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1. Introduction

To an investor seeking a mean-variance efficient portfolio, a risk-based pricing model offers

a powerful insight. If expected excess returns are linear combinations of exposures (or

"betas") to k sources of risk (or "factors"), then the risky portion of any mean-variance

efficient portfolio is a combination of k benchmark portfolios that mimic those factors.1

In attempting to apply this insight, an investor confronts a variety of issues. Alternative
pricing models vie for consideration by the investor, who realizes that no model is likely to

be completely accurate. In one class of contenders to risk-based models, asset characteristics

unrelated to risk exposures enter expected returns due to behavioral phenomena such as
overreaction, and these "characteristic-based" models do not identify a set of benchmark

portfolios for investment. Moreover, the investor faces constraints on borrowing and short

sales, to at least some degree, whereas a theory's investment implications are often derived

in the absence of such constraints.

This study conducts an empirical comparison of asset pricing models. In order to provide

an economic metric for judging differences between models, we analyze the portfolio-choice

problem from the perspective of investors who face the issues described above. Our inves-

tigation reveals the extent to which alternative pricing models imply different investment

choices. An investor views a pricing model as providing a way to center his prior beliefs,
specified with varying degrees of confidence in the model. These prior beliefs about the dis-

tribution of returns are then updated by the data and used to compute an optimal portfolio,
subject to margin requirements ranging from 50% to none at all. Our objective is not to

choose one pricing model over another but instead to shed some light on the economic impor-

tance of deliberating such a choice. We find that, in the presence of mispricing uncertainty
and margin requirements, models with fundamentally different views about the economic

determinants of expected returns often imply similar portfolio choices.

We consider investment universes similar to those analyzed by Daniel and Titman (1997)

and Davis, Fama, and French (1999). In particular, portfolios are formed by sortingstocks

on total equity capitalization ("size"), the ratio of book value to market value of common

equity ("book-to-market"), and betas with respect to the "HML" book-to-market factor of

Fama and French (1993). One investment universe consists of the three benchmark positions

1Examples of risk-based models that contain this implication are the Capital Asset Pricing Model (CAPM)
of Sharpe (1964) and Lintner (1965), the intertemporal model of Merton (1973), and the Arbitrage Pricing
Theory of Ross (1976). For further discussion see Jobson and Korkie (1985), Grinblatt and Titman (1987),

and Huberman, Kandel, and Stambaugh (1987).
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from the Fama-French specification of a factor-based model plus nine spread positions that

are long stocks with low HML betas and short stocks with high HML betas, holding size and

book-to-market constant. These spread positions are designed to exploit differences between
the Fama-French model and the characteristic-based model of Daniel and Titman (1997):
the expected payoffs are negative under the first model but zero under the second. Optimal
portfolios are computed for various hypothetical investors who face this investment universe

but believe in different pricing models, with perfect confidence or with some uncertainty
about a model's pricing ability.

lv\Then an investor has perfect confidence in a model's pricing ability, his optimal portfolio
can exhibit economically significant differences from that of an investor with equally strong

beliefs in an alternative pricing model. Suppose, for example, that risk aversion is specified

such that all of an investor's wealth is allocated to the value-weighted stock-market portfolio

if that is the only risky asset available. Then, if an investor with perfect confidence in
the Daniel-Titman characteristic-based model is forced to accept the portfolio of an investor

with equally strong beliefs in the Fama-French factor-based model, the first investor perceives

a certainty-equivalent loss of about 8% per year. A similar loss is perceived by the second

investor if forced to accept the portfolio of the first. When each investor has some uncertainty

about a model's pricing ability, the losses are substantially reduced. For example, if this
"mispricing" uncertainty is such that a spread with long and short positions of one dollar
each has an expected payoff whose deviation from the model has a standard deviation of two

cents per year, then the annual certainty-equivalent losses described above drop below 2%.

Expected returns are associated with characteristics in both the Daniel-Titman and
Fama-French models. Given the latter model's specification of the factors SMB and HML,

betas on those factors are correlated with size and book-to-market (e.g., high book-to-market

firms tend to have high HML betas). Indeed, based on comparisons of investment impli-
cations under strict beliefs in both models, each model is closer to the other than to the
CAPM, in which characteristics play a weaker role. An investor who believes in the com-

plete accuracy of the Daniel-Titman model perceives an annual certainty-equivalent loss of

20% if forced to hold a 100% allocation in the market portfolio, the choice of an investor with

complete confidence in the CAPM. The same loss for the investor with complete confidence

in the Fama-French model is about 12%. These losses are larger than the corresponding
8% value in the earlier comparison, but mispricing uncertainty again reduces these differ-
ences substantially. For example, with the same two-cent mispricing uncertainty described

previously, the loss for the Daniel-Titman investor drops below 5%, and the loss for the

Fama-French investor drops to about 2%.
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The above results all describe cases in which an investor is permitted to establish long and

short equity positions of any size. Most investors, however, are likely to face some limit on
the aggregate value of risky positions that can be established per dollar of invested capital.

For example, Regulation T, which applies to customers of U.S. broker/dealers, requires 50%
margin, or a ratio of total position size to invested capital of no more than two. There are
practices by which some investors exceed this limit, such as dealing with non-U.S. brokers

or engaging in joint-back-office arrangements, but our understanding is that Regulation T
governs much of the U.S. investment industry, at both the individual andinstitutional levels.

Nevertheless, in addition to a 50% margin requirement, we also consider margins of only 20%

and 10%.

Margin requirements can dramatically reduce, and even eliminate, the cross-model dif-

ferences in investment implications. With margin requirements of 50% and 20%, the Fama-
French and Daniel-Titman models yield identical portfolios from the asset universe described

above, even for investors whose prior beliefs preclude any mispricing. Imposing even a 10%
margin still has large effects. For example, an investor with complete confidence in the
Daniel-Titman model who must hold the portfolio of an equally confident Fama-French in-
vestor perceives an annual certainty equivalent loss of about 2%, as compared to 8% when

positions are unrestricted. With the two-cent mispricing uncertainty described earlier, the
loss drops to 67 basis points, compared to about 2% in the unrestricted case. (Essentially
the same statements apply for the Fama-French investor who must hold the portfolio of
a Daniel-Titman believer.) These results seem especially noteworthy, given that the asset
universe is constructed to exploit differences between these two models.

We also examine another asset universe that is similar to the first, except that the three-

way-sorted portfolios enter individually instead of being paired in long-short spreads. Margin
requirements give rise to a striking result. Under the typical 50% margin requirement, an in-
vestor with complete confidence in the accuracy of the Fama-French model bears substantial

risk but allocates nothing to that model's three benchmark positions. Of course, without
margin requirements, those benchmarks constitute the entire risky portion of that investor's

portfolio. This example illustrates a general point that, for an investor facing constraints, a
set of benchmarks can be correct for pricing but not for investing.

With the alternative asset universe, representing a prior belief in a characteristic-based

model is less straightforward. since the simple zero-expectation implication for the spread
positions no longer applies. We develop an alternative approach, applicable more generally,
that requires the size and book-to-market characteristics of each portfolio. A comparison
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of the optimal portfolios chosen by investors with beliefs in different pricing models gives
results similar to those of the preceding analysis, except that the differences between this
alternative characteristic-based representation and the Fama-French model are no longer

eliminated completely by imposing margin requirements.

The remainder of the study is organized as follows. Section 2 discusses mean-variance

portfolio optimization in the presence of margin requirements and presents examples using
the second asset universe discussed above. The moments of the return distribution for that
illustration are taken as known and constructed assuming the Fama-French model holds ex-

actly, with sample moments replacing unknown quantities. Section 3 incorporates parameter

uncertainty, including uncertainty about a model's pricing ability. The Bayesian approaches
we develop for this purpose are described, and the comparison of portfolio choices across pric-

ing models is conducted using the first asset universe, containing the characteristic-paired
spreads. Section 4 reports similar results for the second universe, after describing the alterna-

tive characteristic-based approach developed to accomodate a more general set of non-paired

portfolios. Section 5 discusses briefly a potential extension to a model-uncertainty setting
in which an investor assigns probabilities to multiple models in making a portfolio choice.
Section 6 reviews the study's conclusions.

2. Portfolio Choice under Investment Constraints

Define spread position i, established at the end of period t — 1, as a purchase of one asset

coupled with a short sale of an equal amount of another. The two assets are denoted as

L and S, and their rates of return in period t are denoted as RL,t and The spread

position involves at least one risky asset, which, without loss of generality, is designated
as asset L. Asset S can be either risky or riskless. The investment universe consists of

a riskiess asset plus n such spread positions, and we assume that some amount of margin
capital is required to establish each position. Consider a spread position of size X2 with a

dollar payoff equal to X(RL,t — where X can be positive or negative. For a specified

c> 0, the margin requirements are as follows. If asset S is risky, then establishing a spread

position of size X requires (2/c) X dollars of capital. If asset S is riskiess, then establishing

a spread position of size X requires (1/c)X dollars of capital.

The total capital required to establish the spread positions is less than the investor's
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wealth, W_1. That is,

(2/c)X + (1/c)XI <Wt1, (1)
iEA iA

where A denotes the set of positions in which S is risky, or

(2)
iEA iA

where w X/W.1. In other words, c is the maximum permitted total value of risky
long and short positions per dollar of the investor's wealth. A value of c = 2, for example,

corresponds to the 50% margin requirement for common stocks specified by Regulation T.

The amount of total wealth in excess of the margin capital required to establish the n
spread positions is invested in the riskless asset, earning rate Rf,t, and we assume that the
margin capital also earns that rate. The rate of return on the total portfolio is then given

by
— Rs,t) + Wt_lRf,t= TJ 3
vv_j

so the excess portfolio return is simply

— Rf,t = w(RL,t — (4)

We also assume a common borrowing and lending rate, so that = Rf,t for all of the

spread positions in which S is riskless (i A). In essence, the proceeds from $1 of short sales

can be invested in $1 of long positions, but an interest-bearing margin deposit of 2/c dollars
is required. Equivalently, each dollar of a long risky position can be financed by borrowing

[1 — (l/c)I dollars, each dollar of a short position requires a margin deposit of (1/c) dollars,
and interest is earned on margin deposits as well as the proceeds of short sales.

Note that assuming margin capital earns the riskiess rate, as stated above, does not imply

that the investor's portfolio contains cash (the riskiess asset). The cash position is given by

Xf = W_1 — (5)
iA

which can be zero or negative (representing borrowing) if there are some positions in which
S is riskless, i.e., if the investment universe does not consist solely of spreads in which
both legs are risky. For example, suppose n = 2 and the first position has common stocks

constituting assets L1 and S but the second position has common stocks in only L2, so asset

S2 is riskless. Let W_1 = 100, X1 = 50, and X2 = 100. The portfolio contains no cash and

has stock positions of 150 long and 50 short, or 200 in total, thereby meeting exactly a 50%

5



margin requirement (c = 2). In essence, 100 in interest-bearing margin capital supporting
positions X1 (requiring 50) and X2 (requiring 50) is offset by a 100 short position in cash

implied by X2.

