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ABSTRACT

The goal of this paper is to analyze consumer demand in markets with large price uncertainty. We
develop a demand model for goods that are subject to habit formation. We show that consumption
plans of forward looking individuals depend not only on preferences and current period prices, but
also on individual beliefs about the evolution of future prices. Moreover, a mean preserving spread
in the price distribution and, hence, an increase in price uncertainty reduces consumption along the
optimal path. With smoking as our application, we test the predictions of our model. We use a
unique data set of prices for cigarettes collected by the Bureau of Labor Statistics to characterize
price uncertainty and price expectations of individuals. We have also obtained access to the restricted
use version of the National Education Longitudinal Study, which provides detailed information on
smoking behavior of teenagers in the U.S. Our estimation results suggest that teenagers who live in
metropolitan areas with a large amount of cigarette price volatility have, on average, significantly
lower levels of cigarette consumption. Moreover, these individuals are less likely to start consuming
cigarettes. Our results also provide evidence that young individuals are forward looking. Myopic
individuals would not respond to an increase in uncertainty about future prices by reducing
consumption.
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1 Introduction

The goal of this paper is to analyze consumer demand in markets with large price

uncertainty. Our analysis differs from most previous consumer demand studies which

either assume that individuals face little uncertainty about future prices or that un-

certainty about future prices has a negligible impact on demand. While this may be a

plausible assumption in many applications, there are clearly cases in which expecta-

tions and uncertainty about future prices cannot be ignored. In these circumstances

consumer demand will be affected by price uncertainty.1 In this paper, we develop

a demand model for goods that are subject to habit formation. We show that con-

sumption plans of forward looking individuals depend not only on preferences and

current period prices, but also on individual beliefs about the evolution of future

prices. Moreover, a mean preserving spread in the price distribution and, hence, an

increase in price uncertainty reduces smoking along the optimal path.

One purpose of this paper is to quantify the effects of price uncertainty on con-

sumer demand in volatile markets. Our application focuses on the demand for

cigarettes. Our empirical analysis draws on a number of different data sets. We

1The seminal paper on market equilibrium under price uncertainty is Muth (1961). Some influen-
tial recent studies are Wolak and Kolstad (1991) who study input demand under price uncertainty,
Appelbaum and Ullah (1997) who analyze production decisions under price uncertainty, and Hall and
Rust (2002) and Osborne (2004) who consider inventory decisions under price uncertainty. There is
also an emerging literature in marketing that looks at issues related to price uncertainty. A recent
application is Erdem, Imai, and Keane (2003) who estimate a model of brand choice under price
uncertainty.
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use a unique price data set provided by the Bureau of Labor Statistics (BLS). The

main advantages of this data set are two-fold. We can analyze prices on the metropoli-

tan area level. Our analysis thus avoids aggregation bias inherent in data at the state

or federal level. Moreover, prices are sampled on a monthly basis, that allows us to

focus on price variation within short time periods. Our empirical findings suggest that

there is much price variation among the set of metropolitan areas analyzed in this

study. Furthermore, estimates based on aggregate time series often underestimate

the amount of price volatility experienced at the local level.

To estimate the effects of price uncertainty on consumption decisions, we need to

characterize price expectations and construct measures of price volatility. First, we

focus on historical volatility.2 These measures are relevant if individuals form adaptive

price expectations (i.e., if individuals infer future prices by looking at price realizations

in the preceding periods.) Second, we compute more sophisticated measures of price

expectations. These measures capture the idea that individuals must forecast future

price realizations. Ideally forecasts should be based on the true data generating

process (Muth, 1961). We explore regime switching models proposed by Hamilton

(1989, 1990) to model the time series properties of prices.3 Our empirical findings

suggest that for the majority of metropolitan areas studied in this paper, there are

2This approach of measuring price volatility is in the spirit of the adaptive expectation hypothesis
which is typically attributed to Nerlove (1958).

3As an alternative to regime switching models we also consider GARCH (1,1) models (Bollerslev,
1986).
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two distinctly different regimes of price changes. There are time periods which are

fairly stable and exhibit only small changes in prices. These periods are followed by

short periods which are much more volatile and exhibit large swings in prices. In

these periods, predicted confidence intervals for future prices are quite large.

We then investigate whether the demand for cigarettes is affected by price volatil-

ity. We focus on the behavior of young individuals who may be most susceptible to

large swings in prices because their disposable income is relatively low compared to

adults. This part of the analysis is based on a restricted-use version of the National

Education Longitudinal Study (NELS) which is collected by the National Center for

Educational Statistics (NCES). We merge the NELS with BLS data on prices and

prices volatilities using geographic identifiers in the NELS. We then estimate de-

mand models to quantify the impact of price volatility on the demand for cigarettes

among teenagers. We find that individuals who live in metropolitan areas with a large

amount of price volatility have, on average, significantly lower levels of cigarette con-

sumption. Moreover, these individuals are less likely to start consuming cigarettes.

Models based on forecasted price volatility fit the data slightly better than models

based on historical volatility measures. However, formal non-nested hypothesis tests

often fail to distinguish between the alternatives. The results also provide some ev-

idence that young individuals are forward looking. If teenagers were myopic, price

volatility measures would have little explanatory power for observed choices. Our
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findings suggest the opposite: teenagers respond to increased price uncertainty by

reducing their consumption.

There are three strands of the empirical literature on rational addiction that

are closely related to this study. Most prior empirical studies of the rational ad-

diction model follow Becker and Murphy (1988) and analyze first order conditions

that prices and quantities need to satisfy, given individuals’ quadratic utility func-

tions. Chaloupka (1991) and Becker, Grossman, and Murphy (1991, 1994) apply this

methodology and find that tobacco consumption typically responds to lagged, current

and future price changes as predicted by rational addiction theory.4 A second line of

research develops alternative tests of forward looking behavior focusing on behavioral

responses to changes in tax policy (Gruber and Koszegi, 2001) or health shocks (Ar-

cidiacono, Sieg, and Sloan, 2006).5 Finally, there are a number of empirical studies

that primarily focus on smoking initiation of teenagers.6

The rest of the paper is organized as follows. In section 2, we present a demand

model with habit formation and characterize the relationship between consumption

of addictive goods and price expectations. Section 3 focuses on measuring price

uncertainty. This part of the analysis is based on monthly price data collected by

the BLS. Section 4 investigates the impact of price uncertainty on the consumption

4Chaloupka and Warner (2000) provide an overview of the existing empirical literature on the
rational addiction model.

5See also Khwaja (2006).
6Some recent examples include DeCicca, Kenkel, and Mathios (2002) and Gilleskie and Strumpf

(2005).
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of cigarettes using a sample drawn from the NELS. Section 5 summarizes the main

findings and offers some conclusions that can be drawn from our analysis.

2 Price Uncertainty, Expectations, and Consumer

Demand

The starting point of our analysis is a consumer demand model that accounts for habit

formation and uncertainty about future prices.7 We would like to know whether price

uncertainty and subjective beliefs about future prices can have substantial effects on

the consumption of addictive goods such as cigarettes. Consider an individual who

can consume two types of goods: a good which is subject to habit formation denoted

by at and a composite private good denoted by ct. The stock characterizing habit

formation, St, evolves according to the following law of motion:

St+1 = δ St + at (1)

7Becker and Murphy (1988) develop the basic rational addiction model without uncertainty.
Orphanides and Zervos (1995) consider uncertainty about addiction, but not price uncertainty.
Arcidiacono et al. (2006) consider the case of uncertainty about health status and mortality.
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where δ is the rate of depreciation of the stock. Individuals rank alternatives according

to a utility function:

Ut = u(ct, at, St) (2)

that satisfies standard regularity assumptions imposed in the habit formation

literature.8 Individuals are forward looking. The relevant planning horizon of an

individual is T periods. Individuals maximize expected intertemporal utility:

E

(
T∑
t=1

βt−1 u(ct, at, St)

)
(3)

where β is the discount factor.9 Thus if β = 0, individuals are myopic. If β > 0

individuals are forward looking. Individuals face a sequence of budget constraints

given by:

ct + pt at = yt (4)

where pt is the gross-of-tax price of a at time t and yt denotes income at time t. We

have conveniently normalized the price of the composite private good to be equal

8These assumptions are smoothness, concavity, complementarity of a and S, and negativity.
9Alternatively, one could assume that individuals engage in hyperbolic discounting as suggested

by Harris and Laibson (2001) and Gruber and Koszegi (2001) or make systematic mistakes as in
Bernheim and Rangel (2004). Our main argument rests on the notion that individuals are forward
looking. Whether individuals adopt time-consistent or inconsistent plans is not important for our
analysis.
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to one.10 Prices for the addictive good evolve according to a stochastic law of mo-

tion. Individuals do not have perfect foresight. Instead, they have subjective beliefs

characterizing the distribution of future prices. Price expectations are given by the

transition density, f(pt+1 |pt).

