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ABSTRACT

Recent studies suggest that the underperformance of IPOs in the post-1970 sample may be a small
sample effect or “Peso” problem. That is, IPO underperformance may result from observing too few
star performers ex-post than were expected ex-ante. We develop a model of IPO performance that
captures this intuition by allowing returns to be drawn from mixtures of outstanding, benchmark, or
poor performing states. We estimate the model under the null of no ex-ante average IPO
underperformance and construct small sample distributions of various statistics measuring IPO
relative performance. We find that small sample biases are extremely unlikely to account for the
magnitude of the post-1970 IPO underperformance observed in data.
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I. Introduction

Since Ritter’s (1991) seminal study, many papers document that firms underperform relative to

benchmark indices, or to similar stocks, following their initial public offerings (IPOs).1 The

study of IPO long-run average underperformance is important, as IPO long-run underperfor-

mance may indicate a possible informational inefficiency in capital allocation, the influence

of behavioral fads in markets, or the existence of trading opportunities that produce superior

abnormal returns.

However, the acceptance of the existence of an IPO underperformance effect is far from

universal. In a recent paper, Schultz (2003) argues that more IPO activity follows successful

IPOs and that measuring the performance of IPOs in event time spuriously induces IPOs to

have low average returns, even if there are no average abnormal returns ex-ante. Schultz claims

that there is no underperformance of IPOs in calendar time. Gompers and Lerner (2003)

convincingly show that in an earlier sample from 1935 to 1972, IPOs do not underperform

aggregate benchmarks, in contrast to the post-1970 sample initially examined by Ritter (1991).

Gompers and Lerner suggest that the poor performance of offerings in the NASDAQ era

could simply arise by chance. The Gompers and Lerner (2003) study implies that the IPO

underperformance in the last three decades may be just a small sample effect. That is, there

may be no IPO underperformance ex-ante, but in the post-1970 period, we may have just drawn

a small sample where too many IPOs perform very poorly ex-post.

A small sample explanation to the IPO underperformance puzzle is initially suggested, but

not investigated, by Loughran and Ritter (1995). Loughran and Ritter propose that IPOs initially

have high valuations because investors are betting on long shots – that they have identified the

next Microsoft, TCBY, or eBay. If these investors are rational and there is no underperformance

ex-ante, an IPO underperformance in a small sample will result if the small sample does not

contain enough draws of these high-performing IPOs. That is, ex-post, the sample of IPOs is

small enough that there is a marked difference between the small sample distributions of the

statistics measuring IPO performance and their long-run asymptotic distributions, where in the

1 Recent summaries of the large IPO literature are provided by Ritter (1995) and Welch and Ritter (2002).
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population distribution, IPOs do not underperform.

As a simple example, suppose that the true population of IPOs has a small proportion (say

2%) of star performers that have extraordinarily high returns. The majority of IPOs (say

70%) exhibit, on average, zero abnormal returns, while a minority of IPOs (the remaining

28%) display, on average, low abnormal returns. In a small sample, we may over-sample

from the distributions representing zero, or low, abnormal returns. This implies that we may

easily under-sample star performing firms (say 1% in the sample, as opposed to 2% in the

population distribution). In the small sample, when we compute average long-run returns of

IPOs, we find an IPO underperformance, but this underperformance arises because the small

sample distribution does not match the population distribution of IPOs. Hence, the average

underperformance of IPOs may be due to observing too few spectacularly successful IPOs in

the data than we expected ex-ante from the population distribution.

In this study, we make three main contributions to the IPO literature. First, we show that

the post-1970 sample of IPOs exhibits significant underperformance in both event time and

calendar time. Schultz (2003) considers calendar-time returns on IPOs less than 60 months old

following the offering and finds that the average abnormal calendar-time return is close to zero.

Building on Schultz (2003), we also consider well-defined trading strategies of an IPO portfolio

consisting of IPOs which have gone public within a particular formation period, but we consider

holding-period returns of this portfolio over horizons longer than one month. In particular, when

we consider holding-period returns longer than six months, we find that IPO underperformance

reappears. Schultz (2003) misses this calendar-time IPO underperformance by only considering

a short holding-period horizon. Similarly, we find that IPO underperformance is sensitive

to the portfolio-formation period. While Schultz (2003) finds no underperformance for a

portfolio-formation period of 12 months, IPO underperformance re-emerges when we expand

the portfolio-formation period to include IPOs which have gone public over the last two to

three years. Hence, we show that the Ritter (1991) finding of low IPO returns remains robust to

measurement in both event and calendar time.2

2 Dahlquist and de Jong (2003) and Viswanathan and Wei (2003) argue that Schultz’s (2003) findings are due

to an extreme assumption that the number of IPO events drops to zero after a negative abnormal return. This
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Second, we introduce a novel model of returns over time for IPO firms. We build a

Markov model that captures the intuition of the distribution of IPO returns being a mixture

of star performers, average performers, and firms that underperform. The distribution of star

performers has expected returns that are high, but this occurs with low probability. Average or

underperforming IPO returns are drawn with much higher probability, and these have average

zero and negative excess returns, respectively. At each point in time, an IPO’s return is drawn

from one of these three distributions, and, following Hamilton (1989), which distribution

prevails at each point in time is determined by a Markov variable that is unobserved to the

econometrician. The Markov states are persistent, so that a firm that has experienced Microsoft-

type draws in the past is more likely to draw Microsoft-type returns in the future.

Our flexible Markov-mixture data generating process (DGP) can capture small sample

bias, or Peso problem effects. As Evans (1996) demonstrates, Markov models are ideal for

capturing differences between population distributions and sample realizations, because the

estimation method permits the implied probabilities of drawing regimes (the Markov process)

to be inferred endogenously. This allows the parameters of each distribution (outperforming,

average, or underperforming) to be estimated under the null of zero average abnormal returns.

Markov models have been previously used to investigate Peso problems in time-series data. For

example, Bekaert, Hodrick and Marshall (2001) examine a Peso problem explanation for the

Expectations Hypothesis in interest rates, Evans and Lewis (1995) examine small sample issues

in Unbiasedness Hypothesis tests with exchange rate data, and Rietz (1988) and Cecchetti, Lam

and Mark (1993) argue that the equity premium in stock market data is high because of rare

adverse events. In contrast to these studies, we analyze a small sample explanation in the cross-

section of IPO returns using event-time returns.

Third, we find that small sample bias is very unlikely to account for the magnitude of

non-stationarity causes Schultz’s abnormal return estimator to be not well-defined in large samples. However,

Viswanathan and Wei (2004) show that in the Schultz (2003) setting, event-time returns are consistent estimators

of the null hypothesis of market efficiency and that event returns asymptotically converge to zero under standard

assumptions. In contrast, to these studies, we show IPO underperformance in calendar time is sensitive to the

portfolio-formation strategy and re-appears when longer formation periods or holding periods are considered.
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IPO underperformance observed in the post-1970 sample. We estimate the Markov-switching

model using Gibbs Sampling, which is a fast and tractable Bayesian estimation technique.

Gibbs sampling is an estimation method that is particularly suitable for problems where

likelihood functions are difficult to derive or maximize, or where only conditional, rather

than full likelihood distributions are available.3 We use the model estimates to generate small

sample distributions of IPO long-horizon abnormal returns under the null that there is no ex-

ante IPO underperformance. We compare the small sample distributions with the estimated

point statistics of IPO long-horizon returns from actual data. We find that the small sample

distributions implied by the model do not remotely come close to encompassing the long-

horizon point statistics in the data. Hence, we fail to find a small sample explanation for the IPO

underperformance effect post-1970, suggesting that the IPO underperformance phenomenon is

not “simply an historical accident” (Gompers and Lerner (2003), p. 1931).

Our approach is related to the statistical inference problems in long-horizon returns raised

by Conrad and Kaul (1993), Barber and Lyon (1997), Kothari and Warner (1997), and Brav

(2000). These authors show that statistics measuring long-run performance relative to a

benchmark, such as buy-and-hold and cumulative abnormal returns, are subject to severe small

sample biases. However, they do not explicitly consider DGPs that impose the null of no

underperformance in a model designed to capture Peso problems.

In our analysis, we concentrate on using broad market-based benchmarks because it is

uncertain which risk adjustment is appropriate at the firm level. For example, Brav and Gompers

(1997) and Brav, Geczy and Gompers (2000) argue that if risk-adjustments are made to equity

returns on the basis of size and book-to-market ratios, then the IPO underperformance effect

fails to appear.4 Eckbo and Norli (2005) argue for additional controls for leverage and liquidity.

On the other hand, Loughran and Ritter (2000) show that correcting for abnormal performance

using Fama and French (1993) size and book-to-market factors is inappropriate because the

Fama-French factors are contaminated by the effects of new firm issues. Because of these

3 See Kim and Nelson (1999) for an overview of Markov-switching models and the Gibbs sampling procedure.
4 Similar appropriate benchmarking arguments are made by Eckbo, Masulis and Norli (2000) for the

underperformance of seasoned public offerings.
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issues, Ritter and Welch (2002) stress that the IPO long-run underperformance puzzle is not

one of selecting appropriate firm risk adjustments, but rather that IPO firms, or firms with

characteristics similar to IPOs, perform poorly compared to market-based benchmarks. Schultz

(2003) also employs aggregate benchmarks, and Gompers and Lerner (2003) document that

there is no IPO long-run underperformance relative to broad-based indices in the pre-NASDAQ

sample.

The remainder of the paper is organized as follows. Section II describes the data used in the

paper, and presents summary statistics of IPO firm long-run returns for event-time and calendar-

time portfolios. Section III describes the Markov model underlying our small sample analysis

discusses the estimation results. In Section IV, we apply the model to investigate if the IPO

underperformance post-1970 can be explained by small sample bias. Section V concludes.

