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Abstract

This paper evaluates the central insight of the Consumption Capital Asset
Pricing Model (CCAPM) that an asset’s expected return is determined by its
equilibrium risk to consumption. Rather than measure the risk of a portfolio
by the contemporaneous covariance of its return and consumption growth —
as done in the previous literature on the CCAPM and the pattern of cross-
sectional returns — we measure the risk of a portfolio by its ultimate consumption
risk defined as the covariance of its return and consumption growth over the
quarter of the return and many following quarters. While contemporaneous
consumption risk explains little of the variation in observed average returns
across the Fama and French 25 portfolios, ultimate consumption risk at a horizon
of three years explains a large fraction of this variation.

Keywords: Consumption Capital Asset Pricing Model, Expected returns, Equity
premium, Consumption risk, Consumption smoothing
JEL Classification: G12, G11, E21

∗For helpful comments and discussions, we thank Yacine Ait-Sahalia, John Campbell, John
Cochrane, Albina Danilova, Pierre-Oliver Gourinchas, Sydney Ludvigson, Monika Piazzesi, Christo-
pher Sims, Motohiro Yogo, two anonymous referees and seminar participants at University of Chicago,
Princeton University, and the NBER Asset Pricing workshop, July 2003. For financial suport,
Parker thanks the National Science Foundation grant SES-0096076, and the Sloan Foundation. We
thank Kenneth French for making the Fama and French portfolio data available on his web page:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

1



1 Introduction

The natural economic explanation for the large differences in expected returns across

assets in the U.S. stock market is differences in risk. According to canonical economic

theory, the risk of an asset is determined by its covariance with consumption growth.

But observed differences in the covariance of returns and contemporaneous consump-

tion growth across portfolios do not explain observed differences in expected returns.1

The asset pricing literature has largely concluded that differences in expected returns

are not due to differences in risk to consumption, but instead arise from time-variation

in effective risk aversion or quite different models of economic behavior.

In this paper, we study the Fama and French size and book-to-market portfolios

and re-evaluate the central insight of the Consumption Capital Asset Pricing model

(CCAPM) that an asset’s expected return is determined by its equilibrium risk to

consumption. Rather that measure the risk of a portfolio by the contemporaneous

covariance of its return and consumption growth — as done in the previous literature

on the CCAPM and the cross-sectional pattern of expected returns — we measure the

risk of a portfolio by its ultimate risk to consumption, defined as the covariance of

its return and consumption growth over the quarter of the return and many following

quarters.

Measuring risk based on the ultimate impact of a return on consumption has several

appealing features. First, this approach maintains the assumption that the primary

determinant of utility is the level of flow consumption. This assumption has a long

history of relatively successful application in economics. Second, this approach is

consistent with the canonical CCAPM, in that, if the CCAPM were true, the ultimate

risk would correctly measure the risk of a portfolio. Finally and most importantly, the

ultimate risk may be a better measure of the true risk of an asset if consumption is slow

to adjust to returns. If consumption responds with a lag to changes in wealth, then the

1See Mankiw and Shapiro (1986), Breeden, Gibbons, and Litzenberger (1989), Campbell (1996),

Cochrane (1996) and Lettau and Ludvigson (2001b).
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contemporaneous covariance of consumption and wealth understates or mismeasures

the true risk of a portfolio. Ultimate consumption risk on the other hand can provide

the correct measure of risk under several extant explanations of slow consumption

adjustment, such as some models of a) measurement error in consumption, b) costs

of adjusting consumption, c) nonseparability of the marginal utility of consumption

from factors such as labor supply or housing stock, which themselves are constrained

to adjust slowly, or d) constraints on information flow or calculation so that household

behavior is “near-rational.” The ultimate risk provides a robust measure of the risk of

a stock in that it remains to some extent agnostic about the particular optimization

problem faced by households. This robustness allows us to evaluate the economic

insight that consumption risk should determine expected returns even though the

true stochastic discount factor — the complete model of household saving and portfolio

choice — has to date escaped discovery.

Our main finding is that, ultimate consumption risk can largely explain the cross-

sectional pattern of expected portfolio returns. While the covariance of each portfolio

and contemporaneous consumption growth has almost no predictive power for ex-

plaining the pattern of expected returns across portfolios, at a horizon of three years

the ultimate risk to consumption explains from 44 to 73 percent of the variation in

expected returns across portfolios, depending on specification. The performance of

ultimate consumption risk as a linear one-factor model rivals that of the Fama and

French (1993) three-factor model and the Lettau and Ludvigson (2001b) three-factor

model, two important extant linear factor models that have been used to price the

expected returns in the Fama and French portfolios. Despite the fact that we focus on

a horizon at which consumption growth performs well, our results are unlikely to be

due to chance. There are statistically significant differences across portfolios in their

co-variation with consumption growth. And in a Monte Carlo experiment, repeated

estimation on datasets with no serial correlation in consumption growth rarely finds

that ultimate consumption risk prices the portfolios much better than contemporane-

ous consumption risk.
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What drives our results? The success of ultimate consumption risk comes from

the fact that the excess returns on the Fama and French portfolios predict future

consumption growth. Both the excess return of small firms less large firms and the

excess return of high value stocks less low value stocks predict consumption growth,

and their joint significance peaks at the horizon of three years, where the fit of the

consumption model is best.

The serial correlation of consumption growth gives the ultimate consumption risk

stochastic discount factor a clear business cycle pattern. Consumption falls through

recessions, so that the stochastic discount factor is highest right before and at the

start of recessions. Value stocks, and to a lesser extent small stocks, have high aver-

age returns because they pay off poorly before and early in recessions, and ultimate

consumption risk captures this.

Despite the strong relationship between ultimate consumption risk and expected

returns, ultimate consumption risk does not provide a complete accounting of relative

expected returns. The model has 26 moments and 3 parameters, and GMM tests of

overidentification reject the contemporaneous and ultimate consumption risk models.

We note that consumption risk prices the expected return on the smallest size and

value portfolio very poorly, suggesting that issues of liquidity or the inability to short

may be important elements missed by consumption risk alone.

We build on the large literature testing consumption-based asset pricing models,

but in particular, our main results are most closely related to Brainard, Nelson, and

Shapiro (1991) which shows that the longer the horizon of the investor, the better

the CCAPM performs relative to the CAPM, and to Bansal, Dittmar, and Lundblad

(2001) which shows that the cointegrating relationship between consumption and divi-

dends explains a large share of the variation in average returns. We work directly with

returns rather than long-run movements in dividends and estimate structural parame-

ters. More recently, Piazzesi, Schneider, and Tuzel (2003), Lustig and Van Nieuwer-

burgh (2003), and Yogo (2003) price expected returns using durable consumption or
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housing consumption in conjunction with nondurable consumption.2 Finally, we are

closely related to the literature on the stochastic properties of aggregate consumption

following aggregate market returns (Daniel and Marshall (1997), Kandel and Stam-

baugh (1990), Parker (1999), Ludvigson and Steindel (1999), Parker (2001), Dynan

and Maki (2001), Gabaix and Laibson (2001), Piazzesi (2001), and Bansal and Yaron

(2000)).

The balance of the paper is organized as follows. The next section uses the optimal-

ity condition for the portfolio choice of a representative agent to derive the ultimate

consumption risk version of the CCAPM, then briefly discusses alternative models

for which ultimate consumption risk and not contemporaneous risk would determine

expected returns. The third section describes our data and the fourth our economet-

ric methodology. The fifth section contains our main results on fit, significance, and

implied risk aversion for the ultimate risk to consumption. The sixth section lays out

what lies behind the main findings — the predictability of consumption growth and the

business cycle pattern of our stochastic discount factor — and presents the results of a

simulation exercise that demonstrates that our finding are unlikely to be due merely

to chance. The seventh section of the paper compares a one-factor linear model of

ultimate consumption risk to the fit and the performance of the models of Fama and

French (1993) and Lettau and Ludvigson (2001b). A final section concludes.

2 Expected returns and consumption risk

The CCAPM first developed by Rubinstein (1976) and Breeden (1979) prices assets

based on their equilibrium risk to consumption. A representative household allocates

its resources among consumption and different investment opportunities so as to max-

2We suspect that all models work well because, due to the fact that durable goods are in-part

assets, expenditure levels on durable goods and the prices of durable goods react more quickly to news

than nondurable consumption, and so signal or predict future movements in nondurable consumption.
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imize the expected present discounted value of utility flows from consumption. When

wealth is allocated optimally across assets, the marginal investment in any assets yields

the same expected increase in future utility, so that for any excess return,Re
i,t+1,

Et

£
u0 (Ct+1)R

e
i,t+1

¤
= 0 (1)

where u (·) is the period utility function, Ct+1 is consumption and i indexes excess

returns.

We can write this equation as a model of expected returns by dividing by u0 (Ct),

and using the unconditional expectations operator and the definition of covariance, to

yield

E
£
Re
i,t+1

¤
= −Cov

£
mt+1, R

e
i,t+1

¤
E [mt+1]

(2)

where mt+1 =
u0(Ct+1)
u0(Ct) is the stochastic discount factor. Relative expected excess

returns on different portfolios are determined by their relative covariances with the

stochastic discount factor, and thus by their relative co-movement with consumption.

A portfolio that has greater consumption risk in equilibrium has greater expected

return, since consumption and marginal utility are inversely related.

According to equations (1) and (2) differences in risk across portfolios are due to dif-

ferences in their contemporaneous co-movement with consumption. This maintains

several assumptions not directly related to portfolio choice: the agent must perfectly

smooth expected marginal utility over time, marginal utility must be determined only

by consumption, and the level of consumption must be costless to adjust. Under

these conditions, the impact of any return is reflected instantly and completely in

consumption.