Let w denote the n-vector with ith element w. The investor is assumed to choose w so

as to maximize the mean-variance objective function

U = E{R,} —
AVar{R,t}, (6)

subject to the constraint in (2), where A is interpreted as the coefficient of relative risk
aversion. Let rt denote an n-vector with ith element r,t RL,t — and denote the

mean vector and variance-covariance matrix of Tt as E and V. Then the optimal portfolio

choice w can be rewritten as the solution to

1, 1 /max ( w E — —Aw Vww\ 2
(7)

s.t.
iEA iA

When c is infinite, so that there is no margin requirement, it is well known that the solution

to (7) is given by
w = V'E, (8)

which gives the usual tangent portfolio of risky assets. That is, if each risky "asset" i consists
of the zero-investment spread position i plus an investment in the riskiess asset, then w in

(8) is proportional to the weights in the risky portfolio having the maximum Sharpe ratio
(expected excess return divided by standard deviation). When c is finite, the solution to (7)

need not produce a portfolio with the maximum Sharpe ratio.2

In the next section, E and V are replaced by moments of Bayesian predictive distributions
corresponding to varying degrees of prior confidence in alternative pricing models. Before
proceeding to that analysis, we use a simpler specification of E and V to illustrate the
potential effects of investment constraints on portfolio choice. Suppose expected asset returns

are known to be given exactly by, say, the three-factor model of Fama and French (1993).

That is, the expected payoff on spread position i is given by

E{rt} = /31,E{MKTt} + j32,E{SMBt} + 33,E{HML}, (9)

2Lintner (1965) observes that paying interest on margin deposits and short-sale proceeds gives rise to
a case where (4) holds and allocations obey the restriction < 1 (he assumes 100% margin and
all i A). Lintner allows unlimited borrowing and lending at the riskiess rate, however, and therefore
maximizes the Sharpe ratio. As he observes, the solution in that case simply amounts to rescaling w in (8)
to satisfy the constraint.
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where MKT is the excess return on a value-weighted market index, SMB is the difference in
returns between small and large firms, and HML is the difference in returns between firms

with high and low book-to-market ratios. Assume that, in the universe of rt spread positions,
those benchmark positions are included as the last three, corresponding to the second subset

in the following partition:

E=[] v=[i :]• (10)

The vector of betas for each of the first (n — 3) non-benchmark positions, (/31j i3 /33,), is
a row of the (n — 3) x 3 matrix

B = V12V2, (11)

and (9) implies
E1 = BE2. (12)

When c = oc, equations (8), (11), and (12) give

1 TI TI —1 TI TI—i 1'
— W1 — I V11 V12 V12V92 £12 —

W2 A V21 V22 E2 A V1E2
That is! the optimal combination involves oniy the three benchmark positions, and w2 is
proportional to the weights in the tangent portfolio corresponding to those positions. When
c is finite, however, the solution to (7) can yield Wi 0 and, as demonstrated below, it can

even yield w2 = 0.

We present here an example with a universe containing n = 11 risky positions, the
last 3 of which are the Fama-French (FF) benchmark positions, SMB, HML, and MKT.
The 8 non-benchmark positions are selected from a larger universe of 27 equity portfolios,
constructed in essentially the same manner as those in Davis, Fama, and French (1999). At

the end of June of year t, all NYSE, AMEX, and NASDAQ stocks in the intersection of
the CRSP and Compustat files are sorted on market capitalization ("size") and assigned to
three categories, The same stocks are also assigned to three categories in an independent
sort on the ratio of book value of equity to market capitalization ("book-to-market"). There
are equal numbers of NYSE stocks in each of the three size categories as well as the three

book-to-market categories. The intersection of these categories produces nine groups of
stocks. The stocks within a group are then sorted by HML beta and assigned to one of
three subgroups containing equal numbers of stocks. Using up to 60 months of data through

December of year t — 1, the "pre-formation" HIVIL betas are computed in a regression of the

stock's excess returns on "fixed-weight" versions of the FF factors, which hold the weights

on the constituent stocks constant at their June-end values of year t. (The latter procedure,
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suggested by Daniel and Titman (1997), is designed to increase the dispersion in the "post-

formation" betas of the resulting portfolios.) This three-way grouping procedure produces
27 value-weighted portfolios, which we identify by a combination of three letters, designating

increasing values of size (S, M, B), book-to-market (L, M, H), and HML beta (1, m, h). For
example, portfolio SHh contains stocks with the smallest size (S), highest book-to-market
(H), and highest HML beta (h). The 8 non-benchmark positions form the subset of the 27

portfolios with only the high and low (i.e., no medium) values of size, book-to-market, and
HML beta. Each portfolio is combined with a short position in the riskless asset to construct

the spread positions consistent with the framework presented earlier.3

Values of E and V are constructed to satisfy exact Fama-French three-factor pricing.
The values of V and E2 are set equal to sample estimates based on monthly returns from
7/1963 through 12/1997, and the 8 x 1 vector E1 is then specified using (11) and (12). The
value of A in (7) is set to 2.84, which is the value that results in an unconstrained allocation

of all wealth to MKT when that is the only risky position available, i.e., the investor chooses

neither to borrow nor lend.5

Table 1 reports, for different values of c, the optimal position sizes (Xi's) per $100 of
invested wealth (W_1 = 100).6 The "cash" row reports the overall (net) allocation in (5). In

the unconstrained case (c = oc), the optimal allocation calls for borrowing 70 and for position

sizes of about 64, 357, and 170 in SMB, HML, and MKT. The fact that no allocations are
made to any of the non-benchmark positions (w1 = 0) is consistent with the unconstrained

solution in (13). Recall that a position size of 357 in HML implies that, for each $100 of
invested wealth, the investor establishes a $357 long position in the FF "high" book-to-
market stocks along with a $357 short position in the "low" book-to-market stocks, while a

position of 170 in MKT implies only a one-way (long) position in a risky asset. The sum of

the unconstrained risky positions, long and short, is equal to 2(64) + 2(357) + 170 = 1012,

a bit more than 10 times wealth. Thus, the constraint on w binds slightly at c = 10, as

3The returns on the non-benchmark positions can be combined to approximate the payoffs on the FF
benchmarks, but the approximation is imperfect, and hence V is nonsingular. The breakpoints used in sorting
firms to construct the 27 portfolios differ from those necessary to construct the FF factors. Moreover, even
without those breakpoint differences, the value-weighted portfolios used to construct the FF factors could
not be formed as fixed-weight combinations of the 27 value-weighted portfolios.

4We thank Ken French for supplying the FF factors.
5For the sample estimates used here, the optimal market allocation is actually 100.5%; the corresponding

allocation is exactly 100% in the next section, which accounts for estimation risk.
6The investment constraint in (7) treats the n assets as indivisible, which ignores the fact that they are

constructed as portfolios of stocks, and a given stock can appear in a non-benchmark portfolio as well as
in each of the FF three benchmarks. A different (more complicated) constraint applies if the latter fact is
incorporated. If, for example, all of the underlying stock positions are held with a single broker, then short
and long positions in the same stock cancel each other, reducing the margin required.
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evidenced by the small non-zero allocations to the non-benchmark positions.

For smaller values of c, properties of the optimal portfolio are affected significantly by
the constraints on w. The standard deviations of the return on the optimal portfolio are
lower under the constraints: 21.8% per annum with c = 2 versus 32.9% with c = cc.

The correlation between the return on the unconstrained portfolio and the return on the

constrained portfolio (denoted pc,) is equal to 0.86 for c = 2. For c = 5, HML is the only

FF benchmark receiving a non-zero allocation (of 180), and SHh, BH1, and BHh receive
allocations of 64, 34, and 42. For c = 2, none of the 3 FF benchmarks enter the optimal
portfolio, while SHh, BH1, and BHh receive allocations of 76, —37, and 72. To reiterate,
with a 50% margin requirement, the FF benchmark positions receive zero weight in this
investment universe, even though E and V conform exactly to FF pricing.

When c = 2, substantial long positions are taken in SHh and BHh, whose HML betas

are large (0.80 and 0.84, respectively), since they both contain high book-to-market stocks
with high HML betas. The portfolios of low book-to-market stocks with low HML betas, SL1

and BL1, both receive short positions, and their HML betas are -0.42 and -0.65, respectively.

In the unconstrained case, recall that the optimal portfolio includes a positive exposure of
357 to HML. With c = 2, that exposure can be no more than 100, even with all other
exposures set to zero. For the constrained investor who believes in Fama-French pricing,

going long and short the non-benchmark portfolios essentially provides an alternative path
to high HML exposure that makes better use of the permitted overall risky-asset position.
That investor largely avoids the long positions in the stocks with medium and low HML
betas present in the long (H) leg of HML as well as the short positions in the stocks with the

high and medium HML betas present in the short (L) leg of HML. As a result, the HML beta

of the constrained optimal portfolio is 1.51, which exceeds the value of 1.00 obtainable by

allocating only to HML. This example illustrates the point that, for a constrained investor,
a set of benchmarks that is correct for pricing need not be correct for investing.

The example presented here simply uses sample estimates of E2 and V. Of course, an
investor who relies on a finite sample of data remains uncertain about the true values of those

parameters. Moreover, E1 obeys exact three-factor FF pricing in this example, whereas an
investor might be uncertain about whether any given pricing model holds exactly. In the
next section, we incorporate parameter uncertainty, or estimation risk," which includes this

potential mispricing uncertainty.
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3. Comparing Investments Under Parameter Uncer-
tainty

Our objective is to compare pricing models in terms of their implications for portfolio choice.

Specifically, for a given investment universe containing cash plus n risky positions, we com-
pare the portfolios selected by investors who base their prior beliefs on three different pricing

models. Two are risk-based, the FF model and the CAPM, and relate expected returns to
betas on one or more risk factors. In the Daniel-Titman (DT) characteristic-based model,
expected returns depend on size and book-to-market, not betas.

To incorporate uncertainty about parameter values, including mispricing uncertainty, we
apply Bayesian methods.7 Recall that Tt is the n-vector with ith element RL,t — We

assume that rt is drawn independently across t from a multivariate normal distribution with

unknown parameters E and V. An investor has prior beliefs p(E, V), shaped in part by a
prior belief about the accuracy of a given pricing model. The investor forms posterior beliefs

p(E, VR), based on the data {R : Tt, t = 1, . .. , T}, and forms the predictive distribution

for rT+,
p(rT+1R) = f f p(r+iR, E, V) p(E, VR) dEdV. (14)

The investor then solves (7) with E and V replaced by E* and V*, the moments of the
predictive distribution in equation (14). As detailed in the Appendix, E* and V* are obtained

analytically for the risk-based models and through Gibbs sampling for the characteristic-
based model. The prior beliefs about E and V are discussed below. The prior beliefs about

V are non-informative, and since the monthly data are fairly informative about second
moments, the predictive covariance matrix V" is quite similar across different pricing models

and degrees of mispricing uncertainty.

3.1. Framework

It is useful to cast the problem in a regression setting. Let 'rt = r)', following the same

partitioning applied to E and V in equation (10). That is, T2,t contains the payoffs on k

benchmark positions from a factor-based model, and i,t contains the payoffs on rn (= n — k)

7Early applications of Bayesian methods to portfolio choice include Zellner and Chetty (1965), Klein and
Bawa (1976), and Brown (1979). Bayesian posterior distributions of measures of portfolio inefficiency are
analyzed by Shanken (1987), Kandel, McCulloch, and Stambaugh (1995), and Wang (1998), who incorporates
short sale restrictions.
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non-benchmark positions. Consider the multivariate regression,

= a + Br2, + Ut, (15)

where Ut obeys a multivariate normal distribution with mean zero and variance-covariance

matrix equal to . In this regression framework, the set of parameters (E, V) is replaced by
(a,B,,E2,V22), where B is defined in equation (11),

a = E1 — BE2, (16)

and
= V11 — BVB'. (17)

The factor-based and characteristic-based models imply different restrictions on a. and

prior beliefs about a are centered on these restrictions, as will be explained below. The
models impose no restrictions on B, , E2, and V22, so the prior distributions for these

parameters are noninformative. The prior distribution for is specified as inverted Wishart,

W(H1, v), (18)

with degrees of freedom v = 15, so that the prior contains only about as much information

as a sample of 15 observations ("'..2' is read "is distributed as"). From the properties of
the inverted Wishart distribution (e.g., Anderson (1984)), the prior expectation of equals

H/(v—m—1). We specify H = s2(v—m—1)Im, SO that E() = S21m. Following an "empirical
Bayes" approach, the value of s2 is set equal to the average of the diagonal elements of the
sample estimate of . The joint prior distribution for the remaining parameters (B, E2, V22)
is assumed to be diffuse and independent of a and .