II. Data

Our data consists of two IPO samples. The first sample, which we refer to as the full sample,

consists of firms going public from 1970 to 1996. These firms are drawn from the Securities

Data Corporation (SDC) Global New Issues database. To be included in the sample, an IPO firm

must have an offer price greater than one dollar and must be subsequently listed on the Center

for Research in Securities Prices (CRSP) NYSE-AMEX-NASDAQ tapes within six months of

the offering date. In line with common practice, we exclude from our sample all unit offerings,

REITs, ADRs, limited partnerships and public offerings of closed-end funds. The full sample

consists of 4,843 initial public offerings taking place during the period 1970 to 1996. The

second sample, obtained from Jay Ritter’s IPO database at iporesources.org, comprises 1,524

firms conducting initial public offerings in the 1975-1984 period.5 We concentrate primarily

on reporting our results for the full sample, and comment on how our methodology fares on

Ritter’s sample. To describe our data, we first confirm the existence of an IPO underperformance

phenomenon in event time in Section A, following the original findings of Ritter (1991), and in

5 Ritter’s (1991) original sample size is 1,526. Of these, we failed to match two firms (Area Communication

and Advanced Semiconductor) to returns in CRSP.
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calendar time in Section B, contrary to the findings of Schultz (2003).

A. Event-Time IPO Returns

Following standard practice, we construct benchmark-adjusted returns for stocki relative to

benchmarkm in montht as:

(1) rit(m) = Rit −Rmt,

whereRit is the raw return of firmi in event montht andRmt is the benchmark return in event

month t. We compute IPO benchmark-adjusted returns as the raw returns on an IPO minus

the benchmark return for the corresponding period. We use three benchmarks: (1) the CRSP

value-weighted NYSE and AMEX index, (2) the CRSP value-weighted NASDAQ index, and

(3) the CRSP smallest decile of NYSE firms. These benchmarks are used in many IPO studies

as they represent a set of aggregate indices that are easily investable and represent benchmark

alternatives to an IPO investment. We compute returns in equation (1) from the first listing on

the CRSP daily return tapes. Event months are defined as successive 21 trading-day periods.

Thus, returns for the first month comprise the returns on listed days 2-22, the second month of

returns comprises the returns of listed days 23-43, and so on.

Following Ritter (1991), we define a cumulative average benchmarkm-adjusted excess

return (CAR) to event month horizons as:

(2) CARs(m) =
s∑

t=1

ARt(m),

where

ARt(m) =
1

nt

nt∑
i=1

rit(m)

andnt is the number of stocks in the IPO portfolio in event montht. Thus,ARt(m) is the

average benchmark-adjusted return, where the averaging is done across all IPO firms in event

month t. Hence, the CARs(m) statistic cumulates the average abnormal IPO returns across

various horizonss. When a firm is delisted during event montht, the return of that IPO is

computed until the day of delisting. We use the notation CAR(NYSE/AMEX), CAR(NASDAQ)
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and CAR(SMALL) to indicate cumulative abnormal returns calculated using excess returns

relative to the NYSE and AMEX index, the NASDAQ index, and the CRSP smallest size decile,

respectively.

We also compute cumulative excess holding-period returns (CHP) of stocki relative to

benchmarkm until the earlier of horizon event months or its delisting:

(3) CHPis(m) =
s∏

t=1

(1 + rit(m))− 1,

whererit(m) is the excess return of stocki relative to benchmarkm defined in equation (1). The

one-period excess return,rit(m), is the return to a zero-cost strategy that goes long an IPO and

shorts the benchmarkm portfolio. Cumulating these returns provides the long-horizon return

to this zero-cost strategy. We report the average CHP across IPO firms:

(4) CHPs(m) =
1

ns

ns∑
i=1

CHPis(m),

Since the CHPs are holding-period returns, to easily compare CHPs across different horizons

we compute annualized CHP statistics using the transformation:

(5) CHPs(m)annualized = (1 + CHPs(m))
12
s − 1,

Similar to the notation for the CARs, we use the notation CHP(NYSE/AMEX), CHP(NASDAQ),

and CHP(SMALL) to denote CHPs computed relative to the various benchmarks. We use both

the CAR and CHP statistics to measure IPO performance.

Table 1 reports various summary statistics of event-time IPO returns. We turn first to the

number and proportion of surviving IPOs, presented at the top of the table. There is remarkable

attrition in the number of IPO firms surviving after the date of their initial public offering. While

the majority (over 98%) of IPOs survive their first year, 39% of IPOs delist within five years.

This implies that the delisting process is an important part of modeling the distribution of IPO

returns, which we explicitly take into account in our empirical framework.6

6 Note that not all delistings of IPO firms are necessarily due to bankruptcy or liquidation. A significant

proportion of firms delist due to merger or acquisition activity. The event-time CAR and CHP statistics do not
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Second, the CARs clearly show the IPO underperformance effect. As can be seen from the

mean CARs reported in Panel A of the table, IPOs underperform as early as after one year post-

issue in event time. For example, at a 12-month horizon, the average CAR is -6% (-5%) relative

to small stocks (NASDAQ). After 60 months, the value of the CAR statistic is a dramatic -16%

relative to small stocks, -23% relative to NYSE/AMEX, and -31% relative to NASDAQ. Using

Ritter (1991) t-statistics, all the CAR t-statistics corresponding to these very large negative

CAR point estimates are highly significant. However, these t-statistics must be interpreted with

care, because Barber and Lyon (1997) show that the small sample distributions for the CAR

statistics are severely skewed compared to the Ritter (1991) asymptotic distributions. In our

empirical work, we directly construct a small sample distribution under the null of zero IPO

underperformance and directly measure the significance of the CAR point estimates.

In Panel B of Table 1, the CHPs display similar patterns to the CARs, showing that the

IPO underperformance starts as early as one year in event time. For example, the average CHP

relative to NYSE/AMEX is -4.6% per annum at a one year horizon, and -4.4% per annum at a

three-year horizon. The average CHP relative to NYSE/AMEX decreases to -2.9% per annum at

the five-year horizon. In summary, these results confirm Ritter’s (1991) results that there exists

a strong IPO underperformance effect for IPO performance in event time relative to aggregate

benchmarks.

B. Calendar-Time IPO Returns

While Table 1 confirms IPO underperformance in event time, Schultz (2003) argues that

there is no evidence of IPO underperformance in calendar time. Schultz proposes that higher

stock prices result in more equity issuance, and that this pseudo-market timing is behind the

underperformance in event-time, equal-weighted abnormal returns. Calendar-time abnormal

returns based on weighting each calendar period equally are not affected by psuedo-market

need to be adjusted for delisting returns because these statistics take data only up to the delisting date. In contrast,

calendar-time returns must be adjusted for a delisting return because they represent investable portfolio returns, as

we discuss below.
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timing and Schultz argues that there is no IPO underperformance in calendar time. We show

here that IPO underperformance is also seen in calendar time, contrary to Schultz’s claims.

Schultz (2003) concentrates only on one-month holding-period returns. To examine

calendar-time returns of IPO returns, we generalize the holding period to look at horizons longer

than one month, up to a 60-month holding period. In montht, we form an IPO portfolio by

placing an equal amount of money in all IPOs which have gone public over the lastF months

(the portfolio-formation period). This portfolio is held from timet to t + k. At time t + k, the

portfolio is rebalanced to only hold IPOs which have gone public over the lastF months. Hence,

our calendar-time IPO portfolio returns represent the returns on an equally-weighted portfolio

of IPOs, each IPO no older thanF months. We examine holding-period returns overk = 1 to

k = 60 months. After computing the calendar-time IPO raw returns, we subtract the benchmark

returns from the IPO portfolio returns to compute benchmark-adjusted holding-period returns

in calendar time.

Because of the large number of IPO delistings (see Table 1), it is important to adjust for

the delisting return. Shumway (1997) recommends assigning a delisting return of -0.3 to an

arbitrary firm delisting from CRSP and Shumway and Warther (1999) recommend using a

corrected return of -0.55 for a delisting from the NASDAQ stock exchange. In computing

their delisting returns, Shumway and Warther track the returns of firms after they delist using

data from thePink Sheets(published by the National Quotations Bureau) up to 100 days post-

delisting. In the post-1970 sample, almost all (93%) delisting IPOs delist from NASDAQ,

so we assign a delisting return of -0.55 to all delisting IPOs. This correction is likely to be

conservative for two reasons. First, IPOs tend to have low event-time returns relative to the

average seasoned, listed firm. Second, the final return from a firm that liquidates might not

be received for many months after the delisting. Delisting returns are important for investable

calendar-time returns because the money returned from investing in the delisting firm is re-

invested in the IPO portfolio going forward.

Table 2 reports calendar-time IPO returns over various holding-period horizons. The

average returns are annualized to make comparison easier. To use all the data, we report
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the means using overlapping observations, but the point estimates are very similar using non-

overlapping observations. To account for the moving average errors induced by the overlapping

observations, we compute t-statistics with Newey-West (1987) standard errors, using a lag

length of one less than the holding-period horizon. Note that the case ofk = 1 involves no

overlapping observations. If we compute the standard errors with simple OLS t-statistics, the

magnitude of the OLS t-statistics are approximately four to six times larger than the robust

t-statistics reported in the table.

When we consider a portfolio of firms that have gone public over the last year (F = 12),

Panel A of Table 2 shows that there is no statistically significant underperformance for one-

month holding-period returns, no matter which benchmark is used. In fact, for a one-month

horizon, IPOs which have less than a one-year listing anniversary outperform the NYSE/AMEX

index by 1.4% per annum. This is the result reported by Schultz (2003).7

However, as we increase the holding period from one month to 60 months, the IPO

underperformance puzzle re-emerges. Beginning with a holding-period horizon of six months,

the point estimates in Table 2 are negative relative to all three benchmarks. At a one-year

horizon, there is an average performance of -7.2%, and -7.5% per annum relative to the

NASDAQ, and small stock indices, respectively. This underperformance is significant at the

5% level. The average performance of IPOs relative to the total NYSE/AMEX benchmark is

-3.5% per annum at the one-year horizon, but is not statistically significant. Although the IPO

performance relative to the NYSE/AMEX and NASDAQ indices are statistically insignificant at

the 5% level at the 60-month horizon, the magnitude of underperformance is 2.3% per annum

for the NYSE/AMEX benchmark and around 7% per annum for the NASDAQ benchmark.

