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ABS TRACT

Tournaments, reward structures based on rank order, are compared with

individual contracts in a model with one risk—neutral principal and many

risk—averse agents. Each agents's output is a stochastic function of his

effort level plus an additive shock term that is common to all the agents.

The principal observes only the output levels of the agents. It is shown

that in the absence of a common shock, using optimal independent contracts

dominates using the optimal tournament. Conversely, if the distribution

of the common shock is sufficiently diffuse, using the optimal tournament

dominates using optimal independent contracts. Finally, it is shown that

for a sufficiently large number of agents, a principal who cannot observe

the common shock but uses the optimal tournament, does as well as one who

can observe the shock and uses independent contracts.
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1. Introduction

At the Olympics prizes are awarded not on the basis of absolute

performance, but rather on the basis of relative performance. Similarly, in

most organizations one of the most important rewards is promotion. If the

hierarchical structure of the organization is fixed, employees at any one

echelon are competing for a fixed, smaller number of positions at the next

higher echelon. The goal for these employees is not just to do well, but to

do better than their peers.

The existing literature on incentives and contract design has been

concerned primarily with the case where a principal employs only one agent,

and rewards him on the basis of absolute performance. Exceptions include two

recent papers about tournaments——reward structures based on rank order, and

one that considers more general compensation schemes for iailti—agent settings.

The first is by Lazear and Rosen [1981], who examine the problem of a

risk—neutral firm with two employees. The output of each agent depends

stochastically on his own effort and on an additive shock that is common to

both. The agents do not know the value of the common shock at the time they

choose their effort levels; they do know its distribution. It is shown that

if the agents are risk—neutral, an optimal two—person tournament is

equivalent, for all three parties, to offering the optimal incentive contract

to each agent independently. In either case, because the agents are risk—

neutral, the moral hazard problem can be avoided costlessly by shifting all

risk onto the agents. Lazear and Rosen also compare linear piece rates and

tournaments for the case of risk—averse agents and a normally distributed

shock. They show that if the variance of the shock term is sufficiently

large, the optImal tournament yields higher expected utilities.

Stiglitz [19811 compares tournaments and independent contracts using a
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somewhat different specification of the production technology. Here the shock

is nultiplicative, so that it affects the marginal product of labor. A wide

variety of cases and examples are studied.

Finally, Holmstrom [1981] examines arbitrary relative performance schemes

for risk—averse agents. He shows that for either additive or multiplicative

shocks, because the mean output level is a sufficient statistic for all of the

information about the common shock, optimal contracts can be designed in which

each agent's reward depends only on his own output level and on the mean

output level.

In all of these models, compensation schemes that base an agent's reward

on the performance of his peers as well as his own, take advantage of the fact

that the vector of output levels for the whole group is a source of

information about the common shock——which by assumption the principal cannot

observe directly. Optimal compensation schemes for groups of agents can, in

general, have arbitrary and complicated functional forms——depending on

assumptions about tastes, technology, and distributions for the error terms.

In practise, on the other hand, rather simple schemes are often used.

Consequently, it is useful to study the properties of simple schemes——to

understand when they perform "almost" as well as "optimal contracts. That is

the viewpoint adopted here, where we compare the efficiency of independent

contracts and tournaments. Under the former each agent's reward depends only

on his own output level, while under the latter it depends only on his rank

order. These represent the extreme cases of reward structures based on

absolute and relative performance.

We consider a situation in which one risk—neutral principal employs a

group of identical risk—averse agents. As in the Lazear—Rosen model, each

agent's output is assumed to depend stochastically on his own effort and a
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common additive shock term. The common shock might represent economic

conditions which affect all of the agents. We allow agents to observe private

signals, correlated with this common shock, before they choose their effort

levels. The realized output of each agent then is a stochastic function of

his effort and the value of the common shock. The principal observes only the

output levels of the agents.

We assume throughout that the principal is constrained to offer a fixed

minimum level of expected itility to each agent, so that we can judge the

relative performance of contracts and tournaments by examining the expected

payoff of the principal. The principal's objective function is the sum of the

outputs of all the agents minus the sum of the rewards paid to all of them.

