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Abstract

We show that in sorting cross-sectional data, the endogeneity of
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with a continuous or ordered (e.g., years of schooling) endogenous vari-
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(e.g., self selection) can be obtained without instrumental variables.
Moreover, the sign of the bias implied by this endogeneity becomes
deducible through such graphs.
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1 Introduction

In regression models for continuous responses, all sorts of model misspecifi-
cations may be diagnosed by an analysis of ordinary residuals, i.e., from an
ordinary least square (OLS) estimator. Endogeneity of variables is a notable
exception, however; with linear models, this is due to the OLS estimated
parameter being consistent for the reduced form parameter (other than the
structural parameter).
The purpose of this paper is to show how recursive residuals associated

with a specific ordering of the data can be successfully analyzed in order
to diagnose the endogeneity of a variable. In particular, we show that a
graphical display of the cumulative sum of the recursive residuals obtained
by assuming exogeneity is helpful in diagnosing the presence of endogeneity.
Moreover, the sign of the bias implied by this endogeneity (e.g., the direction
of a self selection bias) is also deducible through such graphs. The use
of recursive residuals was earlier advocated by Harvey and Collier (1977) to
test for functional misspecification in regression analysis.1 In particular, they
proposed a t-statistic to test that the residuals have expectation zero. This
test is directly applicable to test against endogeneity when the data is sorted
adequately. Instruments may be needed to obtain such a sorting.
However, an interesting case arises with a continuous or ordered (e.g.,

years of schooling) variable whose endogeneity is due to selectivity. Sorting
the data with respect to this variable and looking at recursive residuals ob-
tained with a model where exogeneity is assumed allow us to diagnose the
misspecification. In this case, endogeneity can thus be diagnosed without
specifying a model for the alternative, in contrast with the Hausman test (cf.
Hausman, 1978) for which certain instruments are needed.
In Section 2, we start by presenting a framework allowing us to intro-

duce special orderings of the data that are useful for diagnosing endogeneity.
Section 3 presents the methodology based on the calculation of recursive
residuals associated with a relevant ordering of the data. Graphical displays
of these residuals as well as the Harvey-Collier test statistic are proposed
to diagnose the endogeneity of a variable. Sections 4 to 6 present different
areas of application. Thus, Section 4 looks at a text-book example of en-
dogeneity due to simultaneity of two variables. Section 5 considers Garen’s

1Endogeneity of a variable is often equivalent to a functional misspecification. For
instance, if a random coefficient is associated to a continuous endogenous variable (e.g.
Garen’s (1984) model), the outcome equation is implicitely non-linear in that variable.
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(1984) model of selectivity based on a random coefficient. In particular, a
real data set concerning returns to schooling is analyzed in detail. Finally,
Section 6 discusses the case of endogenous treatment where the propensity
score (Rosenbaum and Rubin, 1983) can be used to sort the data to identify
self-selection. The paper is concluded with a discussion in Section 7.

2 Sorting scores for endogeneity

We consider an observational study where independent observations are avail-
able for a response y, together with a set of exogenous variables x and a
possibly endogenous variable z (denoted the treatment in the sequel). The
following linear statistical model is considered

y = x0β + γz + ε,

where ε is a zero mean error term. The exogeneity of x implies that its
marginal density, p(x; δ), δ ∈ D ⊆ Rd, can be ignored without loss of infor-
mation about β and γ (see, e.g., Gouriéroux and Monfort, 1995, Chap. 1.5).
Similarly, if treatment z is exogenous, its effect can be studied by the sole
specification of p(y|z,x;β, γ), that is, the density of the error term. How-
ever, in a typical observational study, the exogeneity of treatment z must be
assessed.
We propose graphical diagnostics of endogeneity by sorting the data with

respect to a sorting score. The sorted data should then not be distinguishable
from any other random ordering, only under the exogeneity of the variable
of interest.
In general, there is no unique sorting score for a given problem, but certain

sorting scores will be more useful than others. In order to present results, we
must give a minimal description of the alternative hypothesis of endogeneity.
Hence, let us consider an unobserved variable u such that