The CAPM, in which k = 1, and the three-factor FF model, in which k = 3, are treated

in the same manner. Under the CAPM, the payoffs on the two non-market positions SMB
and HML are simply included in ri,t, which then has n — 1 elements, whereas those payoffs

are included in T2,t under the FF model, so nt then has only n — 3 elements. The factor-

based pricing restriction in equation (12) is equivalent to a = 0. To allow for mispricing

uncertainty, the prior distribution for a is specified as a normal distribution,

(19)

The unconditional prior variance of each element of a, o, reflects the investor's prior degree

of mispricing uncertainty. When oa = 0, the investor believes dogmatically in the model,

and mispricing is ruled out completely. When a = oc, the investor regards the model as
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useless, since mispricing is completely unrestricted. Pastor and Stambaugh (1999) introduce

this measure of mispricing uncertainty.

Observe that the conditional prior covariance matrix of a is proportional to This

specification is motivated by the recognition that there exist portfolios with high Sharpe
ratios if the elements of a are large when the elements of > are small. When w is unrestricted

(no margin requirements), the maximum squared Sharpe ratio from the universe containing

the n positions is given by
= S + a'1a, (20)

where S is the maximum squared Sharpe ratio from the k benchmark positions. The
importance of bounding a'1a as n grows large arises in the arbitrage-pricing literature
(e.g., Ingersoll (1984)). For finite values of ri, MacKinlay (1995) demonstrates empirically the
importance of a positive association between a and in reducing the value of S. With no

mispricing in the factor-based model, S = S. The prior in (19) reflects a belief that, even

with some mispricing, the risk-based nature of the model makes large values of S — S less

likely than under non-risk-based alternatives.8 For a given Ua, large values of S —S receive

lower prior probabilities under (19) than when each element of a has standard deviation
o but is distributed independently of all other parameters. Pastor and Stambaugh (1999)
introduce the same type of prior for a single element of a, and Pastor (1999) applies the
multivariate version in (19) to portfolio-choice problems.

The investment universe contains n risky positions, and in this section the last three
are again the FF benchmarks (as in Section 2). Recall that exact FF pricing implies the
restriction on E in equation (12). The DT model yields a simple alternative restriction on
E1 if the non-benchmark positions are constructed in a particular fashion. For this purpose,
we construct a set of nine non-benchmark positions as beta spreads within categories of
size and book-to-market. For a given joint classification of size and book-to-market, the
payoff on each spread, per $1 of position size, is produced by going long $1 of the portfolio
with the lowest I-IML beta and short $1 of the portfolio with the highest HML beta. For
example. SH(l-h) denotes the spread position that is long portfolio SH1 and short portfolio
SHh. (These portfolios are described in the previous section.) The key to such spreads,
proposed by Daniel and Titman (1997), is that the characteristics of the long and short
positions are (approximately) the same. Thus, we represent the DT model by the restriction

8MacKinlay (1995) develops a functional relation between a and when the mispricing is risk based,
i.e., when a reflects sensitivities to a source of risk not included in T2,t. MacKinlay and Pastor (1999) use
maximum likelihood procedures to investigate the implications of this relation for estimation of expected
returns and for portfolio selection.
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E1 = 0, which is equivalent to
a = —BE2. (21)

To allow for mispricing uncertainty, we assume

N(BE2,Im). (22)

In contrast to the risk-based specification in (19), does not appear in (22). The difference

S—S is positive even when (21) holds exactly (using (20) and assuming BE2 0), and this
non-risk-based model provides no reason to limit this difference if (21) is violated (o> 0).
Thus, a and are made independent in the prior for the DT model. The three elements of
E2 are left unrestricted, with the rationale that at least three unknown parameters would
relate those values to size and book-to-market (e.g., an intercept and two slopes).

The nine non-benchmark positions are formed as spreads between portfolios selected
from the set produced by a three-way sort on size, book-to-market, and HvlL beta. As
demonstrated earlier, margill requirements can induce an investor to select positions that

are extreme in terms of their betas or characteristics. Grouping stocks into 27 portfolios,
following Davis, Fama, and French (1999), essentially maximizes the differences among the

extreme portfolios, given the limitations of the data (avoiding portfolios containing very
few or no stocks during the early years of the sample). The construction of the investment
universe is likely to be important to our analysis, especially in the presence of margin require-
ments, and in Section 4 we explore the robustness of our results to the choice of investment

universe.

In each of the nine non-benchmark spreads, the long and short legs are assumed to be
matched in terms of their size and book-to-market characteristics. Davis, Fama, and French

(1999) observe that, despite this objective of the sorting procedure, the short leg of each
spread exhibits a tendency to contain stocks with slightly higher book-to-market ratios than
the stocks in the long leg. The reason is that there remains some positive correlation between

book-to-market ratios and HML betas within the nine portfolios formed by a two-way sort
on size and book-to-market. (Recall that the spreads are long low HT'vIL betas and short
high HML betas.) Under a DI model in which expected return is increasing in the book-
to-market characteristic, that mismatch implies that the elements of E1 are slightly less
than zero, as opposed to the equality implying (21). The elements of BE2 are likely to be
negative (the HML betas are negative by construction), so under the DT model a slight book-

to-market mismatch in the spreads would require that the prior mean of a (= E1 — BE2) be

somewhat closer to the zero vector than is —BE2, the prior mean used in (22) corresponding

to E1 = 0. In other words, accounting for the mismatches would move the prior for the
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DT model closer to that of the FF model. As detailed below, we find that the differences
in portfolio choices implied by the DT and FF models are often made small or nonexistent

by incorporating mispricing uncertainty and margin requirements. Accounting for slight
characteristic mismatches in the spreads would tend to further reduce those differences.

3.2. Results

Table 2 reports optimal allocations per $100 of wealth when prior beliefs are centered on

each of the three pricing models, with varying degrees of mispricing uncertainty (o). As

mispricing uncertainty increases, optimal allocations must approach those based on the sam-

ple moments of returns, whatever the pricing model. Our aim is to explore the extent to
which this behavior occurs at interesting levels of a. Results in Table 2 are reported for

= 1% and o = 2% (per annum) as well as the limiting values crc, = 0 (exact pricing) and
= oc (no use of a pricing model).

Given the true values of B and E2, o represents the prior volatility of the errors in E1

obtained from the pricing model. In the absence of a pricing model, one might construct E1

by computing sample means. The volatilities of the errors in the elements of E1 obtained

in that manner provide one benchmark for assessing the magnitude of o. Of course, such

volatilities depend on the investment universe. For the universe of spread positions analyzed

in this section, the elements of T1,t have annualized standard deviations that average about

10%. Thus, the errors in E1 specified as sample means on average have a 2% volatility in

samples of about 25 years and a 1% volatility in samples of about 100 years. Sections 2 and 4

analyze an investment universe composed largely of non-spread positions. whose annualized
standard deviations average about 20%. The sample sizes corresponding to error volatilities
of 2% and 1% are then about 100 and 400 years. When viewed in this context, values of oa

equal to 1%, or even 2%, seem to represent modest degrees of prior mispricing uncertainty
for these investment universes.

The first three columns of Table 2, with oa = 0, display the allocations corresponding to

dogmatic beliefs in each of the three pricing models. As in Table 1, the row labeled "cash"
includes the overall (net) amount in (5). Recall that a value for risk aversion of A = 2.84

implies that all of the investor's wealth is allocated to the market portfolio when that is the
only risky position available. With a dogmatic belief in the CAPM (shortened to "CM" in
the table), the market portfolio has the maximum Sharpe ratio, so MKT is again the only
risky position with a non-zero allocation for such an investor, and that allocation equals 100
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for each value of c considered.

Table 2 presents portfolio allocations for the different levels of investment constraints

analyzed previously in Table 1 (c = 2,5, 10, oc). The most striking result is that, when

c = 2, the optimal allocations under the FF model are virtually identical to those under the

DT model. This is true even for dogmatic beliefs in each model (ac, = 0) and remains true

for the non-zero values of 0a• In other words, for a mean-variance investor who must allocate

funds across the twelve risky positions considered here, it makes no difference whether he has

strong beliefs in the three-factor model or strong beliefs in the characteristic-based model.

When constrained by a 50% margin requirement, the optimal portfolio is the same under
either model. This result seems noteworthy, since the nine beta-spread positions included
here are constructed to exploit differences between the FF and DT models.

For the three finite values of o, the only risky positions receiving non-zero allocations
under the DT and FF models when c = 2 are HML and MKT, with position sizes of 62

and 76, and 24 is placed in cash. The fact that the HML and MKT allocations are virtually
identical under the DT and FF models but different from the allocations under the CAPM

can be explained by the predictive means of the factors. With o = 0, the predictive mean

of MKT is around 6.3% per annum across all three models. The predictive mean of HML,
however, is 5.1% under the DT and FF models as compared to —1.4% under the CAPM,
which prices HML by its MKT beta. With c = 2, no funds are allocated to SMB or any of

the nine beta-spread positions; the intuition for this outcome is deferred to the discussion

of risk aversion in the next subsection. The return on the optimal portfolio has a predictive
standard deviation of 10.5% (annualized), substantially lower than those of the optimal
portfolios under dogmatic beliefs in each model in the unconstrained case: 40.6% for the DT

model and 32.7% for the FF model. Note, however, that the investment constraints do not
preclude higher standard deviations. For example, a simple two-to-one leveraging of MKT,

permitted under c = 2, produces a standard deviation of about 30%.

To a large extent, the above observations for c = 2 also apply when c = 5 (corresponding
to a 20% margin requirement). The allocations are again identical under the FF and DT
models when o = 0 and o = 1%. As with c = 2, HML and MKT are the only risky

positions receiving non-zero allocations, although the I-IML position is now larger than that
of MKT (189 versus 121). The optimal portfolios under the IDT and FF models diverge

slightly at Ua = 2%, only in that ML(l-h) receives a short position of -8 under the FF model.

When o = oc, the optimal allocation again includes a short position in ML(l-h).

For margin requirements in the range of 20% to 50%, the above results reveal little
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or no role for mispricing uncertainty (ga) in determining optimal allocations among the
opportunities considered. As investment constraints are relaxed, the degree of mispricing
uncertainty exerts more influence. When c = , the unconstrained case, the nine beta

spreads receive zero allocations under dogmatic beliefs (o = 0) in the CAPM or FF model, as

they must. In contrast, some large non-zero positions in those spreads arise under dogmatic
beliefs in the DT model, such as the positions of roughly 180 in both SH(l-h) and BL(l-h).

As increases, the allocations change, and the beta-spread positions receive substantial
non-zero allocations under all three models. With cra = oc, where the pricing models are

not used at all, the optimal unconstrained portfolio has a number of large long and short
positions, such as 180 in SH(l-h), —186 in ML(1-h), 452 in HML, and 207 in MKT. The

optimal portfolio also calls for borrowing 107.

