients die within two days; four percent die within

30 days, and around 10 percent die within one year. Next, I provide summary statistics

for two intermediate health indices constructed using information gathered at the scene

(Athey and Stern 2000). I constructed the �rst index by regressing an indicator for two-

day survival on four Glasgow trauma score categories, four respiration-rate categories,

10My results are robust to the exclusion or inclusion of transfers (please see appendix Table 5A).
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four blood-pressure categories, and an indicator for whether the patient�s pulse is greater

than 40; these coe¢ cients are multiplied on the patient�s own characteristics and used

to predict two-day survival.

I constructed the second index by regressing an indicator for two-day survival on �ve

revised trauma score categories; I again used these coe¢ cients to predict the likelihood

of 48-hour survival. A higher score represents a higher survival probability for both

indices.11

Finally, Table 4 also shows the average number of ED procedures, the total charge

for ED care, and the probability, conditional on being admitted to the ED, of being at

high risk of mortality or of having a severe injury, as assessed by the hospital.

Table 1A in the appendix contains de�nitions and sources for each of the variables

used in the basic speci�cation.

5 ECONOMETRIC FRAMEWORK

In the standard econometric framework in the medical literature, outcomes are modeled

as a function of response times12:

Yi = �+RTi� +Xi� + "i (5.1)

Where:

Yi = Outcome for individual-incident i

RTi= Response Time for individual-incident i measured from time of dispatch to

time at scene, �rst responder at scene

Xi = A vector of individual incident characteristics (i.e. age, gender, dispatch code,

11When I restrict the sample to only heart patients, the coe¢ cients in both probit regressions are very
similar to those reported by Athey and Stern (2000).
12 I present the standard model as a linear probability model rather than a logistic regression for ease

of presentation.
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local demographics, tra¢ c and weather conditions).

"i= error

I propose that "i can be decomposed into two terms:

"i = �i + �i (5.2)

where:

�i= a residual component of severity that is not observed by the ambulance driver

or the researcher

and

�i= a measure of severity which is observed by the ambulance driver, but unobserved

by the researcher.

Because the ambulance driver knows �i, response time may depend in part on it, and

E("iRTi) 6= 0:As long as E("iRTi) < 0, then ordinary least squares (OLS) estimates of

mortality on RT will be negatively biased. This may explain why ordinary least squares

(or logistic regressions) which fail to account for the endogeneity of response times often

�nd no signi�cant relationship between mortality and response times.

To address this endogeneity, I used an instrumental variable (IV) �distance from

incident address to address of closest assigned provider agency �which is correlated with

response time, but uncorrelated with severity. This instrument allowed me to estimate

the true e¤ect of response times on outcomes. I also controlled for a wide variety of

factors which might a¤ect both outcomes and response time, including weather, month,

weekend interacted with hour-of-day �xed e¤ects, and primary complaint indicator vari-

ables.

I also included census block group characteristics: area, total population, density, the

proportion of community members living below the poverty line, the proportion of the

population not receiving government assistance, the median income, the proportion of

the block group that is rural, and the proportions of the population that are, respectively,
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younger than �ve, between 16 and 65, and older than 65.13

I exclude any variables that might be considered endogenous to response time, in-

cluding time at scene, distance to hospital, and treatments and medications which might

potentially be a¤ected by time to scene. I explore these intermediate outcome variables

in a later section, as I try to determine the mechanism through which response time

a¤ects outcomes.

Instrument validity

One concern with the instrument is that it may identify patients who live in exurban

areas, and who are di¤erent in ways which may be correlated with both response times

and outcomes. For example, "distance" may identify patients who live very far away

and only call EMS when they are very sick.14 For this reason, I identi�ed response times

from the variation in distance to providers within census block groups within the Salt

Lake City metropolitan area. In my basic regression speci�cation, I included census

block group characteristics, so that I could identify and control for health variations

between block groups. Block groups are the smallest census unit for which summary

data are readily available; they fall within census tracts which are already "designed to

be homogeneous with respect to population characteristics, economic status, and living

conditions" (Geographic Area Description: Census Block Groups 2000, Geographic Area

Description: Census Tracts 2000). In the Salt Lake City metropolitan area, block groups

have a mean area of 5.36 square miles with an average population of 1,631.

Within block groups, the variation in distance from incident to closest agency comes

from two sources: di¤erences in the distance to the provider when only one provider

covers the entire the block group, and variation in the distance to the provider when

13 I tried speci�cations including �xed e¤ects for ambulance ID, EMT ID, individual patient ID and
incident ID �xed e¤ects, but these variables did not do a good job explaining outcomes and had little
e¤ect on the coe¢ cient of interest.
14One study, using Veterans�Administration (VA) patients, identi�ed a correlation between distance

and mortality; "Patients living more than 20 miles from their admitting hospital were more likely to die
independent of their likelihood of receiving VA outpatient follow-up" (Piette and Moos 1996). Piette
and Moos suggest that these di¤erences in mortality were due to the quality of the follow-up care, but
they cannot rule out the possibility that people who live farther away from medical facilities are sicker.
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more than one provider covers territory within the block group.15 To test whether

sicker individuals intentionally locate near ambulance agencies within block groups, I

explored whether the distance to the provider di¤ers signi�cantly by observable patient

characteristics.16

I regressed indicators for individual age categories, race, and gender on the dis-

tance to closest provider agency, and I �nd that these observable characteristics are

signi�cantly correlated with distance to agency. Neither the �rst stage nor the IV es-

timates in regressions which include race, gender, or age as right-hand-side variables

di¤er appreciably from the regressions which do not include these variables, suggesting

that even though these observed characteristics are correlated with distance, unobserved

severity is not signi�cantly correlated with these variables. I also regress years of ed-

ucation (available only for those in the mortality dataset) on distance to closest EMS

agency and �nd that there is no signi�cant relationship within this subsample between

education (a proxy for SES) and distance. Finally, it is possible that when agencies

divide block groups into separate jurisdictions, they do so to avoid (or to capture) sicker

patients. My informal conversations with EMS agency directors suggested that these

agency borders largely follow natural boundaries (mountains/rivers), railroad tracks,

community/township lines, county lines, and major roads. Of course, this does not rule

out endogeneity. But because there are few census block groups that contain multiple

provider jurisdictions, this appears to be a minor threat to the validity of my instru-

ment.17

1580 percent of the variation in distance is between block group variation and 20 percent is absorbed
by block group �xed e¤ects.
16Conversely, agencies might locate near areas where many sick people live.
17 I interpreted the coe¢ cient on response time in the instrumental variables estimate as an average

treatment e¤ect rather than a local average treatment e¤ect. In this context, the marginal patient whose
average treatment e¤ect is measured by the IV is actually the representative patient using prehospital
care �and not a member of a unique subset of prehospital patients. Although distance might appear to
be a more relevant predictor of response time for the patients with the highest unobserved severity, this
does not change the interpretation of � which represents the average treatment e¤ect of response time on
outcomes, equivalent to that measured if response time were randomly assigned within the population.
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6 RESULTS FORRESPONSE TIMEANDMORTALITY

I �rst present results for the impact of response times on mortality, measured within one

day, two days, 30 days, 90 days, 1 year and 4 years of the incident. Row 1 of Table 5

contains the reduced form estimates of the impact of distance to closest non-mutual aid

EMS agency on mortality. Row 2 of Table 5 contains ordinary least squares estimates

of the impact of response times on mortality, where mortality is an indicator equal to

100 for all of those who were identi�ed in the mortality records within the allotted

calendar amount after the prehospital incident. Finally, Row 3 of Table 5 contains the

instrumental variables estimates of the impact of response time on mortality, measured

at di¤erent intervals. Row 4 contains the �rst stage: the estimated impact of distance on

response time. All speci�cations include month, weekend, hour of day, and weekend by

hour of day �xed e¤ects, as well as weather indicators and block group characteristics. In

all regressions I also include indicators for the primary patient complaint.18 All results

are reported with robust standard errors.

Table 5 shows that response times matter. I consider six outcome measures, and

I present OLS and IV estimates, the latter shown both as the reduced-form e¤ect of

distance on outcomes and as the implied e¤ect of response times. Reduced-form coe¢ -

cients of the impact of distance on mortality show that incidents that occur farther from

agencies are more likely to result in deaths. The coe¢ cients are positive and, for all but

one-day mortality, statistically signi�cant. An extra one-tenth of a mile is estimated

to increase the probability of mortality within 365 days by more than two-tenths of a

percentage point.

The �rst-stage estimates show that distance predicts response time. The marginal

impact of a mile on response time is approximately a tenth of a minute, and this re-

lationship is highly signi�cant with a t statistic>10, indicating that I do not need to

18For a small proportion of calls (less than 1%), the patient is listed as Dead upon Arrival at the
scene by EMS (DOA); these patients are included in the analysis, although the results are not sensitive
to their exclusion.
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worry about weak instruments.19 Response times di¤er considerably by complaint: for

example, all else equal, the average response time for cardiac arrests calls is almost

two minutes less than the omitted category (abdominal pain); electrocution and chok-

ing also had considerably shorter average response times, along with a number of other

complaints. The OLS estimate of the impact of response time one-day mortality is nega-

tive. The OLS estimates for mortality measured over longer periods are mostly positive,

but are never statistically signi�cant. These point estimates imply that a one-minute in-

crease in response time a¤ects mortality by less than three-tenths of a percentage point.

Overall, these results are consistent with the limited previous research in the medical

literature, though these earlier analyses do not account for the endogeneity of response

times.

Finally, the instrumental variables impact of response time on mortality is positive

and signi�cant in all but the �rst day after the incident, and increasing over time. The

coe¢ cients on indicators for stab and gunshot wounds, strokes, breathing problems,

cardiac arrest incidents were particularly noteworthy; all are positive and signi�cant. In

the reduced-form regression of mortality on distance, the coe¢ cient on distance is also

positive and signi�cant for all but one-day mortality, and it increases when mortality

is measured over longer periods. The marginal impact of a response-time increase of

one minute on mortality at 365 days is approximately 1.26 percentage points (which,

given a mean mortality rate of 9.8 percent, represents an approximately 13 percent

change). Note that if the instrument was correcting for classical measurement error, I

would expect the coe¢ cient on response time in the IV regression to increase in absolute

value in the same direction as the OLS coe¢ cient. This is not what I �nd. Therefore,

these results are consistent with the presence of an omitted variable, "severity," which

is negatively correlated with response time, and missing from the OLS equation.

19For a small subset of the sample, I have odometer measures of the actual distance travelled by
the ambulance enroute to the call; in the �rst stage for this subsample, the coe¢ cient on distance is
approximately .19 with a standard error of .09.
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My estimates are larger than the estimates from the only article in the medical

research which attempts to measure the impact of response times on overall patient

survival, Pons et al (2005), which �nds no signi�cant impact of response times on patient

outcomes except for response times less than four minutes.20 My measured impact of

response times on mortality (13 percent) is also higher in percentage terms than results

found in observational studies in the cardiac literature, which suggest a three- to seven-

percent decrease in mortality following a one-minute decrease in response times (Athey

and Stern 2000, Larsen et al. 1993 ).