Since we abstract from saving decisions, we can simplify the decision problem of

the individuals and substitute the budget constraint into the utility function. Define

w(yt, pt, at, St) = u(yt − ptat, at, St). (5)

Under the assumptions made above, we can express the dynamic optimization prob-

lem faced by a forward looking individual using the following recursive representation:

Vt(yt, St, pt) = max
at∈[0,yt/pt]

w(yt, pt, at, St) (6)

+β
∫
Vt+1(yt+1, δSt + at, , pt+1) f(pt+1|pt) dpt+1

where Vt(·) denotes the value function at time t. The state variables are yt, St, and

pt. The decision variable is at.

10For simplicity, we assume that there is no savings. This is a reasonable assumption for young
individuals. Our analysis also largely abstracts from stockpiling which is an interesting aspect of
consumer behavior of frequently consumed goods as discussed, for example, by Hendel and Nevo
(2002). However, teenagers are less likely to have such sophisticated behavioral patterns. First, it is
harder for teenagers to store large amounts of cigarettes, especially if their parents do not want them
to smoke. Second, they are less likely to make bulk purchases (largely because of cash constraints
or legal issues in dealing with stores).
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We are primarily interested in characterizing the relationship between the con-

sumption of the addictive good at and the beliefs that individuals hold about future

prices. To get more precise results, it is useful to impose more structure on the

problem. Following Orphanides and Zervos (1995) we assume that the preferences of

individuals can be characterized by the following function:

u(ct, at, St) = ln(ct) + ln(at) + Sψt (−φ+ γ at) (7)

where ψ, γ and φ are parameters of the model.11 Given this additional assumption,

we can prove the following result:

Proposition 1 Under the assumptions made above, a mean preserving spread in the

price distribution for each period will reduce smoking along the optimal path.

Broadly speaking, risk averse individuals are concerned not only about the level but

also the variance of future prices. An increase in the variance of future prices implies

an increase in the variance of future consumption. As a consequence individuals will

substitute from the risky consumption good that is subject to price uncertainty to

the consumption good without price uncertainty. More formally proposition 1 follows

from the fact that the value function is concave in prices. A rigorous proof is provided

11The utility function used above does not explicitly account for adjustment costs of the type
discussed in Suranovic, Goldfarb, and Leonard (1999). These types of adjustment costs may be
important to explain why addicted individuals are often not satisfied with their current state of
affairs. The analysis of this paper could be extended to incorporate adjustment costs without
changing the main theoretical properties of the model.
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in Appendix A.

In summary, we have shown that the demand for goods that are subject to habit

formation depends on beliefs about future prices. Our model suggests the following

three hypotheses that can be tested empirically:

1. Myopic and forward looking individuals will reduce consumption of the addictive

good in response to a current period price increase.

2. Myopic individuals are not concerned about future prices. In particular, their

behavior does not depend on future price expectations.

3. Forward looking individuals are concerned about future prices. An increase in

the variance of future prices will decrease the current period consumption of

the addictive good.

In the remaining sections of this study, we provide an empirical investigation of these

hypotheses.

3 Measuring Price Uncertainty

3.1 Data

The focus of this paper is to analyze whether consumer decisions are affected by price

uncertainty in markets that exhibit large fluctuations in prices. Our application fo-
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cuses on the market for cigarettes. Studying the demand for cigarettes is interesting

because prices have been fluctuating significantly over the past 10 to 15 years. More-

over, cigarette consumption is measured reasonably well in panel data sets such as

NELS. Finally, understanding cigarette consumption has important implications for

health policy.

To investigate the relationship between price volatility and consumption decisions,

we first need to measure price volatility. Our price data come from the Price Indices

for Tobacco and Smoking Products collected by the Bureau of Labor Statistics (BLS).

The data set consists of monthly price series for a number of metropolitan areas in the

U.S. covering the time period from 1986 to 2002.12 The main advantages of the BLS

data are two fold. First, prices are measured on a disaggregate level. Our analysis

thus avoids aggregation bias. Second, prices are sampled on a monthly basis, which

allows us to focus on price variation within shorter periods. Empirical analysis based

on quarterly or yearly data is likely to underestimate the significant amount of price

variation in the underlying price processes. The BLS data are also reliable, cover a

large time period, and are easily available upon request from the BLS.13

12Past research has primarily relied on either the Tobacco Institute’s weighted average price by
state or data collected by ACCRA (2003). A careful discussion of different price data and the
advantages of the BLS data is also given in Chapter 8 of Sloan, Smith, and Taylor (2003).

13Thus the results reported in this section are based on publicly available data sources, and can be
easily replicated by other researchers. Alternatively one could rely on commercially available data
from sources such as A.C. Nielsen or IRI. These types of data sets are more commonly used in the
marketing literature. These data sets allow researchers to focus on even higher frequencies such as
weekly observations. See, for example, the work by Erdem and Keane (1994) or Erdem et al. (2003).
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The BLS sample contains price indices for a large number of metropolitan areas

in the U.S. In this part of the analysis, we restrict attention to 27 metropolitan areas.

This subsample is chosen to reflect the geographical diversity within the United States.

The BLS data is an index that we converted into price per carton using the ACCRA

(2003) data which includes quarterly prices, inclusive of all excise taxes, for a carton

of cigarettes. For each metro area, we normalize the BLS index so that February 1993

is unity and then multiply by the ACCRA price from the first quarter of 1993. The

1993 match point was selected since it is the middle of the observation period and it

is in a relatively low volatility period. (The price series does not markedly change if

other dates are used.)

Table 1 reports descriptive statistics for the 27 metro areas in our sample. It re-

ports means, standard deviations, minimums and maximums for price levels over the

16 year period from 1986:12 to 2002:11. The reported minimum typically occurred

during the beginning of the time period; the maximum, towards the end. We, there-

fore, find that prices increased on average by approximately 100 percent during the

observation period.

To illustrate the basic properties of our price data, we also provide plots for

four metro areas in our sample. Figure 1 suggests that prices of tobacco products

increased substantially throughout the time period in the four metropolitan areas.

However, there are also time periods in the sample in which prices of tobacco products
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decreased. A comparison of the four metropolitan areas shows that there is significant

heterogeneity in prices among geographic entities in the United States. As discussed

below, some of these price differences are due to differences in taxation among states.

A large majority of the price series exhibit a strong upward trend. This suggests

that the price process may not be stationary in levels. To investigate these issues

more formally, we consider the following baseline model to test for stationarity:

pit = ai + bi pit−1 + ci t + eit (8)

where pit denotes price levels of city i at time t and eit is a white noise error term.

Based on this model, we construct four different stationarity tests. Our first test

statistic, denoted by T-I in Table 1, gives the p-values for the null ci = 0 (assuming

|bi| < 1). Hence small p-values are evidence in support of a nonstationary model

because of the time trend. The second test, denoted by T-II, is the test statistic – not

the p-value – for the null bi = 1 and ci = 0.14 Approximate 5 percent and 1 percent

critical values for this test statistic are 6.48 and 8.72. DF is the Dickey-Fuller test

which is the t-statistic for the null that bi = 0 in the model

∆pit = ai + bi pit−1 + ci t+ di ∆pit−1 + eit (9)

14See p. 497-502 of Hamilton (1994) and refer to the table on p. 764, case 4.
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where ∆pit = pit − pit−1. The 95 % confidence interval for this test statistic is

(−3.69,−0.62). Finally, we report the modified Dickey Fuller (MDF) test statistic

for the null that bi = 0 and ci = 0 in the above model.