Because the payoffs on the 12 risky positions are correlated, large differences in position-
by-position allocations need not produce economically significant differences in the overall
portfolio characteristics. To gauge the economic importance of such differences across pricing
models, we compare certainty-equivalent returns on the portfolios as follows. Let E* and V*

denote the predictive moments of rt formed under a given o and a given pricing model. For
a given c, we first compute the certainty-equivalent excess return of the allocation w0 that

is optimal under that predictive distribution,

CE0 = wE* —
AwV*wo. (23)

Then we compute the certainty equivalent excess return of a suboptimal allocation wS,

CE = wE* -
AwV*wS, (24)

where wS is an allocation that is optimal for the same c and cr under the predictive dis-
tribution from a different pricing model. The difference CE0 — CE provides an economic

measure of the difference between the two portfolios.9 It is the perceived certainty-equivalent
loss to an investor with a given degree of belief in one pricing model who is forced to accept
the portfolio selection of another investor with the same degree of belief in a different pricing

model, where both investors face the same constraints.

Figure 1 displays the certainty equivalent losses for an investor who believes in the

characteristic-based model with varying degrees of mispricing uncertainty. For each of four

values of c, the figure displays a plot of the certainty equivalent loss versus o. Losses are
computed for portfolios from the FF model (solid lines) and from the CAPM (dashed lines).

9Kandel and Stambaugh (1996) propose this approach, wherein a single predictive distribution is used to
compute the certainty equivalents of both portfolios.

16



When c = cc and a = 0, the certainty equivalent loss for the FF allocation is about 8% per

annum, an economically large magnitude. With mispricing uncertainty, the FF loss drops

to about 5% at a = 1% and to less than 2% at cr = 2%. Note that a loss of 2% for the

FF model also occurs with no mispricing uncertainty but with a 10% margin requirement

(c = 10). Although a 2% loss is still economically significant, it is only one-fourth the size of

the loss under the same sets of beliefs but no investment constraints. When c = 2 and c= 5,

the certainty equivalent losses for the FF portfolios plot as essentially a fiat line at zero,
since as observed previously, the optimal allocations in the DT and FF models are virtually

identical in those cases.

In all cases considered, larger certainty equivalent losses are associated with the CAPM
portfolios. When c = cc and = 0, the loss for the CAPM portfolio is about 20%.
Mispricing uncertainty again reduces that loss, to about 12% at oa = 1% and 4.5% at

= 2%, but those values are considerably larger than the corresponding losses for the FF
model. Unlike the FF losses, the CAPM losses do not completely disappear at the lower

values of c. For example, with c = 5 and dogmatic beliefs in the models, the CAPM portfolio

produces a loss of almost 9% for an investor who believes in the DT model, whereas the FF

portfolio produces no loss for such an investor. Nevertheless, a combination of realistic

investment constraints and modest mispricing uncertainty is still sufficient to reduce the

losses for the CAPM portfolio to rather low levels. With c= 2 and a = 2%, the annualized

loss for the CAPM allocation is only 33 basis points.

Figure 2 displays precisely the same analysis, except that the certainty equivalent losses

are computed for an investor who believes in the FF model, instead of the DT model as

in Figure 1. The dashed lines still represent the losses for the CAPM portfolios, but the

solid line now represents the losses associated with the DT portfolios. The losses for theDT

portfolios perceived by the investor with FF beliefs (Figure 2) are, in all cases, very close to

the losses for the FF portfolios perceived by the investor with DT beliefs (Figure 1). The
magnitudes for some of the CAPM losses are somewhat different, most notably at c = cc

and o = 0, where the loss in Figure 2 is 12% versus 20% in Figure 1. This ordering is
perhaps not surprising, given that the CAPM and the FF model areboth factor-based and

have the vlKT factor in common. In general, however, the observations made for Figure 1

are unchanged when based on Figure 2. Again, in terms of investment implications, the FF

and DT models are significantly closer to each other than is either model to theCAPM.

We also compare portfolios by computing the correlation between their returns. As

before, let V* denote the predictive covariance matrix of Tt formed under a given o and a
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given pricing model. The predictive correlation between the return on the optimal allocation

W and suboptimal allocation wS is given by

wVws
Pos= , 25

\/wO V*wo /wVws
where WS is again an allocation that is optimal for the same c and o but a different pricing
model. These correlations for the DT predictive distribution are displayed in Figure 3, which

follows precisely the same format used to display the certainty equivalent losses in Figure 1.
(As before, the results based on the FF predictive distribution are close to those based on
the DT predictive distribution and are omitted in the interest of space.) The correlations
between the FF and DT portfolios plot as flat lines at 1.0 for c = 2 and c = 5. For c = 10,

the correlations between the FF and DT allocations are 0.95 or higher. Thus, in the presence
of even weak investment constraints, the FF and DT models imply highly correlated optimal

portfolios. The correlations between either of those portfolios and the CAPM portfolio are
substantially lower, especially in the absence of mispricing uncertainty. For c = 5 and c = 10,

the correlations between the CAPM portfolio and the FF or DT portfolios are 0.6 or less.
When c = oc and o = 0, the correlation between the FF and DT portfolios is about 0.8,
while the correlation of either of those portfolios with the CAPM portfolio is in the vicinity
of 0.4. With mispricing uncertainty of o = 2%, those same correlations are both around
0.95.

3.3. Risk Aversion

The optimal portfolios discussed so far are computed for an investor with a risk aversion
coefficient of A = 2.84. Recall that this risk aversion implies that all of the investor's wealth
is allocated to the market portfolio when that is the only risky position available. Different
values of A imply different optimal portfolios and hence different certainty equivalent losses

for allocations from alternative models. For different levels of risk aversion, Figure 4 displays

certainty-equivalent losses analogous to those plotted as solid lines in Figure 1, where A =
2.84. That is, for an investor with a given degree of belief in the DT model, we plot that
investor's certainty-equivalent loss when forced to hold the portfolio of an investor with the
same degree of belief in the FF model. The four graphs in Figure 4 display results for risk
aversion levels of 1, 5, 10, and 15. Each graph plots the certainty equivalent loss versus
mispricing uncertainty (au) for four levels of investment constraints, c = 2, 5, 10, and oc.

With no investment constraints (c = oc), a large certainty-equivalent loss is perceived
by an investor with dogmatic DT beliefs (a = 0) who is forced to accept the portfolio of
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a dogmatic FF investor. When risk aversion equals A = 2.84, the annualized loss is about
8%, as observed previously in Figure 1. Figure 4 reveals that the loss is decreasing in A:
the loss is roughly 24% for A = 1 but less than 2% for A = 15. (Note that the vertical
scale is different in the A = 1 graph.) As A increases, the optimal portfolios from both
models involve larger cash positions, and this effect reduces the certainty-equivalent loss
from holding the alternative portfolio.

In Figure 4, a 50% margin requirement (c = 2) eliminates the loss for the first three levels

of risk aversion (A = 1, 5, and 10), duplicating the result obtained earlier with A = 2,84

in Figure 1. As before, the portfolio choices under the constraint are virtually identical
for investors with dogmatic beliefs in the FF and DT models. As in Table 2, those optimal
portfolios call for zero allocations to SMB and the nine beta-spread portfolios. (In the absence

of constraints, a DT investor chooses substantial nonzero allocations to those positions, and
a FF investor chooses a positive allocation to SMB.) When A = 1, Figure 4 reveals a
zero certainty-equivalent loss with only a 10% margin, whereas the corresponding loss with
A = 2.84 is about 2%. Dogmatic DT and FF investors with A = 1 continue to allocate
nothing to SMB and the nine beta spreads. In contrast, with A = 2.84 both investors choose

positive (but different) allocations to SMB, and the DT investor allocates funds to some of
the beta spreads as well (Table 2). The fact that these positions receive zero allocations
under the lower A can be understood by considering their expected payoffs. Under dogmatic
DT beliefs, the nine beta spreads have zero expected payoffs (E1 = 0). The posterior mean

of SMB is positive but lower than that of HML and the highest-mean payoff, MKT. The
positions with low means offer diversification, but capturing that diversification requires

allocating capital to those positions. With margin requirements and sufficiently low risk
aversion, that required capital is better used in positions with higher expected payoffs.

With investment constraints, the certainty-equivalent loss can increase with risk aversion.

For example, with c = 2 and cra = 0, the loss for the FF portfolio is zero for A = 1 but

about 45 basis points for A = 15. Although the optimal portfolios under both models indeed

involve larger cash positions for A = 15, the constrained optimal portfolios also include
some positions that are not included for A = 1. In particular, the optimal portfolios from
both models include only HML and MKT when A = 1, as observed above. In contrast, for
A = 15, the optimal portfolio from the FF model also includes a $12 position in SMB (per
$100 invested), while the optimal portfolio from the DT model includes nonzero allocations
(between 10 cents and $12) to all 11 risky positions. With this higher level of risk aversion,

the DT investor finds the zero-mean HML-beta spreads attractive for diversification reasons,
whereas the dogmatic FF investor allocates nothing to those positions, whether constrained
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or not.

Figure 5 reports losses for an investor who believes in the DT model but is forced to
hold the portfolio of an investor with CAPM beliefs. This figure confirms the observations
made for Figure 4. Certainty equivalent losses decrease as risk aversion increases, as well as

when investment constraints and mispricing uncertainty are introduced. Note that the scales
for the vertical axes in Figure 5 are different from those in Figure 4, since, to an investor
with DT beliefs, the losses from holding a CAPM investor's portfolio are larger than those
from holding the portfolio of an FF investor. This result is observed for all levels of risk
aversion and is consistent with the evidence for A = 2.84 presented in the earlier figures.
With A = 1, however, the DT portfolio is quite close to the CAPM portfolio, with the latter
producing less than a 50 basis point loss for all values of cr. For risk aversion that low, the
highest-mean position MKT constitutes the bulk of each portfolio's allocation. In general,
though, the FF and DT models are substantially closer to each other than to the CAPM in
terms of their implications for portfolio choice. 'With either realistic investment constraints

or modest mispricing uncertainty, the portfolio implications from the FF and DT models are

very similar.

4. An Alternative Characteristic-Based Model

The representation of the characteristic-based model in the previous section requires positions

to be constructed as spreads between assets with matched characteristics. This section
proposes an alternative representation that can, in principle, be applied to any set of equity
positions. At the same time, this alternative model makes stronger assumptions about
the relation between expected returns and characteristics. Our main goal in pursuing this
second approach is to explore the robustness of the empirical results in the previous section
to changes in the specification of the investment universe.

In this second characteristic-based model ("CB2"), the expected excess return on a
(positive-cost) equity portfolio is assumed to be a linear function of (known) characteris-
tics. Let C denote an n x L matrix in which each of columns 2 through L contains the values
of a characteristic, such as book-to-market. In the empirical application presented here, the
two characteristics are size and book-to-market (L = 3). Then CB2 can be represented by
the restriction

E = C'y. (26)

For a position in which asset S is risky, such as SMB and HML, the corresponding element

20



in the first column of C is equal to zero. For the other positions, the first column of C
contains the value 1, to include an intercept in the linear relation between expected excess
returns and characteristics. Note that this model restricts all n elements of E, whereas the
models examined in the previous section imply restrictions only on the n — k elements of E1,
the expected payoffs on the non-benchmark positions.

To allow for mispricing uncertainty in this characteristic-based model, the prior distribu-
tion for E is specified as

Ey N(Cy, cxI). (27)

As in the previous models, o represents the degree of mispricing uncertainty. The lower
the value of °a, the higher the prior confidence in the model's pricing restriction in (26).
As before, Tt is assumed to be normally distributed with mean E and covariance matrix V.
The prior distributions for V and 'y are specified as noninformative. Optimal portfolios are
computed as in (7) using the predictive mean and covariance matrix, which are obtained

through Gibbs sampling (as explained in the Appendix).