For a 60-month holding period horizon, the IPO portfolio underperforms small stocks by an

economically very large 12.4% per annum, but this is only statistically significant at the 10%

level.
7 Schultz (2003) takes a universe of IPO returns up to 60 months following the offering, and then considers

calendar-time returns of these firms. This corresponds to a one-month holding-period horizon but Schultz’s

formation period interval changes over time, and is weighted towards selecting IPOs with short and intermediate

histories post-offering.
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For the three-year formation period reported in Panel B, the evidence of calendar-time

underperformance is even stronger. At the six-month horizon, the performance point estimates

are already large and negative, and statistically significant relative to the NASDAQ (-6.9% per

annum) and small stock (-7.3% per annum) indices at the 1% level. The performance at a 12-

month horizon is -3.5%, -7.2%, and -7.4% per annum relative to NYSE/AMEX, NASDAQ, and

small stocks, respectively. While underperformance relative to the broad NYSE/AMEX index

is not statistically significant, the underperformance is statistically significant at the 5% level

for the NASDAQ benchmark and significant at the 1% level for the small stock benchmark.

The negative performance estimates increase in magnitude at the 60-month holding-period

horizon, where the IPO performance point estimates are -7.1%, -13.0%, and -20.6% per annum

relative to NYSE/AMEX, NASDAQ, and small stocks, respectively. The underperformance in

calendar-time relative to small stocks is particularly large, and highly statistically significant

for all holding-period horizons greater than six months. Holding a portfolio of IPOs which go

public over the last three years produces stronger evidence of long-term underperformance than

using a formation period of just one year, because the longer formation period selects more

seasoned IPO firms. Note that underperformance is greater for more seasoned firms in event

time: IPOs actually tend to outperform benchmarks in the first six months of event time, but

tend to underperform significantly over three to five years post-issue in event time.8

Why does the IPO underperformance show up in calendar time only for long holding-period

horizons? First, by focusing only on one-month holding periods, Schultz’s method does not

capture the long-term performance of IPOs. Table 2 focuses on the effects of changing the

formation period of the IPO portfolio, and the holding-period horizon. As Schultz holds the

8 We comment, but do not report, on the results if we make the extreme assumption that a delisting IPO returns

all of its money back to an investor immediately (so there is a delisting return of 0.0%). In this case, with a three-

year portfolio-formation period, the IPO portfolio performance is -0.2%, -4.4%, and -9.2% per annum, relative

to NYSE/AMEX, NASDAQ, and small stocks, respectively. These averages are statistically insignificant at the

5% level. However, this scenario is extremely unrealistic because many IPOs which delist go bankrupt, and the

remainder of any invested money is only realized with a long lag. In fact, we view the Shumway and Warther

(1999) delisting correction of -0.55 as conservative, given the very low event-time IPO returns reported in Table 1.
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IPO portfolio only for one month, the average return is heavily weighted towards short-run and

intermediate-term event-month returns. Once we consider different holding-period horizons

and different formation periods, the IPO underperformance re-emerges. Longer holding-period

horizons, or longer portfolio-formation periods, allow the portfolio to contain more seasoned

IPOs, which have relatively low average returns. Finally, Schultz also ignores the returns of

delisting IPO firms. As shown in Table 1, there is a remarkable proportion of IPO firms that

delist from CRSP within five years of issue.

Having now made the case for long-run IPO underperformance in both event time

and calendar time in the post-1970 sample, we now examine the hypothesis that the IPO

underperformance may be due to small sample, or Peso problem, effects.

III. The Model

A. Capturing a Small Sample Problem

The essence of a small sample explanation for long-run IPO underperformance is that the data

we observe may not contain the same number of high-flying IPOs which we expect from the

population distribution. We illustrate this intuition in Figure 1. Suppose that IPO returns are

drawn from one of three states: (i) an extraordinary state, earning 70% over benchmark, (ii) an

average state, where the IPO earns the benchmark return, and (iii) an underperforming state,

where the IPO underperforms the benchmark by 5%. In population, the extraordinary state

occurs 2% of the time, the average state occurs 70% of the time, and the bad state occurs 28%

of the time. The extraordinary state has a very high mean, but occurs rarely, so it represents

a draw of a highly successful IPO. The average abnormal return for the population is then

0.02× 0.7 + 0.7× 0 + 0.28× (−0.05) = 0%.

In a small sample, we may not observe the same frequency of extraordinary, average, or

underperforming states as the population frequency. Suppose that in a small sample, we observe

that extraordinary returns constitute only 1% of the returns, instead of the 2% frequency of

extraordinary states in the population. If the proportion of the benchmark returns remains the
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same as the population, at 70%, then we over-sample low return states. In this case, the average

abnormal return for the sample is then negative, at0.01 × 0.7 + 0.7 × 0 + 0.29 × (−0.05) =

−0.75%. Hence, we observe an average underperformance in the sample, but this is because the

population distribution and the small sample population are dissimilar. If we were to observe the

same frequency of extraordinary returns in the sample as the proportion of extraordinary returns

in the population, then there would be no average underperformance in the small sample.

For this type of Peso problem intuition to be reasonable, we would hope that the distribution

of IPO returns in data already contains some large observations – the Peso explanation requires

that we have not observed enough similar large observations in a small sample. Panel A of Table

3 shows that the right-hand tail of the distribution of monthly IPO returns encompasses some

spectacular one-month returns. The magnitude of the top ten monthly returns is large enough

that firms can easily increase their value by 3-6 times within one month, and the highest one-

month IPO return is over 2500% (which corresponds to Club-Theatre Network in its 21st event

month). For comparison, the average monthly return for an IPO in our sample is 0.83% per

month. Panel B shows that the top ten IPOs in the five years after their issue date approximately

double in price every year.9 Clearly, Table 3 shows that the observed distribution of IPO returns

includes some impressive returns. According to a small sample explanation, the population

distribution of IPO returns must contain a higher frequency of these types of returns, or even

more spectacular returns.

It would be tempting to construct a population distribution of IPOs by just sampling

repeatedly from the extreme IPO returns in Table 3. However, we cannot be sure that these

returns represent the true distribution of star performers, particularly under the null hypothesis

of no ex-ante IPO underperformance. The IPO data have an overall average underperformance

and the data may more correctly represent the appropriate distribution under the alternative

hypothesis that there exists long-run IPO underperformance. The true distribution of the

outstanding performers under the null of no ex-ante IPO underperformance is directly not

9 Interestingly, Microsoft is not among these firms. For comparison, the cumulative five-year annualized post-

IPO return of Microsoft is 72%.
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observable. However, we now describe how the distribution of IPO returns under the null of

no ex-ante underperformance can be inferred from a rigorous model that captures the simple

intuition of the picture in Figure 1.

B. A Markov-Switching Model

Extending the simple intuition of Figure 1 into an econometric model requires several steps.

First, instead of discrete possible outcomes (for example, outperforming, benchmark, and

underperforming) for an IPO’s return in excess of benchmark,rit, we specify a series of

distributions that depend on a statesit prevailing at timet. If the prevailing state corresponds to

an outperformance state, then the IPO’s return is drawn from the corresponding outperformance

distribution. We specify these state-dependent distributions to be normal. Second, we specify

the statessit to be persistent, so if a firm has been an outperformer in the past, it is more likely

to be an outperformer next period. Finally, we observe the draws of actual IPO returns, but the

econometrician does not observe the sequence of states so the estimation method must infer the

states from the data.

Formally, this is a Markov-switching model of the type introduced by Hamilton (1989),

where the statessit follow a Markov chain, and the IPO draws are from time-varying mixtures

of normals.10 As Bekaert et al. (1998) and Timmermann (2000), among others, comment,

mixtures of normal distributions are easily able to capture heteroskedasticity, fat tails, and other

features of equity returns. At each point in time, conditional on no delisting, the abnormal IPO

returnrit follows the process:

(6) rit = µ(sit) + σ(sit)εit,

whereεit is IID N(0, 1) and the statesit follows a Markov chain that can take valuessit =

1, . . . , K states. For simplicity, we specify that the draws ofεit andsit are uncorrelated across

firms in event time.
10 Markov-switching models have been used to model equity returns by, among others, Turner, Startz and Nelson

(1989), Hamilton and Susmel (1994), Hamilton and Lin (1996), Ramchand and Susmel (1998), Perez-Quiros and

Timmermann (2001), and Ang and Bekaert (2002).
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In equation (6), the IPO return is normally distributed conditional on the statesit. However,

as the prevailing statesit changes across time, the IPO returns are drawn from different

distributions. This causes the unconditional IPO return to be non-normal and heteroskedastic.

We can regard each IPO as a new draw from the DGP in equation (6). The statessit are drawn

from a common Markov chain, which causes the individual IPO returns to be correlated.

We estimate models withK = 2 andK = 3 states. In the case of two regimes, the Markov

transition probability matrix takes the form:

(7) Π =


 P11 1− P11

1− P22 P22


 ,

whereP11 = Pr(sit = 1|si,t−1 = 1) andP22 = Pr(sit = 2|si,t−1 = 2) are constants and are

the same across firms. The stable probabilityπ1 = Pr(sit = 1) corresponding to the system is

given by:

π1 =
1− P22

2− P11 − P22

,

which satisfies the relationπ = Ππ, whereπ = (π1 π2)
′.11

If K = 2, we can think of the two distributions corresponding tosit = 1, 2 as corresponding

to an outperformance distribution and an underperformance distribution. While each IPO may

be in a different state, we restrict the transition probabilities of the IPO states to be the same

across IPOs. The transition probabilities are persistent, and capture the notion that a firm that

has outstanding returns in the past is more likely to be an outperforming firm in the future.

We estimate the model under the null of zero expected abnormal outperformance, so we

place restrictions on the model parameters such thatE(rit) = 0. This involves the restriction:

(8) E[rit] = π1µ1 + π2µ2 = 0.