Instead of maintaining these assumptions, we evaluate the central insight of the

CCAPM — that consumption risk determines average returns — while allowing for the

possibility that consumption is slow to respond to returns.

Consider the following alternative model of expected returns, derived under the

assumption that the CCAPM is literally true. Use the consumption Euler equation
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for the risk-free rate between t+ 1 and t+ 1 + S,

u0 (Ct+1) = Et+1

h
δRf

t+1,t+1+Su
0 (Ct+1+S)

i
, (3)

to eliminate u0 (Ct+1) from equation (1) to yield

Et

£
mS

t+1R
e
i,t+1

¤
= 0 (4)

where mS
t+1 =

Rf
t+1,t+1+Su

0(Ct+1+S)
u0(Ct) . Reorganizing as before, expected returns are given

by

E
£
Re
i,t+1

¤
= −Cov[mS

t+1,R
e
i,t+1]

E[mS
t+1]

. (5)

where we refer to −Cov £mS
t+1, R

e
i,t+1

¤
for large S as ultimate consumption risk. A

portfolio’s risk is measured by the covariance of its return at t+ 1 and the change in

marginal utility from t to t+1+S, where S is the horizon over which the consumption

response is studied.

Why measure risk and price expected returns using ultimate consumption risk,

as in equation (5), instead of contemporaneous consumption risk, as in equation (2)?

If households choose their portfolio at time t, and the impact of this choice and the

realized return on stocks takes time to appear in observed consumption data, then

the long-term measure provides a better measure of the equilibrium risk of different

stocks than does the contemporaneous measure. In general, there are three classes of

reasons why consumption might be slow to respond: measurement error in consump-

tion, mismeasurement of marginal utility due to nonseparabilities with other factors,

and slow adjustment of marginal utility itself.

First, aggregate consumption data may measure consumption responses with delay,

even if the true consumption response were instantaneous. As demonstrated byWilcox

(1992), serially correlated measurement error is induced in aggregate consumption

data by sampling error, imputation procedures, and definitional difficulties involved

in constructing measures of real aggregate consumption from monthly survey data on

nominal sales at retail establishments. Second, the marginal utility of consumption

may be altered by fluctuations in such factors as hours of leisure, habits, housing stock,
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durable consumption, etc.3 If these factors are stationary and covary with returns,

their impact can be similar to transitory measurement error, confounding inference

using equation (2) while ultimate consumption risk still determines returns. Third,

consumption may be slow to adjust to wealth shocks due to the presence of constraints

on information flow or direct costs of adjusting consumption.4

3 Data

We use the quarterly returns on the Fama and French (1992) (FF) 25 portfolios

{Ri,t+1}25i=1 and construct excess returns as these returns less the return on a three-
month Treasury bill, Rf

t,t+1. We study these returns because the FF portfolios have a

large dispersion in average returns that is relatively stable in subsamples, and because

they have been used extensively to evaluate asset pricing models. These portfolios are

designed to focus on two features of average returns: the size effect — firms with small

market value have on average higher returns — and the value premium — firms with

high book values relative to market equity have on average higher returns.

More specifically, the FF 25 portfolios are the intersections of 5 portfolios formed

on size (market equity, ME) and 5 portfolios formed on the ratio of book equity to

market equity (B/M). Data on portfolio returns are available monthly from July 1926

to December 2002. We denote a portfolio by the rank of its ME and then the rank

3An example that drops expected utility theory is given by Restoy and Weil (1998), which shows

that under Kreps-Porteus-Epstein-Zin preferences, expected returns are priced by the covariance of

the return with contemporaneous consumption growth plus a factor proportional to the covariance

with revisions to future consumption growth.
4For examples of the second type of model see Eichenbaum, Hansen, and Singleton (1988), Startz

(1989), Abel (1990) and Flavin (2001). For examples of the third type of model see Caballero (1995),

Lynch (1996), Marshall and Parekh (1999), Alvarez, Atkeson, and Kehoe (2000), Gabaix and Laibson

(2001). We provide more detail on these arguments in Parker and Julliard (2003).
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of its B/M so that the portfolio 15 is the smallest quintiles of stocks by ME and

the largest quintile of stocks by B/M . To match the frequency of consumption data,

we convert returns to a quarterly frequency, so that Ri,t+1 represents the return on

portfolio i during the quarter t+ 1.

For consumption, we use real (chain weighted) personal consumption expendi-

tures on nondurable goods per capita from the National Income and Product Ac-

counts. Except where noted, we make the standard “end of period” timing assump-

tion that consumption during quarter t takes place at the end of the quarter, so that

Cov
£
m0

t+1, R
e
i,t+1

¤
is calculated using NIPA consumption in t + 1 relative to t and

returns during t + 1. We make this choice mostly because under this convention the

entire period that Ct covers is contained in the information set of the agent before

Re
i,t+1, so that as we increase S we omit no covariance of consumption and returns.

The alternative timing convention, used by Campbell (1999) for example, is that con-

sumption occurs at the beginning of the period, so that, using NIPA dates, one aligns

m0
t+2 with R

e
i,t+1. For comparison, for S = 0, we also report results for this alternative.

All returns are deflated by the same deflator as consumption.

The sample of returns that we use is limited by the availability of consumption

data to the second quarter of 1947 to the fourth quarter of 1999. The sample of returns

stops at the end of 1999, so that we can allow up to 4 years of consumption growth

matched to a return (S = 15) without altering the sample of returns that we study as

we vary S. That is, we use all available (not preliminary) consumption data, from the

first quarter of 1947 to the fourth quarter of 1999 plus S quarters, which is the third

quarter of 2003 when S = 15.

4 Estimation methodology

We estimate the model for different horizons (S) by choosing the parameters to make

the pattern of expected excess returns based on consumption risk as close as possible
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to the observed pattern of average returns. We parameterize the stochastic discount

factor by assuming that the utility function exhibits constant relative risk aversion

with risk aversion parameter γS

mS
t = Rf

t,t+S (Ct+S/Ct−1)
−γS

and estimate the parameters µS, γS, and αS for each S by GMM using the 26 × 1
empirical moment function

g (Re
t , Ct+1+S, Ct−1;µS, γS, αS) =

 Re
t − αS125 +

¡
mS

t − µS
¢
Re
t

µS
mS

t − µS

 (6)

where Re
t is the 25× 1 vector whose ith element is Re

i,t. Equation (5) implies that the

moment function satisfies the 26 moment restrictions

E [g (Re
t , Ct+1+S, Ct−1;µS, γS, αS)] = 0 (7)

at the true parameter values. For inference, we rely on the asymptotic distributions

for GMM, assuming the time dimension is becoming infinite and the maximum S is

fixed.5

Basing inference on equation (5) rather than equation (4) allows different models

(different S) to be evaluated using a similar criterion. For any stochastic discount

factor, the difference between the empirical and theoretical moments are pricing errors:

the extent to which the expected return predicted by the model does not equal the

observed average excess return.6 Thus the units of these errors are independent of the

choice of stochastic discount factor.
5We construct the 26 × 26 covariance matrix of the moments using the Newey and West (1987)

procedure with S+1 cross-correlations in the t dimension, to be conservative about statistical uncer-

tainty. We find very similar results either fixing the cross-correlations at 4 for all horizons or using

the VARHAC procedure.
6More precisely, these are errors in expected return. However, since they are all scaled by the

mean of the stochastic discount factor, they are proportional to pricing errors, and we maintain this

terminology.
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By including the parameter αS rather than imposing αS = 0, we separately eval-

uate the ability of the model to explain the equity premium and the cross-section of

expected stock returns. αS measures the extent to which the model underpredicts the

excess returns of all FF portfolios by the same amount. That is, it measures the extent

to which the model has an equity premium puzzle. If we omitted αS, then we might

incorrectly conclude that ultimate consumption risk was only weakly related to ex-

pected returns across portfolios when in fact ultimate consumption risk was “merely”

not consistent with the average excess return of all portfolios. In fact, many poten-

tial explanations of the equity premium — such as limited participation, differential

taxation of stocks and bonds, liquidity demand for treasury bills, and changing regu-

lation of asset markets — can be consistent with consumption risk pricing the expected

returns among stocks, but not between stocks and Treasury bills.7

We report estimates both from GMM with a prespecified weighting matrix and

from efficient GMM (iterated to convergence). The pre-specified weighting matrix is a

diagonal matrix that places weight one on the first 25 moments and very large weight

on the last moment.8 This estimator has three advantages over efficient GMM. First,

given this weighting matrix, these estimates match the mean of the stochastic discount

factor, and minimize the sum of squared pricing errors on the FF portfolios, giving

each portfolio equal weight. Thus this choice of weighting matrix forces the model

to try to explain the size effect and the value premium. Efficient GMM on the other

hand minimizes the sum of squared pricing errors on weighted combinations of the

7We checked that the inclusion of α does not drive our results by defining excess returns relative

to portfolio 33. α = 0 is not rejected, and we reach the same main conclusions, with the exception

that we are unable to evaluate the consistency of the fitted model with the equity premium.
8The weight of the last momement is chosen large enough that significant variation in the weight

does not change the parameter estimates. This ensures that our findings are not due in any way to

misestimating the mean of the stochastic discount factor as we increase S. Yogo (2003) shows the

importance of including the last moment.
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portfolios, focussing on linear combinations of returns that have low variance, and often

ignoring the value premium and/or size effect if they are “hard” to price. In practice,

efficient GMM prices rather unusual combinations of portfolios, with extreme long and

short positions. Second, because GMM with a pre-specified weighting matrix tries to

price the same portfolios as one varies S, measures of fit and specification tests are

more comparable across different models (different S) than for efficient GMM.9 Third,

GMM with a prespecified weighting matrix has superior small-sample properties (see

for example Ferson and Foerster (1994), Hansen, Heaton, and Yaron (1996), and Ahn

and Gadarowski (1999)).