The investment universe analyzed here consists of cash plus the same set of n = 11

positions used in the example in Section 2. The second and third columns of C contain values

of each position's size and book-to-market, which are the same two characteristics used in
the DT model analyzed in Section 3 (i.e., the same as used to construct the characteristic-
matched spreads). The characteristics in C are computed as follows. For each stock, size is
the natural logarithm of total equity capitalization, and book-to-market is the ratio of book
value to market value of common equity. In each month, the values of size and book-to-
market for each three-way-sorted portfolio (described in Section 2) are computed as the value-

weighted averages of those characteristics for the stocks in the portfolio. This computation
is also performed for the portfolios "S" and "B" used to construct the FF factor SMB,
and similar calculations are performed for the portfolios used to construct the FF factors
HML and MKT. In the positions constructed as spreads between equity portfolios (SMB and

HML), the characteristic of one portfolio is subtracted from that of another. The formulation

in (26) treats the characteristics as known constants, which are obtained from the monthly
time series as follows. In each month, the characteristic of each position is divided by the
cross-sectional average of that characteristic across the ii positions. The time-series averages
of these standardized series are then used as the values in C.10

Table 3 reports optimal allocations per $100 of wealth when prior beliefs are centered on

10Plots of the standardized characteristics exhibit no apparent trend and exhibit much less time-series
variation than do plots of the raw characteristics.
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each of three pricing models: CB2, FF, and CAPM (CM). (The format is otherwise identical

to Table 2.) Consider first the optimal allocations obtained with a dogmatic belief in the
FF model (a = 0). Recall that these allocations are reported in Table 1 in a simplified
setting that does not account for estimation risk. Not surprisingly, as before, the optimal
portfolio in the unconstrained case (c = cc) includes only the three FF positions. With a

10% margin requirement (c = 10), the optimal portfolio in Table 1 includes some small non-

benchmark positions, whereas the portfolio in Table 3 is still unaffected by the constraint.

With a 50% margin requirement (c = 2), the striking result seen earlier in Table 1 remains
after accounting for estimation risk: an investor who believes dogmatically in the FF model
invests only in non-benchmark positions.

In Table 3, the optimal portfolios from the characteristic-based and FF models for oa = 0
and c = 2 are no longer identical, as in Table 2. For example, SH1 receives a zero allocation

under the FF model but the largest allocation (of 113) under CB2. The latter allocation
is not surprising. The posterior distributions for the elements of 'y in (26) are such that
expected returns are decreasing in size and increasing in book-to-market. In particular,
nearly 95% of the posterior mass of the size coefficient lies below zero, while virtually all
of the posterior mass of the book-to-market coefficient lies above zero. Thus, SH1 and SHh

have the highest expected returns. Although SH1 has a lower expected return than SHh
(14.2% versus 14.8% per year), it also has a lower standard deviation (19.9% versus 21.4%

per year) and somewhat smaller covariances with the other positions, so it is more attractive

to a CB2 investor. Nevertheless, SHh receives the second largest allocation (of 28) under
CB2. Although the compositions of the optimal portfolios under CB2 and FF differ, neither
contains allocations in the FF benchmark positions. Also, the annual means and standard
deviations of the two portfolios are quite similar: 18.1% and 20.9% for the CB2 portfolio,
and 17.2% and 21.6% for the FF portfolio. The two portfolios become even more similar
when dogmatic beliefs in both models are relaxed. As in Table 2, relaxing the investment
constraints leads to more borrowing and hence to optimal portfolios with higher means and
standard deviations. For c = cc and a = cc, the optimal portfolio has a mean of 54.3% and

a standard deviation of 43.6%; it involves borrowing 127 and its largest position (of 591) is
HML.

As in the previous section, the position-by-position analysis of the optimal allocations
under the factor-based and characteristic-based models is complemented by an analysis
of certainty-equivalent losses. Figure 6 is the equivalent of Figure 1, except that the
characteristic-based model is now CB2 (instead of DT) and the investment universe is differ-

ent (as explained earlier). With no investment restrictions (c= cc) and a dogmatic belief in
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each model (o = 0), the certainty equivalent loss for the FF portfolio is about 8% per year,
quite similar to the corresponding loss in Figure 1. As in Figure 1, the loss for the CAPM
portfolio is much higher, almost 21%. For u = 3%, the FF loss is only 15 basis points,
whereas the CAPM loss is 2.2%. CB2 is also closer to the FF model than to the CAPM
when investment constraints are present (c < oc). When c = 2 and o is 2% or more, both
the CAPM and the FF model are very close to CB2 (the losses are no more than 6 basis

points).

Comparisons of CB2 and the CAPM under the predictive distribution from the FF model

(an equivalent of Figure 2, not reported to save space) lead to observations very similar
to those made for Figure 6. In general, optimal portfolios from the FF and CB2 models
are quite similar when realistic investment constraints and modest mispricing uncertainty
are incorporated. This result no doubt reflects an association between characteristics and
expected returns present in the characteristic-based model as well as the FF model, as noted

earlier, whereas that association is weaker under the CAPM due to the lower correlation
between characteristics and market betas.

5. Incorporating Model Uncertainty

In Sections 3 and 4, optimal allocations are computed by combining data with prior beliefs
centered at a particular pricing model. Such an approach is consistent with a common
practice of first choosing the "best" model, using judgment or model selection criteria, and
then proceeding as if the selected model is the only one relevant, lithe investor entertains
several models a priori, this practice does not account for "model uncertainty" in the selection

process. If, for example, an investor is uncertain as to whether expected returns are modeled

better as risk-related or characteristic-related, he can potentially benefit from combining
the implications of both models. It seems conceivable, given available empirical evidence,
that one might be less than comfortable discarding one of the two models entirely. For
example, Davis, Fama, and French (1999) find a t-test rejects the null hypothesis that the FF

model prices an equally weighted combination of characteristic-matched HML-beta spreads
in the 1973—93 period, but they find the hypothesis cannot be rejected in the longer 1929—97

period. At the same time, the point estimate underlying the latter result does have its sign
in the direction of a characteristic-based alternative. Moreover, the authors report that the
FF model, viewed as a null hypothesis, is formally rejected within a characteristic-sorted
universe based on an F-test. Fortunately, an investor need not limit his attention to only
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one of the two models.

Suppose the investor considers a universe of J models M1,.. ., ivIj of expected returns.

Let p(rT+lMj, R) denote the predictive distribution of returns from model j, and let P(MR)

denote the posterior probability of model j. The predictive distribution that accounts for
model uncertainty is

J
p(rT+1R) = p(rT+lM,R)P(MR) (28)

j=1

Optimal allocations are again computed from (7), but E and V are no longer replaced by
E and V', the mean and covariance matrix of the predictive distribution from model j,but

rather by E1 and V, the moments of the predictive distribution that accounts for model
uncertainty. These moments are computed as follows (see Learner (1978)):

J
= EP(MR) (29)

J J
= 1'7 P(MR) + (E - E4(E — E)'P(MR). (30)

j=1 j=1

The predictive mean is an average of the predictive means from the J models, weighted
by the model probabilities. The predictive covariance matrix has two components. The
first is a weighted average of the predictive covariance matrices from the J models, and the

second is the covariance matrix of the predictive means across models. The posterior model

probabilities P(MR) are computed as

P vI R — P(M)p(RM) 31-
1P(M)p(RM)'

where P(M) denotes the prior probability assigned to model j before observing the data,
and p(RM) denotes the so-called marginal likelihood of model j. The marginal likelihood
is computed as

p(RM) = fp(oM) p(RO, M) dO (32)

where 6 denotes the parameters, p(OM) denotes the prior distribution, and p(RO, M3)
denotes the likelihood function, all from model j.

The calculation of posterior model probabilities is beyond the scope of this study. Such
a task would have to address several issues. First, recall that the priors for parameters not
involving a pricing restriction are specified as noninformative or even diffuse, which are in

some sense completely noninformative. Diffuse priors are improper, in that they are not

integrable over the parameter space. With improper priors, posterior model probabilities
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can be computed only in some special cases, as discussed in Kass and Raftery (1995). Sec-
ond, the marginal likelihood is often quite sensitive to the choice of a noninformative prior
distribution, more so than is the posterior distribution typically used in estimation. A prior
distribution can be made essentially noninformative but still proper by specifying a large prior

variance, but the latter can generally assume a wide range of values. For example, doubling
an already large variance keeps the prior noninformative, hence having little effect on the

posterior distribution, but the change can greatly affect the marginal likelihood. Therefore,
a study that computes marginal likelihoods should analyze their sensitivity to specifications

of noninformative priors. Finally, prior model probabilities should also be thoughtfully spec-
ified. For example, suppose the universe of models includes one with strong theoretical
motivation (e.g., the CAPM) as well as one that is partially motivated by observing data
that either overlap or are correlated with the sample R. It might be reasonable to assign a
higher prior probability to the former model.

In Sections 3 and 4, it is assumed that an investor's prior beliefs center on a particular

pricing model, say the DT model, and this assumption corresponds to assigning a posterior
probability of 1.0 to that model in the context described above. In those sections, the effect
of model uncertainty is assessed by computing the investor's loss when he is forced to hold

the allocation that would be optimal if he assigned a probability of 1.0 to a different model,
say, the FF model. Such a scenario measures the maximum effect of model uncertainty
in that two-model universe. The loss from accepting the FF allocation is smaller when the
probability assigned to the DT model is less than 1.0. Recall that even the maximum effect of

model uncertainty is quite small with modest mispricing uncertainty and realistic investment

constraints.

6. Conclusions

This study compares asset pricing models from the perspective of investors who center their
prior beliefs on the models and then update those beliefs with data for the 1963—97 period.

The pricing models considered include the Sharpe-Lintner CAPM, the three-factor model of
Fama and French (1993), and the characteristic-based model of Daniel and Titman (1997).
If an investor has dogmatic beliefs in a given pricing model, he perceives a large certainty
equivalent loss if forced to hold the portfolio chosen by an investor with equally strong beliefs

in another model. The largest such losses occur when the second portfolio is chosen by a
CAPM believer, but the differences between the Fama-French and Daniel-Titman models
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are also large when judged by this metric.

The differences described above are reduced by a consideration of two issues confronting

investors. First, even if an investor prefers a given model, he is unlikely to believe it is com-

pletely accurate. His prior beliefs more likely include some degree of mispricing uncertainty.
Second, most investors face margin requirements to at least some degree. Both of these is-

sues, especially the second, diminish the importance of differences among the pricing models

from an investment perspective. In fact, we find that considering such issues can virtually
eliminate any differences between the Fama-French and Daniel-Titman models, even though
these models reflect fundamentally different views about the economic determinants of ex-
pected returns. It is noteworthy that these models lead to similar portfolio choices within
investment universes constructed to exploit differences between the models.

This study is not intended to assist investors in choosing one pricing model over another.
One might instead view our results as questioning the economic importance of deliberating
such a choice. Moreover, a rational Bayesian investor who is uncertain about which model

to use will generally use them all, weighted by posterior model probabilities. Computing
such probabilities is beyond the intended scope of this study but offers a direction for future

research.

Finally, the single-period mean-variance framework provides only one of many investment

perspectives from which pricing models might be compared empirically. For example, the
differences between risk-based and characteristic-based models could be more important for
investors who optimize multiperiod objective functions. Alternatives to the i.i.d. stochastic

setting, adopted here for tractability, could further enrich an empirical comparison of models
from a multiperiod investment perspective. Such a perspective would be more consistent with

that of the representative investor in Merton's (1973) intertemporal version of a risk-based
model. (An investor in the present study is not assumed to be representative, insofar as
different assumptions about behavior and objectives might be required to derive a particular
pricing model.) Such issues present additional directions for future research.
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Appendix

We provide here the methods for obtaining the first two moments, E* and V*, of the predic-
tive distribution of returns, p(rT+i R). under the various pricing models in Sections 3 and
4. Using the law of iterated expectations and the variance decomposition rule,

E* = E(rT+lR) = E(E(rT+lE,V,R)R) = E(ER) = E (A.1)

V = Var(rT+lR) = E(VIR) +Var(ER) = V + Var(ER), (A.2)

where tildes denote posterior means. The predictive moments E* and V* can therefore be
computed directly from the posterior moments of E and V.