E(ε|x, z, u) = u. (1)

Let

m(x, z;θ) = x0β + γz,

where θ = (β0, γ)0. Under H0 : ”z is exogenous”, implying within this frame-
work that E(u|x, z) = 0, we have that m(x, z;θ) = E(y|z,x), the unbiased
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and optimal (with minimum mean squared error of prediction) predictor of
y, given x and z.
Let us define θc (possibly a function of c) as

θc = argmin
θ
E[{y −m(x,z;θ)}2|z,x, s < c],

where s is a random variable. We call this variable a sorting score when it is
such that θc = θ, a constant, only under H0. Such sorting scores will allow
us to identify endogeneity by fitting m(x, z;θc) recursively to data sorted
with respect to s and looking for evidence of a varying parameter θc. We
now define a class of particularly useful sorting scores.

Definition 1 A monotone sorting score s for E(y|x, z) is such that ∀c ∈ Ωs,

m(x, z;θc) ≶ E(y|z,x) for all x, z such that s > c,
when H0 does not hold.

We start by a preliminary result.

Lemma 1 If u = λz, and hence sorting with respect to u or z is identical,
then for s = u, ∀c ∈ Ωs, m(x, z;θc) = E(y|z,x) for all x, z.
Proof. We have that E(y|z,x) = x0β + (γ + λ)z. Moreover, θc is solution
of

E(y −m(x, z;θc)|z,x, s < c) = 0,
∀c ∈ Ωs. But here, E(y −m(x, z;θc)|z,x, s < c) = E(y −m(x, z;θc)|z,x)
and θc = (β

0, γ + λ)0. The lemma is then proved.
Thus, in the situation of the lemma, s = u is not monotone and will not

help us identify endogeneity. In fact, λ and γ are not identifiable in such a
situation. On the other hand, let u and z be not proportional but linearly
dependent as

u = ξ1z + ξ2, (2)

where ξi, i = 1, 2 are random variables with E(ξi|x, z) = αi, α1 6= 0, and
V (ξi|x, z) ≥ 0, for any z. The latter inequality is assumed to be strict for
at least one i, i = 1, 2. Furthermore, when V (ξ1|x, z) > 0, z is assumed to
be either always non-negative or always non-positive. Then, it can be shown
that u is a monotone sorting score:
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Proposition 1 Let u in (1) be such that under endogeneity of z, u and z
are linearly dependent as described by (2). Then, u is a monotone sorting
score.

Proof.
We assume endogeneity of z. We can write

E(y|x, z, u) = β0x+ γz + u

and

E(y|x, z) = β0x+ γz +E(u|x,z),
where E(u|x, z) 6= 0. Furthermore, for a constant c ∈ Ωu (the sample space
of u),

E(y|x, z, u < c) = β0x+ γz +E(u|x, z, u < c).
By the linearity assumption (2), we can write E(u|x, z, u < c) = αc2 + αc1z,
where αci = E(ξi|x, z, u < c), i = 1, 2, are constants although functions of c.
Hence,

E(y|x, z, u < c) = β0x+ γz + αc2 + αc1z,

which is linear and equivalent to m(x, z; θc). Moreover, because αci < αi
when V (ξi|x, z) > 0 (this is true for at least one i), E(u|x, z, u < c) <
E(u|x, z) for any positive z and E(u|x, z, u < c) > E(u|x, z) for any negative
z. Thereby the monotonicity of u as sorting score is implied.
Even if u is unobserved, this result is of practical use because the ordering

of u can be retrieved by studying z and its relation to certain instruments,
see the example sections below.
A most convenient case arises when z is a monotone sorting score in itself,

since no instrumental variables are then required. This situation can arise
when E(u|z) is non-linear in z which is, for instance, the case with random
coefficient models; see Section 5.