11 Estimating the model under time-varying transition probabilities is not computationally feasible and cannot be

done with conjugate draws (see the Appendix). However, because the rejection of the null of no underperformance

is so strong, and the fact that the IPO draws in event time are correlated, through the stable distribution of the states

sit, we believe that generalizing the model to include time-varying probabilities would not significantly change

our results or conclusions.
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Hence, there is a restriction involving the conditional means of the distributions of each state:

(9) µ2 = −π1µ1

π2

,

which we impose in the estimation. Note that this restriction only involves the means of the

state-dependent distributions, but not the volatility parameters.

For K = 3 states, we can interpret the states as representing periods of outperformance,

benchmark performance, or underperformance. In this case, we specify the transition

probability matrix of all IPO returns to be:

(10) Π =




P11 1− P11 0

P21 P22 1− P21 − P22

0 1− P33 P33


 ,

whereP11 = Pr(sit = 1|si,t−1 = 1), P21 = Pr(sit = 1|si,t−1 = 2), P22 = Pr(sit =

2|si,t−1 = 2), andP33 = Pr(sit = 3|si,t−1 = 3). With the specification in equation (10), firms

transit through the benchmark performance state on their way from the outperforming state to

the underperforming state, and vice versa. This means that we do not allow a firm to jump

immediately from outstanding performance today to underperformance next period. However,

we also consider the case of an unrestricted three-stateΠ matrix where a direct transition from

outperformance to underperformance can occur.

To impose the null of zero expected abnormal performance in the case ofK = 3 states, we

impose the restriction:

(11) E[rit] = π1µ1 + π2µ2 + π3µ3 = 0,

whereπj = Pr(sit = j) are the stable probabilities of the system. Rearranging, we can write

µ3 as a function ofµ2 andµ1:

(12) µ3 =
1

π3

(−π2µ2 − π1µ1)

Furthermore, we identify the abnormal return in statesit = 2 as the average performing state

with an expected abnormal return of zero, so we setµ2 = 0. This yields the restriction:

(13) µ3 = −π1µ1

π3

.
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How does this model capture the Peso problem intuition? We impose the null of expected

benchmark performance through equations (9) or (13). However, we allow a state where an IPO

may potentially spectacularly outperform the benchmark return. The estimation reconciles the

apparent IPO underperformance in data by estimating the parameters of the outperformance

distribution such that the null is satisfied. We do not directly observe the outperformance

distribution in data, but the model is able to capture the Peso effect through the transition

probabilities and the state-dependent mean parameters.

To complete the model, we specify the attrition process of IPOs. This is important, because

as Table 1 shows, 40% of IPOs delist within five years after their issue date.12 We first model

the delisting process, and then, conditional on no delisting, apply the Markov-switching model

of IPO returns in equation (6). We draw the delisting timeTi of the ith IPO from a Geometric

distribution with probabilityp, where:

(14) Pr(Ti = k) = (1− p)k−1p,

whereTi is in months. IfTi < 60, then the IPO delists within five event years post-issue,

whereas ifTi ≥ 60, we observe a full five-year event history of that IPO’s returns. Hence,

equation (14) represents a truncated Geometric distribution. We assume that the probabilityp

is the same across all firms, and the delisting time of each IPO is IID. Conditional onTi, the

IPO’s returns are drawn from the Markov-switching process in equation (6) forTi observations.

A more common specification for a point process such asTi is a Poisson distribution, but we

show that a Poisson distribution cannot fit the persistent decay pattern of the IPO attrition rates

observed in data.

The model estimation is non-trivial because of the large cross-section of firms (4,843 IPOs

over the full sample). Recent advances in Bayesian methods allow us to estimate the model

using Gibbs sampling techniques, following Albert and Chib (1993). We provide details of

12 An alternative way to model IPO delisting is to include a fourth, absorbing state into the transition probability

matrix. However, the algorithms used to estimate regime-switching models require that the transition matrix be

ergodic to filter the states that are unobserved to the econometrician, particularly if the initial state is set to be the

stable probabilities of the Markov process. See, for example, Hamilton (1989).
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the estimation method in the Appendix. The Gibbs sampler has several advantages. First,

because we model the delisting process and the return of an IPO is specified conditional on no-

delisting, direct construction of the likelihood function is highly complex. The Gibbs sampler

operates on a series of conditional distributions, which are well-specified in our model. For

example, the distribution of the delisting time,Ti, is a Geometric distribution (equation (14))

and the distribution of the IPO return conditional onTi and each statesit is a normal distribution

(equation (6)).

Second, instead of performing a complex optimization, we construct the posterior distribu-

tion of the parameters by simulating from each conditional distribution in turn. This is much

easier than maximizing a highly non-linear likelihood function. Finally, the Gibbs sampler

accounts for parameter uncertainty, which we take into account by analyzing the small sample

performance of the CAR and CHP statistics. We estimate the models using monthly IPO returns

adjusted by the CRSP value-weighted NYSE/AMEX index of post-event time and use a 60-

month event horizon. We also estimate (but do not report) the models for Ritter’s (1991) original

data sample, where the event horizon is 36 months.

Naturally, our statistical inference depends on the ability of our DGP to match data and to

successfully capture a Peso problem. We believe that our model is more than flexible enough

for this purpose, because the superstar state can potentially have a very large expected return,

the superstar state is potentially persistent or very fleeting, and there are no restrictions on the

fraction of returns belonging to each state.

C. Estimation Results

We first comment on the results of the delisting process and then describe the estimated

parameters of the Markov-switching process. The point estimate of the geometric probability

p in equation (14) is 0.008. This parameter is very precisely estimated, with a standard error

of 0.001, because of the large number of IPOs in the sample. Table 4 reports the actual, and

average numbers of surviving firms for various event months for our geometric distribution in

equation (14), and a Poisson distribution for comparison. The fit of the Geometric distribution
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is very good, but slightly under-estimates the actual number of surviving firms after one year

(4433 versus 4767 in the data), while matching almost exactly the actual number of surviving

firms after five years (3015 versus 2966 in the data). In contrast, a Poisson distribution fitted

to data has an extremely poor fit, predicting that all firms should delist within five event years,

because it cannot match the observed slow attrition rate of IPOs in data.

We report the parameter estimates of the Markov-switching part of the DGP in Table 5.

We report the mean of the posterior distribution of each parameter, together with the standard

deviation of the posterior distribution in parentheses. Panel A reports results for the two-state

model. We can interpret state 1 as the overperformance state, which has a mean of 4.2% per

month and a large monthly volatility of 40%, and state 2 represents an underperformance state,

which has a mean of -0.8% per month, with a monthly volatility of 12%. The estimates of

the transition matrixΠ in equation (7) show that the underperformance state is very persistent,

with a half-life of 22 months.13 In contrast, a firm has a 25% probability of moving from the

outperformance state to the underperformance state each month. The transition probabilities in

Π correspond to stable probabilities of 16% (84%) for state 1 (2).14

Panel B reports the results of the three-state model. We report two estimates, one with a

transition probability matrixΠ following equation (7), where the IPO cannot directly transition

from being an outperformer to an underperformer, and the other estimate with an unconstrained

Π matrix. In the constrainedΠ estimation, the distribution of IPO returns in the outperformance

13 Because the Markov states are persistent, the model endogenously generates persistence of IPO returns.

However, the large standard deviations of IPO returns make this autocorrelation small in the model and hard

to pin down in the data. In the three-state model with a constrained transition matrix, the implied IPO

autocorrelation is -0.0006, with a posterior standard deviation of 0.0004. The slight negative autocorrelation results

from star performers being more likely to transform into benchmark-performing or underperforming firms than

underperforming IPOs becoming star performers. In the data, the mean autocorrelation across IPOs is -0.0443

with a cross-sectional deviation of 0.1680. Thus, our model and IPO data can shed little light on stock-level

reversals or momentum.
14 The implied monthly standard deviation for IPO returns implied by the two-state model is 19.3% per month,

which we can compare to the IPO return volatility of 19.2% in data. The corresponding number for the three-state

model with the constrainedΠ matrix is 19.4%.
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state 1 has a mean of 22.7% per month, with a very high monthly volatility of 73.1%. This state

occurs, on average, 2.1% of the time. While this state has a very high average return, the

very top IPO returns in our sample reported in Table 3 comfortably exceed this average return,

which suggests that some of the high IPO returns in data could be drawn from this type of

outperforming state. The benchmark performance state 2 has zero expected excess returns, by

construction, and has a standard deviation of 10.2% per month. This is the predominant state

for IPOs, with a stable probability of 60.3%. The underperformance state 3 has a mean of -1.3%

per month and a slightly higher standard deviation of 22.3% per month.

This estimation reflects our intuition of a benchmark performance state and an underperfor-

mance state, from where the majority of IPOs are drawn, and an extraordinary state that occurs

rarely (2.1% on average). The transition matrixΠ shows that each state is persistent, with

IPOs which are benchmark (underperformers) having a 94.3% (92.7%) chance to remain in that

same state the following month. The outperformance state is less persistent, with a probability

of P11 = 0.684 of remaining an outperformer next period, conditional on being an outperformer

this period.

The unconstrainedΠ estimation also broadly reflects this same intuition, except that the

stable probability of the benchmark performance state 2 decreases to 15.8% (compared to

60.3% in the constrainedΠ estimation), and the stable probability of the underperformance

state 3 increases to 82.4%. Once we allow firms to immediately switch from being winners

to underperformers, only 28.9% of outperformers remain outperformers the next month, while

57.6% and 13.6% of outperformers transition to benchmark performance and underperformance

states, respectively. Thus, with an unconstrainedΠ matrix, the winner state 1 becomes even

more extreme, having a stable probability of only 1.8%, and an expected return of 26.4% per

month.

An alternative interpretation of the estimation with three states and an unconstrainedΠ

matrix is a system where the majority of IPOs underperform with an average return of -0.6%

per month. A smaller number of IPOs have higher returns, in line with the benchmark, while

a very small fraction (1.8%) have extremely high returns, on average. Once an IPO is drawn
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into the loser state 3, or transitions into this state, it is very likely to remain a loser, with a

probability of 99.7% per month. A benchmark firm is likely to continue to perform in line

with its benchmark status, with a probability of staying a benchmark firm ofP22 = 0.930. In

contrast, the rare outperforming IPO is unlikely to continue its extraordinarily high returns, with

a probability of remaining an outperforming IPO ofP11 = 0.289, and very quickly transitions

to becoming a benchmark performer or an underperformer. Nevertheless, the unconstrained

estimation results maintain the intuition of only a small minority of IPOs enjoying very high

average returns.