Table 1 reports the results for the four stationarity tests. Our findings suggest

that prices may not be stationary in levels. The p-values for the first test statistic

are low, and the second test statistic is often above the critical levels at commonly

used significance levels. The two versions of the DF test show similar results.

It is also interesting to ask the question whether a subset of the metropolitan areas

are driven by common stochastic trends. This may be helpful to explain some of the

short term and long term interactions of the time series. To investigate these issues

we perform a panel data unit root test suggested by Levin and Lin (1993). This test

is based on the model specification:

∆pit = ai + at + bi pit−1 +
ki∑
j=1

dij∆pit−j + eit. (10)

The null hypothesis is the joint hypothesis that bi = 0 for all i. Since the asymptotic

distribution of the test statistic is hard to approximate, we follow Cecchetti, Nelson,

and Sonora (2002) and use bootstrap techniques to compute the p-value associated

with the test statistic. We implement the test focusing on a subsample of our data

set which consists of the four cities used in Figure 1. We find that the p-value for the

LL test is 0.30 which is not strong evidence against our modeling approach.

13



We therefore difference the data and run the same tests on the differenced data.

Our results suggest that first differencing the data yields stationary time series. We

conclude that it is reasonable to model prices in first differences as a stationary time

series. We therefore estimate all formal pricing models reported in the next subsection

in first differences. To illustrate the main properties of the data in first differences, we

plot the time series for four metro areas in Figure 2. The plots suggest that there are

time periods that are characterized by large volatilities in prices. The last few years

in our sample are very good examples of these high volatility time periods. At the

same time there appear to be periods with fairly low variation in prices. For example,

price changes are much smaller in the middle of our observation period.

Some of the differences in estimates for the cities in our sample may be attributed

to the sampling period. For example, it is possible that we would get different esti-

mates and hence different predictions of the price volatilities if we began or ended the

price series at different points of times. Lagged price changes lead to initial condition

problems in estimation and thus affect forecasting. However, our data set is relatively

large including monthly observations for about 16 years. We expect that the type

of initial condition problems discussed above are important in shorter data sets with

yearly or quarterly observations.15

15We observe prices in the BLS data set for a much longer time period than we observe smoking
choices in the NELS. Thus our analysis of smoking behavior reported in Section 4 of this paper does
not require us to forecast price volatilities at the beginning or the end of BLS sample period.
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To investigate these issues more rigorously, we analyze whether large metropolitan

areas lead smaller metropolitan areas in pricing behavior. In particular, we use the

price series for New York, Chicago, and Los Angeles and investigate whether lagged

values of these series have any explanatory power in the price process of smaller metro

areas in their vicinities. We estimate the following model:

∆pit = ai + bi ∆pit−1 + ci ∆pNY,t−1 + di ∆pChi,t−1 + ei ∆pLA,t−1 + eit (11)

We calculate an F-test for the null hypothesis that ci = di = ei = 0 for the 24 cities

that are not NY, Chicago, or LA. We find that the null hypothesis is rejected for 15

out the 24 cities at 5 %. But we can only reject the null at 1% three times. We then

pick the major city which mostly influences a minor city (via significance of F-test)

and estimate the following model:

∆pit = ai + bi ∆pit−1 + ci ∆pNY,Chi,orLA,t−1 + eit (12)

We test the null hypothesis that ci = 0. Our evidence suggests that New York seems

to have some influence on other Northeastern cities such as Philadelphia, Boston,

Pittsburgh, or Detroit. The results for all other cities are inconclusive. Sometimes

we obtain counterintuitive negative point estimates. We thus conclude that there is

only limited evidence which suggests that there exists spillover effects between larger
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and smaller cities.

Some of the price variation observed in our sample is a direct result of changes

in state and federal tax policies that were implemented during the past decade. In

1983, the federal excise tax was doubled from $0.08 per pack to $0.16 per pack. This

rate held for a decade, when the federal rate was increased another $0.08 to $0.24

per pack. In 1997, legislation passed increasing the federal tax on cigarettes to $0.34

per pack in 2000 and $0.39 per pack in 2002. Some of the cross-sectional variation of

prices is due to differences in state tax policies. Table 2 summarizes the main features

of policies during the last decade for the states in our sample. It highlights the cross

sectional and time series variation in tax rates. While all states had low rates in

1987, most doubled or tripled the tax in a series of changes over the next fifteen

years. And while many tobacco producing states maintained low rates, there were

sharp increases in other initially low tax states like California. The data, therefore,

indicate that individuals in our sample of metro areas face a wide range of market

conditions.

3.2 Expected Price Volatility

The theoretical model studied in Section 2 suggests that consumption decisions can

depend on beliefs that individuals hold about future prices. We construct two mea-

sures to characterize expected price volatility. The first measure is based on historical
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volatility. For that we consider the price variation in the preceding periods. This mea-

sure is consistent if individual have adaptive expectations. However, individuals may

be more rational and recognize that they need to forecast future price realizations

and that extrapolating historical realizations may not be the best way to do that. To

forecast prices, it is desirable to use a formal time series model of the price process.

If individuals have correct expectations, beliefs will be based on objective price tran-

sitions; these can be estimated by an econometrician. To formulate measures char-

acterizing expectations about future price uncertainty, we estimate regime switching

models pioneered by Hamilton (1989, 1990). We consider a first-order autoregressive

regime switching model that can be written as:

∆pt = µst + ρst ∆pt−1 + εst (13)

where st is the (unobserved) state of the time series process at time t. In a regime

switching model the parameters of the autoregressive process, µst and ρst , and the

distribution of the error terms depend on the state of the process. This feature of

the model allows us to capture the fact that prices are stable in some periods and

highly volatile in other periods. We assume that εst is i.i.d. N(0, σ2
s). For notational

simplicity, let us write the density of ∆pt conditional on st = j and ∆pt−1 as

f(∆pt |st = j,∆pt−1; θ) (14)
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where θ is the parameter vector to be estimated.

The evolution of the state of the process is modelled as the outcome of an un-

observed J-state Markov chain. For simplicity let us consider a two-regime model

(J = 2). The Markov transition matrix for a two-regime model is given by:

Q =

 q11 q21

q12 q22

 (15)

where qij = Pr{st = i | st−1 = j}. Denote the history of price changes up to time t-1

as ∆~pt−1. The probability that the process is in state st = j conditional on ∆~pt−1 is

written as Pr{st = j |∆~pt−1; θ}. Given that we observe a realization ∆pt, we draw

inference about the state of the process by iterating the following two equations:

Pr{st = i |∆~pt; θ} =
f(∆pt |st = i,∆pt−1; θ) Pr{st = i |∆~pt−1; θ}∑2
j=1 f(∆pt |st = j,∆pt−1; θ) Pr{st = j |∆~pt−1; θ}

(16)

and

 Pr{st+1 = 1 |∆~pt; θ}

Pr{st+1 = 2 |∆~pt; θ}

 =

 q11 q21

q12 q22


 Pr{st = 1 |∆~pt; θ}

Pr{st = 2 |∆~pt; θ}

 (17)

Equations (16) and (17) completely characterize the stochastic evolution of the state

of the process. We have a sample of price changes observed over a sequence of T
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periods. The likelihood function for the data is given by the following equation:

L =
T∏
t=1

J∑
j=1

Pr{st = j |∆~pt−1; θ} f(∆pt |st = j,∆pt−1; θ). (18)

The likelihood function does not have a closed-form analytical solution, but needs

to be computed using an Expectation-Maximization (EM) algorithm. In the EM

algorithm, we start with an initial guess for the probabilities of each state and then

iterate forward using equations (16) and (17) to compute the conditional probabilities

characterizing each state at time t.16

We estimate the regime switching models for each of the 27 metro areas. Table 3

reports the point estimates of the parameters of the different regime switching models.