3 Graphical diagnostics

Graphical diagnostics are informal tools for analysis but, at the same time,
a very powerful medium for conveying information. A graph may tell more
than the value of a test statistic, although both are obviously complementary.
Since ordinary residuals are not really appropriate to identify the endogeneity
misspecification, we base our analysis on recursive residuals.
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3.1 Recursive residuals

Let a set of independent observations (yi,xi, zi), i = 1, . . . , n, be generated
by a model with corresponding density p(y|z,x;β). For each k = q, . . . , n−1,
a consistent estimate bβk of β, based on (yi,xi, zi), i = 1, . . . , k, is assumed
to be available. Recursive residuals are then obtained by predicting yj with

E(yj|zj,xj; bβj−1), j = q + 1, . . . n. This prediction is an estimate, based on
observations (yi,xi, zi), i = 1, . . . , j − 1, of the optimal (mean squared error
sense) predictor E(yj|zj,xj;β). The recursive residuals are then standardized
prediction errors:

wj =
yj − E(yj|zj,xj; bβj−1)

V ar(yj −E(yj|zj,xj; bβj−1)|zj,xj) , j = q + 1, . . . n.

Assuming that the involved moments exist and that the model is well spec-
ified, these recursive residuals are, at least asymptotically, independent and
identically distributed with mean zero and variance one. These properties
hold exactly when β is known.

Example 1 The linear Gaussian model, yi = x
0
iβ+ εi with εi independently

and normally distributed with mean zero and variance σ2, is an important
particular case for which recursive residuals were originally studied, e.g., by
Brown et al. (1975). For this model, we have, for j = q + 1, . . . n,

wj =
yj − x0jbβj−1

σ(1 + x0j(X
0
j−1Xj−1)−1xj)1/2

,

where Xj−1 = (x01, . . . ,x
0
j−1)

0. Assuming that X0
j−1Xj−1 are invertible, wj

are homoscedastic, independent, and with standard normal distribution (Brown
et al., 1975). No asymptotic argument is needed here.

Kianifard and Swallow (1996) review the application of recursive residu-
als, see also Dawid (1984) and de Luna and Johansson (2000).

3.2 Cumulative sum and the Harvey-Collier test

A graphical diagnostic tool is obtained by graphically displaying recursive
residuals. Their cumulative sum (CUSUM) is most useful. Asymptotically,
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the recursive residuals have mean zero for a well-specified model. When miss-
specification arises, in our case when exogeneity of the treatment does not
hold, the recursive residuals will typically have non-zero mean. If we then
sort the data with respect to s, a monotone sorting score, the residuals will
have positive (or negative) mean throughout the recursion.
The results of Section 2 can be used to obtain such sortings. In the

time series context, the aim when inspecting cumulative sums is to detect a
change of the parameter values, see e.g. Brown et al. (1975). Most often
this is believed to be an abrupt structural change at a unknown point in
time. The endogeneity misspecification is instead translated by small but
systematic biases in predictions. Thus, a monotone sorting score should
be used for these biases to accumulate instead of cancelling each other out,
thereby guaranteeing the best visual effect when plotting the cumulative sum
of the recursive residuals. Examples illustrate these issues in the next section.
The constancy of the bias sign is also relevant for the test presented below
to have power.
Harvey and Collier (1977) proposed a simple test based on the sum of

the recursive residuals to identify functional misspecification in a regression
model. In our context, write

w =
1

n− q
nX

i=q+1

wi

the average of the recursive residuals. Then, under H0, asymptotically (ex-
actly under the normal model), w is normally distributed with mean zero
and variance 1/(n − q), and constitutes a test statistic for H0. This test is
a necessary complement to the CUSUM plot. Note that a simulation study
conducted in de Luna and Johansson (2000) showed the good properties of
the Harvey-Collier test in comparison with, for example, a classic Hausman
test.