We show that for any finite number of agents, in the absence of a common

error term, using the optimal tournament is dominated by using optimal

independent contracts. In the absence of a common shock, the output levels of

the rest of the group convey no information about the effort level of an

agent. Using a tournament in this case only introduces extraneous noise into

the payoff function that agent faces. Since the agents are risk—averse, this

is costly for the principal.

Conversely, given any group of at least two agents, if the distribution

of the common error term is sufficiently diffuse, then the optimal tournament

dominates using optimal independent contracts. In this case using tournaments

eliminates a major source of noise, while adding a relatively minor one.

Finally, given any fixed distribution for the common error term, for a

sufficiently large number of agents, using the optimal tournament dominates

using optimal independent contracts. In fact, if the number of agents is

sufficiently large, a principal who cannot observe the value of the common

shock and uses an optimal tournament can do as well as a principal who can
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observe the value of the shock and uses general, interdependent contracts.

For a large enough group of agents, an agent's rank order is an extremely

accurate signal about his output level net of the common additive shock.

The rest of the paper is organized as follows. In Section 2 tastes,

technology, distributions, and feasible sets of tournaments and contracts are

described; in Section 3 tournaments and independent contracts are compared;

and in Section 4 the conclusions are discussed.

2. The Model

We consider the problem faced by a principal who employs a fixed group of

agents, i — 1,.,n. The agents are all identical ex ante. The preferences of

each agent i over his income, m1, and his effort, x1, are represented by the

von Neumann—Morgenstern utility function

U1(mj,x1) = u(mj) —
x1 , m1 ) 0, Xi ) 0, 1 1,...,n; (1)

where u: R+ + [0,B] is strictly increasing and strictly concave.'

The output of agent 1, y1, depends stochastically on his effort level,

x1. In particular,

— +n, (2)

where n c R is a random variable affecting all of the agents, and zi is a

random variable whose distribution depends on x1. Let F( ;x1) denote the

conditional distribution function for Zj given x1; since the agents are

identical ex ante, F does not depend on i. Assume that for any effort level x

) 0, the distribution function for output, F( ;x) has a continuous density
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function f( ;x) which is positive everywhere and continuously differentiable

in x.

The agents observe private signals about n before choosing their effort

levels; let a1 c R denote the signal observed by agent 1, and let C denote the

distribution function for (n,a). Note that this formulation includes

situations where all agents observe the same signal, independent signals,

signals that reveal 11 completely, and signals that are uncorrelated with n.

Assume that Zj and (n,a) are independent, and assume that r has zero mean.

f ndG(r,a) 0 (3)

(Except where otherwise indicated, integration is over the entire range.)

The principal's problem is to design a reward structure for the n

agents. The principal is risk—neutral and seeks to maximize the expected sum

of the outputs net of total payments to the agents.

E[ (y1 - mi)] (4)
1—1

By assumption the principal observes only the output levels of the

agents, y he cannot directly observe either the agents'

effort levels or the realization of any random variable. Under independent

contracts agent i's reward depends only on his own output level, Yj' while

under a tournament it depends only on the rank order of y1 in y.

Given any reward structure, the problem facing each agent is to choose a

level of effort. First consider the situation under independent contracts.

Since the agents are identical, we can consider the problem facing a

representative agent 1. It is convenient to think of the principal as
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constructing the reward function in terms of utility. For any reward fnction

R(y), let v(y) be defined as its representation in utility terms, v(y) u(R(y)).

The cost to the principal of providing this level of utility is then given by

y(v(y)), where y u. Since u is strictly increasing and strictly concave,

y is strictly increasing and strictly convex. Agent i observes and then

chooses the level of effort that maximizes his expected utility. Since the

optimal level of effort will depend on the value of ci, the optimal decision

rule for the agent is a function X(ai).