I have explored a variety of other speci�cations which I discuss here. One speci�ca-

tion check involved investigating functional form. For ease of interpretation, I estimated

all models using linear probability models, but the results are equivalent using both

logistic and probit models. The signi�cance and direction of the coe¢ cients are also ro-

bust to using the logarithm of response time (Table 3A). I also ran speci�cation checks

where I excluded particular groups which I thought might be particularly in�uential.

None of the results are signi�cantly a¤ected by any of the following actions: excluding

transfers; excluding mutual aid calls; excluding those labeled as DOA; excluding pa-

tients (incidents) outside of Utah; and restricting the sample to incidents with only one

report or one patient. Including temperature, indicators for daylight savings time, or

indicators for the incident occurring before or after sunset or sunrise also did not a¤ect

the main results. I thought that other covariates may be signi�cantly correlated with

response times and outcomes - such that omitting these covariates would signi�cantly

bias my results. But my results are not a¤ected by including di¤erent permutations

of hour-of-day or day-of-week interactions; excluding weekend, month or day �xed ef-

fects; excluding weather variables; including indicators for patient location and incident

location (playground, home, etc.); including tra¢ c measures; including indicators for

Olympic location or tourist location; including hourly EMS call congestion numbers;

20Blackwell and Kaufman limit their sample to "emergencies."
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not controlling for the primary complaint; or including dispatch codes instead of the

primary complaint. Nor does including race, gender and age covariates, or character-

istics of tracts, places, zip codes, or counties on the right hand side. As an additional

robustness check on the identi�cation strategy, I also ran additional speci�cations where

I control for block group �xed e¤ects. The F statistic on the �rst stage is slightly less

strong in the speci�cations which include block group �xed e¤ects, but the IV results

are similar to those reported in Table 5, as can be seen in appendix Table 2A. The IV

coe¢ cients and standard errors increase in size with the inclusion of block group �xed

e¤ects. Including the distance to the closest hospital as a covariate does not a¤ect the

main results either, as Table 4A shows.

Heterogeneous Treatment E¤ects

The e¤ects of response times for outcomes may vary across di¤erent types of in-

cidents. To examine whether this is the case, I divided the primary complaints into

the six categories listed in Table 2: transfers, tra¢ c accidents, strokes/falls/fainting,

heart problems/breathing problems/cardiac arrests, ear/eye/psychiatric problems, and

trauma (electrocution, gunshot wound, etc.). These groups are of similar sizes. Each

type of complaint is interacted with response time. I created the distance instrument

similarly. In Table 6, I report the Cragg Donald Test statistic (equivalent to the �rst

stage F statistic used to determine whether instruments are weak, but used with multi-

ple endogenous regressors), and the complete instrumental variables results.21 Distance

is highly signi�cant in the �rst-stage equation with a Cragg Donald test statistic of 15.

In the OLS results not reported here, more than one-third of the response-time coe¢ -

cients are negative. In only one instance are the response-time coe¢ cients consistently

positive and signi�cant (tra¢ c accidents).

The IV estimates shown in Table 6 are quite di¤erent from the OLS estimates and

21Rather than estimate the e¤ect of response time separately for each condition or major category,
I constrain the impact of other covariates to be the same and estimate the e¤ects jointly. Splitting
the sample by condition pushes too hard on the data � given the number of covariates in the basic
speci�cation and the frequency of some of the conditions.
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generally indicate that lower response times reduce mortality across all incident types,

with the possible exception of trauma. In the instrumental variables regressions, the rel-

evance of response times to outcomes generally increases as mortality is measured over

a longer time period. For four of the complaint categories, response times positively

and signi�cantly a¤ect mortality measured at 30 days and 1 year and for �ve out of

six complaint groupings, instrumented response time is signi�cant for mortality at 90

days and mortality measured at 4 years. For all speci�cations, the impact of response

time on mortality di¤ers signi�cantly between complaint categories. In general, the in-

strumental variables estimates for the impact of response times on mortality are more

positive for transfers and other issues than the overall IV estimates and less positive

than the overall IV results for other categories, including cardiac issues. It may seem

somewhat surprising that the e¤ect of response times on mortality is high for transfers

and other issues, and relatively small for heart problems and trauma. But transfers in-

clude transfers between, for example, airports and nursing homes to secondary hospitals

(and therefore populations which may be very sick), and other issues include a wide

variety of complaints (such as fever and diarrhea) for which prompt intervention may

be especially important.22

To see whether the impact of response times di¤ers across gender and age, I also

ran IV regressions for various demographic groups separately. In Table 7, I include

regression results from separate regressions for men and women, and for major age

categories (<15, 15-25, 25-65, and over 65). I �nd little di¤erence in results between

men and women, but great variation by age; very young and middle-aged patients appear

to bene�t substantially less from response time improvements than do young adults and

older people.23 Because Utah�s population is more than 89% non-Hispanic white, there

22Almost 80 percent of transfers and transports are to hospitals. More than one third of these transfers
to hospitals are between hospitals. These transfers are almost entirely from urban hospitals with less
beds and lower case mix indices, which are less likely to be teaching, hospitals to more sophisticated
urban hospitals. The remaining transfers to hospitals are from long term care facilities, mental health
facilities, airports, the scene, homes, and other locations.
23Base mortality rates for men and women are similar, but average mortality rates di¤er considerably
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are not enough calls by nonwhites to estimate treatment e¤ects separately by race (U.S.

Census Bureau Census 2000).

7 THE MECHANISM

There are several potential mechanisms through which EMS response times could a¤ect

patient outcomes.

One is that earlier EMS arrivals stop the deterioration and limit the extent of dam-

age to patients�internal organs. The sooner the paramedics arrive, the less the damage,

and the smaller the later chance of death. This explanation is consistent with the �nd-

ing that the probability of death is increasing over longer time periods. Some existing

literature supports this mechanism. An article comparing survivorship between systems

with EMTs versus systems with paramedics found that �intravenous medication and

intubation has survival bene�ts" (Cummins et al. 1991). This evidence suggests that

the timing of treatments matters: presumably patients served by EMTs would have ac-

cess to any of these treatments after reaching the hospital.24 More recently, randomized

controlled trials have supported existing evidence on "the importance of early access to

de�brillation for improved survival in out-of-hospital cardiac arrest" (Callans 2004). Re-

searchers who placed de�brillators in random locations throughout a community found

that reducing the time to de�brillation signi�cantly increased survival (Callans 2004).

This mechanism would explain why the probability of dying at any point is higher

for patients with longer response times. These patients, with more "damage," may or

may not have worse vital signs, as measured at the scene, because vital signs may not

capture "damage." But they should have higher hospital admission rates, and should

by age: over 39 percent of those over 65 who call EMS die within one year, but less than 7 percent of
those between 25 and 65, less than 2 percent of those between 15 and 25 and less than 2 percent of those
under age 15.
24By contrast, a review of 13 randomized controlled or cohort studies examining the impact of pharma-

cological interventions by paramedics found "no evidence that any medication given by the prehospital
care provider is bene�cial or cannot safely be delayed until arrival at hospital" (Shuster and Chong
1989).
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be, conditional on hospital admission, in worse shape in the emergency department. Fi-

nally, EMTs and paramedics should choose hospitals which are closer for these patients,

because they are in more danger of dying, which is also consistent with the data.25 This

explanation does not suggest that the treatments or medications provided to patients

experiencing longer response times will be any di¤erent from those provided to patients

with shorter response times; nor would the time at the scene be any di¤erent, since

the treatments and medications are equivalent. Rather, it is the timing of the medica-

tions and treatments which is essential. That is what di¤erentiates patients with longer

and shorter response times, rather than any disparity in the substance of caregivers�

interventions.

In Table 8, I look at how response times a¤ect ED admission, total ED-related

charges (expressed in natural logs), the number of procedures within the hospital con-

ditional on admission to the ED, the probability that a patient in the ED is assessed as

having a very severe condition or being at high risk of mortality, the distance from the

incident address to the hospital (for admitted patients), health index 1, health index

2, which are measured at the scene, and time at scene.26 It is not clear how response

times should a¤ect costs. Patients made sicker by longer response times might have

higher costs, if they require more intensive treatment. Conversely they may result in

lower costs because they are more likely to die (Dier, Yanez, Ash, Hornbrook, and Lin,

1999).27

25One might also expect these patients to use overall more health resources in the years after the
initial prehospital incident because they are in worse health. The Utah Department of Health is in
the process of providing me with additional data including ambulatory surgery and hospital discharge
records which I will use to evaluate this claim.
26 I also regressed indicators for individual hospitals on response times. The response time to the

scene does also seem to a¤ect the choice of hospital by the EMS personnel. I do not look at the
impact of response time on individual health status measures (blood pressure indicators, pulse, Glasgow
coma score, or respiration) because individually these do not provide a reliable picture of the patient�s
condition at the scene.
27According to Dier et al, because laboratory procedures and emergency department expenditures are

distributions with many zeros and/or long right tails it is typical to transform them into the log scale.
This "shortens the long right tail, lessens heteroscedasticity, and decreases the in�uence of outliers"
and in practice, makes the distribution close to normal (Dier et al. 1999). If the dataset is su¢ ciently
large, "OLS regression on the untransformed data . . . will provide unbiased estimates of the regression
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Table 8 follows the same format as Table 7. The �rst row contains the reduced

form of outcomes on distance, the second row contains the OLS estimates, the third

row contains the IV estimates, and the �nal row contains the �rst stage. The basic

speci�cation is that of the mortality speci�cation with month, weekend by hour-of-

day �xed e¤ects, primary complaint indicators, weather indicators, and block group

characteristics. All results are reported with robust standard errors. The �rst regression

includes the entire regression sample, but columns 2 through 6 only include patients

admitted to the hospital. Columns 7 through 9 have smaller sample sizes because of

missing data.

These results show that response times a¤ect the likelihood of being admitted to the

ED. However, conditional on being admitted to the ED, response time does not signi�-

cantly a¤ect health care utilization: the IV estimates of the impact of response time on

the number of ED procedures and total ED expenses are not signi�cantly di¤erent from

zero.28 Response times also signi�cantly a¤ect the condition of the patient as assessed in

the ED. Patients with longer response times are more likely to be considered at high risk

of mortality and to have more severe conditions, as Columns 4 and 5 show. It appears

that response times also a¤ect the choice of hospital; response time is negatively corre-

lated with the distance from the incident to the hospital to which patients are admitted.