For our estimates using the prespecified weighting matrix, we follow Hansen and

Jagannathan (1997) and Jagannathan and Wang (1996), and evaluate the models’

performance using the Hansen and Jagannathan (HJ) distance and its p-value.10 The

appendix contains the details of this test statistic.

5 Consumption risk and expected returns

This section asks whether consumption risk explains the cross-sectional variation in

expected returns on different portfolios of stocks. First, does consumption risk explain

a large share of the variance of average returns — is consumption risk economically

significant? Second, is consumption risk statistically significant? Third is consumption

risk a complete explanation of expected returns— do tests of overidentification reject

the model?

Our estimates provide two additional pieces of information about the model. First,

we estimate the risk aversion of the representative investor. This is a structural pa-

9See Cochrane (2001), chapter 11.
10We present the HJ distance rather than the first-stage J-test because we find the former to

be more numerically stable (the latter involves a difficult matrix psuedo-inversion). As seen in the

Tables, the HJ test and the efficient J-test give tend to agree.
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rameter and should be consistent with behavior under risk in other economic en-

vironments. Second, our estimates of αS measure the extent to which the relative

consumption risk of different portfolios is consistent with the average excess return on

all portfolios.

We begin by estimating the model using the prespecified weighting matrix. The

first row of Table 1 present the results for the contemporaneous CCAPM (horizon

S = 0) using the “start of period” timing convention for consumption growth that

aligns (Ct+2/Ct+1)
−γ with Re

i,t+1, while the second row reports results using the “end

of period” timing convention that aligns aligns (Ct+1/Ct)
−γ with Re

i,t+1. The contem-

poraneous CCAPM performs poorly in four ways.

First, contemporaneous consumption risk is not an economically significant deter-

minant of the cross-section of expected returns. The first column displays the percent

of the variation in average returns explained by the fitted model, given by the cross-

sectional R2.11 Consumption risk explains only 3 or 4 percent of the cross-sectional

variation in average returns. Second, given the estimated levels of contemporaneous

consumption risk, the average return is far too large. The estimated intercept is statis-

tically significant, and implies that the average excess return on a FF portfolio exceeds

that implied by its contemporaneous consumption risk by roughly 9 or 12 percent per

year.12

Third, the model is rejected by the data. The fourth column presents the HJ

distance and the probability that one would err in rejecting the model based on this

distance, that is the p-value of a specification test based on this distance. The HJ

11This is a “standard” R2 calculated as if we had done a nonlinear regression of the consumption

covariances on the average returns: R2 = 1 − V ar
³
ET [R

e
i ]− R̂e

i

´
/V ar (ET [R

e
i ]) where ET [xt] :=

1
T

PT
t=1 xt and R̂e

i = α̂S + CovT
£
m̂S
t+1, R

e
i,t+1

¤
/m̂S = α̂S +ET

£¡
m̂S
t − µ̂S

¢
Re
i,t

¤
/µ̂S .

12This is consistent with the well-documented poor performance of the CCAPM in explaining the

excess return on the market (Grossman and Shiller (1981) Hansen and Singleton (1982), Mehra and

Prescott (1985)).
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distance would be the square root of a weighted average of the squared pricing errors

if we did not include a moment for the mean of mS
t+1. Since we do, this interpretation

of the HJ distance as a measure of average pricing error is not strictly correct, however

in this case this interpretation is not misleading. The expected return based on the

fitted model is off by (roughly) 0.37 percent per quarter for the “typical” portfolio.

Despite the low fit of the model, contemporaneous consumption risk is statistically

significant in explaining expected returns across portfolios. Given the differences in

the contemporaneous consumption risk across portfolios, the point estimate of the

risk aversion required of the representative agent to rationalize the spread in average

returns is near 20. A Wald-type test treating the GMM estimator as an extremum

estimator rejects the restriction that γ = 0 at very high levels of significance (p-value

less than 10−15; not shown in Table 1).13 The large standard errors on risk aversion are

due to the fact that the GMM objective function is quite flat in γ near the estimate

and for larger γ, but becomes increasingly steep as γ → 0.

The remaining rows that display GMM estimates with the prespecified weighting

matrix show that, contrary to the result for contemporaneous risk, consumption risk

measured after consumption has had time to adjusts to returns explains a significant

share of the variance in average returns. As the horizon over which consumption ad-

justment is measured increases, the economic importance of consumption risk rises up

to S = 11 where ultimate consumption risk explains 44% of the variance in average

returns across portfolios. This is in fact the smallest peak explanatory power across

specifications that we explore: ultimate consumption risk explains one half to three

quarters of the variation for alternative specifications (Tables 3 and 5). The explana-

tory power of consumption risk is lower for S ≥ 12, a feature discussed subsequently.
For now, we analyze the explanatory power of ultimate consumption risk at three

years (S = 11). Figure 1 plots the predicted and average returns of different portfolios

for the contemporaneous and ultimate consumption risk measures. The horizontal

distance between a portfolio and the 450 line is extent to which the expected return

13The test follows Hayashi (2000), pages page 489-90 and equations (7.4.11) and (7.4.9).
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based on fitted consumption risk (on the horizontal axis) differs from the observed

average return (on the vertical axis). For S = 0, there is almost no relation between

predicted and average returns. For S = 11, the model fits most portfolios quite well,

with the exception of the small firms (denoted 11, 12, . . ,15), particularly the smallest

size and book-to-market portfolio (11) which should have a much greater expected

return based on its consumption risk. For all but six of the twenty five portfolios (12,

13, 32, 33, 43, 53), the pricing error is smaller for S = 11 than for S = 0.

Despite pricing small, low-value firms poorly, there is still substantial improvement

in nearly all value and size categories in moving from S = 0 to S = 11. Table 2 shows

the square root of the average squared pricing error for each size and book-to-market

quintile at each horizon. The pricing errors are smaller at S = 11 for every group

of portfolios except the middle book-to-market portfolios (B3). For these portfolios,

the pricing error associated with contemporaneous consumption risk is the smallest

of the portfolio groups, and the observed increases in the pricing error from S = 0

to S = 11 is smaller in magnitude than all but one of the decreases in pricing errors

in Table 2. For small firms, which have the largest pricing errors at both horizons,

predicted expected returns are half a percent per year closer to average returns for

ultimate consumption risk compared to contemporaneous risk.

In addition to a greater economic role for ultimate consumption risk relative to

contemporaneous risk, the statistical significance of mS
t rises as S increases to 11

(again, not shows in Table 1). While γS = 0 is always strongly rejected, the χ2

statistics testing this null hypothesis increases by more than two orders of magnitude

from S = 0 to S = 11.

Returning to the left half of Table 1, despite the economic significance of ulti-

mate consumption risk, the data reject than this single factor is the only determinant

of expected returns. The p-values on the distance tests reject the model for all S.

However, as can be inferred from comparing the distance statistics across rows, the

p-values, while extremely low, rise up to S = 11. Figure 1 showed that portfolio 11

is the most poorly priced, suggesting that the missing element in the CCAPM may
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be an account of the costs of short-selling or the thinness of the market (see D’Avolio

(2002) and Lamont and Thaler (2003)).

It is also worth noting that, as we increase the horizon, there is an improvement

in the extent to which the model underpredicts all excess returns. While the intercept

remains statistically significant — so that there remains an equity premium puzzle —

the magnitude of the puzzle is reduced.14 Finally, as S rises initially, estimated risk

aversion declines, although it rises again to levels around 20 when the fit of the model

is greatest (horizons around three years) and becomes greater still for longer horizons.

When we re-weight the portfolios (moments) efficiently, ultimate consumption risk

still performs best at S = 11 in terms of its economic significance in explaining the

expected returns on the original portfolios. Estimated risk aversion is significantly

lower (more plausible) at all horizons and is estimated more precisely. Otherwise,

our conclusions using efficient GMM estimates remain quite similar to those using

first-stage GMM.

The balance of the paper demonstrates the robustness and source of our main

finding that ultimate consumption risk does a better job than contemporaneous con-

sumption risk of pricing expected returns. Section 6 explains what lies behind the

success of ultimate consumption risk, shows that this result is unlikely to be due only

to chance, and addresses whether there is a “best” horizon or S. Section 7 linearizes

our model and compares its performance to two existing successful linear pricing mod-

els. Before turning to these results however, we show that not only is this result robust

to some variations in data, but it also is typically stronger in alternative specifications.

We consider four alternative ways of estimating the importance of consumption

risk. In all cases, ultimate consumption risk explains more of the cross-section of

expected returns than in our baseline specification. The patterns of findings with

14There is already significant evidence that large S does not “solve” the equity premium puzzle

in aggregate consumption data (Daniel and Marshall (1997), Kandel and Stambaugh (1990), Parker

(2001), Gabaix and Laibson (2001), and Piazzesi (2001)).
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horizon are similar to that of Table 1, so we limit our reporting to contemporaneous

consumption risk and horizons near S = 11.

First, much previous work has focussed on a shorter time period than we analyze

in our baseline results.15 Panel A of Table 3 shows the results of estimating our model

on a sample of returns that starts in the third quarter of 1963, a starting period set

to match that of Lettau and Ludvigson (2001b). In this sub-period, the pattern of

coefficients and fit tell a similar story, except that ultimate consumption risk does even

better at explaining expected returns. Around 60 percent of the variation in expected

returns is explained by consumption risk over a horizon around three years at a level

of risk aversion around 30. And the fitted model overstates the average return on all

portfolios by less than in the baseline sample.