4 Application I: consumption and income

Consider the model for y and z:

y = βx1 + γz + ε,
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where variable z is endogenous, such that

z = αx2 + ν,

with ε and ν correlated2. Denote x = (x1, x2). Assuming E(ε|ν) to be linear
in ν (e.g., bivariate normality), we have

E(y|x, z) = βx1 + γz + λ(z − αx2), (3)

where λ = 0 if and only if ε and ν are uncorrelated. Here, s = (z − αx2) is
chosen as a sorting score. Note that λs(x2, z) plays the role of the omitted
variable u in (1). The assumptions of Proposition 1 are met when, for in-
stance, x2 and z are jointly normal

3 (so that E(x2|z) is linear in z), in which
case we can say that s is a monotone sorting score. It can be approximated
by (z− bαx2), where bα is a consistent estimate. Note that x2 = x1 would lead
to the non-identifiability of γ, and the non-applicability of Proposition 1.

Example 2 We use data on U.S. consumption expenditures (ct), disposable
income (yt) and government expenditure (gt), in billions of 1982 dollars, for
year t between 1975-1986.4 We assume:

ct = γ0 + γ1yt + εt,

where yt is endogenous such that

yt = α0 + α1gt + νt. (4)

Figure 8 shows how the endogeneity of yt is revealed by using the residuals
from (4) as a sorting score.

2Classical examples include: i) y is a quantity of goods and z its price, ii) y is a
consumption measure and z disposable income.

3This assumption might seem restrictive, but is only needed to ensure that Proposition
1 can be applied. It should be observed, however, that the linearity of E(s|z) is not a
necessary condition for monotonicity.

4This data is described in Hill, Griffiths and Judge (1997) and obtained from
http:\\www.wiley.com.
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Figure 1: Recursive residuals and their cumulative sum when regressing the
consumption expenditures on disposable income (yt), using time ordering
(above panels) −HC= −1.09; and the ordering using the sorting score: resid-
uals of regressing yt on the government expenditure variable (below panels)
−HC= 5.67.
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5 Application II: return to schooling

5.1 The Garen model

We now consider the selectivity model proposed by Garen (1984, 1988)

y = x0β + zδ + zr + ε, (5)

z = f(x∗) + ν,

where E(ε|x∗, z, r) = 0 and x∗ contains all the variables in x and possibly
others.5 For this model,

E(y|x∗, z) = x0β + zδ + zE(r|ν). (6)

AssumingE(r|ν) to be linear in ν (e.g., bivariate normality), we haveE(r|ν) =
λ(z − f(x∗)). Exogeneity of z corresponds to λ = 0, i.e. uncorrelated r and
ν variables. Here, heteroscedasticity is present even if z is exogenous:

V (y|x∗, z) = z2V (r|ν) + σ2, (7)

where σ2 is the variance of ε. In this case, neglecting the endogeneity of z
leads to a misspecification of the conditional expectation, by assuming it to
be linear while zE(r|ν) is non-linear in x∗ and z.
In this example, not accounting for the endogeneity of z corresponds to

omitting the variable6 z(z − f(x∗)) in (6) which corresponds to u in (1).
The non-linearity of E(y|x, z) may often be hidden by the heteroscedastic
noise when examining conventional residuals. On the other hand, recursive
residuals can often identify the systematic bias in predictions obtained with
the sorting score s = z(z − f(x∗))7 as illustrated in Example 3. Because
f is unknown, an approximate sorting score must be used to estimate this
function, yielding z(z − bf(x∗)). Notice that within this framework, it is
possible to proceed without specifying a parametric form for f but instead
using a non-parametric estimate.

5Garen also considered a pure random effect, i.e. y = x0β + zδ + zr + η + ε, with
E(y|x∗, z) = x0β + zδ + zE(r|ν) +E(η|v) and E(η|v) = ρv. Here, we omit η for clarity.

6The omitted variable is a sorting score since λ = 0 under exogeneity.
7Note that Proposition 1 does not apply here since E(s|z) is not linear in z. However,

E(s|z) is quadratic in z and therefore, fitting a linear model in z leads to a systematic
under-prediction of y and hence, s is a monotone sorting score.
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Remark 1 An important property of the diagnostics (CUSUM plots and
Harvey-Collier test) is that they have the correct size as soon as λ = 0,
even if the random coefficient r exists. This is to be contrasted with a clas-
sical Hausman type test (typically a conventional test on the residuals of the
regression of z against instruments, when introduced in the outcome equa-
tion) where the null hypothesis is r ≡ 0 and which therefore has power even
against the mere existence of r.