The implication is that EMTs and paramedics take patients with longer response times

to closer hospitals, while those patients who have shorter response times are transported

to more distant facilities. This may be because paramedics grant patients less in�uence

over the choice of hospital when they are in worse condition, or paramedics may sim-

ply want to get patients to the closest possible hospital. It is not particularly surprising

parameters" (Dier et al. 1999). In this project, I treat each patient incident as largely independent. I
used the natural log of ED expenditures and the untransformed number of ED procedures as measures
of health care utilization.
28Unfortunately, I do not have a measure of each facility�s "cost to charge" ratio. This ratio, produced

by the Healthcare Cost and Utilization Project, allows researchers to convert hospital charges into
actual hospital costs. Then, they can identify when providers are actually treating patients equally and
"providing the same relative value," but have a di¤erent cost structure, and when, instead, discrepancies
in charges truly represent di¤erences in care (Dier et al. 1999).
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that response times do not signi�cantly a¤ect either health index �suggesting that these

health indices may not capture long-term "damage." Response times also do not a¤ect

the time that EMTs and paramedics spend at the incident scene. In regressions not

reported here, I �nd that response time does not consistently predict medication usage

or treatments. A complete list of the medications and treatments provided to EMS

patients is included in Appendix Table 8.29

A second potential explanation for increasing mortality over time is that patients

who experience initially longer response times are more likely to make additional calls to

EMS and therefore experience longer response times again. I ruled out this mechanism.

Because 39% of EMS calls occur at home, if an initially longer response time causes

damage and also increases the likelihood of making additional EMS calls, then later

EMS calls will likely compound this e¤ect. This mechanism implies that patients with

longer response times experience more subsequent EMS calls, and the hazard of death

conditional on survival for those with initially long response times should be increasing

over time, rather than constant.

I provide evidence to evaluate these claims. First, I created individual identi�ers for

each person who ever appears in the prehospital data set (an individual could appear as

a patient multiple times). Then, I calculated the average number of EMS calls following

the initial call. I �nd that this number is zero for both patients above and below the mean

of the distance from the incident to the provider, suggesting that a mass of so-called

"additional" EMS calls are not responsible for causing increasing damage to patients

farther from agency locations. Second, looking directly at the hazard of mortality for

EMS patients who experienced initially longer response times, even after controlling

for survival from initial periods, there appears to be a continued, but not increasing,

29Given that outcomes for a given individual may be correlated, it is possible that by treating each
regression as an independent test that I may over reject the null hypothesis. Kling and Liebman have
suggested several options for overcoming this problem, including an adjusted Bonferroni procedure,
a Westfall-Young procedure, or running seeming unrelated regressions which allow for errors between
regressions to be correlated (Kling and Liebman 2004).
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impact of longer response times on mortality.30 For example, The IV estimate for the

hazard of mortality in day 2 conditional on survival to day 1 is .1803 (with standard

errors of .0906). The hazard of mortality by day 30 conditional on survival to day two

is .4236 (.1288), while the hazard of mortality by day 90 conditional on survival to day

30 is .3375 (.0952).31 If this explanation were true, the hazard of mortality should be

increasing and the number of subsequent EMS calls for patients with distances to their

providers above the mean should be greater than zero, which is not what I �nd.

8 COST BENEFIT ANALYSIS AND ONE POTENTIAL

EXPLANATION FOR UNDERPROVISION

In this section, I provide a cost-bene�t analysis for reducing response times in the Salt

Lake City metropolitan area.

While there are clear advantages to reducing average response time, there are also

costs. Unfortunately, I do not have cost data for the ambulance agencies within the Salt

Lake City metropolitan area. Even if I did have such data, it is likely that di¤erences

in accounting and budgetary practices would make it very di¢ cult for me to accurately

determine per-agency ambulance costs (Peter Buchard, Naperville, IL, City Manager,

personal communication, August 2006). The marginal cost of reducing response times

between communities is likely to vary with a number of characteristics, including density,

area, tra¢ c, geography, weather and demographic characteristics.32 Lacking the actual

cost data, I assume a constant marginal cost for ambulances within the Salt Lake City

metropolitan area. I use $450,000 as the estimated cost per additional ambulance,

30What I call a hazard here is simply the IV estimate of the impact of the initial response time on
mortality in this period conditional on survival to the previous period.
31The hazard of mortality by day 365 conditional on survival to day 90 is .3320 (.1175) and the hazard

of mortality by day 1460 conditional on survival to day 354 is 1.2389 (.2230).
32These di¤erences in marginal costs (and response times) could also be used to estimate the value

placed on life in di¤erent communities (as in Felder and Brinkmann, 2002). That is not the intent of
this paper, however.
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including crew. In the U.S., Pons estimates the cost of 24-hour sta¢ ng for an additional

ambulance at $400,000 to $500,000 per year (Pons and Markovchick, 2002, Pons at al.

2005).33

I am interested in approximating the basic cost of adding additional ambulances

that would be used to reduce the use of mutual aid by agencies. Mutual aid calls are

common in Utah. The mutual aid system works as follows: when a provider runs out

of ambulance units, that provider contacts a neighbor to answer the call, according to a

previously-de�ned agreement. In 2001, the year for which I have data, I identi�ed 10,887

mutual aid calls out of a total of 109,789 geocoded calls. Most mutual aid calls occurred

in more densely populated parts of Utah around Salt Lake City and Washington County.

Agencies with more ambulances were less likely to use mutual aid (Figures 2 and 3), and

the proportion and number of mutual aid calls decrease in tandem with the number of

ambulances.

The response-time penalty for mutual aid calls is substantial. Mutual aid providers

are much farther away from incidents. In Table 9, I provide summary statistics for

the distribution of response times and distance for mutual aid and non-mutual aid

calls. The average response time for mutual aid calls is 10.5 minutes, but it is only 8.9

minutes for non-mutual aid calls. The distance between the provider and the incident

for mutual aid calls is also much greater than for non-mutual aid calls. In Figure 4,

I show the distribution of response times for mutual aid calls and for non-mutual aid

calls; the distribution of response times for mutual aid calls is clearly shifted to the

right. Figure 5 also shows the distribution of distance between each incident and the

provider answering the call, for both mutual aid calls and non-mutual aid calls. Again,

33Fischer estimates the cost of an additional ambulance in Surrey to be £ 250,000 at 1999 levels,
which in 2007 dollars is approximately $635,000 assuming a 2.061-dollars-per-pound exchange rate and
a Consumer Price Index of 202.4 in 2007 and 164.3 in 1999. In an interesting cost-bene�t analysis
using data from Ontario, Canada, Nichol et al, used an alternate approach, estimating the impact of
increasing unit hours, rather than the addition of an ambulance. Those results, unfortunately, were
speci�c to either a one-tier or two-tier system and so are not relevant to my analysis (Nichol et al
1996b).
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the distribution of distances is shifted substantially to the right for mutual aid calls.

This is consistent with longer response times.

I assumed that by increasing the total number of ambulances in Utah by approxi-

mately 10% (because mutual aid calls constitute 10% of all calls) or 34 ambulances, I

eliminated all mutual aid calls. Average response times can be expected to decrease by

9.5 seconds (10% of the di¤erence in average response times between mutual aid and

non mutual aid calls), at a total cost of $15,300,000 (34 * $450,000).

Now, I directly estimate the survival bene�t in years of a minute decrease in response

times.34 I assume that there are no bene�ts to survival beyond four years after the initial

incident and I decompose the impact of response time on survival into four di¤erent

components. That is,

E(S) = E(SjS < 4)P (S < 4) + E(SjS > 4)P (S > 4)

which suggests that

@E(S)

@RT
=

@E(SjS < 4)
@RT

P (S < 4) + E(SjS < 4)@P (S < 4)
@RT

+
@E(SjS > 4)

@RT
P (S > 4) + E(SjS > 4)@P (S > 4)

@RT

I estimate @E(SjS<4)@RT by regressing survival on response time instrumented with distance

34 Ideally, I would measure the bene�t of reduced response times by gauging their impact on mortality,
emergency department utilization, and morbidity. In particular, I would track the resulting reductions
in later hospitalizations; days of restricted activity; lost days of productive work or productive life years;
and overall patient and customer satisfaction (Pons and Markovchick 2002, Mann, Mullins, MacKenzie,
Jurkovich, and Mock 1999, Bailey and Sweeney 2003). It is possible that reducing response time, and
the total time before patients receive de�nitive care, might have additional e¤ects which I have not
captured here, such as reductions in the within-hospital death rate, rather than simply the overall death
rate. Also, by preventing the "deterioration of condition of the patient," the reduced time-to-treatment
may limit later complications, reduce temporary disability, prevent permanent disability, cut down on
psychological trauma at the scene, and improve the chances of a full recovery. Unfortunately, these
measures are not currently available. (Riediger and Fleischmann-Sperber 1990). In later analyses, I
will incorporate inpatient hospital visits, ambulatory surgery and hospital discharge records. Following
Cutler, Landrum, and Steward (2006), I will use medical utilization after an initial incident as an
indicator for later disability. Unfortunately, I do not have access to subjective patient measures of pain
and su¤ering, life satisfaction, or disability.
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where survival is measured in years from the initial incident and the sample is restricted

to those who survive less than four years after the initial incident.35 I estimate @P (S<4)
@RT

and @P (S>4)
@RT by regressing an indicator for mortality at 4 years on response time in-

strumented with distance. I observe P (S < 4); E(SjS < 4) and P (S > 4) directly in

the data. I assume that a change in response time does not a¤ect the length of sur-

vival conditional on surviving to four years. Finally, because I cannot directly estimate

E(SjS > 4) for my sample, I use life tables produced by the Utah Governor�s O¢ ce

of Planning and Budget to estimate future life expectancies for those patients who sur-

vive more than four years from the initial incident (for whom I have gender and age

information) (State of Utah 2005). Table 10 presents my results.

I �nd that if I assume conservatively that those who survive "beyond" four years

live for exactly 4 years (the minimum possible), an increase in response time of one

minute reduces survival by 23.7 days (.065 years), and an increase in response times of

9.5 seconds reduces total survival by 3.8 days. This corresponds to a change of 758.8

life years, given a sample of over 70,000 patients. This suggests that the per life year

cost of a 9.5 second reduction in response time is ($15,300,000/758.8) $20,169, which is

far less than even the most conservative estimates of the value of a year of life.36 A less

conservative estimate, that is one that assumes the average length of survival for those

who live beyond four years is 43.7 years (based on Utah life tables), suggests a per life

year cost of a 9.5 second reduction in response time of less than $1,390 (almost $20,000

less than the previous estimate). Either estimate of the bene�t of reducing response

times seem to suggest that ambulances are signi�cantly underprovided within Utah.