Second, we measure consumption risk using total consumption instead of non-

durable consumption. Ait-Sahalia, Parker, and Yogo (forthcoming) argue that the

consumption risk of equity is understated by NIPA nondurable goods because it con-

tains many necessities and few luxury goods. The usual concern with using total

consumption is that it contains expenditures on durable goods instead of the theoret-

ically desired stock of durable goods. But expenditures and stocks are cointegrated.

The long-term movement in expenditures following an innovation to equity returns

also measures the long-term movement in consumption flows.

Panel B of Table 3 shows that using total consumption risk in place of nondurable

consumption risk leads to broadly similar conclusions. Ultimate consumption risk

using total consumption fits the cross-section of expected returns slightly better than

nondurable consumption, finding slightly higher risk aversion in the first-stage GMM

estimates and slightly lower risk aversion using the efficient procedure.

Third, we consider a slightly different set of returns: the equal-weighted Fama and

15The FF portfolios had, and no longer have, the shortcoming that the sample of firms changed

significantly starting in 1963 due to limited availability of the book value of common equity prior to

1962.
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French 25 portfolios. As shown in Panel C, ultimate consumption risk does an even

better job of explaining the cross-sectional pattern of expected returns of these (albeit

similar) portfolios. Not only is over two thirds of the variation in expected returns

explained, but estimated risk aversion and fit are more stable between first-stage and

efficient GMM.

Fourth, we use ultimate consumption risk to price long-horizon returns. That is,

instead of substituting the consumption Euler equation for the risk-free rate into the

usual optimality condition for portfolio choice, we substitute the consumption Euler

equation for the excess return, giving the condition

Et

h
(Ct+1+S/Ct)

−γSQt+1+S
τ=t+1 R

e
i,τ

i
= 0.

Ex ante, we expect this model to perform worse, since to the extent that consumption

responds slowly to returns (or events correlated with returns), this model does not

include the consumption response to events that occur near t + 1 + S. Panel D of

Table 3 shows that in fact we find a similar fit for some horizons for this model. Pricing

long-horizon expected returns, we find much higher levels of risk aversion than in our

baseline model and the efficient GMM estimates are less consistent with the first-

stage estimates and highly unstable across horizons. The model is also very strongly

rejected. That said, the model does quite well in terms of fit.

Having shown that the ultimate risk to consumption is a significant explanator of

the cross-sectional pattern of expected returns, we now ask how and why.

6 What is going on?

This section demonstrates the following.

Ultimate consumption risk does a better job of pricing the portfolios than con-

temporaneous risk because the returns on the FF portfolios predict future consump-

tion growth. The risk-free interest rate in the discount factor plays almost no role.

Consumption is close to a Martingale. But because the contemporaneous covariance
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between returns and consumption growth is so small, a small amount of predictability

of consumption growth, in the right pattern across assets, leads to a large increase in

the relationship between consumption risk and expected returns with S.

Moreover, these results are unlikely to be due to chance. There are statistically

significant differences across portfolios in their co-variation with consumption growth.

And in a Monte Carlo experiment, repeated estimation on datasets with no serial

correlation in consumption growth rarely finds that ultimate consumption risk prices

the portfolios much better than contemporaneous consumption risk.

The serial correlation of consumption growth gives the ultimate consumption risk

stochastic discount factor a clear business cycle pattern. Consumption falls through

recessions, so that the stochastic discount factor is highest right before and at the

start of recessions. Thus, value stocks, and to a lesser extent small stocks, have high

average returns because they pay off poorly before recessions.

Finally, we take up the question of whether there is a correct or best horizon

of consumption adjustment S to measure ultimate consumption risk. Based on the

theoretical motivation for our measure, it is reasonable to select the “best horizon”

by increasing S until one no longer adds more signal than noise to the covariances

of returns and consumption growth. Arguably, such a criterion leads one to select

S = 11. But our results do not hinge on the exact S.

To demonstrate these claims, log-linearize mS
t+1 and assume the approximation

that the risk-free rate is constant and equal to the discount rate (δRf = 1 in equation

(3)), so that equation (5) can be written in terms of consumption growth.16

E
£
Re
i,t+1

¤ ≈ γCov
£
ln (Ct+1+s/Ct) , R

e
i,t+1

¤
= γ

SX
s=0

Cov
£
∆ ln (Ct+1+s) , R

e
i,t+1

¤
. (8)

Any expected excess return depends on the sum of covariances of the return with

16The assumption that the risk-free real interest rate equal the discount rate omits only a small

factor, (1− γE [ln (Ct+1+s/Ct)])
−1. Evaluated at the estimated γ̂S , this factor equals 1.04 at S = 0

and 1.15 at S = 11.
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current and future consumption growth rates. If consumption growth were a Martin-

gale, then contemporaneous consumption risk and ultimate consumption risk would

perform equivalently at pricing the FF portfolios.

We focus on the size and value premia rather than trying to describe and infer the

relationship between all 25 excess returns and consumption growth. We use the two

excess returns constructed by Fama and French (1993) that capture these premia: the

excess return on a portfolio containing stocks of firms with high ratios of book value

to market equity relative to a portfolio of firms with low book value to market equity

(“high minus low” denoted HML), and the excess return on a portfolio containing

stocks of small firms relative to a portfolio of large firms (“small minus big” denoted

SMB). These are two of the three factors in the Fama and French three-factor model

studied in Section 7.

To begin, we examine the predictive power of these size and value excess returns

for current and future consumption growth. The first column of results in Table 4

shows the fit of a regression of HMLt+1 and SMBt+1 on contemporaneous and future

consumption growth, ln (Ct+1+S/Ct), for different S. These returns jointly explain

1.78 percent of the variation in contemporaneous consumption growth (S = 0). As we

increase S, the variance of the dependent variable increases (the last column of Table

4). Despite this, the fit of the regression nearly doubles over the first four quarters.

That is, over the first year, future consumption growth adds to the dependent variable

more “signal” — movement of consumption correlated with past returns — than “noise”

— innovations to consumption not predicted by either excess return. The share of

consumption growth explained by the size and value excess returns is above the S = 0

level for all horizons up to 12.

To formally test the null hypothesis that these two portfolios do not predict con-

sumption growth, we run separate “reverse” regressions — regressing future consump-

tion growth, ln (Ct+1+S/Ct+1), first onHMLt+1 and then onto SMBt+1. These specifi-

cations make inference simpler and sharper: under the null that there is no correlation

between the return and future consumption growth, the residual of the regression
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inherits the time series properties of the returns and so has no significant serial corre-

lation. The coefficients on future consumption growth display different patterns with

S for HML and SMB, but both coefficients are typically positive. For the regression

onto HMLt+1, the only statistically significant horizon is consumption growth over

the three years after the return (t + 1 to t + 12). For SMB, future consumption

growth is not statistically significant at any horizon, although it is close at horizons

around one year. At its peak, future consumption growth explains 1.47 percent of the

variation in HML,and 2.23 percent of the variation in SMB, relative to 0.15 percent

and 1.11 percent respectively at S = 0.17

In terms of joint significance (column 4), the significance level lies between 15 and

30 percent from S = 3 to 9, and then drops to the 10 percent level and then the 5

percent level at S = 11, and rises significantly thereafter. While these results may

seem surprising to those who think of consumption as close to a Martingale, several

papers have documented that past aggregate returns predict consumption growth,

from Hall (1978) to the subsequent analyses of Fama (1981), Daniel and Marshall

(1997) and the papers cited in the Introduction.18

Moving from testing to point estimation, Panel A and Panel B of Figure 2 display

the partial correlations of HMLt+1 and SMBt+1 with ∆ lnCt+1+S, and two stan-

dard error bands. Relative to the contemporaneous correlations, there is significant

17These shares of variance explained by consumption growth are relatively large. For comparison,

Lettau and Ludvigson (2001a) demonstrate that a variable based on the ratio of consumption to

wealth, denoted cay (see Section 7), predicts aggregate excess returns well. cay explains only 0.5

percent of the variance of HML and 0.3 percent of SMB.
18Consumption growth also does not appear to be a univariate Martingale difference sequence. If

consumption growth were a Martingale, the variance in the last column of Table 4 would increase

linearly in S, which it does not. Over the first year, the increases in variance are 0.71, 0.86, 1.00, and

0.90, all greater than the initial variance of 0.64. But starting at two years, the increases are smaller,

0.50, 0.51, 0.39, 0.55, 0.64, 0.60 for S = 8 to 13.
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correlation between these excess returns and future consumption growth. The contem-

poraneous correlation between HML and ∆ lnC is very close to zero, economically

and statistically. The correlation between HML and future consumption growth rates

however is typically positive and larger, until S = 12, and is statistically significant at

S = 8. The correlation between SMB and contemporaneous consumption growth is

significantly larger than for HML, and the correlation remain positive until S = 8.

Panels C and D display the cumulative covariances between consumption growth

and each excess return, which are the covariances on the right-hand-side of equation

(8). The covariance of long-horizon consumption growth and HML is roughly zero

until S = 6 and at S = 11 the covariance becomes borderline significant. For SMB,

the covariance again rises with horizon over the first two years and then declines.

We can use equation (8) and the covariances of Figure 2 to quantify the impact

of including future consumption growth in consumption risk. The mean of HML is

0.81 percent per quarter and the mean of SMB is 0.39 percent per quarter. Thus, the

contemporaneous consumption covariances imply a coefficient of relative risk aversion

that is 69.5 using SMB and one that is negative using HML (although very close to a

large positive number). Adding future consumption growth, by S = 6, both measures

are positive and risk aversion based on SMB is 18.6, nearly 1/4 that estimated by

contemporaneous consumption risk. At a horizon of S = 11, the implied levels of risk

aversion are 45.0 and 25.6 respectively.