The Bayesian estimation also allows us to compute Bayes factors, which provide a method

of testing the null of the two-state Markov model against the three-state models.15 The Bayes

factor is used to compute the posterior odds ratio:

(15)
p(H1|Y )

p(H2|Y )
=

p(Y |H1)p(H1)

p(Y |H2)p(H2)
,

whereH1 andH2 are the models being tested,Y is the data, andp(H1) is the prior on model

H1 andp(H2) is the prior on modelH2. For example, in our setting,H1 would be a two-regime

Markov model andH2 would be a three-regime Markov model. Given non-informative priors on

both models, the posterior odds ratio simplifies to the Bayes factor,B12 ≡ p(Y |H1)/p(Y |H2).

We compute the Bayes factor using the harmonic mean estimator of Kass and Raftery (1995)

and find extremely strong evidence in favor of the three state models against the two state

model. The value of2 ln B12 in testing the two-state model against the three-state model with

a constrainedΠ transition matrix is over 7000, while the value of2 ln B12 for the two-state

model against the unconstrainedΠ model is over 8800. Any value above 10 is interpreted as

very strong evidence against the null model. These values are consistent with the tight posterior

standard error bounds for the parameters in Table 5, which result from the fairly large panel

of IPOs used in the estimation. We also find strong evidence of the unrestrictedΠ three-state

model against the constrainedΠ three-state specification, with a value of2 ln B12 above 1400.

Nevertheless, we examine the implied small sample statistics of IPO underperformance for all

15 Traditional maximum likelihood ratio tests are computationally very difficult to compute because of the

presence of nuisance parameters that must be integrated out in the test statistics (see, for example, Davies, 1987).
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our Markov models.

IV. Is IPO Underperformance a Statistical Fluke?

In this section, we ask whether it is surprising to measure an average long-run IPO under-

performance in a small sample and how likely a small sample contains a lower frequency of

outperforming IPOs than the population distribution.

A. Robust Statistical Inference

To conduct robust small sample inference, we generate a small sample distribution of the CAR

and CHP statistics (in equations (2) and (4)) measuring IPO performance. We construct the

small sample distribution from the estimates of the Markov-switching model in Table 5 and the

delisting process in equation (14) as follows. First, we draw the delisting timeTi for firm i from

the distribution in equation (14). IfTi > 60, we simulate a full 60-month event-time series

for the IPO. IfTi < 60, the firm delists prior to the 60-month horizon. Then, we generate a

time-series of IPO returns for firmi from the Markov process in equation (6) for the number of

surviving periods of the IPO.16

We simulate 4,843 IPO firms in for each small sample. This corresponds to the number of

IPOs in our sample in our post-1970 sample period. In the sample, we compute the CAR and

CHP statistics and store their values. We repeat this procedure 10,000 times. In this way, we

obtain a distribution of small sample CAR and CHP statistics to which we can compare the point

estimates of the CAR and CHP in the actual IPO data. Note that the small sample distribution

of the IPO underperformance statistics is constructed under the null of zero expected abnormal

IPO returns because the DGP is estimated under this null. We also take into account parameter

uncertainty by drawing from the posterior distribution of the parameters. That is, each one of the

10,000 simulated samples is constructed using a different draw from the posterior distribution of

16 In the rare instance that a simulated return is less than -1 in equation (6), we assume the firm delists at that

time. Note that actual delisting returns are not used in computing the event-time CAR and CHP statistics.
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the parameters. However, simulating only from the posterior mean of the parameters produces

almost identical results because of the tight posterior standard deviations of all the parameter

estimates.

B. Empirical Results

Table 6 reports the small sample distribution of CAR statistics from each model. We report

results for the full sample in Panel A. The CAR(NYSE/AMEX) estimated in the data for the

60-month event horizon is -0.227 (see Table 1). In contrast, under the two-state model, the CAR

small sample distribution is positively skewed, even though there is no expected abnormal IPO

performance under the null. Barber and Lyon (1997), Kothari and Warner (1997), and Brav

(2000) also report skewed CAR statistics in small samples. The mean and median of the small

sample CAR distribution is 0.041, much higher than the -0.227 CAR estimate in data. Note

that while the small sample CAR distribution for the unconstrainedΠ three-state model, with

a mean CAR of 0.002, produces less bias than the two-state or the constrainedΠ three-state

model, the mean and median of the small sample CAR distribution is still much higher than the

CAR point statistic of -0.227 in the data. However, the large difference per se does not rule out

a small sample explanation for the post-1970 IPO underperformance. In order to do this, we

must look at the entire small sample distribution to compute a p-value.

Table 6 reports various percentile values for a more detailed picture of the small sample CAR

distribution. The data point estimate of -0.227 falls nowhere in the simulated small sample

distribution, for either the two-state or the three-state models. For the two-state model, the

0.5% cutoff is -0.026. The 0.5% cut-off for the three-state models are -0.037 and -0.081, for

the constrained transition probability estimation and the unconstrained transition probability

matrix Π, respectively. Since the effective p-value of the -0.227 CAR estimate under the small

sample distributions is zero, we overwhelmingly reject the hypothesis that small sample bias

can account for the IPO underperformance in the post-1970 sample.

While a small sample explanation may be very unlikely over the post-1970 data, a valid

question is that when Ritter (1991) first raised the question of long-run IPO underperformance,
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his shorter data sample might not have been able to rule out a Peso problem explanation.

Perhaps it is only with the addition of the late 1980s and 1990s data that the IPO effect

has become statistically robust. Panel B of Table 6 investigates this possibility. We use the

original Ritter (1991) sample from 1975 to 1984. Using Ritter’s original event horizon of 36

months, the CAR in his data sample is -0.251. To construct the CAR small sample distribution

corresponding to Ritter’s data, we re-estimate the models over Ritter’s sample period, and

simulate small samples of 1,524 firms.

Panel B of Table 6 shows that the -0.251 estimate of Ritter’s CAR also overwhelmingly

rejects the null hypothesis. The 0.5% percentile values range from -0.098 for the constrainedΠ

three-state model to -0.161 for the unconstrainedΠ three-state model. Again, this is nowhere

close to the -0.251 data estimate. Hence, Ritter’s (1991) original sample also strongly rejects the

notion that his original IPO underperformance findings are merely due to small sample effects.

In Panel A of Table 7, we compare CHP estimates in data with simulated CHP small sample

distributions. Over the full sample, the CHP(NYSE/AMEX) statistic is -0.137 over five years,

corresponding to an annualized number of -0.029 per annum in Table 1. Note that the CHP small

sample distributions are biased upwards, ranging from 0.078 for the two-state model to a very

large 0.463 for the constrainedΠ three-state estimation. The constrainedΠ has a much larger

probability of remaining in the extraordinarily high performing state than the unconstrainedΠ

matrix. This allows for some highly positively skewed draws that result in a strong positive bias

for the long-horizon CHP statistics.

Similar to the CAR results in Table 6, the small sample CHP distributions in Table 7

overwhelming reject the null hypothesis of zero expected abnormal IPO performance. The data

CHP estimate of -0.137 falls nowhere close to the bottom 0.5% or 1% cutoff of the small sample

CHP distributions. In particular, the most negative 1% cutoff is -0.044 from the unconstrained

Π three-state model. Hence, the data again resolutely rejects a small sample explanation of IPO

underperformance.

In Panel B, we examine the CHP distributions for the Ritter (1991) sample. In Ritter’s data,

the CHP statistic is -0.127. While this point estimate lies below the 0.05% tail for the two-state
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model and the constrainedΠ three-state model, the left-most tail of the three-state unconstrained

Π model does encompass the -0.127 value. However, we still reject that the CHP value is equal

to zero at the 5% level using a two-sided test (with the lower 2.5% cutoff equal to -0.122).

In our analysis, we use the NYSE/AMEX benchmark to construct the adjusted IPO

returns to estimate the model and to construct the small sample distributions of the IPO

performance statistics. We resoundingly reject the null hypothesis that small sample effects

could be responsible for the underperformance relative to the NYSE/AMEX benchmark.

This benchmark does not produce the largest or most significant point estimates of IPO

underperformance in either event time or calendar time from Tables 1 and 2. Hence, other

aggregate benchmarks that produce more severe measures of event-time or calendar-time

underperformance, like the NASDAQ and small stock benchmarks, can only result in more

overwhelming rejections of a small sample explanation of IPO underperformance.

One possible use of our Markov-switching model that we do not examine here is that the

model may be able to identify those firms where poor IPO performance is very likely (the

underperforming state), or those IPOs whose performance is extremely good (the star performer

state). Since these states are persistent, an active investor may be able to infer the probability of

each regime for each IPO and form a trading strategy to go long in the most promising IPO firms

and short the least promising IPOs. We leave this application of the model to future research.

C. Comparative Statics

In this section, we ask how extreme the distribution of winners must be to fail to reject the null

of zero average long-run underperformance in the small sample distribution. This is a useful

exercise because since the structure of the model is able to capture a Peso problem, we can

compare the estimates of the model to a distribution of superstar IPO returns (state 1) where

we would not be surprised to observe the degree of IPO underperformance present in the actual

data. In this exercise, we focus on the original Ritter (1991) CAR statistic.17 That is, what

17 If we repeat the exercise using the CHP statistic, there is no choice of parameter values for the distribution

of superstar IPO returns that can produce small sample distributions where we fail to reject the null at a 95%
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characteristics of the superstar state are necessary to conclude that the IPO underperformance

may be a Peso problem?