Estimated standard errors are reported in parentheses. Table 3 suggests that there

is substantial heterogeneity among the metropolitan areas in our data set as the

parameter estimates differ considerably among the 27 metro areas. The estimates

for the means, µj, are typically positive in both regimes. They are often significantly

different from zero. This result reflects the earlier observation that prices were mostly

increasing during the observation period. We also find that the point estimates for

ρs are often negative in both regimes. This result suggests that there is some mean

reversion in the data. A period of positive price changes is likely to be followed by a

period with negative price changes.

16For a detailed discussion of the EM algorithm see, for example, Hamilton (1994).
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Table 3 shows that two-state regime switching models fit the data better than

simple AR(1) specifications, at least for a large number of metro areas. The point

estimates suggest that regime 1 is characterized by large changes in prices accom-

panied with large volatility. These are the periods of price wars or changes in tax

or regulatory policies. Regime 2, in contrast, is fairly stable and shows only modest

amounts of volatility and price changes.

We have also conducted a formal test to distinguish between one-state and two-

state regime switching models for a subset of the metro areas in the data set. De-

termining the number of states in a regime switching model is, however, complicated

because standard regularity assumptions imposed in likelihood ratio tests are not met

(Hansen, 1992). One of the problems encountered here is that the null hypothesis

involves a restriction on the boundary. For these types of test there are no gen-

eral asymptotic results available. We therefore rely on bootstrapping algorithms to

construct p-values for these tests. Our findings indicate that for the majority of

metropolitan areas in our samples we can reject the null hypothesis that there is only

one state in the regime switching model.17

Regime switching models are not the only reasonable time series models that can

17We also estimated AR models with more than one lag and found that the AR(1) specification
is sufficient to capture the main regularities in the data. We have no a priori reasons to believe that
a two-state regime switching model provides the best fit to the data. We performed a number of
sensitivity tests to investigate whether adding an additional state to our model would change the
main empirical results. All of these tests suggested that adding a third regime to the model does
not improve the fit of the model.
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be fit to the data. As an additional robustness check, we follow Bollerslev (1986) and

consider GARCH(1,1) models that are given by the following equations:

∆pt = µ+ ρ∆pt−1 + εt (19)

εt ∼ N(0, σ2
t ) where σ2

t = γ0 + γ1ε
2
t−1 + γ2σ

2
t−1 (20)

We estimate a separate GARCH for each city. The parameter estimates are presented

in Table 4. As with the switching model, we find that there tends to be mean

reversion in the differenced prices (ρ < 0). The reversion terms are also comparable

in magnitude and have a similar ranking across cities as those in Table 3 from the

switching model.

Notice that the conditional variance parameters are sometimes negative (γ1 < 0,

γ2 < 0) or have a sum exceeding unity (γ1 + γ2 > 1). The latter is particularly

important in our case, since it implies that the process is not covariance stationary –

shocks do not damp out. Since GARCH models need not have a concave likelihood,

we consider a variety of maximization algorithms and continue to find these parameter

estimates. Unfortunately, this is a common feature with GARCH models. We thus

conclude that the regime switching models seem to perform slightly better in our

application than GARCH models.
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4 Price Volatility and Demand

4.1 Data

Despite a great interest in the U.S. in understanding youth smoking behavior, few

nationally representative data sets are available that chronicle the behavior of the

same children over multiple periods of time. The National Education Longitudinal

Study of 1988 (NELS) is one exception. NELS, a continuing study sponsored by the

U.S. Department of Education’s National Center for Education Statistics, began in

1988 with the specific purpose of collecting information on educational, vocational,

and personal development of a nationally representative sample of 8th graders as

they transition from middle school into high school, through high school, and into

postsecondary institutions and the work force. Approximately 24,500 8th graders in

more than 1,000 public and private schools in all 50 states participated in the first

wave of the study. In addition to the student questionnaires, supplementary ques-

tionnaires were administered to the students’ parents, teachers, and school principals

and provide a wealth of information on the early social and academic environment

of the students. Through special agreement with the U.S. Department of Education,

we obtained access to restricted-use NELS data that include geographic information.

The first follow-up, administered in the spring of 1990, includes responses from

approximately 17,500 of the students from the 1988 base year interview, while the
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second follow-up, administered in the spring of 1992, includes approximately 16,500

students from the original cohort. One of the many unique features of the NELS data

is that youth who leave high school prior to graduation continue to be interviewed

throughout the longitudinal study and are asked the same questions pertaining to

smoking behavior. It is therefore possible to examine the smoking behavior of all

youth, including those not represented in other national school-based surveys such as

Monitoring the Future. The NELS data contain information on the student’s back-

ground, upbringing, early family environment, early school environment, and other

behaviors. It provides many variables that have been found to be significant risk

factors for smoking such as school performance, religious affiliation, family structure

and living arrangement, and parental education. Since parents are surveyed in the

base year and second follow-up, it is possible to obtain time-varying information on

family background and socioeconomic characteristics that the student would not be

as informed about. In the first and second follow-up, school principals and teachers

continue to be surveyed, making it possible to control for important school environ-

mental characteristics as well.

We model the behavior of youths who are observed in each year (1988, 1990, and

1992) of the survey; we do not model attrition from the full sample. We keep only

those youths who were on grade during the sample period or who were permanent

dropouts (12,954 youths). We are forced to drop 2237 youths for whom smoking

23



behavior is unobserved. Because prices differ by state, another 270 are dropped if we

cannot identify the state in which they live or go to school, 196 are dropped if they

do not reside in the same state in all three waves, and 18 are deleted since important

variables are missing. We finally omit individuals who do not live in one of the cities

for which we have detailed price data. This leaves a sample consisting of 11,146

person-year observations.

Information on smoking behavior is collected in each wave of the survey. In each

year, youths are asked, ”How many cigarettes do you currently smoke in a day?”

Responses are limited to the following categories: do not smoke, smoke less than one

cigarette a day, smoke one to five cigarettes, smoke about a half pack (6-10), smoke

more than half a pack but less than two packs (11-39), and smoke two packs or more

(40+).

In general, adolescent smokers are older white youths with lower test scores and

socioeconomic status than non-smokers. They are more likely to have older siblings,

to have siblings who dropped out of school, to have one parent absent from the home,

and to report no religion.

The top panel of Table 5 shows the rapid increase in smoking participation between

1988 and 1992. Among the 935 youth observed smoking at some point in the sample,

only 16% began in 1988 while 45% started in 1990 and 39% started in 1992. The

dramatic increase in smoking rates is not surprising given that smoking initiation
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typically occurs during the late teens. We also form indicators of the quantity smoked

conditional on being a smoker. There are no clear trends in conditional use in table

5.

Table 5 also shows that participation behavior is relatively persistent. The middle

panel shows that over 85% of individuals continue with their most recent behavior

in 1990 and 1992. Among non-smokers, this repeat behavior rate exceeds 95%. The

bottom panel shows that only an eighth of non-smokers begin smoking in either 1990

or 1992. Alternatively, the percentage of smokers who continue smoking rises by ten

percentage points between 1990 and 1992.

4.2 Empirical Evidence

Our objective is to investigate whether cigarette demand is sensitive to price levels and

price volatility. One hypothesis is that individuals are less likely to start smoking, and

to consume fewer cigarettes if they already smoke, when prices are highly volatile. As

we have seen in section 2, theory predicts that greater price variation or higher prices

make smoking less attractive for forward looking and risk averse individuals. To

investigate these hypotheses, we separately estimate logit probabilities of cigarette

smoking participation, Cox proportional hazard models of smoking initiation, and

multinomial logit probabilities of total smoking consumption (smoking intensity is

reported as a categorical variable in NELS). For each specification we are interested in
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how cigarette price levels and volatility influence smoking behavior.18 The equations

we consider are,

Yit = β0 + β1 × Pit + β2 × Et[StdDev(Pit+1)] + γ′Xit + eit (21)

where Yit is a measure of smoking behavior for individual i in period t, Pit is the

cigarette price he faces, Et[StdDev(Pit+1)] is the expected next period price volatility,

and Xit are additional covariates. With larger Yit indicating more smoking, one

null hypothesis is that β1 < 0: individuals reduce smoking if prices increase. The

second null hypothesis is that β2 < 0: individuals smoke less if they face more price

uncertainty.19

The dependent variables, Yit, are a smoking indicator for participation logit mod-

els; first time smoking for Cox proportional hazards, and four smoking categories

(with non-smoking the omitted category) for the total consumption multinomial log-

its. The individual covariates, Xit, are gender, race, age, previous smoking status,

standardized test scores, religion, dropout indicator, sibling dropout indicator, family

composition, family socioeconomic status, parents’ education, income, and employ-

ment status, guardian’s age, and school characteristics.20

18An interesting extension of our analysis would look at smoking and drinking decisions jointly.
Decker and Schwartz (2000) provide some evidence that higher alcohol prices decrease both alcohol
consumption and smoking participation suggesting a complementarity in consumption.