EMS agencies in Utah may underprovide ambulances for many reasons. I focus on

35The reliability of this estimate depends on the assumption that the error terms from this regression
are nicely behaved. I estimate this regression using three di¤erent approaches (a regular instrumental
variables regression which assumes normally distributed standard errors), an instrumented censored
regression, and an instrumented tobit regression. For ease of presentation, I only present the �rst results
here. However, there were no signi�cant di¤erences between the results for the three methods.
36Even assigning di¤erent values for a year of life for those above 65 and below 25, (approximately

52% of the sample), does not fundamentally a¤ect this conclusion.
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one potential explanation here. In Utah, as in many other states, EMS providers are

required to provide mutual aid to other agencies (personal conversations with agency

directors and Utah Bureau of EMS, 2006). Communities with available resources must

answer mutual aid calls, regardless of the number and extent of these calls. This may

lead to a free-rider problem. If the costs of using mutual aid (higher response times)

are less than the bene�ts (lower costs), then providers will systematically underprovide

ambulances.

In a work in progress, I model the decision of communities to purchase ambulances.

In that paper, I show that providers that behave strategically will choose to buy fewer

ambulances than if mutual aid were not available. They will also choose to buy fewer

ambulances than the socially e¢ cient number of ambulances. Empirically, I cannot

reject the hypotheses that communities behave strategically , and therefore underprovide

ambulances.

This �nding has signi�cant policy implications. It suggests that central planning

of ambulance purchasing may produce welfare improvements, that state governments

may want to subsidize the cost of ambulances, and also that Utah and other states may

want to discourage mutual aid. The assumed value of mutual aid agreements, which are

common in other local public-good contexts such as police and �re services, should be

carefully reconsidered. Given the size of state and local expenditures on police, �re and

Emergency Medical Services (over $105 billion in 2004-5), the �nancial signi�cance of

these mutual aid resource �ows between communities is clearly sizable. The potential

for underprovision is signi�cant (Annual Survey of Government Finances, 2004-5). This

issue warrants additional study.

9 CONCLUSION

In this paper I have resolved an empirical puzzle within the previous literature, which

found only mixed and limited evidence that shorter response times improve outcomes,
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despite policy-makers�long-held assumption that this was true. This is the �rst paper

to clearly demonstrate the importance of response times for patients su¤ering from

non-cardiac conditions, as well as for any demographic subgroups. I propose several

mechanisms through which response times may a¤ect outcomes. I �nd that a mechanism

in which response times determine the extent of damage to the internal organs, increasing

the hazard of death, best explains the data. I provide a cost-bene�t analysis for an

estimated 9.5-second decrease in response times �and I �nd that the anticipated bene�ts

far exceed the costs. Finally, I suggest one potential explanation for this underprovision �

strategic behavior by communities in the presence of mandatory mutual aid agreements.

10 APPENDIX

10.1 APPENDIX A: CONSTRUCTION OF THE DATA

Figure 3A summarizes the relevant data connections.

I standardized prehospital incident address, city, and name records according to U.S.

census conventions (Utah Prehospital Incident Data, 1999-2005). I used ArcMap 9.1

with the StreetMap USA (SDC) address locator, GCS North American 1983 Coordinate

System, and default matching options to identify the latitude and longitude, census block

group, tract, and census place for each incident, EMS agency, and hospital.

To match prehospital incident reports to emergency department reports using proba-

bilistic matching methods (Link Plus), I used these variables: sex, �rst name, last name,

complete name, incident date, hospital number, race, sex, and birth date. I used the

following elements to match prehospital incident reports to mortality records: sex, birth

date, complete name, �rst name, last name, race, sex, injury county, and hospital. In a

few cases, I �lled in data which was missing from a prehospital report with emergency

department or mortality data.

The mortality data includes all deaths in the state of Utah between 1999 and 2005 by
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residents of Utah. Because of agreements with other states, deaths by non Utah residents

within the state of Utah, and deaths by Utah residents outside the state of Utah cannot

be disclosed to outside researchers (Utah Death data, 1999-2005). In appendix C, I

explore the impact of this potential underreporting of deaths on my results.

For the small proportion of prehospital incident reports for which patient zip code

is included, I identify out-of-state residents. I also used the emergency room data which

includes patient zip code to identify patients from outside of Utah (Utah Emergency

Department Encounter Data, 1999-2005).

The emergency room data includes a small number of patients who were subsequently

admitted to the hospital as inpatients (15% of all emergency department admissions).

My tra¢ c data includes hourly vehicle counts from 97 automatic tra¢ c counters

located throughout Utah (Utah Automatic Tra¢ c Counter Data, 1990-2005). Each

tra¢ c counter identi�es the total vehicle �ow every hour in two directions. To get

an average measure of congestion, I combined tra¢ c counts from both directions and

calculated and means by counter-day-hour unit. A more precise measure of tra¢ c would

have identi�ed the actual route of each ambulance, and the tra¢ c counters which were

along this route in the appropriate direction; however, without knowing the starting

location of each ambulance, this would be impossible to do precisely. Such an analysis

would also take me away from the central purpose of this paper. I matched each incident

to the tra¢ c counter which was closest in distance, during the hour which corresponded

to the time when the call was dispatched. I did not �ll in data when no tra¢ c data was

available.

I gathered weather data from hourly data collected from 20 weather stations through-

out the state of Utah (Integrated Surface Hourly Database, 2001). I collapsed over 100

descriptions of current weather into eight basic categories: rain, fog, snow, ice or hail,

mist/haze, drizzle, thunderstorm, or other. I matched each incident to the weather

reading which was geographically closest and which was closest in time after the instant
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of dispatch.

For each of the 29 counties in Utah, I used latitude and longitude coordinates to

identify daily sunset and sunrise times in 2001 (Sunrise/Sunset/Sun Angle Calculator,

2007), which I subsequently merged by incident, county and date with the incident data.

Because actual ambulance location prior to dispatch was unavailable, I used the

agency address provided by the Bureau of EMS. In cases where the agency address was

a post-o¢ ce box, I used the latitude and longitude of the agency zip code as the agency

location. I calculated distance using the spherical law of cosines:

d = acos(sin(lat1).sin(lat2)+cos(lat1).cos(lat2).cos(long2-long1)).R.

I identi�ed tourist locations or Olympic locations using Utah Department of Tourism

attendance rankings and Olympic information provided by the Utah Tourism Industry

(Top 25 Tourist Attractions by Volume 2000, 2002 Winter Olympics 2007).

I geocoded verbal descriptions of the jurisdiction of each valid EMS license as of fall

2006 which were given to me by the Utah Bureau of EMS. An example follows: Beginning

at the Carbon/Utah/San Pete County line, south along the Carbon/San Pete County

line to the Carbon/San Pete/Emery County line; south along the Carbon/Emery County

line, then east along the Carbon/Emery County line to one mile west of Highway 6, then

southeast to Woodside Highway 6 at mile marker 279, then northeast two miles; then

northwest to one mile east of Highway 6 at the Carbon/Emery County line, then east

along the Carbon/Emery County line to the Carbon/Uintah County line, then north two

miles to the Carbon/Sunnyside license line, then west to one mile east of Highway 6, then

northwest to one mile north of Junction SR 123 and Highway 6, then east to one mile

west of East Carbon City limits, then north two miles to one mile northwest of Sunnyside

City limits, then east to the Carbon/Uintah County line, then north along the Green

River to the northeast corner of Carbon County, then west along the Carbon/Uintah

County line and continuing west along the Carbon/Duchesne County line to one mile

East of SR 191; then northeast to one mile east of the summit of Indian Canyon SR 191
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at mile marker 173; then west 2 miles to one mile west of SR 191, then southwest to

Reservation Ridge road, then west along Reservation Ridge Road and White river road

to Soldier Summit, then south from Soldier Summit to the Carbon/Utah County line;

then west on the Carbon/Utah County line to point of beginning.

According to the Utah Bureau of EMS, no areas should have more than one provider

of a given level. Although there were likely to be some changes in agency boundaries

between 1999 and 2006, conversations with a random sub-sample of agency directors

suggested that agency boundaries were stable.

I excluded prehospital reports from the primary analysis if they lacked patient names,

dispatch codes, or addresses, or if they contained variations of **CANCELLED** in the

incident addresses, names, or dispatch codes. I also excluded duplicated prehospital

reports. Table 9A shows how many observations from the original sample were excluded

from the main regression sample and why.

10.2 APPENDIX B: PROBABILISTIC MATCHING

I used the program Link Plus, created by the National Program of Cancer Registries

within the Centers for Disease Control and Prevention, to probabilistically match in-

cident reports with mortality and emergency department reports using formal mathe-

matical models based upon the framework of Fellegi and Sunter (Link Plus 2005, Fellegi

1969). Similar software is commonly used within epidemiology and has previously been

used in economics to link administrative records (Hellerstein, Neumark, and McInerney

2007, Abowd and Vilhuber 2005).

After I cleaned and standardized the elements in both data sets (�rst, for prehospital

and mortality, and second, for prehospital and emergency department) so that the values

of the variables were equivalent, I used the software to match on selected elements.

For the match between the mortality and prehospital data set, these elements were:

sex, birth date, complete name, �rst name, last name, race, sex, injury county, and
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hospital. For the match between the emergency department and prehospital data sets,

these elements were: sex, �rst name, last name, complete name, incident date, hospital

number, race, sex, and birth date. I matched the mortality records to the EMS records

and the emergency department (ED) records to the EMS records. Appendix Figures

1A and 2A show the distribution of matching scores for the ED and mortality matches;

in neither case is there an obvious cut-o¤ point. Therefore, I follow the guidelines

recommended by the CDC and choose a minimum match score between 10 and 15. I

matched 13,103 of 64, 442 mortality records to EMS records (20%) and 66,556 of 668,888

ED records to EMS records (10%).

The software can account for minor mistypings, misspellings, and even missing names

(in the case of maiden versus married names, for example), missing or slightly inaccurate

day or month values for dates. It can assign higher weights to matches of rare values

and can also match on exact terms, equivalent to deterministic methods. Note that

if a patient appeared more than once in the prehospital data, and he or she died, the

mortality record would be matched multiple times. The emergency department record

that is most relevant to each prehospital incident, according to the matching software, is

the one that will be matched. This might mean that a particular emergency department

record is matched to more than one prehospital incident, if the prehospital incidents were

close enough in time and only one emergency department visit resulted from multiple

prehospital incidents. Link Plus allowed me to customize the matching weight on each

variable; to choose the number and type of variables for matching; and to set the score

above which observational matches would be accepted, based on the strength of all of the

variable matches. For a useful introduction and background on probabilistic matching

methods, see Winkler 1995 or Winkler 1999. The m and u parameters and the direct link

number used in these probabilistic matching procedures are available from the author.