Our goal is to determine the value of parameterµ1, the expected return of the superstar state,

where the small sample distribution implied by the model could resemble the observed degree

of IPO underperformance in data. To do this, we gradually increase the value ofµ1 from its

estimated value in the three-state Markov model. As we changeµ1, we simulate from the point

estimates of the parameter values in Table 5, keeping all other parameters the same, except

we alterµ3 so that we maintain the null of zero expected abnormal performance in equation

(11). Figure 2 plots the p-value of the CAR point statistic in data, starting from the parameter

estimates in Table 5 where the p-value is zero, as a function ofµ1. This is a two-sided p-value

and, hence, represents two times the proportion of the small sample distribution lying to the left

of the long horizon CAR point statistic of -0.227. The top (bottom) row of Figure 2 performs

this comparative static exercise over the full (Ritter (1991)) sample. The left- (right-) hand

column reports the case for the constrained (unconstrained) transition probability three-state

model.

Figure 2 shows that in order for a small sample explanation to account for the degree of IPO

underperformance in data, the expected return of the winner state has to be truly spectacular.

Over the full sample, we must increaseµ1 to over 3.00 or higher per month to produce a p-value

higher than 0.05. From the stable probability of state 1 in Table 5, this means that over 2%

of all IPOs have to triple their values every month. There are clearly some IPOs which more

than triple their value occasionally, like the top ten highest monthly returns reported in Panel A

of Table 3, but these represent the top ten among 243,338 total one-month event returns in the

full sample of 4,843 firms. Similarly, in the Ritter (1991) sample, the estimate ofµ1 must be

approximately 2.00 for the constrainedΠ estimation, and close to 15.00 for the unconstrained

Π model. Thus, an absurd number of spectacularly performing firms must be present in the

population distribution in order for a small sample explanation to account for the IPO long-run

underperformance phenomenon.

confidence level.

26



The plots in Figure 2 further strengthen the conclusion that a small sample effect is highly

unlikely to be driving the IPO long-run underperformance puzzle. Instead, they suggest that

the low returns of IPO firms over the last three decades are robust, and that the IPO long-run

underperformance puzzle is not a statistical fluke.

V. Conclusion

The long-run underperformance of IPOs has been an active topic in the IPO literature over

the last decade since Ritter (1991). Yet, recent work, most notably by Gompers and Lerner

(2003), suggests that the post-1970 long-run IPO underperformance could be simply a statistical

fluke. Our study presents new evidence supporting the existence of the IPO underperformance

effect. First, we show that IPO underperformance remains robust both in event time and in

calendar time. Schultz (2003) fails to find IPO underperformance in calendar time because he

considers only a short one-month holding-period horizon. Calendar time IPO underperformance

reappears with longer holding-period horizons, or longer portfolio-formation periods.

Second, we present evidence suggesting that IPO underperformance is highly unlikely to

be the result of a statistical fluke. We construct a Markov-switching model that captures small

sample, or “Peso problem” effects. At each point in time, IPO returns have the potential to be

drawn from superstar states with very high expected returns. A small sample underperformance

puzzle may result if we observe too few of these draws ex-post, even if the population

distribution exhibits no ex-ante underperformance. In our estimation, we impose the null of

no ex-ante IPO underperformance.

We find that the small sample distributions implied by the model for the event-time statistics

measuring IPO underperformance do not even come remotely close to encompassing the point

statistics in the data. Hence, the null hypothesis that a small sample effect is responsible for

IPO underperformance is overwhelmingly rejected. Moreover, the degree of outperformance

required for a small sample explanation to hold requires that approximately one in 50 IPOs

must at least triple their values every month.
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By establishing the robustness of the IPO underperformance puzzle, we lay the groundwork

for future research to economically explain this important, statistically robust phenomenon.

Some explanations that have been proposed to date include earnings management (Teoh, Welch

and Wong (1998)), constraints on shorting IPOs combined with heterogeneous expectations of

investors (Miller (1977)), or behavioral biases (Hirshleifer (2001)), among others.
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Appendix

We estimate the model in Section III using Gibbs sampling, adapting the methodology

developed by Kim, Nelson and Startz (1998) and Kim and Nelson (1999). The set of parameters

we estimate is:

Θ = (P̃ , σ̃2, µ̃),

where σ̃2 = [σ2
1 σ2

2], µ̃ = [µ1 µ2], P̃ = [P11 P22] for the two-state Markov model,

σ̃2 = [σ2
1 σ2

2 σ2
3], µ̃ = [µ1 µ2 µ3], P̃ = [P11 P21 P22 P32] for the three-state Markov

model with restricted transition probabilities andσ̃2 = [σ2
1 σ2

2 σ2
3], µ̃ = [µ1 µ2 µ3], P̃ =

[P11 P12 P21 P22 P32 P33] for the three-state Markov model with unrestricted transition

probabilities. For estimation purposes, we parameterizeσ2
2 as σ2

2 = σ2
1(1 + h2) and σ2

3 as

σ2
3 = σ2

1(1 + h2)(1 + h3).

Let Ti denote firmi’s surviving period and letn be the number of firms in the sample. We

define a Markov state vector of firmi ass̃Ti
= [si,1 si,2 . . . si,Ti

], for firms i = 1, 2, . . . , n, and

a stacked state vector of all firms ass̃T = [s1,1 . . . s1,T1 s2,1 . . . s2,T2 . . . sn,1 . . . sn,Tn ], where

T =
∑n

i=1 Ti. Similarly, we write the vector of returns for theith IPO as̃rTi
= [ri,1 ri,2 . . . ri,Ti

]

and denote the collected vector of returns for all IPOs asr̃T = [r1,1 . . . r1,T1 . . . rn,1 . . . rn,Tn ].

Since the states are unobserved to the econometrician, we treat them as parameters and drawn

them via Gibbs-sampling. Hence, the random variables to be drawn areΘ and the stacked

Markov states vector̃sT .

The Gibbs sampling algorithm iterates successively over the following conditional distribu-

tions. Each iteration simulates a drawing from the joint posterior distribution of all the state

variables and the model’s parameters, given the data:

P1) GeneratẽsT , conditional oñµ, σ̃2, P̃ andr̃T .

P2) Generatẽµ, conditional oñσ2, s̃T andr̃T .

P3) Generatẽσ2, conditional oñµ, s̃T andr̃T .

P4) GeneratẽP , conditional oñsT .
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Note that in (P2), by the null hypothesis thatµ̃′π̃ = 0 in equation (11), onlyµ1 is generated

and the value of the other conditional mean parameter is inferred. In (P4),P̃ only requires

knowledge of the states̃sT . All the conditional distributions (P1) to (P4) are also conditional

on the delisting times, which are exogenously given by a Geometric distribution. Conditional

on observing the delisting time, we can separate the estimation of the Geometric distribution

and the Markov-switching DGP because we assume that the Markov-switching process holds

conditional on the delisting time, and the delisting process is unaffected by the parameters of

the Markov DGP. We describe drawing parameters from each conditional distribution in turn.

(P1) Drawing s̃T , Conditional on µ̃, σ̃2, P̃ and r̃Ti

We assume independence of returns across firms. Thus, we can generates̃Ti
, conditional on firm

i surviving toTi. We then stack̃sTi
to construct̃sT . To generatẽsTi

, we first run the Hamilton

(1989) filter to obtain the conditional distributionsg(si,t|r̃i,t) for all t.

Let ψi,t−1 denote the information set up to timet − 1 for firm i, which represents lagged

firm i returns. GivenPr[si,t−1 = k|ψi,t−1] at the beginning of time t, and using Bayes’ rule,

(A-1) Pr[si,t = j, si,t−1 = k|ψi,t−1] = Pr[si,t = j|si,t−1 = k]Pr[si,t−1 = k|ψi,t−1],

wherePr[si,t = j|si,t−1] = Pr[st = j|st−1 = k] are the transition probabilities̃P , which are

firm invariant.

We update the probabilityPr[si,t = j, si,t−1 = k|ψi,t−1] using:

(A-2) Pr[si,t = j, si,t−1 = k|ψi,t] =

f(ri,t|si,t = j, si,t−1 = k, ψi,t−1)Pr[si,t = j, si,t−1 = k|ψi,t−1]∑K
si,t=1

∑K
si,t−1=1 f(ri,t|si,t = j, si,t−1 = k, ψi,t−1)Pr[si,t = j, si,t−1 = k|ψi,t−1]

,

whereK is the number of states and

f(ri,t|si,t = j, si,t−1 = k, ψi,t−1) =
1√

2πσ2
st

exp

(
−(ri,t − µst)

2

2σ2
st

)
,
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since the state-dependent parametersµst ≡ µ(st) andσst ≡ σ(st) are the same across firms.

We can obtaing(si,Ti
|r̃Ti

) by summing over theK states using the standard Hamilton (1989)

updating recursion:

(A-3) Pr[si,t|ψi,t] =
K∑

si,t−1=1

Pr[si,t = j, si,t−1 = k|ψi,t].

The last run of the Hamilton (1989) filter provides us withg(si,Ti
|r̃Ti

), from which we can

generatesTi
. We then backwards generatesi,t, conditional onr̃i,t andsi,t+1, t = Ti − 1, Ti −

2, . . . , 1, using the multi-move Carter and Kohn (1994) algorithm adapted by Kim and Nelson

(1999). This uses the following result:

(A-4) g(si,t|r̃i,t, si,t+1) ∝ g(si,t+1|si,t)g(si,t|r̃i,t),

where g(si,t+1|si,t) = g(st+1|st) is the transition probability. We calculatePr[si,t =

k|si,t+1, r̃i,t] using:

(A-5) Pr[si,t = k|si,t+1, r̃i,t] =
g(st+1|st = 1)g(si,t = k|r̃i,t)∑K
j=1 g(st+1|st = j)g(si,t = j|r̃i,t)

.

The Carter-Kohn (1994) algorithm simulatessi,t, t = 1, 2, . . . , Ti, as a block from the joint

distributiong(s̃Ti
|µ̃, σ̃2, P̃ , r̃Ti

). The algorithm is run for each firmi separately.

Next, we describe draws from (P2) through (P4) for a three-state Markov model with

unrestricted transition probabilities as a general case. Our other models are special cases (and

involve a reduced number of parameters).