A. Risk-Based Models

Define Y = (ri,1,.., ,ri,T), X = (r2,1,.. . ,T2,T)', and Z = (tT X), where tT denotes a T-
vector of ones. Also define the (k + 1) x m matrix A = (c B)', and let a = vec (A). For the

T observations t = 1,. . . , T, the regression model in equation (15) can be written as

Y = ZA + U, vec (U) N(O, 0 IT), (A.3)

where U = (u1,. . . ,u. The matrix R = (Y X) contains the entire sample. Define the
statistics A = (Z'Z)'Z'Y, a = vec (A), = (Y — ZA)'(Y — ZA)/T, E2 = X't'r/T, and

V22 = (X — tTE2) (X — tTE)/T. The likelihood function can be factored as

p(R9) =p(YO,X) p(XO), (A.4)

where

p(YO, X) exp {_tr(Y — ZA)'(Y —

ZA)_1}
o exp {_tr - tr (A - A)'Z'Z(A - A)1}

exp {_tr1 — (a — a)'(1 0 Z'Z)(a — a)} (A.5)

and

p(XO) V22 exp {_tr (X - tTE2) (X -

oc IV22 exp {_tr2V1 - tr (E2 — E2)(E2 —

E2)V221}. (A.6)
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The joint prior distribution of all parameters is

p(O) =p(a) p(s) p(B) p(E2) p(V22), (A.7)

where

p(a) exp{_'(_)1a} (A.8)

p(s) exp{_trH1} (A.9)

p(B) cx 1 (A.1O)

p(E2) cx 1 (A.11)

p(V22) cx (A.12)

The priors of B, E2, and V22 are diffuse. The prior of is inverted Wishart with a small
number of degrees of freedom, so that it is essentially noninformative. The prior on a given

is normal and centered at the pricing restriction. Note that

a'(1 0 D)a, (A.13)

where D is a (k + 1) x (k + 1) matrix whose (1, 1) element is - and all other elements are

zero.

Combining the likelihood in equations (A.4) through (A.6) with the prior in equations

(A.7) through (A.12) yields the posterior distribution of 9:

p(OR) cx p(RO) p(O). (A.14)

Both the likelihood and the prior can be factored into two parts: one that involves the

regression parameters (a, ) and the other that involves the benchmark moments (E2, V22).

As a result, the posterior distribution also splits into two parts. The joint posterior of the

regression parameters is

p(a,R) cx exp{_[a'(1 0 D)a + (a —a)'( 0 Z'Z)(a —
a)J}

x exp {_tr (H + T)}. (A.15)

Let F = D + Z'Z and Q = Z'(IT — ZF1Z')Z. Completing the square on a yields

p(a, R) cx exp {_(a -)'( 0 F)(a - a)}

exp {_tr (H + T + A'QA)1}, (A.16)
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where
= (Im ® F1Z'Z)â. (A.17)

It follows from (A.16) that

a,R N(â,>®F') (A.18)

W(T + v — k, (H + T> + A'QAy1). (A.19)

Therefore,

a = E(aR) = (Im 0 FZ'Z)a (A.20)

= ER)=T+'kl(H+T+A'QA) (A.21)

Var(aR) = 0 F1. (A.22)

The joint posterior of the benchmark moments is

p(E2,V22X) V22T' exp{_tr2V - tr(E2
— E2)(E2 — E2)IV1}. (A.23)

It follows that

E2V22,R N(E2,V22) (A.24)

W(T — 1, (TV22)1). (A.25)

Therefore,

E2 = E(E2R) = (A.26)

V22 = E(V22R) =
T -k - 22 (A.27)

Var(E2R) = T_k_22 (A.28)

The mean of the predictive distribution from (A.1) is

E*=E= (+EE2) (A.29)

where and B are obtained from equation (A.20), since a = vec ((d B)'), and E2 is obtained

from equation (A.26).

The covariance matrix of the predictive distribution is given in equation (A.2) as V =
V + Var(ER). The first term is

BV22B+ BV22
DI IT ( )

V22J3 V92 /
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where V2 is given in equation (A.27) and is given in equation (A.21). The second term is

V ER —V (a+BE2 R_(Var( BER) Cov(BE2,ER) A31ar( ) — ar
E2 )

—
Cov(E2,EB'R) Var(E2R)

The (2,2) element of this matrix is given in equation (A.28). The (1,2) and (2, 1) elements are

easily shown to be equal to BVar(E2R) and its transpose. Using the variance decomposition

rule, the (1, 1) element is equal to Var(EiR) = E(Var(E1E2, R)) + Var(E(E1IE2, R)). It
can be shown that11

E(Var(EiE2, R)) = (I ® [1 E(ER)D( ® F1)(Im ® [1 E(ER)])' (A.32)

Var(E(EiE2,R)) = BVar(E2R)B'. (A.33)

B. The First Characteristic-Based Model

The likelihood function and the prior on (B, ,E2, V22) are the same as in the factor-based

model presented in Appendix A. The only difference from the factor-based model is in the

prior for a:

p(B,E2) exP {_(a + BE2)'(a + BE2)}. (A.34)

The conditional prior on a is normal and centered at the pricing restriction. Note that

+ BE2)'(a + BE2) = (1 E) ( % ) (a B) ()
= tr (1 E)AA' ( E)
= trA'WA(Im)

= a'(Im ® )a, (A.35)

where 1 E A36E2 E2E)
110ne useful fact in the derivation is the following. Let IT denote a m1 x 1 random vector, c1 denote a

m2 x m1 random matrix, and C denote a 1 x m2 vector of constants, such that F' = C. Also denote
=vec(). Then

Var(F) = (Imi ® C)Var()(Imi ® C)'.

This result follows using
F = vec (IT') = vec (C) = (I

The last equality is from Poirier (1995, p.646).
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The full conditional posterior distribution of a is

p(a.) exp
{— [a'(Im

® W) + (a — a)'(' ® Z'Z)(a —
a)]}

exp {_(a — )'C(a — (A.37)

where

C = (AIm ® W) + ( ® z'z) (A.38)

a = G1(F1 ® Z'Z)a. (A.39)

Hence, the full conditional posterior of a is a normal distribution:

N(a,C'). (A.40)

The full conditional posterior distribution of is

exp {_tr [(Y — ZA)'(Y — ZA) + H] _i}. (A.41)

Hence, the full conditional posterior of >1 is an inverted Wishart distribution:

W(T + i, [(Y — ZA)'(Y — ZA) + H]1). (A.42)

The full conditional posterior distribution of E2 is

p(E2) o exp {— [EB'BE2 + 2EB'a + trE2ttTEV1 —2EV'X'tT]}

exp{_(E2—E2)'P(E2_E2)} (A.43)

where

P = B'B+TV1 (A.44)

= P1(TV21E2 — B'c). (A.45)

Hence, the full conditional posterior of E2 is a normal distribution:

E2• N(E2, P1). (A.46)

The full conditional posterior distribution of V22 is

p(V22.) exp {_tr (X — tTE)'(X - tE)V1}. (A.47)
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Hence, the full conditional posterior of V22 is an inverted Wishart distribution:

W(T, [(X - LTE2) (X - tTE2)J). (A.48)

Posterior draws of (a, , E2, V22) can be obtained using Gibbs sampling (see Casella and

George (1992)). A chain of draws is constructed by making repeated draws from the full
conditional distributions in (A.40), (A.42), (A.46), and (A.48). After an initial burn-in stage,

these draws are taken from the joint posterior distribution p(a, , E2, V22R). The first two

moments of the posterior distribution are estimated using the posterior draws. The first two

moments of the predictive distribution are then obtained from equations (A.1) and (A.2)
as in Appendix A. The predictive moments are computed as in equations (A.29) through

(A.33), except that ( ® F1) in (A.32) is replaced by Var(aR) (since (A.22) does not hold
in the characteristic-based model).

C. The Alternative Characteristic-Based Model

As before, Tt is assumed to be normally distributed with mean E and covariance matrix V.
Unlike the previous models, however, this model is not recast in a regression framework.
The likelihood function is therefore

p(R) exp {_tr (R — tTE)(R LTE)V1}. (A.49)

The set of parameters 0 is now redefined as 0 = (E, V 'y), where 'y is defined below.

The prior on 9 is

p(E, V, 'y) = p(E'y)p(V)p(7), (A.50)

where

p(Ejy) exp — Cy)'(E —

C7)}
(A.51)

p(V) cc V (A.52)

p(7) cc exP{_(7_Y(7_)}. (A.53)

The prior on V is diffuse. The prior on is normal with a large variance o, so that it is
noninformative. The normal prior on E given "i' is centered at the pricing restriction.

The full conditional posterior distribution of E is

p(E) cc exp {- [(E
- C7)'(aI)1(E - C7) + (E - E)'(VY'(E

-
E)] }
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exp {_(E — E(V1(E —
Ec)}, (A.54)

where

E = R't/T (A.55)

= (-I+TV_1)_1 (A.56)

= V(Cy+TV1E). (A.57)

Hence, the full conditional posterior of E is a normal distribution:

N(Ec,). (A.58)

The full conditional posterior distribution of V is

p(V.) c vT exp{_tr(R_ LTE)(R— tTE/)V_1}. (A.59)

Hence, the full conditional posterior of V is an inverted Wishart distribution:

V. W(T, [(R — tTE)(R — tTE)]). (A.60)

The full conditional posterior distribution of is

p() exp {- [(E
- C7)'(aI)1(E - C7) + (- (aIL)1(7 - )] }

exp {(7 — 7c)/(vc)_l(/ — 7c)} (A.61)

where

V = (-C'C+ (A.62)
o_-y

= V(--C'E + (A.63)

Hence, the full conditional posterior of "i' is a normal distribution:

N(7c, V). (A.64)

Posterior draws of 0 can again be obtained using Gibbs sampling. A chain of draws
is constructed by making repeated draws from the full conditional distributions in (A.58),
(A.60), and (A.64). After an initial burn-in stage, these draws are taken from the joint
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posterior distribution p(E, V, MR). The first two moments of the posterior distribution are
estimated using the posterior draws. The first two moments of the predictive distribution
are then obtained from equations (A.1) and (A.2).

When o- = 0, E = C-y. In this special case, the full conditional posteriors are derived

for a reduced set of parameters (y, V). Whereas V is drawn in the same manner as before,

" is now drawn from the following normal distribution:

y. " N(y°, V), (A.65)

where

= (c'('c+-IL)1 (A.66)

= v [ci () E + . (A.67)
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Table 1
Optimal Allocations Under the Fama-French Model

The table reports optimal allocations (position sizes) per $100 of wealth for a mean-variance-optimizing in-
vestor with relative risk aversion equal to 2.84. The maximum value of risky positions that can be established
per dollar of wealth is denoted by c. Sample estimates based on monthly returns from 7/1963—12/1997 are
used to specify the expected payoffs on the Fama-French benchmark positions (SMB, HML, and MKT) as
well as all betas, variances, and covariances. The expected payoffs on the first eight (non-benchmark) posi-
tions obey exact Fama-French pricing. The risky components of those positions are a subset of value-weighted
portfolios constructed by a three-way sort and identified by a combination of three letters, designating in-
creasing values of size (S, M, B), book-to-market (L, M, H), and HML beta (1, m, h). The "cash" row reports
the overall amount invested in the riskless asset, including the amounts implied by the spread positions in
which the second asset is riskless, which are the first eight positions and MKT. (Negative amounts represent
borrowing.) Also reported are the annualized mean and standard deviation (std) of the portfolio's return as
well as the correlation (pc,) between the returns on the overall portfolio with and without the constraint.