The fact that long-horizon consumption growth is predictable by HML and SMB

also makes it very unlikely that our main findings presented in the previous section are

spurious. That is, Table 4 and Figure 2 demonstrate that the differences in ultimate

consumption risk across size and value portfolios are statistically significant. Table 1

does not merely relate average returns to covariances that have a pattern of noise that

happens to help the model fit the data.

We checked this concern further with a Monte Carlo experiment, drawing ran-

dom sample paths of consumption growth and using these to price the FF portfolios.

Keeping the returns data, we generate 1, 820 artificial data sets by randomly selecting
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consumption growth rates for 1 to T from the observed sample of consumption growth

rates. We then estimate our model for S = 0 to 15 on each data using GMM with the

prespecified weighting matrix.

First, how likely would we be to find a fit like that in Table 1 if consumption

growth were truly independent over time? Based on our simulation, the probability

that γS > 0 and the fit is 44 percent or larger (as in Table 1) for any consumption model

(S ∈ [0, 15]) is one in five; for a fit of 60 percent of larger (Table 3) the probability
is 4.4 percent. But we also find γS > 0 for all S and a hump-shaped pattern of fit.

Considering the former, the probability that we find γS > 0 for all S and R2 ≥ 44%
(60 percent)for some S is 6.5 percent (1.8 percent).

Second, how likely would we be to find an increases in fit like that in Table 1 if

consumption growth were truly independent over time? To answer this question, we

discard samples in which γ̂ ≤ 0 for S = 0, leaving 977 samples in which the sign of the
contemporaneous correlation between returns and consumption growth matches that

in the actual data. Only 4.91 percent of the simulations estimate γ̂S > 0 for all S and

an increase in fit of 41 percent or more from S = 0 to any S ∈ [1, 15]. To check that
the presence of some large R2 at S = 0 are not driving this results, we limit the R2

at S = 0 to a range similar to that of Tables 1 and 3 by dropping simulations in the

top and bottom 25 percent of the distribution of fit at S = 0, so that all simulations

have R2 ∈ [0.026, 0.244] at S = 0. Figure 4 shows that in these simulations, there is
no tendency for the consumption model to fit expected returns better as the horizon

increases. In these simulations, the probability that γ̂S > 0 for all S and R2S increases

by at least 41 percent from S = 0 to any S ∈ [1, 15] is 7.53 percent (36 out of 478
simulations), or 3.96 percent if we do not restrict ourselves to cases with γ0 > 0. It

is also the case that the simulated results show little correlation in R2 across horizon,

which is not penalized in these probabilities. We conclude that while of course our

results could be due to chance, this is not likely.19

19Parker and Julliard (2003) reports another check on the results. Kan and Zhang (1999), with a

simulation exercise, show that “useless” factors can appear statistically significant, at least when the
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The serial correlation of consumption growth has a strong business cycle pattern,

and it is this that prices expected returns. Figure 3 displays the estimated stochastic

discount factors for S = 0, for S = 11, and for S = 11 assuming that the risk-

free rate is constant. The Figure also shows, as shaded regions, the NBER recession

dates. While consumption growth at S = 0 has little visible business cycle pattern, at

S = 11, the series is clearly related to the business cycle. Consumption falls around

recessions, so that the stochastic discount factor is highest right before and at the start

of recessions. Ultimate consumption risk prices expected returns on the FF portfolios

because value stocks, and to some extent small stocks, pay off relatively poorly before

and at the start of recessions, when consumption enters a period of decline.

Figure 3 also makes clear the small role played by the risk-free real interest rate in

our stochastic discount factor. That is, our emphasis in this section on consumption

growth alone is not misleading. This point also comes through in the next section

and, in more detail, in Parker and Julliard (2003).

To conclude this section, can one choose a “best” horizon of consumption ad-

justment at which to measure ultimate consumption risk? On the one hand, if con-

sumption is slow to adjust for the reasons outlined above, then larger S are preferred

since they allow a longer horizon for consumption adjustment. The fact that the

economic importance of consumption risk varies with horizon is evidence against the

basic CCAPM used in section 2, and evidence in favor of a modified model in which

consumption exhibits slow adjustment for some reason. This suggests that one would

like to choose S as large as possible. On the other hand, as S increases, the noise

Fama and MacBeth methodology is applied to a misspecified model. If a factor is spurious, its signif-

icance tends to be reduced by firm characteristrics (Jagannathan and Wang (1996) and Jagannathan

and Wang (1998)). Using Fama-Macbeth estimation and a linearized model, ultimate consumption

risk remains significantly related to returns, and more significantly than contemporaneous consump-

tion risk, when we include as factors two different asset characteristics – size and book to market

value — and these factors are insignificant in three out of four specifications.
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in mS
t+1 increases. Noise in a factor is irrelevant asymptotically, but it decreases the

accuracy of estimation in any finite sample. For larger S, the noise in mS
t+1 is greater

because we do not observe Et+1

£
mS

t+1

¤
, and all innovations to consumption between

t+ 1 and t + 1 + S are included as noise in our stochastic discount factor.20 Closely

related, for larger S, our sample is effectively shorter because there is more correla-

tion over time in GMM residuals, leading to less precision in estimated covariances.21

Thus, we do not want to choose S too large.

These arguments suggest that the best horizon has a large signal and little noise

in measured covariances between the discount factor and returns. As discussed above,

the penultimate column of Table 4 speaks to this issue. The statistical significance

of the covariances of HML and SMB with long-horizon consumption growth peaks

at S = 11, and declines substantially thereafter.22 Parker and Julliard (2003) analyze

all 25 portfolios and reach a similar conclusion. They compute, for each S, the aver-

age statistical uncertainty in consumption beta’s estimated from a linearized ultimate

consumption risk model (β̂i,S) relative to the total cross-sectional variance of con-

sumption beta’s: 1
25

P25
i=1

dV ar ³β̂i,S´ / 1
25

P25
i=1

³
β̂i,S − 1

25

P25
i=1 β̂i,S

´2
. The numerator

is a measure of the average noise in β̂i,S and the denominator is a measures of the

total observed signal plus noise across β̂i,S. Statistical uncertainty in the estimated

βi,S remains roughly constant relative to the total variance from S = 0 to 11 and

is substantially larger for larger S. On these grounds, one might choose to measure

ultimate consumption risk in this sample at S = 11.

But tables 1, 3, and 5 show that for S close to three years, the conclusions one

20Any construction of Et+1

£
mS
t+1

¤
would still contain noise and, potentially more importantly

would omit signal — true slow adjustment of consumption — from our factor.
21There is also a reason to keep the maximum S small and not include larger values of S in our

reported results. A larger maximum S implies a shorter time series of available returns to price.
22This is also true in a regression of ln (Ct+1+S/Ct) onto both returns, correcting for serial correla-

tion. Figure 2 however shows that this pattern differs by size and value, and based on the correlations

between consumption and SMB alone, one would choose a lower “best” S.
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reaches are quite similar. In all specifications and samples that we have analyzed,

the exact choice of S does not drive our inference on structural parameters, in that

estimates are similar for models (S) near the selected model, but typically S = 11

maximizes the model’s fit.

7 Comparison with other linear factor models

In this section, we compare the performance of a linear version of our ultimate con-

sumption risk model to the linear asset pricing models of Fama and French (FF) and

Lettau and Ludvigson (LL).

Fama and French (1992) and Fama and French (1993) show that a three-factor

model explains a large fraction of the cross-sectional variation in expected returns in

the FF portfolios. The factors are the excess return on the market (denoted Rm),

and the two excess returns capturing the size and value premia already discussed,

HML and SMB. Lettau and Ludvigson (2001a) argues that the budget constraint of

the representative household implies that consumption, income and wealth should be

cointegrated and then shows that the deviation of these variables from their long-run

relationship (the error-correction term in the three variable vector autoregression) is

a good predictor of market returns. Lettau and Ludvigson (2001b) shows that this

variable, denoted by cayt, consumption growth (∆ lnCt+1), and their interaction pro-

vide a three-factor model that does as well in explaining the cross-section of expected

returns as the FF three-factor model.

To make ultimate consumption risk into a linear model comparable to these models,

we follow LL and apply a first-order log-linear approximation to the utility function

to yield

mS
t = Rf

t,t+S − γSR
f
t,t+S ln (Ct+S/Ct−1) .

This is then a two-factor model with factors Rf
t,t+S and Rf

t,t+S ln (Ct+S/Ct−1t, ). We

do not impose the model’s restriction on the coefficient on Rf
t,t+S. However, to em-
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phasize that the covariance of returns and consumption growth is pricing returns, and

that the risk-free interest rate is doing very little, we also report results that maintain

the assumption that the risk-free real interest rate is constant, making our model a

one-factor model in which the stochastic discount factor is simply long-horizon con-

sumption growth.