19We also reestimated the models using the expected future price instead of the current period
price and found no significant differences in the parameter estimates.

20An alternative empirical framework which nests both discrete and continuous choice aspects is
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Table 6 presents estimates of the parameters of demand models using historical

volatility measures. We use the standard deviation of monthly cigarette prices over

24 months prior to the individual’s survey date as the measure of price volatility.

This presumes individuals have adaptive expectations about prices, and the two year

window is used since this is the typical period between interviews. Our estimates are

broadly consistent with the two main hypotheses. The first two columns show that

higher prices and price volatility reduce smoking participation. The only drawback

is that the estimated coefficients of the price volatility measures have large standard

errors once we allow for observed covariates.

The last three rows in these columns report the estimates that imply economically

important effects. The fitted value Y is the proportion that smoke in the participation

specifications, the relative hazard in the Cox hazards, and the proportion smoking

in the listed category in total smoking. The fitted values reflect predictions using

observed covariates (and the full set of parameter estimates) and then forcing the

price standard deviation to the max or min in the data. Even after including a

wide range of individual characteristics (column two), a shift from the minimum

to maximum price volatility in the data would reduce smoking participation by 1.7

percentage points. This is nearly a ten percent reduction from the mean observed

smoking rate.

given, for example, by Gupta (1988) who uses a multinomial logit model of brand choice, and a
cumulative logit model of purchase quantity.
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The hazard estimates in the third and fourth columns show that both price lev-

els and volatility reduce smoking take-up. To gauge the importance of the volatility

effect, the last three rows report relative hazards implied by the parameters. Af-

ter controlling for individual characteristics (column four), an increase in the price

standard deviation from the minimum to maximum would reduce the relative hazard

by 4.4 percentage points or seventeen percent of the relative hazard at the mean.

The remaining six columns show that higher prices and price volatility reduce total

cigarette consumption. The multinomial logits suggest that price variation markedly

reduces heavy smoking intensity – smoking more than half a pack per day – and shifts

individuals into the omitted non-smoking category. The last three rows again show

these effects are large even when including individual covariates.21

Table 7 reports estimates for the same demand models studied in Table 6. Here

we use forecasted volatilities based on regime switching models instead of historical

volatility measures. In general, we find that the main results of this study are robust to

different measurements of price volatility. Estimates of the main effects are significant

even after we control for observed covariates and fixed effects. We view this finding

as strong evidence supporting our main hypothesis that even young individuals are

forward looking and respond to increased price uncertainty by reducing consumption

as predicted by our theoretical model.

21The results reported in Table 6 may be subject to omitted variable problems. Any metro level
variables that we have excluded from the analysis or are not measured precisely and are correlated
with price volatilities would bias the results.
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To distinguish between models based on forecasted volatility and those using his-

torical volatility, we perform a series of non-nested tests of model selection comparing

the specifications that use historical and forecasted price volatility. The model fit and

test statistics are:

• McFadden (1974) pseudo-R2 ≡ 1− LLM

LL0
where LLM and LL0 are the log likeli-

hood from the full model and that using just a constant. Higher values indicate

a better model fit.

• Akaike’s information criterion (AIC) ≡ −2LLM+2p
N

where p is the number of

parameters and N is the sample size. Smaller values indicate a better model

fit.

• Bayesian information criterion (BIC) ≡ −2LLM−(N−p) ln(N). Smaller values

indicate a better model fit. There is strong support that specification A is a

better fit than specification B if BICA −BICB < −7.

• Vuong (1989) likelihood ratio test statistic≡ LLA−LLB
√
Nω

where ω2 is an estimate of

variance of the likelihood ratio (this is a simplified form of the test statistic, since

we always compare specifications with the same degrees of freedom). Under

the null hypothesis that the models are equivalent, the Vuong statistic has

a standard normal distribution; under the null that model A (B) is better,

the statistic converges to positive (negative) infinity. The significance of the
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test statistic can be calculated as 2Φ(Vuong), since it has a limiting normal

distribution.

Table 8 shows that the specifications using forecasted price volatilities outperform

those using historical price volatilities. The BIC statistics provide strong support in

favor of the forecasted model. The Vuong test gives more tentative support, since

the statistics are not statistically significant. Still, the statistic is negative in all cases

which provides some weak support in favor of the forecasted model.

As a final robustness check, we use the parameter estimates of the GARCH models

in Table 4 to form price volatility measures. Presuming the process is stationary, the

volatilities have an analytical solution,

V ar(pt+s|Ωt) ≡ V ar(
s∑
i=0

∆pt+i + pt−1|Ωt) (22)

=
s∑
i=0

i∑
j=0

(ρs−j)2

(
(γ1 + γ2)

j(σ2
t −

γ0

1− γ1 − γ2

) +
γ0

1− γ1 − γ2

)
.

Price standard deviations are calculated using this formula along with the parameter

estimates from Table 4. The GARCH price volatilities are then used to explain

individual smoking behavior using the NELS data, as in Tables 6 and 7. When we

eliminate cities with implausible parameter estimates (γ1 < 0, γ2 < 0; γ1 + γ2 � 1),

we find that price volatility reduces smoking participation and intensity. Table 9

presents the parameter estimates, and the fitted behavior at the bottom of the table
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indicates the volatility effect is economically significant.

5 Conclusions

In this paper we focus on the demand for goods that are subject to habit formation

or addiction in the presence of price uncertainty. Our theoretical model predicts

that forward looking individuals form beliefs about the distribution of prices in the

future. Moreover, individual consumption plans depend crucially on beliefs they hold

about future prices. To test the main implications of this model, we have assembled

a unique data set to analyze the market for cigarettes. Our empirical findings suggest

that consumers face considerable uncertainty about future market conditions. Prices

and market conditions also vary significantly among the set of metropolitan areas

analyzed in this study. The variation in price uncertainty across space and time thus

allows us to test whether individuals respond to price uncertainty as predicted by our

theoretical model.

We have constructed two types of measures of expected price variability: one based

on adaptive expectations using historical volatilities and another based on forecasted

price volatility using regime switching and GARCH models. We have estimated

reduced form models of cigarette consumption that are based on the restricted use

version of NELS that allows us to match individuals to metropolitan areas. The

empirical evidence confirms the main predictions of our model. We find that teenagers
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who live in metropolitan areas with large amounts of price volatility have, on average,

significantly lower levels of cigarette consumption than individuals in low volatility

areas. Models based on forecasted price volatility fit the data better than models

based on historical volatility measures. We thus conclude that young individuals are

forward looking and respond to changes in price uncertainty.

Understanding the role that uncertainty and risk aversion play in determining

consumption decisions of addictive goods has important policy implications. Indi-

viduals often face significant uncertainty about future tax policies. This uncertainty

about future taxes is likely to affect consumer choices. Moreover, federal and state

governments sometimes try to change behavior by announcing policies that may be

implemented in the future. Our findings suggest that these policy announcements

may be effective if they permanently change the beliefs that individuals hold about

future prices. If, on the other hand, an announced tax increase is perceived to be

temporary or if individuals believe that it is not likely to be implemented, then it

will have, at best, modest effects on individual consumption. Tax policies thus not

only affect prices in the period that they are announced or enacted, but they also af-

fect beliefs about future prices. Announced policy changes can have large immediate

effects if they are perceived to be credible.22

Our analysis provides ample scope for future research. Our findings illustrate the

22Gruber and Koszegi (2001) provide some empirical evidence in favor of this hypothesis.
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need to control for price expectations and uncertainty in empirical demand analysis.