However, there may still be mismatches. Deterministic matching methods reduce

the number of Type 1 Errors, or false positives, but these methods increase the number
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of type 2 errors, or missed matches. Probabilistic matches reverse that pattern: they

reduce the number of type 2 errors but increase the number of type 1 errors. I tried

to minimize the number of false positives by standardizing the elements to be merged

in each dataset. To check the quality of the matching algorithm, I visually inspected

a random sample of matches. I re�ned the algorithm until the matches in this random

subsample were satisfactory. I dropped all matched ED reports that bore an admission

date more than one day prior to the incident date and also the small number of matched

death reports that reported a death date more than one day prior to the incident date;

approximately 11 percent of mortality and ED matches. Originally, I checked the num-

ber of matched mortality records against the outcomes in the prehospital records that

listed them as "dead on arrival.�But I later found that prehospital "dead on arrival" re-

ports (which represent less than 1 percent of the sample) were highly inaccurate. In fact,

a large proportion of these patients were later found alive in the Emergency Department

and also had recorded positive vital signs, both �ndings highly unlikely in people who

were dead before they were brought to the hospital. I also interacted the score which

LinkPlus assigned to each match, indicating its strength and reliability, with the mor-

tality indicator variable (Table 7A). In no cases were the results sensitive to the quality

of the match. For the sample of patients who were admitted to the hospital, I used the

emergency department data match score as a weighting variable. Again, these results

were similar to my original speci�cation. Table 8A shows the impact of changing the

minimum match score for the mortality records from 15 to 20, which did not a¤ect the

results substantially. Finally, I also compared the proportion of prehospital calls which

listed a hospital admit as the call outcome and the proportion of calls that I successfully

matched to ED records. There are many legitimate reasons why these would di¤er (for

example, if a patient arrived at the hospital and was not admitted to the emergency

room, or if a patient decided to go to the emergency room through other means later in
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the day or the next day). However, these proportions are consistent.37

10.3 APPENDIX C: MEASUREMENT ERROR

In this section, I discuss several potential sources of measurement error: mismatches

from the probabilistic matching, missing mortality data, censored ED data, missing

prehospital reports, missing variables within the prehospital reports, and misreporting.

Utah non-residents who died in Utah were not included in the mortality data. Utah

residents who died outside Utah were also excluded. To evaluate the size of the bias this

introduced into the mortality outcomes, I estimated the hospital outcomes regressions

excluding all patients identi�ed as either being involved in incidents outside of Utah, or

whose zip codes came from outside of Utah (less than 3 percent of the sample). The

results did not change. Mortality regressions which excluded these same patients (a

very small proportion of the total sample) did not di¤er from the base results, either,

indicating that this is not a severe problem. Finally, the CDC reports the total number

of deaths by residents of Utah by year; less than 2 percent of deaths by Utah residents

in 2004, for example, (approximately 200 deaths) occurred outside the state of Utah

(LCWK9 2004, Utah Death Data 2004). Therefore, given that only 20 percent of deaths

in Utah are preceded by an EMS call, these missing deaths are unlikely to signi�cantly

a¤ect my results.

Current merged ED records only identify the �rst ED incident associated with each

prehospital record (if there is one). I matched only emergency department visits from

2001 to prehospital incidents in 2001. If an incident occurred on December 31st, and

the ED visit occurred on January 1st, I will not have records for it within this data set.

But the average di¤erence in days between ED admission and incident is less than one,

37Note also that John Doe does not appear in mortality records (which only contain actual names)
but does appear in ED and prehospital records. When I excluded patients identi�ed as John Doe (and
various equivalent anonymized names) from the mortality regressions, however, the main results are
una¤ected.
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and less than 1% of prehospital incidents occurred on December 31st, so I am unlikely

to miss many ED reports. The Utah Department of Health is currently constructing

linked ED, Ambulatory Surgery, and Hospital Discharge records, which will allow me

to identify all ED, AS and HD trips within two years for each prehospital incident. I

will use these linked reports to estimate the total charges for all hospital medical care

following each prehospital incident.

Although Utah state law requires that all providers submit reports for each call,

there is no system which audits agencies; there may be many missing prehospital re-

ports. According to the Bureau of EMS, 2001 was a good reporting year. There is no

reason to believe that misreporting or attrition is systematically correlated with incident

characteristics, the agency says.

There are also missing variables. In cases where there were multiple reports of the

same individual at the same incident, I �lled in details that were missing from other

reports. In practice, these �lled-in variables did not a¤ect the results in any way.

Response time may be measured with error: in some cases, responders will record a

10:57 response time as 10 minutes, and in other cases, 11 minutes. This is likely to be

classical measurement error, and will bias the coe¢ cients towards zero; the instrument

should correct for this. The potential for incorrectly-measured in�uential observations is

a possible concern; results from regressions which excluded response time outliers more

than one standard deviation (or two or three) above the mean had e¤ects stronger and

in the same direction as the original speci�cation.

I excluded any reports which are missing values from the regression analysis. Partic-

ularly in the case of outcomes measured at the scene, intermediate health status could

possibly be missing because patients had already died; however, very few patients were

actually dead on arrival. Also, intermediate health indices are available for 83 percent

of patients coded as dead on arrival. This proportion is only slightly lower than that

for the rest of the sample (92%). Around 15,000 addresses could not be geocoded due
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to the limited information available in the administrative data. Only a small share of

observations were missing weather or tra¢ c station data due to equipment problems.

Dispatch code, or the code given by the dispatcher to the paramedic when the call is

dispatched, is only available for 50% of the sample. Injury/illness code is available for

a much higher proportion of the sample, however. Response time is unavailable for a

reasonably high proportion of the sample. Appendix Table 9A shows the impact of these

missing values on the construction of the �nal regression sample.

In addition to matching individual patient-level records, I matched particular inci-

dent reports to hourly weather and tra¢ c data, and sunset and sunrise times. It might

have been possible to simulate weather and tra¢ c at locations between tra¢ c counters,

or to identify the sunset and sunrise time for each day for each precise incident loca-

tion, rather than for each county. These gains in precision, however, seem marginal and

unlikely to a¤ect my results.

In addition, there is no doubt that some of the Utah Bureau of EMS agency bound-

aries overstate or understate the true territory. But the measurement error in these

descriptions is concentrated in the rural parts of Utah, where there are very few resi-

dents and few calls, and so the likely impact of this error is minimal for my analysis.

Most mutual aid calls are not close to the territory borders, so these slight variances are

unlikely to bias my mutual aid estimates signi�cantly.

In the measurement of distance, the assumption of a spherical earth seems to be a

reasonable one. Conveniently, Utah is not located at an extreme of the earth, where this

approximation is likely to be most inaccurate. As a check on the quality of the distance

measures, a small proportion of agencies reported distance from ambulance to incident

and incident to hospital. Where the hospital was identi�ed, the distance from incident

to hospital measured using GIS technology could be directly compared to the distance

measured using the ambulance odometer. This was reasonably accurate. The measure

of the distance from the agency to the scene was positively correlated with the change
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in the odometer of the ambulance that made the trip.

Lastly, in addition to missing dispatch codes, there are a number of dispatch codes

which di¤er from the injury or illness code identi�ed at the scene. While this may

be a sign that dispatch codes were improperly assigned, it may also indicate updating

by the paramedics or EMTs. There are a number of possible explanations for these

discrepancies: the patient or dispatcher may not have initially identi�ed the injury or

illness of highest priority (among many); the patient or dispatcher may have imprecisely

described the primary injury or illness; the person making the call may not have actually

observed the patient�s condition (as in a tra¢ c accident); or the patient�s condition may

have changed between the time of dispatch and moment of the paramedics�arrival at

the scene. This may have implications for paramedics and EMTs �if certain dispatch

codes are more likely to be recategorized or are consistently misrepresented, then they

may need to update their reactions in a Bayesian manner and thereafter respond more

appropriately to these dispatch codes.
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Utah 2001 
Prehospital Sample* Utah Census 2000

US Census 
2000

(mean) (mean) (mean)

Age

Less than 15 0.085 0.266 0.214
15 to 24 0.169 0.198 0.139
25 to 64 0.473 0.451 0.523
65 & over 0.273 0.085 0.124
N=62,982

Gender

Female 0.515 0.499 0.509
N=73,556

Race

White 0.913 0.892 0.751
Black 0.019 0.008 0.123

Table 1: Utah Prehospital Sample Demographic Characteristics

Black 0.019 0.008 0.123
Native Am / Alaskan Native 0.009 0.013 0.009
Asian / Pacific Islander 0.023 0.024 0.037
Other 0.056 0.063 0.079
N=45,164

*Regression sample as defined in Appendix Table 9A.
Sample sizes very because of missing covariates.
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Table 2: Distribution of Patient Complaints for 2001 Utah Prehospital Sample

Complaint Category Proportion of Calls 1 Year Mortality Rate*

Heart, Breathing Problems, Cardiac Arrest 0.159 16.558
Breathing problems 0.079 16.630
Cardiac, respiratory arrest 0.015 55.121
Chest pain 0.058 7.603
Heart problems 0.007 7.313

Stroke, Falls, Fainting 0.178 10.867
Convulsions, seizures 0.044 4.571
Falls 0.077 11.647
Stroke 0.014 23.235
Unconsciousness, fainting 0.043 11.887

Traffic Accident 0.160 1.453
Traffic injury accident 0.160 1.453

Transfer 0.093 15.786
Transfer 0.093 15.786

Trauma 0.133 4.095
Animal bites 0.004 7.395
Assault, rape 0.028 1.737
Burns 0.002 4.706
Carbon monoxide poisoning,inhalation 0.002 3.614
Drowning, diving accident 0.001 11.765
Electrocution 0.000 7.692
Hemorrhage 0.021 9.627
Industrial machinery accidents 0 001 1 149Industrial, machinery accidents 0.001 1.149
Overdose, poisoning, ingestion 0.039 2.512
Stab, gun shot wound 0.005 11.976
Traumatic injuries, specific 0.030 2.561

Other Issues 0.277 10.731
Abdominal pain or problems 0.037 8.960
Allergic reactions, hives,stings 0.006 3.081

Back pain 0.014 7.365
Choking 0.004 5.882
Diabetic problems 0.022 12.024
Eye problems 0.001 4.124
Headache 0.006 2.643
Heat, cold problems 0.001 5.236
Pregnancy, childbirth, miscarriage 0.008 1.040
Psychiatric, behavioral problems 0.038 3.397
Specific diagnosis, chief complaint 0.050 15.194
Unknown problem 0.035 7.668
Diarrhea 0.054 18.843
Ear Problems 0.000 12.500
Fever 0.001 23.077

N=73,706
*Mortality outcomes multiplied by 100.
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Table 3: Incident Characteristics

Variable Mean Median
Standard 
Deviation N

Time from Dispatch to Arrival at Scene (minutes) 8.46 7.00 6.64 73,706

Time from Contact at Scene to Departure from Scene (minutes) 18.27 16.00 11.14 66,813

Time from Departure from Scene to Arrival at Hospital, Home 
(minutes) 12.86 10.00 11.32 65,231

Time from Call to Dispatch Notified (minutes) 0.00 0.00 0.03 1,174

Time from Dispatch Notified to Ambulance Dispatched (minutes) 26.14 3.00 45.03 259