Each model says that the expected return on any portfolio is the weighted sum of

the covariance of the return and each factor. Denote the vector of factors by ft+1, so

ft+1 = (cayt,∆ lnCt+1, cayt∆ lnCt+1)
0 in the LLmodel, ft+1 =

¡
Rm
t+1, SMBt+1, HMLt+1

¢0
in the FF model, and ft+1 =

³
Rf
t+1,t+1+S ln

Ct+1+S
Ct

, Rf
t+1,t+1+S, 0

´0
in the contempora-

neous and ultimate consumption risk models. Let b= (b1, b2, b3)
0 be the vector of

coefficients on the factors. Following Yogo (2003), we estimate the FF and LL models

by GMM, using the 28× 1 empirical moment function

g (Re
t , ft+1;α, µ, b) =

·
Re
t − α125 +Re

t (ft − µ)0 b
ft − µ

¸
where µ now denotes a 3× 1 parameter vector. Under the null that the model prices
expected returns, the theoretical moment restriction E [g (Re

t , ft+1;α, µ,b)] = 0 holds

for the true (α, µ0, b0) ∈ R7. As in our basic estimation, the difference between the
fitted moment and zero is a measure of the mispricing of an expected return, and

we include an intercept that allows all excess returns to be mispriced by a common

amount. Finally, we estimate the consumption risk model with time-varying Rf by

imposing µ3 = b3 = 0 and omitting the last moment; we estimate the model with a

constant Rf by imposing µ2 = µ3 = b2 = b3 = 0 and omitting the last two moments.23

We present results for the subsample analyzed by Lettau and Ludvigson (2001b)

and the focus of Fama and French (1993).24 The first row of Panel A of Table 5

23As a prespecified weighting matrix, we use an identity matrix, resetting the diagonal entries for

the moments E [ft − µ] = 0 to very large numbers so that the point estimates are identical to those

from the Fama and MacBeth (1973) procedure.
24Parker and Julliard (2003) presents similar results for the longest sample in which data for all

three models is available.
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reports, the fit, estimated intercept and coefficients, and HJ distance and p-value

for the FF three-factor model. The second row of results reports the same set of

statistics for the LL three-factor model. The remaining rows report results for the

contemporaneous CCAPM and the ultimate consumption risk model for S from 9

through 14 quarters. For these models, we also present the implied coefficient of

relative risk aversion: γ̂S = b̂1µ̂2,S

³
1 + b̂1µ̂1,S

´−1
for the model with time-varying Rf

and γ̂S = b̂1
³
1 + b̂1µ̂S

´−1
for the model without.

The two main points of Table 5 are 1) that the ultimate consumption risk model

with Rf constant, a single-factor model, fits expected returns nearly as well as the

three-factor models of LL and FF, and 2) that the ultimate consumption risk two-factor

model actually fits expected returns slightly better than the LL and FF models.25 The

explanatory power of the FF, LL, and ultimate risk to consumption models are all

economically significant, fitting 67 percent, 64 percent, and 55 to 70 percent of the

variation in expected returns respectively.26 The contemporaneous CCAPM performs

poorly.

Long-horizon consumption growth also implies lower levels of the estimated inter-

cept; the LL and FF models perform less well on this dimension. Finally, the ultimate

consumption risk model fits with quite low levels of estimated risk aversion. Efficient

GMM estimates are all well below ten.

Figure 5 graphs the pricing errors for each portfolio, for the four main models.

All models besides the contemporaneous CCAPM do quite well at fitting expected

returns.
25The coefficient on the risk-free real interest rate (b2) should be one over the mean of the stochastic

discount factor, 1/ (µ̂2 − γµ̂1). This restriction is not rejected for any model with S > 9. It is rejected

for S from 2 to 5 using the pre-specified weighting matrix and for S from 2 to 9 using efficient GMM.
26In these cases, the HJ distance measure is sometimes not approximately an average pricing error.
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8 Conclusion

This paper analyzes the Fama and French portfolios and measures their riskiness by

their ultimate risk to aggregate consumption. When investors are allocating their

portfolios efficiently, differences in expected returns on assets should be explained

by differences in the equilibrium risk of each marginal investment to the utility of

investors. We show that while the covariance of each portfolio and contemporaneous

consumption growth does not explain the pattern of average returns across portfolios,

the ultimate risk to consumption explains a large fraction of the variation in average

returns. The fit of our model recast as a linear one-factor model rivals that of the

three-factor model of Fama and French and that of the three-factor model of Lettau

and Ludvigson. These conclusions are robust to several variations in assumptions.

In sum, this paper confirms one of the central insights of the CCAPM — that

consumption risk is an important determinant of average returns across stocks. This

finding raises several questions. First, does the ultimate risk to consumption explain

differences in expected bond returns or differences in expected returns over time?

Parker (2003) shows that contemporaneous consumption risk is negatively related to

time-variation in expected returns and ultimate consumption risk is positively related.

Second, estimates of the risk aversion of the representative household are still larger

than the authors find completely plausible. Parker (2001) uses data on the consump-

tion of households that actually hold stock, and shows that the ultimate consumption

risk of stockholders and the average premium on equity imply levels of risk aversion

less than ten. Thus it may be the case that the ultimate consumption risk of different

portfolios for stockholders is even better explanator of the cross-section of expected

returns.
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Appendix: The Hansen and Jagannathan distance

This appendix extends the HJ distance test to the case of moment conditions that

are non-linear in the parameters, by extending Theorem 3 of Jagannathan and Wang

(1996). Let θ = (µS, γS, αS) and wt = (Re
t , Ct, Ct−1). The HJ distance and its sample

analog are given by

Dist (wt, θ) =

q
E [g (wt; θ)]

0 ŴE [g (wt; θ)] (A.1)

DistT (wt, θ) =

r
min
{θ}

gT (wt; θ)
0 ŴgT (wt; θ)

where gT (wt, θ) =
1
T

TP
t=0

g (wt, θ) . If the weighting matrix Ŵ is optimal in the sense

of Hansen (1982), then T [DistT (wt, θ)] is asymptotically distributed as a χ2(M −
P ),where M is the number of moment restrictions and P the number of parameters.

For any positive definite matrix Ŵ
p→ W that is not the efficient weighting matrix,

the distribution of the test statistics is non-standard.

Theorem 1 Let {wt} be ergodic stationary and let bθ be the GMM estimator defined
as the minimizer of equation (A.1) where Ŵ converges in probability to some symmet-
ric positive definitive matrix W. Suppose that the model is correctly specified in that
E[g(wt, θ0)] = 0M holds for some θ0 ∈ Θ. Suppose that (i) the parameter space Θ is
a compact subset of RP , (ii) g (wt, θ) is continuous in θ for all wt, (iii) g (wt, θ) is
measurable in wt for all θ ∈ Θ, (iv) E [g (wt, θ)] 6= 0M for all θ 6= θ0 in Θ, and (v)
E [supθ∈Θ kg (wt, θ)k] <∞. Suppose further that
(1) θ0 is in the interior of Θ
(2) g (wt, θ) is continuously differentiable in θ for any wt,

(3)
√
TgT (wt, θ0)

d→ N

µ
0, Ω
(M×M)

¶
, where Ω is positive definite,

(4) (local dominance condition on ∂g(wt,θ)
∂θ0 ) E

·
sup
θ N

°°°∂g(wt,θ)∂θ0

°°°¸ <∞ for some neighbor-

hood N of θ0,
(5) G

(M×P )
= E

h
∂g(wt,θ0)

∂θ0

i
is of full column rank.

Let

A = Ω
1
2W

1
2

·
IM −

³
W

1
2

´0
G (G0WG)

−1
G0W

1
2

¸³
W

1
2

´0 ³
Ω

1
2

´0
(A.2)

where Ω
1
2 and W

1
2 are the upper-triangular matrices from the Choleski decomposition

of Ω and W, and IM is a M-dimensional identity matrix. Then, A has exactly M −P
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nonzero eigenvalues, which are positive and denoted by λ1,..., λM−P and the asymptotic
sampling distribution of the Hansen and Jagannathan distance is

T
h
DistT

³
wt, θ̂

´i2 d−→
M−PX
j=1

λjvj as T →∞

where v1,..., vM−P are independent χ2 (1) random variables.

Proof: The first order condition of the minimization problem is

GT

³
wt, θ̂

´0
ŴgT

³
wt, θ̂

´
= 0 (A.3)

where GT

³
wt; θ̂

´
= 1

T

TP
t=0

∂g(wt,θ̂)
∂θ0 . Since g (wt, θ) is continuously differentiable, we can

apply the Mean Value Theorem

gT
³
wt, θ̂

´
= gT (wt, θ0) +GT

¡
wt; θ̄

¢ ³
θ̂ − θ0

´
(A.4)

where θ̄ is a mean value lying between θ̂ and θ0, and substitute into equation (A.3)

θ̂ − θ0 = −
µ
GT

³
wt, θ̂

´0
ŴGT

¡
wt; θ̄

¢¶−1
GT

³
wt; θ̂

´
ŴgT (wt, θ0) .

From equation (A.4), the sample analog of the moment function is

gT
³
wt, θ̂

´
=

"
IM −GT

¡
wt; θ̄

¢µ
GT

³
wt, θ̂

´0
ŴGT

¡
wt; θ̄

¢¶−1
GT

³
wt; θ̂

´
Ŵ

#
gT (wt, θ0) .

which, in the definition of the HJ-distance, gives

T
h
DistT

³
wt, θ̂

´i2 d−→ Z 0
h
W −WG (G0WG)

−1
G0W

i
Z as T →∞ (A.5)

where Z is an M-dimensional vector of mean-zero normal random variables, Z ∼
N (0M ,Ω) . Let z ∼ N (0M , IM) so that Z =

³
Ω

1
2

´
z. Substituting into equation (A.5)

yields

T
h
DistT

³
wt, θ̂

´i2 d−→ z0Az

where A is defined in equation (A.2). Since

IM −
³
W

1
2

´0
G (G0WG)

−1
G0W

1
2
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is symmetric, idempotent and has traceM−P , we know that it has rankM−P . This
implies that the rank of A is also M − P . As a consequence, A has exactly M − P

positive eigenvalues, denoted by λ1,..., λM−P . Then, there exist a diagonal matrix Λ

and an orthogonal matrix H such that A = H 0ΛH where Λ = diag {λ1,..., λM−P , 00P}
and 0P is a P -dimensional vector of zeros. Let x = Hz, then x ∼ N (0M , IM), and we

have

T
h
DistT

³
wt, θ̂

´i2 d−→ x0Λx =
M−PX
j=1

λjx
2
j .

Setting vj = x2j completes the proof.