The principal's problem is to choose (v,X) to maximize (4) subject to the

two constraints that X be an optimal decision rule for the agent given v, and

that the expected utility of the agent be at least u0. Given G, define Si(G)

to be the set of contracts that are feasible for the ith agent:

Si(G) {(v,X)I v:R+ + [O,B], X:R + R+;

X(a1) c argmax f v(y)f f(y—ri;x)dG(rI,aiIa)dy — x, v (5a)

ff (v(y) — X(a))f(y—n;X(a))dG(n,a)dy ) u°}; (5b)

and define Pi(v,X,G) to be the expected payoff of the principal from the

contract (v,X):

Pj(v,X,G) ff (y — y(v(y))f(y—rx(a1))dydc(,a).

The feasible set is always non—empty, since it always contains the "no—

incentive contract: (v u0,X 0) c Si(G), for all G,i. Note that the

expected payoff to the principal under this contract, call it P°, is

independent of C.
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P0
Pi(v°,X°,G) ff (z + n — y(u°))f(z;O)dzdc(n,a)

= f zf(z;O)dz — 1(u°)

Next consider the situation under a tournament. As above it is

convenient to express rewards in terms of utility. In an n—person tournament

with prizes (W1,W2,...,w), define w = (w1,w2,...,w) by w u(W1), Vi.

(We use the numbering conventional In the study of order statistics: "first

place" Is the lowest outcome, and w1 is the prize received by the agent with

the lowest output, etc.) We will consider symmetric Nash equilibria of the

game in which each agent's strategy is his effort level.2

Since each agent's output is given by y1 z1 + 71:

Y1
> Yj <> Z >

Zj•

That is, the rank order of the outputs depends only on the zj's and on r.

Therefore, the realization of (i,a) does not affect the game played by the

agents, and the equilibrium effort level will be Independent of a. Hence we

can analyze the game in terms just of the z1's. In an n—person tournament,

agent I wins prize w if and only if zi Is the jth order statistic of

(z1,...,z). Define:

•j(z;x) = (fl_j)!(j_l)!z;x)F(z;x)(1_F(z;x))i

That is, •j(z;x) Is the density function for the jth order statistic in a

sample of size n drawn from the distribution F( ;x).
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As above, the principal is constrained to offer the agents an expected

utility of at least u°. We are interested only in tournaments that have

symmetric Nash equilibria. Given n and G, the set of feasible n—person

tournaments, ST(n,C), is defined by:

ST(n,G)
{(w,)Iw c [O,BJ', x e R+;

n— 1 r rf(z;x) —
x c argmax — L w4 j — •. (z;x)dz — x; (6a)

x j1 ' f(z;x) "

in 0— w—x)u} ,
(6b)

n

Note that ST(n,G) = ST(n), for all G satisfying (3).

Given n, G, and (w,) c ST(n), let PT(n,w,x,G) denote the principal's

expected net payoff per agent, under the tournament (w,).

PT(w,w,x,G) ff y f(y-n;x)dG(i,a)dy -
j=1

1n— I zf(z;x)dz —

i—i

Hence PT(n,w,x,G) Pr(n,w,x). We summarize these results in Lemma i.

Lemma 1: The set of feasible tournaments, the expected payoff of the principal

under any feasible tournament, and hence the optimal tournament, each depend

on the number of players ii, and on the distribution function F, but not on

the distribution function C.

Lemma 1 is interesting in its own right, since it says that tournaments are

robust against lack of information or lack of agreement about G. It will also
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be useful for our later results. Note that the set of feasible tournaments is

always non—empty, since it always contains the "no—incentive" tournament:

£ ST(n), for all n. The payoff per agent to the principal

under this tournament is P°.

3. Comparison of Tournaments and Contracts

First we will show that for any number of agents n and any function F

satisfying (2), if there is no common error term, i.e. If:

0 forii<O
f dG(ri,a) (7)

acR 1 for>O

then for any feasible tournament there exists a feasible contract that

dominates It.3 Note that if G satisfies (7), then it also satisfies (3).

Proposition 1: For any F, G satisfying (7), and n ) 2, given

(w,) £ ST(n), there exists (v,X) c Scj(G) I 1,...,n, such that:

Pj(v,X,C) ) PT(n,w,x),
I = 1,...,n.