Time from Arrival at Scene to Arrival at Patient (minutes) 13.85 0.00 38.44 845

Distance to Closest Non Mutual Aid Agency (miles) 3.25 1.78 5.74 73,706

Distance to Closest Hospital with ED (miles) 2.01 1.49 2.40 73,706

Distance from Incident Location to Actual Hospital ED if Admitted 
( il ) 7 70 3 03 24 77 51 579(miles) 7.70 3.03 24.77 51,579

Note that the Closest Non Mutual Aid Agency is the closest agency 
which has territory including the incident.
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Table 4:  Outcome Summary Statistics

Outcome Mean
Standard 
Deviation N

Mortality

Death within One Day of Incident* 1.69 12.90 73,706
Death within Two Days of Incident* 1.97 13.91 73,706
Death within 30 Days of Incident* 4.28 20.25 73,706
Death within 90 Days of Incident* 5.95 23.66 73,706
Death within 1 Calendar Year of Incident* 9.77 29.69 73,706
Death within 4 Calendar Years of Incident* 19.01 39.24 73,706

Intermediate Health and Expenditure Measures

Health Index 1* 98.30 6.44 67,510
Health Index 2* 98.33 6.83 67,510
Number of ED Procedures (For ED Patients)* 33.12 85.90 51,607
Total Hospital Expenses (For ED Patients) 2934.34 9841.07 51,607
Ln (Total Hospital Expenses) 6.83 1.43 51,607
Patient at High Mortality Risk (ED personnel)* 5.97 23.69 50,519
Patient Has Severe Injury or Illness (ED personnel)* 7.13 25.74 50,519

* Scaled by 100 for ease of interpretation. 

Sample size varies because not all patients are admitted to the hospital or have
recorded vital signs.
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Table 5: Main Regression Results

Dependent Variable
1 day 

mortality
2 day 

mortality
30 day 

mortality
90 day 

mortality
1 year 

mortality
4 year 

mortality

Reduced Form Regression of 
Mortality on Distance (Coefficient 
on Distance) 0.0150 0.0342 0.0780 0.1112 0.1392 0.2443

(0.0083) (0.0123)* (0.0177)* (0.0200)* (0.0232)* (0.0283)*

OLS (Coefficient on RT) -0.0077 -0.0058 0.0205 0.0276 0.0157 0.0030
(0.0063) (0.0069) (0.0124) (0.0149) (0.0176) (0.0221)

IV (Coefficient on RT) 0.1363 0.3099 0.7080 1.0084 1.2617 2.2151
(0.0754) (0.1139)* (0.1648)* (0.1854)* (0.0209)* (0.2704)*

Dependent Variable

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

1st Stage (Coefficient on 
Distance) 0.1103 0.1103 0.1103 0.1103 0.1103 0.1103

(0.0084)* (0.0084)* (0.0084)* (0.0084)* (0.0084)* (0.0084)*

N 73 706 73 706 73 706 73 706 73 706 73 706N 73, 706 73, 706 73, 706 73, 706 73, 706 73, 706

Note: Sample includes report of shortest response time to scene; distance is that of closest 
non-mutual aid agency. All specifications include block group characteristics, hour, week, week by hour, 
month and injury illness fixed effects.Mortality outcomes are multipled by 100
for ease of coefficient interpretation. Robust standard errors in parentheses. 
See Appendix A for a discussion of the sample.* Indicates significant at 5% level.
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Table 6: Heterogenous Treatment Effects (Varying by Condition)

Dependent  Variable

1 day 
mortality

2 day 
mortality

30 day 
mortality

90 day 
mortality

1 year 
mortality

4 year 
mortality

Coefficient on Interaction of Transfer and 
Response Times (IV) (N=6,848) 0.7674 0.3630 1.1501 3.0258 3.0368 6.4979

(0.5192) (0.4937) (0.9575) (1.4686)* (1.5861) (2.7461)*

Coefficient on Interaction of Traffic Accident 
and Response Times (IV) (N=11,768) 0.1655 0.2075 0.3778 0.5820 0.7231 0.8476

(0.1386) (0.1405) (0.1762)* (0.2068)* (0.2262)* (0.2650)*

Coefficient on Interaction of Stroke, Falls, 
Fainting and Response Times (IV) (N=13,161) 0.0597 0.2313 0.5723 0.8437 0.9205 1.8545

(0.1028) (0.1492) (0.2226)* (0.2752)* (0.3091)* (0.3963)*
Coefficient on Interaction of Heart Problems, 
Breathing Problems, Cardiac Arrest, and 
Response Times (IV) (N=11,779) 0.2238 0.3954 0.8623 1.1369 1.8522 2.1875

(0.3162) (0.3198) (0.3895)* (0.4077)* (0.4792)*  (0.5562)*

Coefficient on Interaction of Other Issues and 
Response Times (IV) (N=20,352) 0.1156 0.5931 1.2905 1.4057 1.7610 3.5234

(0.1164) (0.3228) (0..4600)* (0.4903)* (0.5446)* (0.7089)*

Coefficient on Interaction of Trauma and 
Response Times (IV) (N=9,798) -0.1095 -0.0247 -0.0144 0.0648 0.2305 0.2451

(0.0549) (0.0981) (0.1140) (0.1490) (0.1987) (0.2477)

IV (Coefficient on RT for Base Regression 
(Table 5)) 0.1363 0.3099 0.7080 1.0084 1.2617 2.2151

(0.0754) (0.1139)* (0.1648)* (0.1854)* (0.0209)* (0.2704)*

N 73,706 73,706 73,706 73,706 73,706 73,706

Note: Sample includes report of shortest response time to scene; distance is that of closest 
non-mutual aid agency. All specifications include block group characteristics, hour, week, week by hour, 
month and injury illness fixed effects.Mortality outcomes are multipled by 100
for ease of coefficient interpretation. Robust standard errors in parentheses. 
See Appendix A for a discussion of the sample.* Indicates Significant at 5% level.
First stage Cragg Donald F value equals 15.46.
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Table 7: Heterogenous Treatment Effects (Varying by Gender, Age)

Dependent  Variable

1 day 
mortality

2 day 
mortality

30 day 
mortality

90 day 
mortality

1 year 
mortality

4 year 
mortality

IV (Coefficient on RT) (Men Only) 0.0773 0.3208 0.5080 0.8478 1.0286 1.6626
(N=35,645) (0.1087) (0.1893) (0.2221)* (0.2499)* (0.2808)* (0.3338)*

IV (Coefficient on RT) (Women Only) 0.1797 0.2829 0.8949 1.1610 1.5070 2.8183
(N=37,911) (0.0993) (0.1187)* (0.2416)* (0.2724)* (0.3098)* (0.4318)*

IV (Coefficient on RT) (Age Less Than 15 Only) 
(N=5,328) 0.0831 0.0566 0.0201 0.1759 0.1528 0.1924

(0.1015) (0.1036) (0.1136) (0.1769) (0.1857) (0.2520)

IV (Coefficient on RT) (Age 15-24 Only) 
(N=10,670) 0.0167 0.0261 0.1679 0.5778 0.5881 0.8041

(0.0774) (0.0759) (0.1459) (0.2345)* (0.2519)* (0.3112)*

IV (Coefficient on RT) (Age 25-64 Only) 
(N=29,792) 0.0321 0.2895 0.3657 0.3687 0.4246 0.5579

(0.1247) (0.2397) (0.2648) (0.2730) (0.2990) (0.3356)

IV (Coefficient on RT) (Age Over 65 Only) (N= 
17,192) 0.2232 0.4848 1.0470 1.3183 1.2972 2.5113

(0.2332) (0.2869) (0.5421) (0.6068)* (0.6666)* (0.7035)*

IV (Coefficient on RT for Base Regression 
(Table 5)) 0.1363 0.3099 0.7080 1.0084 1.2617 2.2151

(0.0754) (0.1139)* (0.1648)* (0.1854)* (0.0209)* (0.2704)*

N 73,706 73,706 73,706 73,706 73,706 73,706

Note: Sample includes report of shortest response time to scene; distance is that of closest 
non-mutual aid agency. All specifications include block group characteristics, hour, week, week by hour, 
month and injury illness fixed effects.Mortality outcomes are multipled by 100
for ease of coefficient interpretation. Robust standard errors in parentheses. 
See Appendix A for a discussion of the sample.* Indicates Significant at 5% level.
First stage Cragg Donald F value equals 15.46.
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Table 8: Intermediate Outcomes

Dependent Variable

Indicator for 
Admitted to 
ED**

Natural Log of  
Total Hospital 
Expenditures

Total Number 
of 
Procedures**

High 
Mortality 
Risk (ED)**

Severe 
Injury or 
Illness 
(ED)**

Distance from 
Incident to 
Hospital 
(miles)

Health 
Index 1**

Health 
Index 2**

Time At 
Scene

Reduced Form Regression of Dependent 
Variable on Distance (Coefficient on 
Distance) 0.1622 0.0008 0.0217 0.0627 0.0528 -0.1111 0.6973 0.3796 -0.0077

(0.0358)* (0.0011) (0.0672) (0.0226)* (0.0239)* (0.0273)* (0.4663) (0.6397) (0.0102)

OLS (Coefficient on RT) -0.1568 -0.0027 -0.2332 0.0041 -0.0043 0.0252 0.4957 0.3040 -0.2403
(0.0274)* (0.0010)* (0.0571)* (0.0166) (0.0174) (0.0197) (0.3027) (0.3362) (0.0118)*

IV (Coefficient on RT) 1.4709 0.0067 0.1722 0.4966 0.4182 -0.8843 5.9665 3.2486 -0.0677
(0.3038)* (0.0091) (0.5334) (0.1816)* (0.1904)* (0.2165)* (3.9095) (5.4281) (0.0889)

Dependent Variable

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

1st Stage (Coefficient on Distance) 0.1103 0.1258 0.1258 0.1263 0.1263 0.1256 0.1169 0.1169 0.1140
(0.0083)* (0.0108)* (0.0108)* (0.0110)* (0.0110)*  (0.0108)* (0.0094)* (0.0094)* (0.0088)*

N 73,706 51,607 51,607 50,519 51,607 51,579 67,519 67,519 66,813

Note: Sample includes report of shortest response time to scene; distance is that of 
 closest non-mutual aid agency. All specifications include block group characteristics, hour, week, week by hour, 
month and injury illness fixed effects.** indicates dependent variables are multipled by 100
for ease of coefficient interpretation. Robust standard errors in parentheses. 
See Appendix A for a discussion of the sample.* Indicates Significant at 5% level.
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Table 9: Response Time Statistics

Variable Mean Median
Standard 
Deviation p10 p90

Average Response Time to Non Mutual 
Aid Calls 8.9 7.0 8.3 3.0 16.0

Average Response Time to Mutual Aid 
Calls 10.5 7.0 11.9 3.0 19.0
Average Distance from Incident to 
Answering Agency for Non Mutual Aid 
Calls 6.7 2.5 22.8 0.5 8.8

Average Distance from Incident to 
Answering Agency for Mutual Aid Calls 10.1 4.9 24.0 1.0 14.5

Providers with only 1 Ambulance (N=84). Providers with more than 1 Ambulance (N=53).