These findings, thus, raise a number of questions regarding the common practice

of ignoring uncertainty about future prices in demand analysis or assuming perfect

foresight about prices. Our estimates of the pricing processes reflect the observed

equilibria in the regional markets. From the perspective of consumers that is all that

matters. It is, however, an interesting question to ask what supply side models would

yield price processes that are similar to the ones we observe in the data. Future

research should help us understand how supply side conditions interact with demand

models of the type considered in this paper to generate equilibria that not only exhibit

large price fluctuations across time but also the large degree of spatial price dispersion.
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A Proof of Proposition 1

We prove the result in two steps.

Result 1 A mean preserving spread in the price distribution for a single period will

reduce smoking along the optimal path under the functional forms used in the main

analysis.

Proof: Suppose prices in a single period t = s are stochastic. Let ps follow the

density f(ps|σ) where σ characterizes the dispersion. The path of all other variables

is known with certainty. We continue to assume that period utility follows equation

(7), the budget constraint follows (4), and the addiction stock satisfies the law of

motion in (1). An individual’s optimization problem is

max
a,c

∫ T∑
t

βt−1
(
ln(ct) + ln(at) + Sψt (φ+ γat)

)
f(ps|σ)dps

s.t. St+1 = δSt + at (23)

ct = yt − ptat

{St, St−1, . . .}, {yt∀t}, {pt∀t 6=s} ∈ Ωt

where Ωt is the information set at time t (we specify below when σ ∈ Ωt).

After substituting in the constraints and optimizing over the smoking choices we

have the first order conditions,
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∫ (
−pt

yt − ptat
+

1

at
+ γSψt + βWt(at)

)
f(ps|σ)dps = 0 ∀t (24)

where

Wt(at) ≡ ψSψ−1
t+1 (φ+ γat+1) (25)

+
∑
r>t

βr−t−1

(
−pr

yr − prar
+

1

ar
+ γSψr + βψSψ−1

r+1 (φ+ γar+1)

)
∂ar
∂at

= ψSψ−1
t+1 (φ+ γat+1).

The second equality in equation (26) follows from applying the t+1 first order condi-

tion, and Wt(at) depends on at through its effect on St+1 and at+1. Along the optimal

path the second order condition must be satisfied (the value function is concave),

∂
∫ ( −pt

yt−ptat
+ 1

at
+ γSψt + βWt(at)

)
f(ps|σ)dps

∂at
< 0. (26)

Finally, ct > 0 → yt − ptat > 0, which implies,

∂ −pt

yt−ptat

∂pt
=

−yt
(yt − ptat)2

< 0 (27)

∂2 −pt

yt−ptat

∂p2
t

=
−2atyt

(yt − ptat)3
< 0 ↔ yt − ptat > 0.
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This means the first order condition is concave in current prices, since pt directly

enters equation (24) only through the first term.

Now we consider the effect of a mean preserving spread in the price distribution (an

increase in σ) for the single period t = s. Suppose initially that this is unanticipated

until t = s, so optimal at ∀t<s are unaffected. The mean preserving spread reduces

the left hand side of equation (24) due to the concavity result in (27). To maintain

optimality, as (the only free variable at t = s) adjusts: as must decrease since this

will increase (24) via (26). at ∀t>s decline by an induction argument. The addiction

stock St ≡ δSt−1 + at−1 falls, since the induction assumption states at−1 declines

and so St−1 falls for t > s + 1 (Ss is unchanged). This means at declines due to

the usual adjacent complementarity argument: the complementarity and negativity

assumptions on preferences (Orphanides and Zervos, 1995) imply,

ψ, γ ≥ 0 →
∂
∫ ( −pt

yt−ptat
+ 1

at
+ γSψt + βWt(at)

)
f(ps|σ)dps

∂St
≥ 0. (28)

So when St decreases, equations (24), (26) and (28) require that at (the only free

variable in equation (24)) also decreases.

Now suppose that the mean preserving spread is anticipated in some period p ≤ s.

This will reduce ap following the adjacent complementarity argument above, and the

smoking level continues to decline during and after the change in σ. Combining all
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the results,

∂at
∂σ

≤ 0 ∀t≥p (29)

where p is the first period where the mean preserving spread is anticipated.

Q.E.D.

Result 2 A mean preserving spread in the price distribution for each and every period

will reduce smoking along the optimal path under the functional forms used in the main

analysis.

Proof: A proof by induction follows from repeated application of the proof of Re-

sult 1.

Q.E.D.
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Table 1: Descriptive Statistics

Price Levels (per carton)

City Mean SD Min Max T-I DF MDF T-II

Anchorage 19.23 5.93 10.55 30.84 0.19 -1.21 0.75 1.10
Atlanta 17.77 6.97 10.07 34.15 0.06 -1.21 2.51 1.78
Baltimore 21.43 9.65 9.48 45.10 0.17 -0.25 2.66 1.92
Boston 23.76 9.35 11.93 51.54 0.05 -0.44 1.94 2.10
Chicago 22.74 8.37 11.16 42.63 0.07 -0.48 1.91 1.90
Cincinnati 18.07 7.38 8.99 35.81 0.03 -1.42 1.76 2.44
Cleveland 20.18 7.25 10.73 40.16 0.04 -0.43 2.03 2.19
Dallas 20.41 6.17 11.66 35.86 0.00 -1.76 1.72 4.76
Denver 16.83 4.75 9.97 27.72 0.01 -1.67 1.58 4.12
Detroit 22.21 8.37 10.18 42.38 0.00 -2.26 3.15 4.99
Honolulu 21.72 9.53 8.98 41.27 0.05 -1.47 1.90 2.02
Houston 19.32 4.19 11.46 28.00 0.02 -1.81 1.66 3.80
Kansas City 23.30 9.60 11.79 44.08 0.00 -1.79 2.48 6.01
Los Angeles Metro 23.29 9.27 10.68 43.31 0.10 -1.37 1.05 1.46
Miami 21.10 6.69 13.33 38.00 0.11 -0.52 1.48 1.33
Milwaukee 19.60 6.28 10.53 34.71 0.02 -1.76 1.76 2.88
Minneapolis 26.04 12.02 10.30 53.05 0.00 -2.06 2.29 5.25
New York City Metro 24.18 10.06 12.28 53.84 0.36 0.61 4.09 2.46
Philadelphia 18.82 6.70 9.83 37.87 0.02 -1.10 1.56 2.63
Pittsburgh 18.57 6.08 10.58 36.99 0.08 -0.47 1.55 1.66
Portland 22.03 9.10 10.89 43.42 0.03 -0.96 2.01 2.51
San Diego 21.15 7.45 9.73 36.63 0.01 -1.59 1.32 3.52
San Francisco 23.55 9.84 10.56 43.85 0.10 -1.56 1.47 1.39
Seattle 23.89 9.09 11.18 45.93 0.10 -1.15 1.93 2.03
St. Louis 17.28 5.54 10.39 31.33 0.07 -1.01 1.23 1.69
Tampa 20.07 6.46 11.11 34.35 0.03 -1.62 1.54 2.53
Washington, D.C. 19.64 8.24 9.69 40.76 0.03 -0.96 1.65 2.43
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Table 2: Annual Cigarette Taxes (in cents per package)

1987 2002 87-02 87-02 # of
State tax tax mean std dev changes

Alaska 16 100 46.82 35.78 2
California 10 87 46.35 28.74 3
Colorado 15 20 19.71 1.21 1
Connecticut 26 111 46.82 18.77 5
Delaware 14 24 21.06 4.70 2
District of Columbia 13 65 46.06 23.15 4
Florida 21 33.9 30.81 4.98 2
Georgia 12 12 12.00 0 0
Hawaii 28 120 63.82 30.12 4
Illinois 20 98 41.53 20.44 4
Indiana 10.5 55.5 17.26 9.99 2
Maryland 13 100 37.12 24.77 4
Massachusetts 26 151 53.94 32.93 3
Michigan 21 125 53.94 31.42 3
Missouri 13 17 15.12 2.06 1
New Jersey 25 150 51.82 32.67 4
New York 21 150 57.47 35.28 5
Ohio 14 55 22.88 9.08 3
Oregon 27 128 47.18 27.45 5
Pennsylvania 18 100 30.41 18.99 4
Texas 20.5 41 35.94 8.22 2
Virginia 2.5 2.5 2.50 0 0
Wisconsin 25 77 43.59 16.77 5
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Table 3: Markov-Switching Estimates