P2) Drawing µ̃, Conditional on σ̃2, s̃T and r̃T

Equation (6) can be rewritten in the following form:

(A-6) rit = µ1s̄1it + µ2s̄2it + µ3s̄3it + σsit
εit,

if we let k = 1, 2, 3, and define:

(A-7) s̄kit =





1 if sit = k

0 otherwise.
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Dividing both sides of equation (A-6) byσsit
, we obtain:

(A-8) r†it = µ1x1it + µ2x2it + µ3x3it + εit, εit ∼ IID N(0, 1),

wherer†it = rit

σsit
andxkit = s̄kit

σsit
. Note thatσsit

takes only the values ofσst, which are common

to all firms, but the actual valueσsit
depends on firmi and timet. Using this notation, we can

rewrite equation (A-8) in matrix notation as:

(A-9) R† = Xµ̃ + V, V ∼ N(0, IT )

whereR† is the stacked vector of transformed returnsR† = [r†1,1 . . . r†1,T1
. . . r†n,1 . . . r†n,Tn

] for

all n firms andX = [x1t x2t x3t] stacks the values ofxkit for the different values of the regime

k across the rows and all the time-series of firm returns across the columns.

If we assume a normal prior for̃µ of µ̃|σ̃2 ∼ N(b0, B0), the posterior distribution

is given by µ̃|σ̃2, s̃T , r̃t ∼ N(b1, B1), where b1 = (B−1
0 + X ′X)−1(B−1

0 b0 + X ′R†) and

B1 = (B−1
0 + X ′X)−1. We assign a value of zero tob0 andB−1

0 , which effectively represent a

non-informative prior.

P3) Drawing σ̃2, Conditional on µ̃, s̃T and r̃T .

By definition of s̄kit in equation (A-7), we can write:

σ2
it = σ2

1 s̄1it + σ2
2 s̄2it + σ2

3 s̄3it,

for the vector of realizations of conditional variances corresponding to the stacked returnsr̃Ti

of firm i, conditional on the stacked regime realizationss̃Ti
for firm i. We can redefine this as:

(A-10) σ2
it = σ2

1(1 + s̄2ith2)(1 + s̄3ith2)(1 + s̄3ith3),

whereσ2
2 = σ2

1(1+h2) andσ2
3 = σ2

1(1+h2)(1+h3). Using this specification ofσ1, h2, andh3,

we first generateσ2
1, and then generatēh2 = (1 + h2) andh̄3 = (1 + h3) to indirectly generate

σ2
2 andσ2

3.
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To drawσ2
1, conditional onh2 andh3, we divide both sides of equation (6) by

√
(1 + s̄2ith2)(1 + s̄3ith2)(1 + s̄3ith3)

to obtain:

(A-11) r?
it = µ1x

?
1it + µ2x

?
2it + µ3x

?
3it + v?

it, v?
it ∼ IID N(0, σ2

1),

where:

r?
it =

rit√
(1 + s̄2ith2)(1 + s̄3ith2)(1 + s̄3ith3)

x?
kit =

s̄kit√
(1 + s̄2ith2)(1 + s̄3ith2)(1 + s̄3ith3)

v?
it =

εit√
(1 + s̄2ith2)(1 + s̄3ith2)(1 + s̄3ith3)

.

We stack each firm’s returns in equation (A-11) to write:

r?
t = µ1x

?
1t + µ2x

?
2t + µ3x

?
3t + v?

t .

We choose an Inverted Gamma distribution as a conjugate prior forσ2
1, soσ2

1|h2, h3, µ̃ ∼
IG(ν0

2
, δ0

2
). Kim and Nelson (1999) show that the posterior distribution is also an Inverted

Gamma distribution given byσ2
1|h2, h3, µ̃, s̃T , r̃T ∼ IG(ν1

2
, δ1

2
), whereν1 = ν0 + T andδ1 =

δ0 +
∑T

t=1(r
?
t − µ1x

?
1t − µ2x

?
2t − µ3x

?
3t). We assign a value of zero toν0 andδ0 to represent a

non-informative prior.

To generatēh2 = (1 + h2), conditional onσ2
1 andh3, we divide both sides of equation (6)

by
√

σ2
1(1 + s̄3ith3) and stack all firm returns to write:

(A-12) r??
t = µ1x

??
1t + µ2x

??
2t + µ3x

??
3t + v??

t , v??
t ∼ IID N(0, (1 + h2)),

wherer??
t stacks all transformed firm returnsr??

it = rit√
σ2
1(1+s̄3ith3)

andxkt stacks all transformed

realizationsx??
kit = s̄kit√

σ2
1(1+s̄3ith3)

.

By specifying an Inverted Gamma distribution for the prior asIG(ν2

2
, δ2

2
), the conditional

posterior distribution of̄h2 = 1 + h2 is given by h̄2|σ2
1, h3, µ̃, s̃T , r̃T ∼ IG(ν3

2
, δ3

2
), where

ν3 = ν2 + T̄2, andδ3 = δ2 +
∑

N2
(r??

t − µ1x
??
1t − µ2x

??
2t − µ3x

??
3t ). The setN2 represents the
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realizations of states 2 or 3 across firms,N2 = {t : sit = 2 or 3} andT̄2 is the total number of

simulated states 2 or 3 across firms. We assign a value of zero toν2 andδ2 for the prior, which

effectively represents agnostic beliefs.

We generatēh3 = 1 + h3 in a similar fashion to generatinḡh2 = (1 + h2).

(P4) Drawing P̃ = [P11 P12 P21 P22 P32 P33], conditional on s̃T

Conditional on the states̃sT , the transition probabilities are independent ofr̃T and the other

parameters of the model. Since the transitions of each firm are independent of the transition of

each other firm, we can use the combined transitions of all firms to estimateP̃ . We introduce

the notationnjk, j, k = 1, 2, 3 to represent the total number of transitions from statest−1 = j

to st = k, t = 2, 3, . . . , T , where we consider the total transitions of all firms. DefineP̄jj =

Pr[st 6= j|st−1 = j], j = 1, 2, 3, and P̄jk = Pr[st = k|st−1 = j, st 6= j] for k 6= j. Then,

Pjk = Pr[st = k|st−1 = j] = P̄jk × (1−Pjj) for k 6= j. Similarly, definēnjj to be the number

of transitions from statest−1 = j to st 6= j.

By taking the Beta family of distributions as conjugate priors, Kim and Nelson (1999) show

that the posterior distributions ofPjj are given by Beta distributionsPjj|s̃T ∼ Beta(ujj +

njj, ūjj + n̄jj), whereujj and ūjj are the known hyperparameters of the priors. We assign a

value of zero toujj andūjj.

Drawing the other off-diagonal elements in theΠ transition probability matrix is a

straightforward generalization of the method used to draw the diagonal transition probabilities

Pjj. For example, givenP11, P12 can be computed byP12 = P̄12 × (1 − P11), whereP̄12 is

drawn from the posterior beta distribution̄P12|s̃T ∼ Beta(u12 + n12, u13 + n13), whereu12 and

u13 are the known hyperparameters of the prior Beta distribution. Similar to the draws forPjj,

we assign a value of zero tou12 andu13. Finally, conditional onP11 andP12, the adding up

constraint impliesP13 = 1 − P11 − P12. The other off-diagonal elements inΠ are similarly

drawn.
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Table 1: Event-Time IPO Returns

Event Month
1 12 24 36 48 60

Number of Surviving Firms 4843 4767 4369 3882 3411 2966
Percentage of Surviving Firms 100% 98.4% 90.2% 80.2% 70.4% 61.2%

Panel A

CAR(NYSE/AMEX) 0.008** -0.071** -0.164** -0.221** -0.231** -0.227**
(2.76) (-7.30) (-11.5) (-11.9) (-10.1) (-8.26)

CAR(NASDAQ) 0.010** -0.052** -0.156** -0.243** -0.305** -0.313**
(3.66) (-5.45) (-11.1) (-13.3) (-13.5) (-11.6)

CAR(SMALL) 0.007* -0.060** -0.146** -0.170** -0.156** -0.158**
(2.46) (-6.26) (-10.3) (-9.24) (-6.87) (-5.82)

Panel B

CHP(NYSE/AMEX)annualized 0.096** -0.046** -0.049** -0.044** -0.033** -0.029**
(3.16) (-5.28) (-7.17) (-7.72) (-2.87) (-5.38)

CHP(NASDAQ)annualized 0.127** -0.028** -0.044** -0.045** -0.041** -0.036**
(4.22) (-3.18) (-6.75) (-8.49) (-8.32) (-7.11)

CHP(SMALL)annualized 0.083** -0.037** -0.041** -0.028** -0.013* -0.014*
(2.81) (-4.32) (-6.07) (-4.50) (-2.10) (-2.22)

Panel A reports summary statistics of the benchmark-adjusted cumulative average returns (CAR) as in
equation (2), which following Ritter (1991) are not annualized. Panel B reports the annualized cumulative
abnormal excess holding-period returns (CHP) in equation (5) of benchmark returns. We report t-
statistics, computed following Ritter (1991), in parentheses under the corresponding mean. The benchmarks
NYSE/AMEX, NASDAQ, and SMALL are the CRSP value-weighted NYSE/AMEX index, the value-
weighted NASDAQ index and the smallest NYSE size decile, respectively. We denote significance at the
5% and 1% levels with * and **, respectively. The sample period is January 1970 to December 1996, with
the last five year period ending at December 2001.
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Table 2: Calendar-Time IPO Returns

Holding Period Horizon (Months)
1 6 12 36 60

Panel A: Formation Period = 1 Year

Mean Return (Unadjusted) 0.159** 0.129* 0.110** 0.120** 0.139*
(2.81) (2.56) (2.59) (2.72) (2.17)

Mean Return(NYSE/AMEX) 0.014 -0.014 -0.035 -0.039 -0.023
(0.41) (-0.42) (-1.02) (-0.66) (-0.23)

Mean Return(NASDAQ) -0.015 -0.053* -0.072* -0.075 -0.069
(-0.65) (-2.21) (-2.58) (-1.42) (-0.72)