Note: All Calculations are made from Utah Prehospital Data (2001) (sample including calls 
outside of Salt Lake City).Note: There are 10,887 mutual 
 aid calls identified and 98,902 non mutual aid calls out of the 109,789 geocoded calls. 
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Table 10: Cost Benefit Analysis 

dE(S|S<4)/dR PR(S<4) E(S|S<4) dPR(S<4)/dR dE(S|S>4)/dR PR(S>4) E(S|S>4) dPR(S>4)/dR dE(S)/dR

-0.025 0.190 1.304 0.022 0.00 0.810 4.0 -0.022 -0.065
-0.025 0.190 1.304 0.022 0.00 0.810 10.0 -0.022 -0.197
-0.025 0.190 1.304 0.022 0.00 0.810 15.0 -0.022 -0.308
-0.025 0.190 1.304 0.022 0.00 0.810 20.0 -0.022 -0.419
-0.025 0.190 1.304 0.022 0.00 0.810 25.0 -0.022 -0.530
-0.025 0.190 1.304 0.022 0.00 0.810 30.0 -0.022 -0.640
-0.025 0.190 1.304 0.022 0.00 0.810 43.7 -0.022 -0.943

Notes: Recall that E(S)=E(S|S<4)(PR(S<4)) + E(S|S>4)PR(S>4). This implies that 
dE(S)/dR=dE(S|S<4)/dR(PR(S<4) + E(S|S<4)*dPR(S<4)/dR + dE(S|S>4)/dR(PR(S>4) + E(S|S>4)*dPR(S>4)/dR
I assume that dE(S|S>4)/dR=0. Given that I don't directly observe 
E(S|S>4), I show the results for several potential values ranging from 4 (all patients who survive 4 years die  at exactly
 4.01 years) to the expected life expectancy for the sample of patients who survive 4 years after the initial incident
calculated from Utah model life tables (43.66). 
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Figure 2:
Probability of Being Stocked Out By Number of
Ambulances

Figure 3:
Total Mutual Aid Calls By Number of Ambulances
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Figure 4:
Distribution of RT For Mutual Aid Calls and 
Non Mutual Aid Calls
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Figure 5:
Distance from Incident to Provider for 
Mutual Aid Calls and Non Mutual Aid Calls
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Appendix Table 1A: Variable Definitions for Standard Regression Specification 

Variable Definition Data Source

Outcome Variable

1 day mortality Equals 100 if death date- incident date is less than or equal to 1 Death Data

2 day mortality Equals 100 if death date- incident date is less than or equal to 2 Death Data

30 day mortality Equals 100 if death date- incident date is less than or equal to 30 Death Data

90 day mortality Equals 100 if death date- incident date is less than or equal to 90 Death Data

1 year mortality Equals 100 if death date- incident date is less than or equal to 1 year Death Data

4 year mortality Equals 100 if death date- incident date is less than or equal to 4 years Death Data

Health Index 1* Intermediate Health Index From Scene: 100 = Good Health Prehospital Report

Health Index 2* Intermediate Health Index From Scene: 100 = Good Health Prehospital Report

Hospital number of procedures* Total number of procedures multiplied by 100  (from ED) ED Report

Ln (Total Hospital Expenses) Natural Log of total Hospital Expenditures (from ED) ED Report

High Mortality Risk (ED) Equals 100 if mortality risk by ED assessed at 3 or 4 where 4 is maximum. ED Report

Severe Injury or Illness (ED)
Equals 100 if ED personnel asssess condition severity as  3 or 4 where 4 is 
maximum. ED Report

Weather characteristics

i
Indicator for Rain during hour of incident at Weather Station which is closest to 
i id t l ti I t t d S f H l D t brain incident location Integrated Surface Hourly Database

fog 
Indicator for Fog  during hour of incident at Weather Station which is closest to 
incident location Integrated Surface Hourly Database

snow
Indicator for Snow during hour of incident at Weather Station which is closest to 
incident location Integrated Surface Hourly Database

icehail  
Indicator for Ice or Hail  during hour of incident at Weather Station which is 
closest to incident location Integrated Surface Hourly Database

misthaze 
Indicator for Mist or Haze  during hour of incident at Weather Station which is 
closest to incident location Integrated Surface Hourly Database

drizzle
Indicator for Drizzle during hour of incident at Weather Station which is closest 
to incident location Integrated Surface Hourly Database

thunderstorm 
Indicator for Thunderstorm during hour of incident at Weather Station which is 
closest to incident location Integrated Surface Hourly Database

other
Other Weather at Weather Station  during hour of incident which is closest to 
incident location Integrated Surface Hourly Database

Block Characteristics

Percentage of Population without Government Assistance Census Block Group Characteristics US Census 2000 Summary File 3

Poverty Rate Census Block Group Characteristics US Census 2000 Summary File 3

Total Area Census Block Group Characteristics US Census 2000 Summary File 3

Density Census Block Group Characteristics US Census 2000 Summary File 3

Total Population Census Block Group Characteristics US Census 2000 Summary File 3

Percentage Rural Census Block Group Characteristics US Census 2000 Summary File 3

Proportion of Population Less than 5 Census Block Group Characteristics US Census 2000 Summary File 3

Proportion of Population 16-24 Census Block Group Characteristics US Census 2000 Summary File 3

Proportion of Population More than 65 Census Block Group Characteristics US Census 2000 Summary File 3
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Incident Characteristics

Minutes Dispatch to Scene Minutes from dispatch of ambulance to arrival at scene: response time Prehospital Report
Distance to Closest Agency Distance from incident to closest eligible, non mutual aid agency (Miles) Prehospital Report/Utah Bureau of EMS
Month of year indicators Month of incident Prehospital Report
Hour of day indicators Hour of day of incident Prehospital Report
Weekend indicator Equals 1 if incident occurred on weekend Prehospital Report
Weekend indicator interacted with hour of day Interaction of hour of day and weekend Prehospital Report

Injury or Illness Category

Abdominal pain/problems Primary Injury Illness as Assessed by EMS Prehospital Report
Allergies/hives/medicine reactions/stings Primary Injury Illness as Assessed by EMS Prehospital Report
Animal bites Primary Injury Illness as Assessed by EMS Prehospital Report
Assault/rape Primary Injury Illness as Assessed by EMS Prehospital Report
Back pain Primary Injury Illness as Assessed by EMS Prehospital Report
Breathing problems Primary Injury Illness as Assessed by EMS Prehospital Report
Burns Primary Injury Illness as Assessed by EMS Prehospital Report
Carbon monoxide poisoning/inhalation Primary Injury Illness as Assessed by EMS Prehospital Report
Cardiac/respiratory arrest Primary Injury Illness as Assessed by EMS Prehospital Report
Chest pain Primary Injury Illness as Assessed by EMS Prehospital Report
Choking Primary Injury Illness as Assessed by EMS Prehospital Report
Convulsions/seizures Primary Injury Illness as Assessed by EMS Prehospital Report
Diabetic problems Primary Injury Illness as Assessed by EMS Prehospital Report
Drowning/diving accident Primary Injury Illness as Assessed by EMS Prehospital Report
Electrocution Primary Injury Illness as Assessed by EMS Prehospital Report
Eye problems Primary Injury Illness as Assessed by EMS Prehospital Report
Falls Primary Injury Illness as Assessed by EMS Prehospital Report
Headache Primary Injury Illness as Assessed by EMS Prehospital Report
Heart problems Primary Injury Illness as Assessed by EMS Prehospital Report
Heat/cold problems Primary Injury Illness as Assessed by EMS Prehospital Report
Hemorrhage Primary Injury Illness as Assessed by EMS Prehospital Report
Industrial/machinery accidents Primary Injury Illness as Assessed by EMS Prehospital Report
Overdose/poisoning/ingestion Primary Injury Illness as Assessed by EMS Prehospital Report
Pregnancy/childbirth/miscarriage Primary Injury Illness as Assessed by EMS Prehospital Report
Psychiatric/behavioral problems Primary Injury Illness as Assessed by EMS Prehospital Report
Specific diagnosis/chief complaint Primary Injury Illness as Assessed by EMS Prehospital Report
Stab/GSW Primary Injury Illness as Assessed by EMS Prehospital Report
Stroke/CVA Primary Injury Illness as Assessed by EMS Prehospital Report
Traffic injury accident Primary Injury Illness as Assessed by EMS Prehospital Report
Traumatic injuries, specific Primary Injury Illness as Assessed by EMS Prehospital Report
Unconsciousness/fainting Primary Injury Illness as Assessed by EMS Prehospital Report
Unknown problem Primary Injury Illness as Assessed by EMS Prehospital Report
Diarrhea Primary Injury Illness as Assessed by EMS Prehospital Report
Ear Problems Primary Injury Illness as Assessed by EMS Prehospital Report
Fever Primary Injury Illness as Assessed by EMS Prehospital Report
Transfer Primary Injury Illness as Assessed by EMS Prehospital Report
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Appendix Table 2A: Basic Specification Controlling For Block Group Fixed Effects

Dependent Variable
1 day 

mortality
2 day 

mortality
30 day 

mortality
90 day 

mortality
1 year 

mortality
4 year 

mortality

Reduced Form Regression of 
Mortality on Distance (Coefficient 
on Distance) 0.0381 0.0608 0.0942 0.0756 0.0364 0.1228

(0.0181)* (0.0281) (0.0364)* (0.0409) (0.0475) (0.0536)*

OLS (Coefficient on RT) -0.0026 -0.0022 0.0236 0.0224 0.0126 0.0081
(0.0072) (0.0079) (0.0141) (0.0166) (0.0194) (0.0241)

IV (Coefficient on RT) 0.9719 1.5489 2.4027 1.9262 0.9289 3.1319
(0.4355)* (0.7150)* (0.9283)* (1.0137) (1.1740) (1.4068)*

Dependent Variable

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

1st Stage (Coefficient on 
Distance) 0.0392 0.0392 0.0392 0.0392 0.0392 0.0392

(0.0097)* (0.0097)* (0.0097)* (0.0097)* (0.0097)* (0.0097)*

N 73 706 73 706 73 706 73 706 73 706 73 706N 73,706 73,706 73,706 73,706 73,706 73,706

Note: Sample includes report of shortest response time to scene; distance is that of closest 
non-mutual aid agency. All specifications include block group fixed effects, hour, week, week by hour, 
month and injury illness fixed effects.Mortality outcomes are multipled by 100
for ease of coefficient interpretation. Robust standard errors in parentheses. 
See Appendix A for a discussion of the sample.* Indicates significant at 5% level.
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Appendix Table 3A: Main Regression Specification - Ln (RT)