Remark 2 The Garen model is an econometric translation of a theoretical
proposition saying that individuals maximize their present value of future
returns. Thus, stating further that individuals know their own coefficient r,
we should observe a positive correlation between r and z (endogeneity). If
not taken into account, this leads to an underprediction of individual returns
to schooling for increasing z’s.8 In other words, the theory which has inspired
the Garen model also predicts that z is a monotone sorting score, leading to
recursive residuals with a positive mean.

Example 3 The Garen model is considered, and we simulate 100 observa-
tions with the following specifications: for i = 1, . . . , 100,

yi = 1 + 2x1i + γizi + εi,

γi = 1 + ri,

zi = x1i − x2i + νi,

with x1i ∼ U(0, 1), x2i ∼ U(0, 1), εi ∼ N(0, 1) and ri and νi bivariate nor-
mal with expectations zero, variances 0.36 and 1 respectively, and correlation
−0.5. Assuming exogeneity E(yi|x1i, zi) = x1iβ + ziγ is estimated with OLS.
Several types of residual analyses are presented in Figures 2 and 3.

¿From the residuals plots of Figure 2, there seems to be no severe het-
eroscedasticity. Identifying the misspecification of the conditional mean is
not straightforward with these residual plots, although a trained eye may see
some structure in the OLS residuals when sorted with respect to the omitted

8Using the full sample OLS estimator on (5) would, of course, lead to a positive biased
estimate of the mean return to schooling. Here, we rather discuss the individual’s return
to schooling, when sorting with respect to schooling, recursively estimating the model
with OLS, and thereafter performing out of sample predictions using this previous OLS
estimate.
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Figure 2: Residuals from the Garen model of Example 7: (a) OLS residuals
sorted w.r.t. the variable z; (b) OLS residuals obtained with the ordering of
the omitted variable (optimal sorting score); (c) Recursive residuals obtained
with a random ordering; (d) Recursive residuals obtained with the optimal
sorting score.
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Figure 3: CUSUM plots of various residuals from the Garen model of Ex-
ample 2: (a) OLS residuals sorted w.r.t. the sorting score zi(zi − f(xi))
−HC(ri ≡ 0) = 0.00; (b) Recursive residuals obtained with a random order-
ing −HC(ri ≡ 0) = 0.40; (c) Recursive residuals obtained with the sorting
score zi(zi − f(xi)) −HC(ri ≡ 0) = −2.53; (d) ditto but with an estimate of
the previous sorting score −HC(ri ≡ 0) = −2.83; (e) ditto but with the sort-
ing score s(x, z) = z −HC(ri ≡ 0) = −3.75; (f) ditto but with the OLS resid-
uals from the regression of zi on xi as the sorting score −HC(ri ≡ 0) = −4.74.
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variable, graph (b), and in the recursive residuals obtained with this same
sorting score, graph (d). The CUSUM plots in Figure 3 are more interest-
ing. We note that the recursive residuals obtained with well chosen sorting
scores all provide a clear sign of the misspecification of the conditional mean
of the model (endogenous treatment) by displaying a systematic departure
from zero for the CUSUM trajectory. This neat visual effect is due to the
monotonicity property. Note that, as in Section 4, the residuals of the selec-
tion equation as well as the endogenous variable itself also seem to provide
monotone sorting scores, see the bottom panel of Figure 3. The values of
the HC test (for H0 : ri ≡ 0), given in the caption of the figure, confirm the
visual impression.