The inequality is strict unless (w,) =

Proof: Let F, C, n 2, and (w,) c ST(n) be given. We will show that the

contract (v,X) defined by:

v(y)
Wj , for all y;

i—i

X(a1) x , for all a1;
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satisfies the required conditions.

First we will show that the proposed contract satisfies (5a) and (5b).

Since C satisfies (7), any agent's optimal effort function under v is given

by:

X(oi) argmax f v(z)f(z;x)dz — x

1 n . (z;x)
= argmax f -- w. — f(z;x)dz — x , for all a1.

x j=1 f(z;x)

Since (w,) satisfies (6a), X(oi) x and (5a) is satisfied.

Moreover, since (w,) satisfies (6b), the expected utility of the agent

under v is given by:

f v(z)f(z;)dz —

n ' (z;x)rl r jn — — 0=
L — w4f(z;x)dz — x ) u

j=1 f(z,x)

Hence (5b) is also satisfied.

The expected utility of the principal is higher under (v,X) than under

(w,) since:

P(v,X,G)
= f (z — y(v(z))) f(z;x)dz

n (z,)
f zf(z;x)dz — f ( ! jn

— wjf(z;)dz
j1 f(z;x) '

in
> f z f(z,x)dz — y(w4) f •4(z,x)dz

j=1
J I
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— PT(n,w,x)

The inequality follows from Jensen's inequality and the fact that y is

strictly convex. If w #' (w,...,), the inequality is strict. If

w (w,..,), then x — 0, and unless — u0, the contract (v u0, x 0)
dominates (w,).

Q.E.D.

An obvious corollary of Proposition 1 is that when there is no common

error term, the optimal contract dominates the optimal tournament.

Corollary 1: Let F, C satisfying (7), and n ' 2 be given. Then

Max P
1(v,X,G)

) Max PT(n,w,x) , for all 1.

(v,X)cS1(G)
C

(w,x)CST(n)

The inequality is strict unless (v u0,X 0) maximizes the left—hand side.

Next, we will compare independent contracts and tournaments as the common

error term becomes diffuse. We will consider sequences {G } such that fork k=1

all k:

G1 satisfies (2);

Ck has a density function g; (8)

f (n-.1Ia1)da1 g(nIa1) < 1/k, for all

In Proposition 2 we show that for any sequence {Ck} satisfying (8), for

all k sufficiently large, the optimal contract is the "no—incentive" contract
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(v u0, X 0). Hence the principal's expected payoff under the optimal

contract falls to P° along the sequence. However, as shown above, the optimal

tournament and the principal's expected payoff under it——which is at least P°,

will be unchanged along the sequence.

Proposition 2: Let F, {Gk)l satisying (8), and n > 2, be given. Assume

that fx(z;x) Is a function of bounded variation in z, for all x ) 0, and that

the bound, N, is uniform in x. Then there exists K such that for all k > K:

_Max PT(w,x,n)
Max P j(v,X,Gk), i = 1,...,n. (9)

(w,x)CST(n) (v,X)cSci(Gk)
C

The inequality is strict unless the lefthand side is equal to P°.

Proof: Let {(v1,X1)} be a sequence of optimal contracts for agent I. Note

that:

> 0 => 1 = f v(y) f f(y —
ruX1(a1))g1(nIa1)dndy. (10)

However, since is of bounded variation, (8) implies that:

lim If f(y_ruX1)g1(rIa1)dnI ( lim f —

n;X1)Idr urn 0.

Since v(y) £[O,B], for all y, (10)

:8rn0t

hold. Hence for k sufficiently

large (Vkj u 0), and Pc(vkj,Xkj,Gk) — "

By Lemma 1, ST and T are independent of C, so that the left hand side of

(9) is at least P° and is constant along the sequence {Ck}. Q.E.D.

Our final result concerns the relative efficiency of tournaments and
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contracts as the number of agents grows. We will consider sequences of

distributions {G (n,a1,...,cl such that the marginal distribution

function for i is unchanged throughout.

f dG(flO) (ri) , for all n = 2,3,..... (11)

We will show that as n + , not only does the optimal tournament dominate the

optimal contract, but in fact the optimal tournament approaches the full—

information solution. That is, as n + the principal does as well as if he

could observe directly. There are two steps in the proof.