We estimate the matrix A by

Â = Ω̂
1
2 Ŵ

1
2

·
IM −

³
Ŵ

1
2

´0
Ĝ
³
Ĝ0ŴG

´−1
Ĝ0Ŵ

1
2

¸³
Ŵ

1
2

´0 ³
Ω̂

1
2

´0
where Ĝ = GT

³
wt, θ̂

´
and Ω̂ is a consistent estimate of Ω. We estimate λ1,..., λM−P

by the positive eigenvalues of Â. Although T
h
DistT

³
wt, θ̂

´i2
has a non-standard

distribution function, we can still consistently compute the p-values of the computed

statistic to test the null hypothesis that the stochastic discount factor is correctly

specified.

Define

u ≡
M−PX
j=1

λjvj

where u has the unknown probability distribution function ψ (u) . Let {vij} i =

1, ..., T ∗, j = 1, ...,M − P be T ∗ (M − P ) independent random draws from a χ2 (1)

distribution. We can construct a set on independent samples, {ui}T∗i=1, by letting

ui =
M−PX
j=1

λjvij .

By the Law of Large Numbers we have that, for any nonnegative α,

1

T ∗

T∗X
i=1

1{ui≤α}
p−→
Z a

0

dψ (u) = Pr (ui ≤ α) as T ∗ −→∞

where 1{.} is the index function that takes value 1 if the condition is satisfied and 0

otherwise.
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Horizon S
(quarters) R 2

Risk Aversion
γ R 2

Risk Aversion
γ

0 (s.o.p.) 4% 0.029 19.9 0.37 -32% 0.024 -47.9                46.7
(0.006) (33.3) [ 0.000 ] (0.005) (19.0) [ 0.002 ]

0 3% 0.023 19.0 0.37 3% 0.024 17.0 52.2
(0.005) (41.8) [ 0.000 ] (0.005) (21.7) [ 0.000 ]

1 2% 0.023 10.7 0.37 1% 0.024 2.3 52.1
(0.007) (27.5) [ 0.000 ] (0.006) (16.9) [ 0.000 ]

2 5% 0.020 14.6 0.37 3% 0.023 4.6 52.2
(0.009) (24.8) [ 0.000 ] (0.006) (14.8) [ 0.000 ]

3 10% 0.018 17.9 0.36 3% 0.023 3.5 51.9
(0.009) (23.5) [ 0.000 ] (0.006) (13.6) [ 0.001 ]

4 4% 0.021 9.1 0.37 3% 0.023 6.2 51.3
(0.008) (17.2) [ 0.000 ] (0.007) (12.1) [ 0.001 ]

5 7% 0.019 11.7 0.36 6% 0.022 8.9 50.4
(0.008) (16.3) [ 0.000 ] (0.006) (10.3) [ 0.001 ]

6 9% 0.018 12.6 0.36 2% 0.024 2.3 51.9
(0.008) (15.3) [ 0.000 ] (0.006) (9.5) [ 0.001 ]

7 10% 0.019 11.0 0.36 5% 0.023 3.5 51.7
(0.008) (14.3) [ 0.000 ] (0.006) (8.7) [ 0.001 ]

8 20% 0.018 15.1 0.34 10% 0.023 5.2 51.5
(0.006) (13.8) [ 0.000 ] (0.006) (8.6) [ 0.001 ]

9 30% 0.018 17.9 0.31 21% 0.023 8.7 51.6
(0.005) (12.5) [ 0.000 ] (0.006) (7.8) [ 0.001 ]

10 33% 0.017 18.6 0.31 24% 0.022 9.3 51.4
(0.005) (13.7) [ 0.000 ] (0.006) (7.9) [ 0.001 ]

11 44% 0.015 25.4 0.28 38% 0.020 15.8 49.3
(0.006) (16.4) [ 0.000 ] (0.006) (8.6) [ 0.001 ]

12 32% 0.016 25.0 0.31 15% 0.022 7.3 52.4
(0.005) (16.5) [ 0.000 ] (0.006) (7.9) [ 0.000 ]

13 35% 0.012 38.5 0.30 14% 0.022 8.0 52.3
(0.006) (14.0) [ 0.000 ] (0.006) (8.7) [ 0.000 ]

14 30% 0.014 34.6 0.31 7% 0.023 5.0 52.4
(0.005) (24.6) [ 0.000 ] (0.006) (8.0) [ 0.000 ]

15 24% 0.016 39.4 0.33 1% 0.024 1.7 52.7
(0.008) (24.4) [ 0.000 ] (0.006) (8.7) [ 0.000 ]

Note: GMM estimation of equations (5) and (6). Standard errors are reported in parentheses and p-values are
reported in brackets. First-stage GMM uses an identity weighting matrix except that the weight on the last moment
is 25. Efficient GMM iterates until convergence. Covariance matrixes are calculated using the Newey-West
procedure with S+1 lags.

Table 1: Expected excess returns and different horizons of consumption risk

     Efficient GMM

Dist

J-test

      GMM with identity weighting matrix

α α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

α

)23(2χ



Table 2. Pricing Errors of Average Size and Book to Market Portfolios

0 11 Change 0 11 Change

S1 0.78 0.68 -0.11 B1 0.74 0.65 -0.09
S2 0.58 0.38 -0.20 B2 0.35 0.23 -0.11
S3 0.37 0.22 -0.15 B3 0.17 0.27 0.10
S4 0.37 0.28 -0.10 B4 0.35 0.19 -0.15
S5 0.28 0.16 -0.12 B5 0.70 0.41 -0.28

Note: Based on estimates of Table 1 with the prespecified weighting matrix. Units are quarterly rates reported in
percentage terms. Average pricing errors are calculated as the square root of the average squared errors.

Horizon (quarters) Horizon (quarters)

By size quintiles By book-to-market quintiles



Horizon S
(quarters) R 2

Risk
Aversion γ R 2

Risk Aversion
γ

0 (s.o.p.) 0% 0.023 -2.0  0.36 0% 0.020 0.7 49.9
(0.006) (42.1) [ 0.00 ] (0.005) (24.0) [ 0.001 ]

0 21% 0.017 70.5 0.32 16% 0.020 87.3 48.9
(0.009) (50.7) [ 0.00 ] (0.005) (22.2) [ 0.001 ]

10 51% 0.011 21.0 0.25 23% 0.019 6.9 51.3
(0.006) (15.1) [ 0.000 ] (0.006) (7.3) [ 0.001 ]

11 61% 0.010 27.4 0.23 42% 0.017 13.0 53.1
(0.006) (19.1) [ 0.000 ] (0.005) (7.8) [ 0.000 ]

12 63% 0.009 33.8 0.22 37% 0.016 13.2 54.7
(0.006) (21.8) [ 0.000 ] (0.005) (8.1) [ 0.000 ]

0 (s.o.p.) 10% 0.030 28.8 0.36 -5% 0.024 -7.2 51.8
(0.006) (29.1) [ 0.00 ] (0.005) (17.0) [ 0.001 ]

0 13% 0.024 26.4 0.35 8% 0.023 11.9 51.7
(0.007) (28.9) [ 0.00 ] (0.005) (16.8) [ 0.001 ]

10 55% 0.015 32.4 0.25 29% 0.022 9.1 50.6
(0.007) (12.8) [ 0.000 ] (0.005) (6.9) [ 0.001 ]

11 58% 0.019 31.2 0.24 34% 0.021 10.5 51.0
(0.006) (21.5) [ 0.000 ] (0.006) (7.2) [ 0.001 ]

12 39% 0.020 25.7 0.29 21% 0.021 7.4 52.9
(0.006) (14.0) [ 0.000 ] (0.006) (6.5) [ 0.000 ]

0 (s.o.p.) 4% 0.030 20.1 0.45 -66% 0.025 -48.2 55.4
(0.006) (30.8) [ 0.00 ] (0.005) (18.2) [ 0.000 ]

0 29% 0.025 42.1 0.38 27% 0.026 34.3 59.2
(0.008) (25.7) [ 0.00 ] (0.005) (14.2) [ 0.000 ]

10 73% 0.013 42.5 0.24 62% 0.022 25.1 45.8
(0.011) (23.2) [ 0.000 ] (0.005) (9.7) [ 0.003 ]

11 67% 0.020 34.0 0.26 65% 0.021 29.3 44.5
(0.007) (24.4) [ 0.000 ] (0.005) (10.5) [ 0.005 ]

12 52% 0.020 31.3 0.32 53% 0.018 29.2 46.4
(0.007) (21.9) [ 0.000 ] (0.005) (10.7) [ 0.003 ]

0 (s.o.p.) 4% 0.029 19.9 0.37 -32% 0.024 -47.9 46.7
(0.006) (33.3) [ 0.00 ] (0.005) (19.0) [ 0.002 ]

0 3% 0.023 19.0 0.37 3% 0.024 17.0 52.2
(0.005) (41.8) [ 0.00 ] (0.005) (21.7) [ 0.000 ]

10 49% 0.121 69.2 4.19 42% 0.029 100.4 195.7
(0.121) (61.2) [ 0.000 ] (0.009) (21.8) [ 0.000 ]

11 52% 0.158 90.2 4.55 48% 0.077 162.5 210.0
(0.099) (56.5) [ 0.000 ] (0.003) (33.1) [ 0.000 ]

12 43% 0.261 55.4 5.60 -362% 0.102 392.8 211.0
(0.074) (31.6) [ 0.000 ] (0.000) (24.3) [ 0.000 ]

Panel D: Long Horizon Returns

Table 3: The robust relationship between expected returns and consumption risk

Panel C: FF Equally-Weighted Portfolios

Efficient GMM

See notes for Table 1.