5.2 U.S. data on return to schooling

The data set9 analyzed in this section was used by Angrist and Krueger
(1991) to study the effects of compulsory school attendance, see also Angrist
et al. (1999). It consists of a sample of 329 500 men born in 1930-39 from the
1980 US census. This data set will help us illustrate the kind of insights a
graphical display of CUSUM recursive residuals can yield when investigating
the exogeneity of a covariate.
The linear model of interest tries to explain the log weekly wage by the

number of schooling years, while controlling for an age effect (assumed to be
exogenous). Schooling systems differ between states, see Angrist and Krueger
(1991, Appendix 2), and for that reason, we perform state-specific analyses.
As argued in the previous section, the explanatory variable describing school
attendance can be used as sorting score to check its endogeneity which is
predicted by the theory. We discard individuals with zero to eleven years of
education, in order to avoid effects due to compulsory schooling laws.10 In
particular, the compulsory schooling period should not suffer from a selection
bias.
Recursive residuals are computed starting from 13 years of education, 1-

12 years cases serving as starting values, together with one individual with 13
years to allow for estimability.11 In a sense, the question of interest is whether

9The data set is available at the following address: http://qed.econ.queensu.ca/jae/
10Compulsory schooling laws may in some instances push students to complete a high

school degree, see Angrist and Krueger (1991, pp. 1004-1005).
11In this application, we have multiple observations for a given number of years of

eduction. These are left in their original ordering.
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the return to education remains constant after 12 years of education, which
most often corresponds to the completion of a high school degree. Recursive
residuals are not only useful for diagnosing whether years of schooling are
endogenous (selection bias) but also indicate the sign of the selection bias
when present, see Remark 2. This is illustrated by the comments below.
Figure 4 displays CUSUM plots of recursive residuals obtained for Cali-

fornia, Kansas, New York and Louisiana. We use the Californian case for our
main comments: The CUSUM plot indicates that there is actually no selec-
tion bias up to year 15 of education (in agreement with Angrist and Krueger’s
(1991) empirical findings, where they compared OLS and two-stage LS esti-
mates). At year 16 (most often the completion of a University degree) there
seems to be a positive selection bias, however. Indeed, although the HC
value (1.02) is not significant at this stage, the clear upward trend observed
for students with 16 years of education is convincing enough (such a trend
is clear in 31 states out of 50; examples include Kansas and New York in
Figure 4, while Louisiana is a counter-example). The non-significance of the
test is most surely due to the fact that many of the recursive residuals are
consistent with the zero mean hypothesis (those corresponding to 13 to 15
years of education). Finally, years 17 to 20 (most often postgraduate studies)
do not seem to be rewarded at the same rate as previous years in terms of
log wages since there is a strong negative selection bias (over predictions are
observed); here, HC is significant (this downward pattern for postgraduate
studies is observed in 39 states out of 50). The final HC value is seldom
significant unless, as for California and New York, a large number of individ-
uals is available. This is due to the use of a non-monotone sorting score:12

recursive residuals being not biased (up to year 15) -no selection bias-, then
positively biased (year 16) -positive selection bias- and finally downwardly
biased (years 17 to 20) -negative selection bias-.

FIGURE 4 CAN BE FOUND AT THE
END OF THIS DOCUMENT

12Years of schooling, although not monotone, is an interesting sorting score. The empiri-
cal evidence against its monotonicity is actually interesting per se, because theory predicts
monotonicity, more precisely positively biased recursive residuals.
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Figure 4: Vertical bars indicate years of education; for instance, residuals
before the first bar correspond to 13 years, residuals between the first and
the second bar are for individuals with 14 years of education and so on, up
to 20 years. HC values are: -2.13 for California, 0.73 for Kansas, -5.23 for
New York and -1.34 for Louisiana.

6 Application III: self-selection into programs

The standard endogenous treatment model (cf. Heckman, 1978) is such that
the choice is described by

z∗ = x∗0α+ ε1

z = I(z∗ > 0), (8)

and the outcome equation is:

y = x0β + zδ + ε2. (9)

where z∗ is an unobserved latent variable and endogeneity implies that ε1 and
ε2 are correlated. If ε1 and ε2 are bivariate normal and correlated, we have
that E(ε2|x∗, z) = ρσ−12 (λz − eλ(1 − z)), where λ = φ(x∗0α)/(1 − Φ(x∗0α))
and eλ = φ(x∗0α)/Φ(x∗0α). We assume that x∗ contains at least one variable
not included in x.
Assuming joint normality of ε1 and ε2, and denoting σ21 = 1, σ