Dependent Variable
1 day 

mortality
2 day 

mortality
30 day 

mortality
90 day 

mortality
1 year 

mortality
4 year 

mortality

Reduced Form Regression of 
Mortality on Distance (Coefficient 
on Distance) 0.0150 0.0342 0.0780 0.1112 0.1392 0.2443

(0.0083) (0.0123)* (0.0177)* (0.0200)* (0.0232)* (0.0284)*

OLS (Coefficient on ln(RT)) -0.0917 -0.0389 0.2465 0.3463 0.4487 0.6812
(0.0650) (0.0708) (0.1086)* (0.1299)* (0.1615)* (0.2130)*

IV (Coefficient on ln(RT)) 1.3577 3.0865 7.0474 10.0429 12.5659 22.0616
(0.7505) (1.1291)* (1.6220)* (1.8129)*  (2.0415)*  (2.5830)*

Dependent Variable

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

1st Stage (Coefficient on 
Distance) 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111

(0.0007)* (0.0007)* (0.0007)* (0.0007)* (0.0007)* (0.0007)*

N 73 706 73 706 73 706 73 706 73 706 73 706N 73,706 73,706 73,706 73,706 73,706 73,706

Note: Sample includes report of shortest response time to scene; distance is that of closest 
non-mutual aid agency. All specifications include block group characteristics, hour, week, week by hour, 
month and injury illness fixed effects.Mortality outcomes are multipled by 100
for ease of coefficient interpretation. Robust standard errors in parentheses. 
See Appendix A for a discussion of the sample.* Indicates significant at 5% level.
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Appendix Table 4A: Basic Regression Specification Controlling for Distance to Closest Hospital

Dependent Variable
1 day 

mortality
2 day 

mortality
30 day 

mortality
90 day 

mortality
1 year 

mortality
4 year 

mortality

Reduced Form Regression of 
Mortality on Distance (Coefficient 
on Distance) 0.0146 0.0340 0.0781 0.1106 0.1396 0.2417

(0.0084) (0.0125)* (0.0178)* (0.0202)* (0.0234)* (0.0286)*

OLS (Coefficient on RT) -0.0080 -0.0061 0.0201 0.0268 0.0152 0.0005
(0.0063) (0.0069) (0.0124) 0.0149 (0.0176) (0.0222)

IV (Coefficient on RT) 0.1399 0.3249 0.7462 1.0571 1.3345 2.3099
(0.0801) (0.1214)* (0.1756)* (0.1973)* (0.2226)* (0.2885)*

Dependent Variable

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

1st Stage (Coefficient on 
Distance) 0.1046 0.1046 0.1046 0.1046 0.1046 0.1046

(0.0082)* (0.0082)* (0.0082)* (0.0082)* (0.0082)* (0.0082)*

N 73 706 73 706 73 706 73 706 73 706 73 706N 73,706 73,706 73,706 73,706 73,706 73,706

Note: Sample includes report of shortest response time to scene; distance is that of closest 
non-mutual aid agency. All specifications include block group characteristics, hour, week, week by hour, 
month and injury illness fixed effects as well as distance to closest hospital.Mortality outcomes are multipled by 100
for ease of coefficient interpretation. Robust standard errors in parentheses. 
See Appendix A for a discussion of the sample.* Indicates significant at 5% level.
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Appendix Table 5A: Basic Regression Specification Excluding Transfers

Dependent Variable
1 day 

mortality
2 day 

mortality
30 day 

mortality
90 day 

mortality
1 year 

mortality
4 year 

mortality

Reduced Form Regression of 
Mortality on Distance (Coefficient 
on Distance) 0.0106 0.0375 0.0787 0.0984 0.1262 0.2092

(0.0092) (0.0147)* (0.0201)* (0.0221)* (0.0254)* (0.0308)*

OLS (Coefficient on RT) -0.0070 -0.0047 0.0012 0.0104 0.0091 -0.0241
(0.0075) (0.0080) (0.0117) (0.0143) (0.0176) (0.0231)

IV (Coefficient on RT) 0.0881 0.3121 0.6560 0.8202 1.0518 1.7438
(0.0769) (0.1254)* (0.1733)* (0.1882)* (0.2107)* (0.2589)*

Dependent Variable

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

1st Stage (Coefficient on 
Distance) 0.1200 0.1200 0.1200 0.1200 0.1200 0.1200

(0.0103) (0.0103) (0.0103) (0.0103) (0.0103) (0.0103)

N 66 858 66 858 66 858 66 858 66 858 66 858N 66,858 66,858 66,858 66,858 66,858 66,858

Note: Sample includes report of shortest response time to scene; distance is that of closest 
non-mutual aid agency. All specifications include block group characteristics, hour, week, week by hour, 
month and injury illness fixed effects.Mortality outcomes are multipled by 100
for ease of coefficient interpretation. Robust standard errors in parentheses. 
Transfers are excluded.* Indicates significant at 5% level.
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Appendix Table 6A: Basic Regression Specification - Outcomes Weighted by Quality of Match

Dependent Variable
1 day 

mortality
2 day 

mortality
30 day 

mortality
90 day 

mortality
1 year 

mortality
4 year 

mortality

Reduced Form Regression of 
Mortality on Distance (Coefficient 
on Distance) 0.0041 0.0102 0.0217 0.0298 0.0331 0.0569

(0.0032) (0.0043)* (0.0061)* (0.0067)* (0.0072)* (0.0089)*

OLS (Coefficient on RT) -0.0034 -0.0030 0.0039 0.0059 -0.0013 -0.0114
(0.0021) (0.0023) (0.0040) (0.0049) (0.0055) (0.0066)

IV (Coefficient on RT) 0.0370 0.0929 0.1966 0.2703 0.3001 0.5156
(0.0295) (0.0401)* (0.0571)* (0.0620)* (0.0662)* (0.0885)*

Dependent Variable

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

1st Stage (Coefficient on 
Distance) 0.1103 0.1103 0.1103 0.1103 0.1103 0.1103

(0.0084)* (0.0084)* (0.0084)* (0.0084)* (0.0084)* (0.0084)*

N 73 706 73 706 73 706 73 706 73 706 73 706N 73,706 73,706 73,706 73,706 73,706 73,706

Note: Sample includes report of shortest response time to scene; distance is that of closest 
non-mutual aid agency. All specifications include block group characteristics, hour, week, week by hour, 
month and injury illness fixed effects.Mortality outcomes are multipled by 100
for ease of coefficient interpretation. Robust standard errors in parentheses. 
For discussion of the sample, see Appendix A.* Indicates significant at 5% level.
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Appendix Table 7A: Basic Regression Specification - Mortality Match Scores Above 20

Dependent Variable
1 day 

mortality
2 day 

mortality
30 day 

mortality
90 day 

mortality
1 year 

mortality
4 year 

mortality

Reduced Form Regression of 
Mortality on Distance (Coefficient 
on Distance) 0.0154 0.0348 0.0785 0.1134 0.1397 0.2433

(0.0084)* (0.0123)* (0.0177)* (0.0200)* (0.0230)* (0.0283)*

OLS (Coefficient on RT) -0.0082 -0.0058 0.0217 0.0294 0.0174 0.0044
(0.0063) (0.0068) (0.0123) (0.0148)* (0.0175) (0.0220)

IV (Coefficient on RT) 0.1394 0.3152 0.7115 1.0280 1.2667 2.2058
(0.0757) (.1141)* (0.1646)* (0.1852)* (0.2081)* (0.2694)*

Dependent Variable

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

Response 
Time

1st Stage (Coefficient on 
Distance) 0.1103 0.1103 0.1103 0.1103 0.1103 0.1103

(0.0084)* (0.0084)* (0.0084)* (0.0084)* (0.0084)* (0.0084)*

N 73 706 73 706 73 706 73 706 73 706 73 706N 73,706 73,706 73,706 73,706 73,706 73,706

Note: Sample includes report of shortest response time to scene; distance is that of closest 
non-mutual aid agency. All specifications include block group characteristics, hour, week, week by hour, 
month and injury illness fixed effects.Mortality outcomes are multipled by 100
for ease of coefficient interpretation. Robust standard errors in parentheses. 
For discussion of the sample, see Appendix A.* Indicates significant at 5% level.
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Appendix Table 8A: Treatments and Medications Provided at the Scene

Treatments:
Airway Inserted
Assisted Ventillation
Bleeding Controlled
Blood Tubes Drawn
Cervical Immobilization
CPR
Defibrillation
Endotracheal Intubation
Esophageal Obturator Airway
Extrication Equipment
Heimlich Maneuver
Intraosseous Infusion
IV
MAST Inflated
MAST Not Inflated
NG Tube
OB Care
Oxygen Mask
Oxygen Cannula
Pneumo Tube
Spinal Immobilization
Splinted
Suctioned
Turned on Side
No Treatment Given
Vitals Assessed Monitored
Vitals Unobtainable
Other Assessment/Monitoring
Other Treatments

Medications:
AdenosineAdenosine
Albuterol Sulfate
Aminophylline
Atropine/Atropine sulfate
Baby Aspirin
Benadryl/Diphenhydramine
Bretylol/Bretylium tosylate
Calcium Chloride
Charcoal
Decadron/Hexadrol/Dexamethasone
Demerol/meperidine
Dextrose 5% (D5W)
Dextrose 50%-Glucose (D50W)
Epinephrine 1:1,000/Adrenalin
Epinephrine 1:10,000/Adrenalin
Haloperidol/Haldol
Intropin-Dopamine HCL
Ipecac Syrup
Isuprel HCL - Isoproterenol
Lactated Ringers
Lasix - Furosemide
Luminal - Phenobarbital
Mark I
Midazolam/Versed
Morphine Sulfate
Narcan - Naloxone HCL
Nitrostat - Tri Nitroglycerine
Normal Saline
Nubain
Oral Glucose
Phenergan - Promethazine HCL
Pitocin - Oxytocin
Sodium Bicarbonate
Thiamine
Valium - Diazepam
Xylocaine - Lidocaine - IV Drip
Xylocaine - Lidocaine - Direct IV
Xylocaine 1% - 1% Lidocaine w/o Epinephrineaine
Other Medications
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Appendix Table 9A: Sample Construction

Number of 
Observations

Original Sample 145,764
Duplicates 113
Cancelled Calls Or Name Missing 25,546
Response Time Missing 19,294
Injury Illness Code Missing 4,285
Weather Missing 831
Agency Distance Missing 3,888
Not In Salt Lake City Area 11,024
Block group Characteristics Missing 133
Second or Third Etc. on Scene 6,944

Main Regression Sample: 
73,706

Note: The final regression sample may differ by one or two observations 
depending on the specification.
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Appendix Figure 1A: Distribution of Matching Scores for Mortality Records
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Appendix Figure 3A: Map of Data Connections
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