In Lenuna 2 we show that any contract for which the payoff function is

piecewise continuous and the agent's optimal effort level is unique, can be

approximated arbitrarily closely by a payoff function that is a step

function. Then in Lemma 3 we show that each of these step function contracts

can be approximated arbitrarily closely by tournament with a sufficiently

large number of players.

Let C satisfying (7) be given. As noted above, when C satisfies (7) we

can restrict attention to contracts (v,X) for which X(ai) is a constant

function. For these contracts Sci — Sc and ci = for all i. First we

will show that given any feasible contract (v,X), we can construct a sequence

of contracts {(vk,k)}1 such that vk is a step function with k steps, XK is

a constant function, and vk + V in measure.

Let (v(y)) t S(G) be given, and let 'kl'•••"kk' be intervals

corresponding to quantiles of the distribution F( ;):

'kj
{zj—1)/k < F(z;) ( j/k}, j i,...,k; k — 1,2,3,.... (12)

Let be the expected payoff of the agent under (v,) on each of
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these intervals:

Vk f v(z)f(z;)dz, 1,...,k; k 1,2,... (13)
j I.

kj

Next, define the step function Vk(Z) by:

'kj
==> ;k(z) Vkj

for all z,k; (14)

as shown in Figure 1. Note that as k + , vk(z) + v(z) In measure. Finally,

define:

arginax f Vk(Z)f(Z;X)dZ , for all k; (15)

Ck - U + Xk — J• ;k(z)f(z;Xk)dz , for all k; (16)

vk(z) ;k(Z) + CK , for all z,k. (17)

Note that by construction, for C satisfying (7), (v,) S(G), for all k.

Lemma 2: Let F, C satisfying (7) and (v,) S(G) be given. If v is

piecewise continuous and If X is the unique solution of:

Max f v(z)f(z;x)dz — x , (18)
x

then for the sequence {(Vk,)}1 defined by (12)(17),

lim Pc(vk,Xk,G) P(v,X,G).
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and for k sufficiently large, is the unique solution of:

Max ff vk(y)f(y
— r;x)dG(n)dy — x

Proof: Since f( ;x) is continuous in x, Vk + v in measure, and X is the

unique maximizer of (18), from (15) it follows that Xk ÷ X. Hence

+ 0 and Vk + Vk• By construction then,

urn f Y(vk(z))f(z;)dz = f y(v(z))f(z;)dz
k+o°

so that the desired conclusion follows immediately. Q.E.D.

Next, we will show that for G satisfying (7), given any contract

(v,) S(G), where v is a step function, and X is a constant function, we

can construct a sequence of tournaments that approximate it. Define Yni by

F(y; X) i/(n+1), as shown in Figure 2, and define w by:

w1 v(yi). (19)

Then where it exists define:

n (z;x )— r 1 r in n= argmax j f(z;x) w1 — dz — x ; (20)
x i=1 f(z;x)

and let:

n
a u°+X _! W , (21)n n n1ni

i1,...,n. (22)
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Lena 3: Let F, C satisfying (7), and (v,) c S(G) be given, where v is a

step function, X is a constant function, and X is the unique solution of

(18). Let {(w")}1 and {(w,)}1 be the sequences defined by (19)—

(22). For n sufficiently large, x as defined by (20) exists and

(w,) C ST(n). Moreover,

urn PT(n,w,) = P(v,,G) , (23)

Proof: Consider a representative player j in an n—person tournament with

prizes w. Suppose that the n—i other players all adopt the effort level X,

and consider the conditional distribution of prizes for player j, given that

his observed output is Yj. Unless Yj is a point of discontinuity in the step

function v, as the number of players increases, by the law of large numbers

the conditional probability that j has a rank order such that his prize is

equal to v(yj) approaches one. That is:

lim wji(z;)/f(z;) = v(z;) , for almost all z.
n- i1

Since X is the unique solution of (18), for n sufficiently large, x1 as

defined by (20) exists, and urn X. Thus (23) follows immediately.