Mean Return(SMALL) -0.024 -0.057* -0.075** -0.102* -0.124
(-0.74) (-2.05) (-2.92) (-2.62) (-1.80)

Panel B: Formation Period = 3 Years

Mean Return (Unadjusted) 0.146** 0.110* 0.110* 0.121* 0.114*
(2.80) (2.33) (2.57) (2.59) (2.31)

Mean Return(NYSE/AMEX) 0.002 -0.031 -0.035 -0.036 -0.071
(0.07) (-0.95) (-1.01) (-0.58) (-0.85)

Mean Return(NASDAQ) -0.027 -0.069** -0.072* -0.073 -0.130
(-1.30) (-2.97) (-2.60) (-1.33) (-1.71)

Mean Return(SMALL) -0.035 -0.073** -0.074** -0.099* -0.206**
(-1.39) (-3.03) (-3.18) (-2.44) (-3.21)

The table reports mean holding period returns (unadjusted) and mean adjusted-holding period returns, relative
to NYSE/AMEX, NASDAQ, and SMALL benchmarks. We form a portfolio of IPOs which have gone public
within the past one year (top panel) or past three years (bottom panel) and hold this portfolio for various
holding period horizons. The means are computed with overlapping observations, so we report Newey-West
(1987) t-statistics in parentheses with a lag length of one less than the holding period horizon in months. All
the returns in the table are reported in annualized terms. We denote significance at the 5% and 1% levels
with * and **, respectively. The sample period starts from January 1970 for the three-year formation period
and from January 1972 for the one-year formation period. Both samples in Panels A and B end at December
2001.
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Table 3: Top Performing IPOs

Panel A: Top 10 Highest Monthly Returns

Name Monthly Return Event Month Issue Date

Club-Theatre Network Inc 25.0 21 05/15/90
SoloPoint Inc 5.91 28 06/06/96
Smith Micro Software Inc 5.64 54 09/18/95
Viisage Technology Inc 5.61 59 11/08/96
Exploration Co 5.60 38 11/19/79
Humascan Inc 4.50 30 08/12/96
ECO2 Inc 4.36 33 10/22/92
SkyMall Inc 3.99 25 12/11/96
Western Power & Equipment Corp 3.88 59 06/13/95
Hungarian Broadcasting Corp 3.58 36 12/20/95

Panel B: Top 10 Largest 5-Year Cumulative Returns

5-Year 5-Year Annualized
Name Cumulative Return Cumulative Return Issue Date

CMG Information Services Inc 147 1.72 01/25/94
American Power Conversion 70.3 1.35 07/22/88
Network Appliance Inc 55.8 1.24 11/21/95
Ascend Communications Inc 50.3 1.20 05/12/94
SDL Inc 42.4 1.13 03/15/95
Ryan’s Family Steak Houses 40.3 1.10 07/13/82
Zoltek Cos Inc 34.6 1.04 11/06/92
StrataCom Inc 31.7 1.01 07/21/92
Cisco Systems Inc 24.2 0.91 02/16/90
Liz Claiborne Inc 24.1 0.91 06/09/81

The table reports the highest 10 one-month IPO returns in Panel A. In Panel B, we report the 10 IPOs with
the largest 5-year post-issue cumulative returns. The returns in the table are in levels, not percentages. The
sample period is January 1970 to December 2001.

Table 4: Actual and Expected Number of Surviving Firms

Event Month Actual Geometric Poisson

1 4843 4843 4843
6 4830 4652 4843
12 4767 4433 4843
24 4369 4026 4713
36 3882 3656 2050
48 3411 3320 89
60 2966 3015 0

The table reports the actual number of IPO’s survivingk months from issue in the second column (which
is the same as the first row of Table 1). The column labeled ‘Geometric’ reports the expected number of
surviving firms from the Geometric distribution in equation (14), while the last column reports the expected
number of surviving firms from a Poisson distribution fitted to the data. The sample period is January 1970
to December 2001.
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Table 5: Parameter Estimates

Panel A: Two-State Model

State µ σ Transition matrixΠ π

1

2




0.042
(0.002)
−0.008
(0.000)







0.396
(0.003)
0.122

(0.001)







0.750 0.250
(0.005) −
0.047 0.953
− (0.001)







0.157

0.843




Panel B: Three-State Model

State µ σ Transition matrixΠ π

ConstrainedΠ

1

2

3




0.227
(0.014)
0.000
−

−0.013
(0.001)







0.731
(0.011)
0.102

(0.000)
0.223

(0.001)







0.684 0.316 0.000
(0.005) − −
0.011 0.943 0.046

(0.001) (0.001) −
0.000 0.073 0.927
− (0.002) −







0.021

0.603

0.376




UnconstrainedΠ

1

2

3




0.264
(0.044)
0.000
−

−0.006
(0.000)







0.605
(0.010)
0.214

(0.002)
0.141

(0.001)







0.289 0.576 0.136
(0.027) (0.022) −
0.070 0.930 0.000

(0.000) (0.004) −
0.002 0.001 0.997
− (0.000) (0.001)







0.018

0.158

0.824




We report parameter estimates of the two-state and three-state model in equation (6). For the two-state model
in Panel A, the the state-dependent meansµ(sit) are estimated subject to the restriction in equation (9), with
the transition matrix given by equation (7). For the three-state models in Panel B, the meansµ(sit) are
estimated subject to the restriction in equation (13). The model labeled ‘ConstrainedΠ’ is estimated with
the transition probability matrixΠ described in equation (10), while the unconstrained estimation imposes no
constraints on the transition probability matrix. The vectorπ represents the stable probability of the system.
The sample period is January 1970 to December 2001.
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Table 6: CAR Small Sample Distribution

Panel A: Full sample

CAR in data = -0.227

Two State Model Three State Model
ConstrainedΠ UnconstrainedΠ

Mean 0.041 0.043 0.002
Std 0.026 0.031 0.033
Median 0.041 0.044 0.001

Percentiles
0.5% -0.026 -0.037 -0.081
1.0% -0.020 -0.030 -0.073
2.5% -0.010 -0.019 -0.061
5.0% -0.002 -0.008 -0.052

95.0% 0.085 0.094 0.057
97.5% 0.093 0.104 0.068
99.0% 0.102 0.115 0.082
99.5% 0.109 0.122 0.092

Panel B: Ritter (1991) data, 1975-1984

CAR in data = -0.251

Two State Model Three State Model
ConstrainedΠ UnconstrainedΠ

Mean 0.008 0.010 0.010
Std 0.044 0.042 0.069
Median 0.007 0.010 0.008

Percentiles
0.5% -0.104 -0.098 -0.161
1.0% -0.092 -0.088 -0.143
2.5% -0.077 -0.072 -0.119
5.0% -0.064 -0.059 -0.099

95.0% 0.078 0.079 0.128
97.5% 0.093 0.092 0.154
99.0% 0.110 0.109 0.182
99.5% 0.122 0.118 0.209

The table reports summary statistics of the small sample distribution of the CAR statistic (equation (2))
by simulating from the posterior distribution of the parameter estimates reported in Table 5 using 10,000
simulations. Panel A corresponds to the sample of IPOs going public from January 1970 to December 1996,
with an event horizon of 60 months. Panel B corresponds to Ritter’s (1991) original sample, consisting of
IPOs going public from 1975 to 1984, with an event horizon of 36 months.
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Table 7: CHP Small Sample Distribution

Panel A: Full sample

CHP in data = -0.137

Two State Model Three State Model
ConstrainedΠ UnconstrainedΠ

Mean 0.078 0.463 0.080
Std 0.064 3.155 0.123
Median 0.070 0.319 0.064

Percentiles
0.5% -0.037 0.090 -0.054
1.0% -0.028 0.106 -0.044
2.5% -0.014 0.133 -0.028
5.0% -0.002 0.154 -0.016

95.0% 0.181 0.871 0.211
97.5% 0.214 1.227 0.265
99.0% 0.274 2.120 0.387
99.5% 0.343 3.571 0.520

Panel B: Ritter (1991) data, 1975-1984

CHP in data = -0.127

Two State Model Three State Model
ConstrainedΠ UnconstrainedΠ

Mean 0.187 0.234 0.124
Std 0.224 0.334 1.100
Median 0.169 0.187 0.041

Percentiles
0.5% -0.013 -0.006 -0.159
1.0% 0.004 0.008 -0.142
2.5% 0.025 0.030 -0.122
5.0% 0.045 0.050 -0.102

95.0% 0.374 0.514 0.457
97.5% 0.439 0.681 0.687
99.0% 0.548 0.987 1.283
99.5% 0.651 1.499 2.289

The table reports summary statistics of the small sample distribution of the CHP statistic (equation (5))
by simulating from the posterior distribution of the parameter estimates reported in Table 5 using 10,000
simulations. Panel corresponds to the sample of IPOs going public from January 1970 to December 1996,
with an event horizon of 60 months. Panel B corresponds to Ritter’s (1991) original sample, consisting of
IPOs going public from 1975 to 1984, with an event horizon of 36 months.
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Figure 1: A Simple Example of the Small Sample Bias

Population (unobserved) Small sample (observed)

2%

70%

28%

Extraordinar y, 70%

Benchmark, 0%

1%

70%

29%

Extraordinar y, 70%

Benchmark, 0%

Bad, -5% Bad, -5%

Average excess return 
= 0.02×0.7+0.7×0+0.28×(-0.05)
= 0%

Average excess return 
= 0.01×0.7+0.7×0+0.29×(-0.05)
= -0.75%

The figure shows a population versus small-sample distribution, illustrating how ex-post underperformance might be
realized in a small sample generated from a population distribution with no ex-ante underperformance.
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Figure 2: P-value of the CAR Statistic as a Function ofµ1
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Each plot graphs the p-value of the CAR statistic as a function ofµ1, the mean of the IPO return in the outperforming
state, in the three-state Markov model. We start with the point marked with a circle, which represents the p-value from
Table 6, which is zero, corresponding to the estimated value ofµ1 in Table 5. The top row displays the results using
the full sample data and the bottom row displays results for the Ritter (1991) sample.
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