C

2 5 10 oc

SL1 -8.2 -0.6 0.0 0.0
SLh 0.0 0.0 0.2 0.0
SH1 0.0 0.0 1.1 0.0
SHh 75.9 64.1 1.5 0.0
BL1 -37.1 0.0 -0.3 0.0
BL1I 0.0 0.0 0.0 0.0
BH1 6.8 33.6 0.4 0.0
BHh 72.0 41.7 0.3 0.0
SMB 0.0 0.0 60.5 63.9
HML 0.0 180.0 354.2 356.8
MKT 0.0 0.0 166.7 170.2
cash -9.4 -38.9 -70.1 -70.2

mean 17.4 25.7 30.7 30.7
std 21.8 28.0 32.9 32.9

Pccc 0.86 0.98 1.00 1.00
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Table 2

Optimal Allocations Under Parameter Uncertainty

The table reports optimal allocations (position sizes) per $100 of wealth for a mean-variance-optimizing investor
with relative risk aversion equal to 2.84. The maximum value of risky positions that can be established per dollar of
wealth is denoted by c. Mispricing uncertainty, denoted a, is the prior standard deviation of the difference between
each position's annualized expected payoff and the pricing model's exact implication, expressed as a percentage
of initial position size. Allocations are reported for prior beliefs centered on three different pricing models: the
three-factor Fama-French model (FF), the Daniel-Titman characteristic-based model (DT), and the CAPM (CM).
Optimization is based on the predictive distribution, obtained by updating the prior beliefs using monthly returns
from 7/1963 through 12/1997. The Fama-French benchmark positions are denoted by SMB, HML, and MKT. The
other nine positions are spreads between value-weighted portfolios constructed by a three-way sort and identified by
a combination of three letters, designating increasing values of size (S, M, B), book-to-market (L, M, H), and HML
beta (1, m, h); the portfolios on each side of a spread differ in HML beta (high vs. low) but are matched in size
and book-to-market. The "cash" row reports the overall amount invested in the riskiess asset, which includes the
amounts implied by the position MKT (which shorts the riskiess asset). Negative cash amounts represent borrowing.
Also reported are the annualized mean and standard deviation (std) of the portfolio's return with respect to the
given predictive distribution.

cr=0 = 1% o= 2% o=oc
DT FF CM DT FF CM DT FF CM (all)

c=2
SL(l-h) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SM(1-h) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SH(l-h) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ML(l-h) 0.0 0.0 0.0 0.0 0.0 -12.7 0.0 0.0 -12.3 -12.0

MM(l-h) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MH(l-h) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

BL(l-h) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

BM(1-h) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

BH(l-h) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SMB 0,0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HML 62.3 62.2 0.0 62.2 62.2 35.1 62.2 62.2 41.8 51.1
MKT 75.5 75.6 100.0 75.6 75.6 104.3 75.6 75.6 91.8 73.7
cash 24.5 24.4 0.0 24.4 24.4 -4.3 24.4 24.4 8.2 26.3

mean 8.0 8.0 6.3 8.0 8.0 6.8 8.0 8.0 7.1 7.9
std 10.5 10.5 15.0 10.5 10.5 14.6 10.5 10.5 12.7 10.3

c=5
SL(l-h) 0.0 0.0 0.0 0.0 0.0 10.0 0.0 0.0 3.0 0.0

SM(l-h) 0.0 0.0 0.0 0.0 0.0 3.4 0.0 0.0 0.0 0.0

SH(1-h) 0.0 0.0 0.0 0.0 0.0 28.6 0.0 0.0 13.3 0.0

ML(l-h) 0.0 0.0 0.0 0.0 0.0 -33.8 0.0 -8.2 -46.1 -50.1

MM(l-h) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MH(l-h) 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0

BL(l-h) 0.0 0.0 0.0 0.0 0.0 17.0 0.0 0.0 0.0 0.0

BM(l-h) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

BH(l-h) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SMB 0.0 0.0 0.0 0.0 0.0 15.1 0.0 0.0 4.4 0.0
HML 189.5 189.3 0.0 189.4 189.3 82.3 189.4 181.3 119.4 141.2
MKT 121.1 121.4 100.0 121.2 121.4 119.0 121.3 120.9 127.7 117.3
cash -21.1 -21.4 0.0 -21.2 -21.4 -19.0 -21.3 -20.9 -27.7 -17.3

mean 17.4 17.4 6.3 17.4 17.4 8.1 17.4 17.3 12.1 17.2
std 19.4 19.4 15.0 19.4 19.4 16.4 19.4 19.1 18.5 18.6
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Table 2 (continued)
Optimal Allocations Under Parameter Uncertainty

The table reports optimal allocations (position sizes) per $100 of wealth for a mean-variance-optimizing investor
with relative risk aversion equal to 2.84. The maximum value of risky positions that can be established per dollar of
wealth is denoted by c. Mispricing uncertainty, denoted o, is the prior standard deviation of the difference between
each position's annualized expected payoff and the pricing model's exact implication, expressed as a percentage
of initial position size. Allocations are reported for prior beliefs centered on three different pricing models: the
three-factor Fama-French model (FF), the Daniel-Titman characteristic-based model (DT), and the CAPM (CM).
Optimization is based on the predictive distribution, obtained by updating the prior beliefs using monthly returns
from 7/1963 through 12/1997. The Fama-French benchmark positions are denoted by SMB, HML, and MKT. The
other nine positions are spreads between value-weighted portfolios constructed by a three-way sort and identified by
a combination of three letters, designating increasing values of size (S, M, B), book-to-market (L, M, H), and HML
beta (1, m, h); the portfolios on each side of a spread differ in HML beta (high vs. low) but are matched in size
and book-to-market. The "cash" row reports the overall amount invested in the riskiess asset, which includes the
amounts implied by the position MKT (which shorts the riskless asset). Negative cash amounts represent borrowing.
Also reported are the annualized mean and standard deviation (std) of the portfolio's return with respect to the
given predictive distribution.

cr=0 o= 1% o= 2% o=oo
DT FF CM DT FF CM DT FF CM (all)

C = 10

SL(1-h) 0.0 0.0 0.0 0.0 3.9 15.2 3.9 8.6 22.3 15.2

SM(1-h) 0.0 0.0 0.0 0.0 0.0 18.4 0.0 0.0 5.8 0.0
SH(I-h) 41.5 0.0 0.0 50.6 13.1 43.0 59.8 29.2 64.4 50.8
ML(1-h) 0.0 0.0 0.0 0.0 -24.4 -45.2 -4.2 -54.5 -76.7 -91.7
MM(1-h) 0.0 0.0 0.0 0.0 0.0 3.7 0.0 0.0 0.0 0.0
MH(l-h) 0.0 0.0 0.0 0.0 0.0 7.4 0.0 0.0 0.3 0.0
BL(1-h) 57.9 0.0 0.0 47.8 2.0 34.6 32.0 4.2 37.2 8.9
BM(1-h) 0.0 0.0 0.0 0.0 0.0 -8.3 0.0 0.0 0.0 0.0
BH(1-h) 0.0 0.0 0.0 0.0 0.0 -5.0 0.0 0.0 0.0 0.0
SMB 16.7 63.2 0.0 15.5 51.7 22.6 16.8 37.6 33.7 20.5
HML 307.1 352.5 0.0 308.2 322.2 108.2 305.0 285.0 187.3 235.5
MKT 153.5 168.2 100.0 155.8 165.3 124.9 156.7 161.9 144.6 154.7
cash -53.5 -68.2 0.0 -55.8 -65.3 -24.9 -56.7 -61.9 -44.6 -54.7

mean 25.9 30.4 6.3 26.0 28.7 8.7 25.9 27.5 15.7 26.8
std 25.1 32.7 15.0 25.3 30.8 17.5 25.6 28.6 21.8 26.2

C = 00

SL(l-h) 17.0 0.0 0.0 37.5 16.6 15.2 54.8 37.6 35.8 63.3

SM(l-h) 60.2 0.0 0.0 76.5 20.1 18.4 82.1 45.6 43.2 77.9

SH(l-h) 178.8 0.0 0.0 178.7 46.7 43.0 182.3 105.9 101.0 180.3

ML(1-h) 62.7 0.0 0.0 -26.7 -48.3 -45.2 -107.5 -109.5 -106.1 -185.8

MM(l-h) -29.1 0.0 0.0 -0.3 4.1 3.7 15.0 9.3 8.8 15.5

MH(1-h) 36.0 0.0 0.0 32.9 8.1 7.4 34.1 18.3 17.3 30.2
BL(1-h) 180.1 0.0 0.0 179.8 38.0 34.6 169.7 86.1 81.2 145.9

BM(l-h) 3.1 0.0 0.0 -3.9 -8.9 -8.3 -13.0 -20.3 -19.5 -34.8

BH(1-h) -1.1 0.0 0.0 -1.6 -5.3 -5,0 -7.4 -12.1 -11.8 -20.5
SMB 82.8 63.2 0.0 89.0 71.2 22.6 94.7 81.8 53.0 93.7
HML 611.4 352.5 0.0 582.0 378.6 108.2 537.0 414.1 253.8 452.3
MKT 207.9 168.2 100.0 209.2 178.4 124.9 210.1 192.4 160.1 207.3
cash -107.9 -68.2 0.0 -109.2 -78.4 -24.9 -110.1 -92.4 -60.1 107.3

mean 46.7 30.4 6.3 45.5 31.5 8.7 45.7 35.9 19.1 45.6
std 40.6 32.7 15.0 40.1 33.3 17.5 40.1 35.6 26.0 40.0
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Table 3
Optimal Allocations Under Parameter Uncertainty
(with the Alternative Characteristic-Based Model)

The table reports optimal allocations (position sizes) per $100 of wealth for a mean-variance-optimizing investor
with relative risk aversion equal to 2.84. The maximum value of risky positions that can be established per dollar of
wealth is denoted by c. Mispricing uncertainty, denoted aa, is the prior standard deviation of the difference between
each position's annualized expected payoff and the pricing model's exact implication, expressed as a percentage
of initial position size. Allocations are reported for prior beliefs centered on three different pricing models: the
three-factor Fama-French model (FF), the CAPM (CM), and the alternative characteristic-based model (CB2).
Optimization is based on the predictive distribution, obtained by updating the prior beliefs using monthly returns
from 7/1963 through 12/1997. The Fama-French benchmark positions are denoted by SMB, HML, and MKT. The
risky components of the first eight positions are a subset of value-weighted portfolios constructed by a three-way
sort and identified by a combination of three letters, designating increasing values of size (S, M, B), book-to-market
(L, M, H), and HML beta (1, m, h). The "cash" row reports the overall amount invested in the riskless asset and
includes the amounts implied by the positions that short the riskless asset (all positions except SMB and HML).
Negative cash amounts represent borrowing. Also reported are the annualized mean and standard deviation (std) of
the portfolio's return with respect to the given predictive distribution.