2
2, ρ, their

respective variances and correlation,

E(y|x∗, z) = x0β + ρσ−12 [λz − eλ(1− z)]. (10)

The last term in this equation corresponds to the unobserved variable u in (1).
In this case, the hypotheses of Proposition 1 are fulfilled13 and u is therefore
a monotone sorting score. Here, the missing variable is not observed but can
be evaluated by using a consistent estimator bα of α.
Note that sorting with respect to λz−eλ(1−z) is equivalent to first sorting

the sub-sample for which z = 0 with respect to Φ(x∗0α)− 1, or equivalently,
with respect to Pr(z = 1|x∗) = Φ(x∗0α), followed by the sub-sample with

13That is, u can be rewritten as (2).
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z = 1, which is also sorted with respect to Φ(x∗0α). Pr(z = 1|x∗) is called
the propensity score.14 More generally, i.e. without the need to specify the
relation between (8) and (9), the theory often predicts that the propensity
score is a monotone sorting score (in that individuals maximize the expected
return from the treatment, see e.g. Heckman and Robb 1986) allowing us to
test this prediction.
When there are more than two possible exclusive treatments, m say, the

outcome can be written as

y = x0β +
mX
k=1

δkzk + ε,

where zki = 1 if individual i takes treatment k, k = 1, . . . ,m, and zero
otherwise. Then,

s =
mX
k=1

zk Pr(zk = 1|x∗)

is a sorting score under the stringent model assumptions of Lee (1983).
More generally, treatments can be compared in pairs, e.g., against the non-
treatment class, by using data concerning only two such treatments and then
proceeding as in the above binary choice situation.
Finally, when there is a natural order and meaningful numbers can be

assigned to treatments, then the situation is similar to a continuous treatment
z and, for instance, the Garen (1984) model may be used, as in the case study
of Section 5.2. Other models are reviewed in Vella (1998), where a control
function is always provided, often in the form of generalized residuals. This
control function corresponds to the unobserved variable u and will often
provide a useful sorting score.

7 Discussion

In this paper, a graphical analysis of the recursive residuals associated with a
sorting of the data has been advocated as a tool for diagnosing endogeneity.

14Note that sorting the whole sample with respect to the propensity score does not yield
exactly the same sorting. In the latter case, the two sub-samples defined by z = 0 and
1 will generally not be fully separated by the sorting, since a non-treated individual may
in fact have a similar, and indeed even higher, propensity to be treated than one who is
actually treated.
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We expect practitioners to find this type of analysis a useful complement
to existing tests for exogeneity. A major application area arises when the
endogenous variable is continuous or ordered. Indeed, it is then possible to
test against endogeneity without instrumental variable, by sorting the data
with respect to the endogenous variable and looking at the residuals obtained
from recursively fitting the outcome equation through the sorted data set.
An interesting by-product is that in case of endogeneity, the direction of
the bias implied by the endogenous variable is directly available from the
CUSUM plot of the recursive residuals, as illustrated with the U.S. data on
returns to schooling.
When instruments are available, our approach is complementary to Haus-

man-type tests by providing an appealing graphical diagnostic tool. The pro-
posed Harvey-Collier test has, moreover, the advantage of having no power
against the presence of a random coefficient in front of an exogenous variable,
see Remark 1.
Monotone sorting scores have been emphasized because they ensure the

best power when looking at CUSUM plots of recursive residuals. However, as
soon as endogeneity implies non-linearity of the conditional expectation, e.g.
random coefficient models or non-normality of the error term in the regres-
sion equation for the endogenous variable, then any sorting, even a random
sorting, may allow the analyst to diagnose endogeneity (by identifying the
non-linearity). In this case, even ordinary least squares residuals may be suf-
ficient. This is, however, far from certain because this non-linearity is often
weak and the residuals heteroscedastic. In this article, we have shown how
recursive residuals associated with a monotone sorting score may overcome
this difficulty.
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