Q.E.D.

As a reference point, we want to define the optimal contract and expected

payoff for a principal who can obseve n. If the principal can observe n

directly, the optimal contract (v*,X*) is independent of C, and has the form:

v(y,n) v*(y n) , for all y,n;
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X(r) X , for all ii;

The principal's expected payoff in this case is given by:

* * *
P f (z — v (z))f(z;X )dz

Moreover, note that for any G° satisfying (7):

(v*,X*) = argmax P(v,X,G°)

(v, X)cS(G°)

Proposition 3: Let F, and {G}2 satisfying (3) and (11) be given, and let

(v*,X*) and * be as defined above. Then,

urn _Max PT(n,w,) = p* Max P(v,X,G) . (24)
(w,x)CST(n) (v,X)eS(G)

The inequality is strict unless C defined in (11) satisfies (7) or P = pO•

Proof: Let {(vk,xk))1 be the sequence of contracts defined for (v*,X*) by

(12)—(17), and for each k = 1,2,..., let {(w,)} be the sequence of

tournaments defined by (19)—(22). By Lemma 2, for any G satisfying (7):

urn Pc(vk,Xk,G) — p*

and by Lemma 3,

lirn PT(wk,,n) PC(vk,X.K,C).
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Since by Lemma 1, PT(w,x,n) is independent of C,

urn Max PT(w,x,n) ) urn urn PT(W ,x ,n) P
- kn '

(w,x)CST(n)

However, unless G() satisfies (7) or p* P°, the righthand side of (24) is

strictly less than P (Holmstrorn [1979], Corollary 2). Q.E.D.

4. Conclusions

In the model above, all agents' output levels are subject to the same

random shock. Thus, the output levels of the group provide the principal with

information about the value of the common shock, and consequently about the

portion of any particular agent's output that is attributable to effort.

Relative performance schemes——of which tournaments are an extreme form——allow

the principal to make use of this information.

Obviously tournaments employ available information in a rather

inefficient and inflexible way. In the model above, tournaments tend to

reduce the randomness of any agent's compensation by filtering out the common

shock term. However, they also tend to increase the randomness in any agent's

compensation by making his reward depend on the idiosyncratic shocks of his

peers. Proposition 1 and 2 show that the relative advantage of tournaments

vis a vis contracts depends on which effect dominates.

Despite the fact that a tournament makes inefficient use of information,

Proposition 3 shows that this entails no loss if the number of agents is

sufficiently large. In large groups, the rank order of an agent's observed

output is a very accurate esimator of his output net of the common shock.

Tournaments are not, in general, "optimal" contracts. Why then are

rankings so commonly used as an evaluation criterion? First, it may be
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substantially easier to determine agents' rankings than to measure their

output levels. In addition, as shown in Lemma 1 neither the set of feasible

tournaments nor the optimal tournament depends on the distribution function

f or the common shock and agents' signals. This is an obvious advantage if

that distribution is unknown or imprecisely known——as it would be, for

example, in nonstationary environments. Since in large group the inefficiency

due to information loss is negligable, tournaments will perform very well in

such settings.
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FOOThO1ES

'The fact that "effort enters linearly into each agent's utility function

involves no loss of generality. Since "effort" is never aggregated across

agents, units of effort are simply defined as whatever causes units of

disutility to the agent. Under this units convention P reflects both the

concavity of the agent's utility function in "hours" (or some other standard

unit of measurement), as well as the concavity of the production function in

"hours." If at least one of these functions is strictly concave, then (3)

holds. The agent's utility of income is bounded to avoid problems of the type

discussed by Mirrlees [19751.

2For arbitrary prize structures, there may be no Nash equilibrium——

symmetric or otherwise. This is of no importance to us, since we are

considering only tournaments that are designed so that they do have a

symmetric Nash equilibrium. The restriction to tournaments with symmetric

equilibria is purely on the grounds of tractability.

3This result is (almost) a special case of Theorem 10 in Holmstrom

[19811. (In Holmstrom's model agents do not have access to any information

about the common shock.) Proposition 1 is included here for the sake of

completeness.
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