°'a° 1% 2% 7a°°
CB2 FF CM CB2 FF CM CB2 FF CM (all)

c=2
SL1 -29.0 -10.9 0.0 -26.6 -35.2 -14.2 -25.3 -32.8 -12.5 -25.4
SLh -13.2 0.0 0.0 -17.1 0.0 -31.7 -20.9 -10.9 -36.7 -22.7
SH1 113.4 0.0 0.0 125.0 34.1 67.2 123.2 85.9 107.1 121.4
SHh 28.3 77.5 0.0 1.0 65.7 6.7 0.0 27.7 2.3 0.0
BL1 0.0 -34.3 0.0 0.0 0.0 15.1 0.0 0.0 0.0 0.0
BLh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BH1 0.0 6.4 0.0 0.0 0.0 11.7 0.0 0.0 0.5 0.0
BHh 16.0 70.8 0.0 30.3 53.6 20.0 30.6 42.8 40.9 30.5
SMB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HML 0.0 0.0 0.0 0.0 5.7 0.0 0.0 0.0 0.0 0.0
MKT 0.0 0.0 100.0 0.0 0.0 33.5 0.0 0.0 0.0 0.0
cash -15.5 -9.6 0.0 -12.6 -18.2 -8.2 -7.7 -12.6 -1.7 -3.8

mean 18.1 17.2 6.3 16.5 16.0 7.5 15.8 15.4 10.5 15.4
std 20.9 21.6 15.0 19.2 20.5 15.7 18.2 18.7 16.6 17.5

c=5
SL1 -44.4 -0.7 0.0 -52.4 -30.8 -14.7 -62.4 -54.8 -34.9 -62.6
SLh -79.3 0.0 0.0 -97.3 -40.0 -40.0 -113.8 -89.5 -84.1 -115.5
SH1 212.1 0.0 0.0 244.2 108.5 67.4 263.0 203.5 178.8 261.4
SHh 23.7 63.6 0.0 6.1 40.8 -15.3 11.5 31,6 2.2 11.2
BL1 0.0 0.0 0.0 0.0 0.0 41.3 0.0 0.0 44.8 0.0
BLh 0.0 0.0 0.0 0.0 0.0 7.6 0.0 0.0 0.0 0.0
BH1 20.5 33.9 0.0 7.3 14.1 -4.2 0.0 0.0 3.5 0.0
BHh 15.0 41.0 0.0 40.1 49.0 0.7 49.3 54.8 27,3 49.2
SMB 0.0 0.0 0.0 0.0 0.0 33.7 0.0 0.0 0.0 0.0
HML 52.5 180.4 0.0 26.2 108.4 80.9 0.0 32.9 62.1 0.0
MKT 0.0 0.0 100.0 0.0 0.0 79.5 0.0 0.0 0.0 0.0
cash -47.5 -37.8 0.0 -48.1 -41.6 -22.5 -47.5 -45.6 -37.8 -43.7

mean 28.6 25.5 6.3 28.0 24.3 8.4 28.5 26.1 15.6 28.6
std 27.0 28.0 15.0 26.4 26.1 17.1 26.6 26.0 22.0 26.1
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Table 3 (continued)
Optimal Allocations Under Parameter Uncertainty
(with the Alternative Characteristic-Based Model)

The table reports optimal allocations (position sizes) per $100 of wealth for a mean-variance-optimizing investor
with relative risk aversion equal to 2.84. The maximum value of risky positions that can be established per dollar of
wealth is denoted by c. Mispricing uncertainty, denoted a, is the prior standard deviation of the difference between
each position's annualized expected payoff and the pricing model's exact implication, expressed as a percentage
of initial position size. Allocations are reported for prior beliefs centered on three different pricing models: the
three-factor Fama-French model (FF), the CAPM (CM), and the alternative characteristic-based model (CB2).
Optimization is based on the predictive distribution, obtained by updating the prior beliefs using monthly returns
from 7/1963 through 12/1997. The Fama-French benchmark positions are denoted by SMB, HML, and MKT. The
risky components of the first eight positions are a subset of value-weighted portfolios constructed by a three-way
sort and identified by a combination of three letters, designating increasing values of size (S, M, B), book-to-market
(L, M, H), and HML beta (1, m, h), The "cash" row reports the overall amount invested in the riskless asset and
includes the amounts implied by the positions that short the riskiess asset (all positions except SMB and HML).
Negative cash amounts represent borrowing. Also reported are the annualized mean and standard deviation (std) of
the portfolio's return with respect to the given predictive distribution.

a_c, = 0 crc, = 1% a_c, = 2% a =
CB2 FF CM CB2 FF CM CB2 FF CM (all)

c = 10

SL1 -40.7 0.0 0.0 -47.7 -23.1 -15.5 -58.4 -47.7 -35.9 -69.0
SLh -117.9 0.0 0.0 -138.5 -66.5 -42.0 -156.6 -123.9 -97.9 -169.9
SH1 278.4 0.0 0.0 296.0 156.5 61.1 322.2 266.9 170.8 342.9
SHh 0.0 0.0 0.0 0.0 0.0 -30.9 0.0 0.0 -28.8 0.0
BL1 74.4 0.0 0.0 80.0 64.2 46.9 74.3 77.9 99.0 70.4
BLh -27.4 0.0 0.0 0.0 12.4 9.5 0.0 0.0 17.8 0.0
BH1 21.2 0.0 0.0 0.0 0.0 -9.9 0.0 0.0 -7.0 0.0
BHh 0.0 0.0 0.0 0.0 5.5 -0.7 7.6 14.8 2.7 15.9
SMB 0.0 63.2 0.0 0.0 12.9 63.6 0.0 0.0 65.9 0.0
HML 220.1 352.5 0.0 - 218.9 307.0 104.8 190.4 234.4 186.5 166.0
MKT 0.0 168.2 100.0 0.0 32.1 106.0 0.0 0.0 35.3 0.0
cash -87.9 -68.2 0.0 -89.7 -81.0 -24.5 -89.2 -87.9 -56.1 -90.2

mean 40.6 30.4 6.3 40.5 32.5 8.5 41.4 37.2 18.3 42.4
std 35.2 32.7 15.0 35.0 33.3 17.3 35.4 34.5 25.0 35.8

C =

SL1 -45.1 0.0 0.0 -54.1 -29.2 -15.5 -63.3 -53.7 -38.5 -72.2
SLh -142.5 0.0 0.0 -168.5 -82.1 -42.0 -188.8 -151.2 -104.4 -203.2
SRi 255.4 0.0 0.0 243.5 107.1 61.1 259.1 197.3 151.9 270.7
SRh -106.2 0.0 0.0 -189.8 -77.8 -30.9 -198.6 -143.3 -76.6 -199.0
BL1 162.9 0.0 0.0 246.4 102.6 46.9 254.5 189.0 116.5 259.6
BLh -101.4 0.0 0.0 8.1 23.4 9.5 41.2 43.1 23.5 62.4
BH1 -12.2 0.0 0.0 -22.8 -23.5 -9.9 -41.2 -43.3 -24.6 -59.0
BHh -46.6 0.0 0.0 -24.9 -4.5 -0.7 -16.1 -8.3 -1.6 -10.2
SMB 191.2 63.2 0.0 349.4 196.3 63.6 378.8 309,3 157.9 395.3
HML 489.4 352.5 0.0 595.2 445.2 104.8 595.6 527.9 260.4 590.7
MKT 262.0 168.2 100.0 190.3 175.1 106.0 180.9 183.1 116.6 178.2
cash -126.3 -68.2 0.0 -128.2 -91.1 -24.5 -127.7 -112.7 -62.6 -127.4

mean 49.7 30.4 6.3 51.5 34.3 8.5 52.9 43.6 19.2 54.3
std 41.9 32.7 15.0 42.6 34.8 17.3 43.2 39.2 26.0 43.6
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Figure 1. Certainty-equivalent
spective of a Daniel-Titman investor.
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losses for other models' portfolios from the per-

The figure displays the certainty-equivalent loss (in %per year) for a mean-variance-optimizing investor whose
prior beliefs are centered on the Daniel-Titman characteristic-based model, with mispricing uncertainty cr,,
but is forced to hold portfolios chosen by investors with the same degree of belief in either the Fama-French
model (solid line) or the CAPM (dashed line). Investor risk aversion is set to A 2.84. The maximum
value of risky positions that can be established per dollar of wealth is denoted by c. Mispricing uncertainty,
denoted o-, is the prior standard deviation of the difference between each position's annualized expected
payoff and the pricing model's exact implication, expressed as a percentage of initial position size.
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Figure 2. Certainty-equivalent losses for other models' portfolios from the per-
spective of a Fama-French investor.
The figure displays the certainty-equivalent loss (in % per year) for a mean-variance-optimizing investor
whose prior beliefs are centered on the Fama-French factor-based model, with mispricing uncertainty cia,
but is forced to hold portfolios chosen by investors with the same degree of belief in either the Daniel-Titman
model (solid line) or the CAPM (dashed line). Investor risk aversion is set to A = 2.84. The maximum
value of risky positions that can be established per dollar of wealth is denoted by c. Mispricing uncertainty,
denoted a, is the prior standard deviation of the difference between each position's annualized expected
payoff and the pricing model's exact implication, expressed as a percentage of initial position size.
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Figure 3. Correlations with other models' portfolios from the perspective of a
Daniel-Titman investor.
The figure displays the correlation between the portfolio of a mean-variance-optimizing investor whose prior
beliefs are centered on the Daniel-Titman characteristic-based model, with mispricing uncertainty a, and
the portfolios chosen by investors with the same degree of belief in either the Fama-French model (solid
line) or the CAPM (dashed line). Investor risk aversion is set to A = 2.84. The maximum value of risky
positions that can be established per dollar of wealth is denoted by c. Mispricing uncertainty, denoted o,
is the prior standard deviation of the difference between each position's annualized expected payoff and the
pricing model's exact implication, expressed as a percentage of initial position size.
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Figure 4. Effects of risk aversion on the certainty-equivalent losses for the Fama-
French model's portfolios from the perspective of a Daniel-Titman investor.
The figure displays the certainty-equivalent loss (in % per year) for a mean-variance-optimizing investor whose
prior beliefs are centered on the Daniel-Titman characteristic-based model, with mispricing uncertainty o,
but is forced to hold portfolios chosen by investors with the same degree of belief in the Fama-French
model. Investor risk aversion is denoted by A. Mispricing uncertainty, denoted o, is the prior standard
deviation of the difference between each position's annualized expected payoff and the pricing model's exact
implication, expressed as a percentage of initial position size. The maximum value of risky positions that
can be established per dollar of wealth is denoted by c, and each plot displays results for c= 2 (solid), c = 5
(dash), c = 10 (dash-dot), and c = cc (dots).
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Figure 5. Effects of risk aversion on the certainty-equivalent losses for the CAPM's
portfolios from the perspective of a Daniel-Titman investor.
The figure displays the certainty-equivalent loss (in % per year) for a mean-variance-optimizing investor whose
prior beliefs are centered on the Daniel-Titman characteristic-based model, with mispricing uncertainty a,
but is forced to hold portfolios chosen by investors with the same degree of belief in the CAPM. Investor risk
aversion is denoted by A. Mispricing uncertainty, denoted o, is the prior standard deviation of the difference
between each position's annualized expected payoff and the pricing model's exact implication, expressed as
a percentage of initial position size. The maximum value of risky positions that can be established per dollar
of wealth is denoted by c, and each plot displays results for c = 2 (solid), c = 5 (dash), c = 10 (dash-dot),
and c = cc (dots).
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Figure 6. Certainty-equivalent losses for other models' portfolios from the per-
spective of an investor who believes in the alternative characteristic-based model.
The figure displays the certainty-equivalent loss (in % per year) for a mean-variance-optimizing investor
whose prior beliefs are centered on the alternative characteristic-based model, with mispricing uncertainty
a, but is forced to hold portfolios chosen by investors with the same degree of belief in either the Fama-
French model (solid line) or the CAPM (dashed line). rnvestor risk aversion is set to A = 2.84. The maximum
value of risky positions that can be established per dollar of wealth is denoted by c. Mispricing uncertainty,
denoted o, is the prior standard deviation of the difference between each position's annualized expected
payoff and the pricing model's exact implication, expressed as a percentage of initial position size.
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