City q11 q22 µ1 µ2 ρ1 ρ2 σ2
1 σ2

2

Anchorage 0.676 0.600 0.195 0.000 -0.285 0.000 0.914 0.000
(0.052) (0.057) (0.095) (0.006) (0.118) (0.005) (0.131) (0.012)

Atlanta 0.657 0.549 0.246 0.000 -0.416 -0.000 0.882 0.000
(0.053) (0.058) (0.094) (0.006) (0.112) (0.008) (0.123) (0.013)

Baltimore 0.782 0.491 0.313 0.000 -0.249 0.000 0.805 0.000
(0.053) (0.076) (0.095) (0.010) (0.099) (0.013) (0.107) (0.021)

Boston 0.920 0.943 0.421 0.127 -0.401 -0.074 3.102 0.106
(0.051) (0.028) (0.232) (0.036) (0.127) (0.085) (0.559) (0.018)

Chicago 0.965 0.975 0.409 0.090 -0.470 -0.094 1.249 0.036
(0.099) (0.019) (0.202) (0.021) (0.216) (0.085) (0.290) (0.007)

Cincinnati 0.699 0.415 0.234 0.000 -0.520 -0.000 1.002 0.000
(0.055) (0.068) (0.097) (0.010) (0.100) (0.012) (0.136) (0.024)

Cleveland 0.904 0.936 0.323 0.124 -0.456 -0.342 1.500 0.036
(0.057) (0.028) (0.155) (0.021) (0.131) (0.066) (0.276) (0.007)

Dallas 0.765 0.511 0.208 0.002 -0.529 -0.019 1.683 0.000
(0.058) (0.070) (0.123) (0.012) (0.095) (0.018) (0.225) (0.063)

Denver 0.758 0.508 0.181 -0.000 -0.511 -0.000 0.965 0.000
(0.046) (0.068) (0.092) (0.008) (0.059) (0.009) (0.130) (0.024)

Detroit 0.868 0.916 0.328 0.112 -0.261 -0.155 2.185 0.044
(0.059) (0.032) (0.192) (0.023) (0.131) (0.062) (0.403) (0.010)

Honolulu 0.609 0.633 0.371 0.000 -0.314 -0.000 0.997 0.000
(0.059) (0.054) (0.108) (0.006) (0.128) (0.007) (0.141) (0.011)

Houston 0.791 0.528 0.144 -0.000 -0.467 -0.000 0.768 0.000
(0.042) (0.065) (0.081) (0.007) (0.095) (0.009) (0.093) (0.011)

Kansas City 0.894 0.964 0.459 0.079 -0.708 -0.002 4.583 0.033
(0.084) (0.018) (0.394) (0.016) (0.249) (0.041) (1.163) (0.007)

Los Angeles metro 0.885 0.933 0.315 0.079 -0.224 0.066 2.861 0.053
(0.060) (0.028) (0.226) (0.025) (0.130) (0.068) (0.541) (0.012)

Miami 0.685 0.711 0.338 0.048 -0.214 -0.972 1.056 0.016
(0.067) (0.056) (0.117) (0.017) (0.113) (0.018) (0.166) (0.020)

Milwaukee 0.962 0.981 0.185 0.109 -0.287 -0.153 1.403 0.070
(0.137) (0.050) (0.269) (0.031) (0.365) (0.094) (0.411) (0.010)

Minneapolis 0.729 0.556 0.383 0.000 -0.683 -0.000 2.727 0.000
(0.047) (0.065) (0.152) (0.011) (0.097) (0.006) (0.357) (0.036)

New York metro 0.848 0.923 0.430 0.080 0.043 0.089 1.312 0.014
(0.064) (0.028) (0.177) (0.012) (0.149) (0.047) (0.251) (0.005)
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Table 3: Markov-Switching Estimates (cont.)

City q11 q22 µ1 µ2 ρ1 ρ2 σ2
1 σ2

2

Philadelphia 0.936 0.958 0.349 0.055 -0.367 -0.131 1.813 0.030
(0.054) (0.025) (0.178) (0.019) (0.138) (0.072) (0.333) (0.006)

Pittsburgh 0.660 0.566 0.291 0.000 -0.403 -0.000 1.137 0.000
(0.059) (0.060) (0.120) (0.007) (0.116) (0.009) (0.169) (0.023)

Portland 0.696 0.406 0.364 0.000 -0.624 -0.000 1.279 0.000
(0.052) (0.067) (0.110) (0.013) (0.096) (0.011) (0.166) (0.026)

San Diego 0.818 0.710 0.305 0.041 -0.367 -0.982 1.903 0.006
(0.045) (0.064) (0.135) (0.015) (0.091) (0.011) (0.259) (0.028)

San Francisco 0.909 0.954 0.287 0.115 0.046 -0.166 2.080 0.053
(0.072) (0.023) (0.244) (0.022) (0.262) (0.076) (0.457) (0.008)

Seattle 0.710 0.534 0.319 -0.000 -0.083 -0.000 0.938 0.000
(0.053) (0.061) (0.098) (0.010) (0.111) (0.010) (0.126) (0.017)

St. Louis 0.738 0.424 0.195 0.000 -0.542 -0.000 0.674 0.000
(0.058) (0.073) (0.080) (0.010) (0.099) (0.015) (0.089) (0.023)

Tampa 0.706 0.413 0.214 0.000 -0.344 -0.000 1.031 0.000
(0.057) (0.069) (0.093) (0.011) (0.104) (0.014) (0.140) (0.030)

Washington, D.C. 0.651 0.840 0.500 0.062 -0.523 -0.012 3.482 0.018
(0.078) (0.036) (0.267) (0.013) (0.167) (0.019) (0.691) (0.018)

46



Table 4: GARCH(1,1) Estimates

City µ ρ γ0 γ1 γ2

Anchorage 0.124 -0.029 0.649 -0.032 -0.209
(0.067) (0.046) (0.474) (0.019) (0.909)

Atlanta 0.114 -0.269 0.045 0.270 0.661
(0.036) (0.110) (0.015) (0.067) (0.064)

Baltimore 0.277 -0.274 0.155 1.406 0.060
(0.045) (0.083) (0.038) (0.279) (0.047)

Boston 0.281 -0.387 0.016 0.825 0.561
(0.042) (0.088) (0.024) (0.104) (0.043)

Chicago 0.133 -0.205 0.005 0.454 0.717
(0.025) (0.094) (0.003) (0.114) (0.056)

Cincinnati 0.124 -0.371 0.786 0.160 -0.231
(0.057) (0.124) (0.255) (0.129) (0.388)

Cleveland 0.126 -0.343 0.005 0.375 0.740
(0.024) (0.068) (0.003) (0.103) (0.054)

Dallas 0.094 -0.375 0.021 0.156 0.867
(0.043) (0.109) (0.008) (0.062) (0.036)

Denver 0.109 -0.399 0.066 0.509 0.498
(0.046) (0.084) (0.013) (0.128) (0.077)

Detroit 0.198 -0.365 0.006 0.411 0.741
(0.027) (0.111) (0.004) (0.097) (0.046)

Honolulu 0.153 -0.337 -0.003 0.881 0.690
(0.020) (0.124) (0.007) (0.141) (0.037)

Houston 0.137 -0.439 0.207 0.107 0.531
(0.061) (0.108) (0.142) (0.096) (0.315)

Kansas City 0.228 -0.551 0.196 3.777 -0.010
(0.031) (0.051) (0.022) (0.607) (0.004)

Los Angeles metro 0.139 -0.206 0.171 0.409 0.516
(0.071) (0.109) (0.028) (0.098) (0.062)

Miami 0.187 -0.282 0.158 0.234 0.548
(0.059) (0.093) (0.036) (0.091) (0.101)

Milwaukee 0.104 -0.069 0.011 0.218 0.825
(0.034) (0.120) (0.006) (0.080) (0.061)

Minneapolis 0.173 -0.306 0.025 0.634 0.604
(0.029) (0.089) (0.009) (0.100) (0.040)

New York metro 0.072 0.172 0.007 1.403 0.446
(0.014) (0.094) (0.002) (0.232) (0.056)
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Table 4: GARCH(1,1) Estimates (cont.)