Dist

J-test

Panel A: Original Fama-French Start Date: 1963Q3 to 2003Q3

GMM with identity weighting matrix

Panel B: Total Consumption

α α )23(2χ



Table 4: The predictability of consumption growth by size and value returns
Regression: (1) (2) and (3)

Dependent
variable:

ln(Ct+1+S/Ct)

Independent
variable(s):

HML t+1 &

SMB t+1

Horizon: S R 2 R 2
Coefficient
(std error) R 2

Coefficient
(std error) [ p-value ]

0 1.78% 0.64

1 2.72% 0.14% -0.2591 1.11% 0.7049 2.6 1.35
(0.5223) (0.4640) [ 0.279 ]

2 2.06% 0.00% -0.0179 0.84% 0.4218 1.5 2.22
(0.2836) (0.3421) [ 0.467 ]

3 2.51% 0.07% 0.0944 1.35% 0.4178 2.4 3.22
(0.2257) (0.2801) [ 0.301 ]

4 3.39% 0.01% -0.0286 2.23% 0.4460 3.7 4.12
(0.1849) (0.2311) [ 0.153 ]

5 3.02% 0.00% -0.0167 1.91% 0.3643 2.9 4.96
(0.1523) (0.2129) [ 0.230 ]

6 2.84% 0.01% 0.0227 1.75% 0.3190 2.8 5.69
(0.1497) (0.1927) [ 0.251 ]

7 2.95% 0.05% 0.0522 1.83% 0.3041 3.2 6.45
(0.1386) (0.1742) [ 0.203 ]

8 2.47% 0.39% 0.1351 1.10% 0.2215 3.0 6.94
(0.1282) (0.1625) [ 0.227 ]

9 2.44% 0.77% 0.1829 0.81% 0.1836 3.9 7.45
(0.1189) (0.1496) [ 0.144 ]

10 2.56% 0.93% 0.1945 0.79% 0.1753 4.6 7.84
(0.1123) (0.1407) [ 0.103 ]

11 2.51% 1.47% 0.2382 0.43% 0.1265 5.8 8.39
(0.1072) (0.1342) [ 0.054 ]

12 1.23% 0.49% 0.1321 0.27% 0.0954 2.2 9.03
(0.1029) (0.1258) [ 0.329 ]

13 0.55% 0.17% 0.0761 0.07% 0.0475 0.7 9.63
(0.1011) (0.1175) [ 0.694 ]

14 0.39% 0.12% 0.0612 0.04% 0.0326 0.5 10.32
(0.0946) (0.1154) [ 0.779 ]

15 0.15% 0.09% 0.0507 0.01% -0.0123 0.3 10.86
(0.0937) (0.1131) [ 0.859 ]

Note: The first column of results reports the fit of regressions of both returns on current ant future
consumption growth for different S. The second and third columns report regressions of future
consumption growth alone on HMLt+1; the fourth and fifth columns use SMBt+1 in place of HMLt+1.
Standard errors are calculated under the null that the coefficients are zero, and allow for arbitrary
heteroskedasticity of returns. The sixth column shows the test statistic and p-value for the test that the
coefficients in regressions (2) and (3) are zero, under the assumption that HML and SMB are
uncorrelated, an assumption not rejected by the series. The final column reports the variance of 100 times
current and future consumption growth.

Variance ofJoint
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GMM with identity weighting matrix Efficient GMM
Coefficients Coefficients

Model R 2
α b 1 b 2 b 3 γ Dist α b 1 b 2 b 3 γ J-test

Panel A: LL and FF three factor models and contemporaneous CCAPM
F&F 0.67 0.013 1.46 1.14 4.18 0.50 0.021 0.35 1.73 4.19 42.1

(0.014) (3.47) (2.42) (2.74) [ 0.0000 ] (0.010) (2.46) (2.42) (2.09) [ 0.0041 ]
L&L 0.64 0.019 -5.3 47.5 5642 0.55 0.006 -10.6 81.3 -733.9 40.9

(0.010) (33.7) (21.8) (3196) [ 0.0000 ] (0.006) (22.9) (21.8) (1831.0) [ 0.0057 ]
S=0 0.00 0.000 0.0 -3.0 2.93 0.000 0.81 0.80 49.9
(s.o.p.) 0.000 (41.4) (42.3) [ 0.0000 ] 0.000 (23.96) (23.81) [ 0.0010 ]

S=0 0.18 0.016 59.8 48.0 1.30 0.020 89.74 65.81 42.4
(0.007) (55.7) (35.8) [ 0.0000 ] (0.006) (22.51) (11.98) [ 0.0082 ]

Panel B: Ultimate consumption risk model with time-varying R f

S=9 0.63 0.005 32.5 3.2 13.7 0.53 0.008 13.59 11.30 8.58 35.8
(0.008) (23.1) (5.1) (3.7) [ 0.0000 ] (0.005) (7.57) (5.10) (2.75) [ 0.0320 ]

S=10 0.65 0.004 31.7 2.9 12.8 0.52 0.008 11.94 9.95 7.62 36.5
(0.009) (22.0) (5.0) (3.3) [ 0.0001 ] (0.005) (7.02) (4.98) (2.64) [ 0.0271 ]

S=11 0.70 0.004 33.2 3.0 12.4 0.48 0.009 14.69 8.10 8.40 37.0
(0.011) (19.6) (4.7) (2.5) [ 0.0002 ] (0.005) (6.71) (4.69) (1.90) [ 0.0237 ]

S=12 0.68 -0.001 36.8 3.5 12.2 0.50 0.010 11.62 7.74 7.05 37.2
(0.013) (25.3) (4.5) (2.6) [ 0.0004 ] (0.005) (6.65) (4.50) (2.21) [ 0.0223 ]

S=13 0.65 -0.002 43.0 2.0 12.2 0.51 0.011 10.34 6.59 6.36 38.7
(0.015) (32.1) (4.4) (2.5) [ 0.0014 ] (0.004) (7.26) (4.37) (2.54) [ 0.0154 ]

S=14 0.62 -0.001 43.2 1.9 11.6 0.54 0.013 8.72 6.07 5.57 38.7
(0.015) (32.1) (4.2) (2.3) [ 0.0013 ] (0.005) (7.37) (4.18) (2.85) [ 0.0153 ]

Panel C: Ultimate consumption risk model with constant R f

S=9 0.57 0.007 32.7 14.2 1.4 0.019 5.14 4.27 50.86
(0.009) (23.5) (4.0) [ 0.0000 ] (0.006) (7.82) (5.34) [ 0.0007 ]

S=10 0.59 0.006 32.2 13.4 1.4 0.019 4.45 3.73 50.80
(0.009) (22.6) (3.5) [ 0.0000 ] (0.006) (7.63) (5.31) [ 0.0007 ]

S=11 0.66 0.005 35.7 13.3 1.4 0.017 8.69 6.20 51.99
(0.011) (20.7) (2.5) [ 0.0001 ] (0.006) (7.06) (3.41) [ 0.0005 ]

S=12 0.61 0.001 40.0 13.2 1.5 0.017 8.73 6.08 52.69
(0.013) (26.1) (2.6) [ 0.0002 ] (0.006) (7.39) (3.40) [ 0.0004 ]

S=13 0.59 0.000 47.3 13.3 1.4 0.017 7.02 5.09 51.65
(0.015) (35.8) (2.6) [ 0.0003 ] (0.006) (7.96) (4.05) [ 0.0006 ]

S=14 0.55 0.000 48.0 12.7 1.4 0.017 7.94 5.45 51.97
(0.015) (36.7) (2.4) [ 0.0004 ] (0.006) (7.87) (3.55) [ 0.0005 ]

Table 5: Comparison of affine factor models of expected returns

Note: GMM estimation of affine factor models. Standard errors are reported in parentheses and p-values in brackets. GMM with a
prespecified weighting replicates the Fama-MacBeth point estimates by using an identity matrix for the moments corresponding to
expected returns and "very high" weights on the diagonal for the remaining moments. Efficient GMM iterates to convergence.
The J-statistics for the FF and LL models are distributed according to a χ(21) under the null, while the distributions for the
consumption models are χ(22) and χ(23). Covariance matrixes are calculated using Newey-West procedure with 1 lag for the
three factor models and S+1 lags for the ultimate consumption risk model.



Figure 1: Fitted and average returns

Panel A: S=0  Panel B: S=11
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Note: All returns are quarterly rates. Each portfolio is denoted by the rank of its market equity and then the rank of its
ratio of book value to market value. Fitted values are based on the model estimates from Panel A, Table 1.

Figure 1: Fitted and average returns of consumption risk models
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Figure 2: Excess returns and future consumption growth

Panel C: Covariance between HMLt+1 and ln(Ct+1+S)-ln(Ct)
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Panel D: Covariance between SMBt+1 and ln(Ct+1+S)-ln(Ct)
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Panel A: Correlation between HMLt+1 and ln(Ct+1+S)-ln(Ct+S)
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Panel B: Correlation between SMBt+1 and ln(Ct+1+S)-ln(Ct+S)
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Note: Two standard error bands are calculated using Newey-West standard errors  with lags equal to S+1, since we are estimating under the assumption that consumption growth is predicable.
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S=0 S=11 S=11 Rf constant

Figure 3: Time series of stochastic discount factors

Note: Shaded regions are NBER recessions.
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Figure 4: The distribution of R2
S - R2

0 when consumption is a Martingale
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Note: All returns are quarterly rates. Each portfolio is denoted by the rank of its market equity and then
the rank of its ratio of book value to market value. Fitted values are based on the model estimates from
Table 5, Panels A and B.

Figure 5: Comparison of affine factor models of expected returns
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Panel B: Fama and French
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Panel D: Ultimate  Consumption Risk, S=11
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Panel A: Standard C-CAPM
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