City µ ρ γ0 γ1 γ2

Philadelphia 0.044 -0.100 0.015 0.527 0.597
(0.030) (0.105) (0.003) (0.102) (0.055)

Pittsburgh 0.072 -0.474 0.080 0.555 0.612
(0.044) (0.091) (0.015) (0.137) (0.059)

Portland 0.130 -0.270 0.002 0.190 0.866
(0.033) (0.067) (0.003) (0.038) (0.021)

San Diego 0.012 -0.136 0.103 0.630 0.595
(0.068) (0.159) (0.014) (0.104) (0.041)

San Francisco 0.154 -0.060 0.015 0.732 0.556
(0.032) (0.120) (0.006) (0.115) (0.044)

Seattle 0.145 0.107 0.197 -0.023 0.701
(0.078) (0.041) (0.166) (0.008) (0.269)

St. Louis 0.167 -0.451 0.004 0.589 0.662
(0.029) (0.139) (0.007) (0.104) (0.028)

Tampa 0.111 -0.153 0.040 0.407 0.649
(0.040) (0.135) (0.012) (0.064) (0.042)

Washington, D.C. 0.124 -0.190 0.010 0.233 0.806
(0.036) (0.083) (0.003) (0.044) (0.022)
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Table 5: Smoking Dynamics in NELS

Behavior
Cigarette Use (conditional on smoking)

Smoke Smoke Smoke Smoke
any 1-5 cigs 6-10 cigs 11+ cigs

Full Sample 12.80 59.64 20.32 20.04
1988 4.03 60.93 16.56 22.52
1990 13.91 66.15 17.70 16.15
1992 20.56 54.99 22.83 22.18

Persistence
Prior Behavior

Overall Non-Smoker Smoker
1990 87.09 98.33 17.51
1992 86.27 95.58 50.26

Participation transition matrix:
participation as function of prior behavior

Prior Behavior
Non-Smoker Smoker

1990 12.02 64.90
1992 12.01 74.51

Notes: Sample size is 11,146 person-year observations.
Notes: All numbers are percentages.
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Table 6: Estimates of Smoking Behavior from NELS: Historical Volatility Measures

(Logit) (Cox proportional hazard) (Multinomial Logit)
Participation Hazard of Participation Total Consumption: cigs/day

1− 5 6− 10 > 10 1− 5 6− 10 > 10

Priceit -0.105 -0.053 -0.076 -0.048 -0.096 -0.145 -0.084 -0.052 -0.092 -0.000
(0.021) (0.026) (0.025) (0.027) (0.026) (0.041) (0.042) (0.031) (0.052) (0.056)

StdDev(Priceit) -0.172 -0.053 -0.160 -0.043 -0.095 -0.107 -0.581 -0.034 0.138 -0.380
(0.096) (0.110) (0.105) (0.110) (0.116) (0.204) (0.231) (0.126) (0.229) (0.265)

Year FE Yes Yes No No Yes Yes
Individual Covariates No Yes No Yes No Yes
N 11146 11146 10437 10437 11146 11146
log L -3981.28 -3315.47 -7595.68 -7478.76 -5331.13 -4417.88

Fitted Values
Y | Data 0.128 0.128 0.287 0.152 0.076 0.026 0.026 0.076 0.026 0.026
Y | Min(Std Dev(Priceit)) 0.147 0.132 0.324 0.158 0.081 0.028 0.043 0.078 0.022 0.034
Y | Max(Std Dev(Priceit)) 0.057 0.106 0.118 0.120 0.051 0.016 0.001 0.064 0.053 0.004

Note: Standard errors are in parentheses.
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Table 7: Estimates of Smoking Behavior from NELS:88: Forecasted Volatility Measures

(Logit) (Cox proportional hazard) (Multinomial Logit)
Participation Hazard of Participation Total Consumption: cigs/day

1− 5 6− 10 > 10 1− 5 6− 10 > 10

Priceit -0.087 -0.029 -0.069 -0.031 -0.078 -0.115 -0.086 -0.032 -0.042 0.007
(0.020) (0.025) (0.023) (0.026) (0.025) (0.040) (0.041) (0.030) (0.051) (0.054)

Et[StdDev(Priceit+1)] -0.201 -0.173 -0.162 -0.144 -0.164 -0.233 -0.278 -0.137 -0.239 -0.247
(0.049) (0.056) (0.055) (0.056) (0.061) (0.100) (0.100) (0.065) (0.113) (0.115)

Year FE Yes Yes No No Yes Yes
Individual Covariates No Yes No Yes No Yes
N 11146 11146 10437 10437 11146 11146
log L -3974.43 -3310.82 -7592.53 -7475.62 -5325.83 -4414.12

Fitted Values
Y | Data 0.128 0.128 0.210 0.101 0.076 0.026 0.026 0.076 0.026 0.026
Y | Min(Std Dev(Priceit)) 0.158 0.148 0.257 0.121 0.090 0.033 0.035 0.086 0.031 0.031
Y | Max(Std Dev(Priceit)) 0.095 0.104 0.157 0.078 0.060 0.018 0.016 0.065 0.020 0.020

Note: Standard errors are in parentheses.

51



Table 8: Non-nested Tests Comparing Fit of Smoking Behavior Using Historical and Forecasted Price Volatilities

(logit) (Cox proportional hazard) (Multinomial logit)
Participation Hazard of Participation Total Consumption

Specification
Year FE Yes Yes No No Yes Yes
Individual Covariates No Yes No Yes No Yes

Historical
McFadden pseudo-R2 0.066 0.223 — — 0.052 0.215
Akaike’s information criterion (AIC) 0.715 0.604 1.456 1.442 0.959 0.821
Bayesian information criterion (BIC) -95858.59 -96742.90 -81364.86 -81182.32 -93065.70 -93550.29

Forecasted
McFadden pseudo-R2 0.068 0.224 — — 0.053 0.215
Akaike’s information criterion (AIC) 0.714 0.604 1.455 1.442 0.958 0.821
Bayesian information criterion (BIC) -95872.30 -96752.21 -81371.17 -81188.59 -93076.30 -93557.81

Vuong (1989) test statistic
-1.534 -1.494 -0.970 -1.207 -1.039 -1.020

(0.125) (0.135) (0.332) (0.228) (0.299) (0.308)

Notes: More negative values of the Vuong statistic indicate that the forecasted volatility model has a better fit.
Significance levels are reported in parentheses below the Vuong statistics.
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Table 9: Estimates of Smoking Behavior from NELS: GARCH(1,1)-forecasted Volatility Measures

(logit) (Cox proportional hazard) (Multinomial logit)
Participation Hazard of Participation Total Consumption: cigs/day

1− 5 6− 10 > 10
Priceit -0.121 -0.093 -0.106 -0.140 -0.146

(0.021) (0.025) (0.027) (0.043) (0.045)
Et[StdDev(Priceit+1)] -0.016 -0.011 -0.013 -0.038 -0.008

(0.007) (0.008) (0.008) (0.016) (0.013)
Year FE Yes No Yes
Individual Covariates No No No
N 7995 7492 7995
logL -2827.51 -5159.05 -3791.00

Fitted Values
Y | Data 0.127 0.237 0.075 0.027 0.025
Y | Min(Std Dev(Priceit)) 0.135 0.250 0.079 0.031 0.026
Y | Max(Std Dev(Priceit)) 0.058 0.132 0.041 0.004 0.018

Notes: Cities with negative or unstable GARCH parameters (γ1 < 0, γ2 < 0; γ1 + γ2 � 1) are omitted from the sample.
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Figure 1: Prices in Levels
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Figure 2: Prices in Differences
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