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Most Difference-in-Difference (DD) papers rely on many years of data and focus on serially

correlated outcomes.  Yet almost all these papers ignore the bias in the estimated standard errors that

serial correlation introduce4s.  This is especially troubling because the independent variable of interest
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in standard errors. To illustrate the severity of this issue, we randomly generate placebo laws in state-level

data on female wages from the Current Population Survey.  For each law, we use OLS to compute the

DD estimate of its “effect” as well as the standard error for this estimate.  The standard errors are severely

biased: with about 20 years of data, DD estimation finds an “effect” significant at the 5% level of up to

45% of the placebo laws.

Two very simple techniques can solve this problem for large sample sizes.  The first technique

consists in collapsing the data and ignoring the time-series variation altogether; the second technique is

to estimate standard errors while allowing for an arbitrary covariance structure between time periods.  We

also suggest a third technique, based on randomization inference testing methods, which works well

irrespective of sample size.  This technique uses the empirical distribution of estimated effects for placebo

laws to form the test distribution.
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1 Introduction

Difference-in-Difference (DD) estimation has become an increasingly popular way to estimate causal

relationships. DD estimation consists of identifying a specific intervention or treatment (often the

passage of law). One then compares the difference in outcomes after and before the intervention for

groups affected by it to this difference for unaffected groups. For example, to identify the incentive

effects of social insurance, one might first isolate states that have raised unemployment insurance

benefits. One would then compare changes in unemployment duration for residents of states raising

benefits to residents of states not raising benefits. The great appeal of DD estimation comes from

its simplicity as well as its potential to circumvent many of the endogeneity problems that typically

arise when making comparisons between heterogeneous individuals.1

Obviously, DD estimation also has its drawbacks. Most of the debate around the validity of

a DD estimate revolves around the possible endogeneity of the laws or interventions themselves.2

Sensitive to this concern, researchers have developed a set of informal techniques to gauge the

extent of the endogeneity problem.3 In this paper, we address an altogether different problem with

DD estimation. We assume away biases in estimating the intervention’s effect and instead focus on

possible biases in estimating the standard error around this effect.

DD estimates and standard errors for these estimates most often derive from using Ordinary

Least Squares (OLS) in repeated cross-sections (or a panel) of data on individuals in treatment and

control groups for several years before and after a specific intervention. Formally, let Yist be the

outcome of interest for individual i in group s (such as a state) at time t and Tst be a dummy for

whether the intervention has affected group s at time t.4 One then typically estimates the following

regression using OLS:

Yist = As +Bt + cXist + β Tst + ²ist (1)

where As and Bt are fixed effects for the states and years and Xist represents the relevant individual

1See Meyer (1994) for an overview.
2See Besley and Case (1994). Another prominent concern has been whether DD estimation ever isolates a specific

behavioral parameter. See Heckman (1996) and Blundell and MaCurdy (1999). Abadie (2000) discusses how well
control groups serve as a control.

3Such techniques include the inclusion of pre-existing trends in states passing a law, testing for an “effect” of the
law before it takes effect, or using information on political parties to instrument for passage of the law (Besley and
Case 1994).

4For simplicity of exposition, we will often refer to interventions as laws, groups as states and time periods as
years in what follows. Of course this discussion generalizes to other types of DD estimates.
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controls. The estimated impact of the intervention is then the OLS estimate β̂. Standard errors

around that estimate are OLS standard errors after accounting for the correlation of shocks within

each state-year (or s-t) cell.5

In this paper, we argue that the estimation of equation 1 is in practice subject to a possibly

severe serial correlation problem. While serial correlation is well-understood, it has been largely

ignored by researchers using DD estimation. Three factors make serial correlation an especially

important issue in the DD context. First, DD estimation usually relies on fairly long time series.

Our survey of DD papers, which we discuss below, finds an average of 16.5 periods. Second, the

most commonly used dependent variables in DD estimation are typically highly positively serially

correlated. Third, and an intrinsic aspect of the DD model, the treatment variable Tst changes itself

very little within a state over time. These three factors reinforce each other to create potentially

large mis-measurement in the standard errors coming from the OLS estimation of equation 1.

To assess the extent of this bias, we examine how DD performs on placebo laws, where state

and year of passage are chosen at random. Since these laws are fictitious, a significant “effect” at

the 5% percent level should be found only 5% of the time. In fact, we find dramatically higher

rejection rates of the null hypothesis of no effect. For example, using female wages as a dependent

variable (from the Current Population Survey) and covering 21 years of data, we find a significant

effect at the 5% level in as much as 45% of the simulations.6

We propose three different techniques to solve the serial correlation problem.7 The first two

techniques are very simple and work well for sufficiently large samples. First, one can remove

the time-series dimension by aggregating the data into two periods: pre- and post-intervention.

Second, one can allow for an arbitrary covariance structure over time within each state. Both of

these solutions work well when the number of groups is large (e.g. 50 states) but fare poorly as

5This correction accounts for the presence of a common random effect at the state-year cell level. For example,
economic shocks may affect all individuals in a state on an annual basis (Moulton 1990; Donald and Lang 2001).
Ignoring this grouped data problem can lead to an under-statement of the standard error. In most of what follows,
we will assume that the researchers estimating equation 1 have already accounted for this problem, either by allowing
for appropriate random group effects or, as we do, by collapsing the data to a higher level of aggregation, such as
state-year cells.

6Similar magnitudes arise in data manufactured to match the CPS distributions and where we can be absolutely
sure that the placebo laws are not by chance picking up a real intervention.

7Other techniques fare poorly. Simple parametric corrections which estimate specific processes (such as an AR(1))
fare poorly because even long time series (by DD standards) are too short to allow precise estimation of the auto-
correlation parameters and to identify the right assumption about the auto-correlation process. On the other hand,
block bootstrap fails because the number of groups (e.g. 50 states) is not large enough.
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the number of groups gets small. We propose a third (and preferred) solution which works well

irrespective of sample size. This solution, based on the randomization inference tests used in the

statistics literature, uses the distribution of estimated effects for placebo laws to form the test

statistic.

The remainder of this paper proceeds as follows. In section 2, we assess the potential relevance

of the auto-correlation problem: section 2.1 reviews why failing to take it into account will result

in biased standard errors, and section 2.2 surveys existing DD papers to assess how it affects them.

Section 3 examines how DD performs on placebo laws. Section 4 describes possible solutions.

Section 5, discusses implications for the existing literature. We conclude in Section 6.

2 Auto-correlation and Standard Errors

2.1 Review

It will be useful to quickly review exactly why serial correlation poses a problem for OLS estimation.

Consider the OLS estimation of equation 1, and denote V the vector of independent variables and

α the vector of parameters. Assume that the error term ² has E[²] = 0 and E[²²] = Ω. The true

variance of the OLS estimate is given by:

var(α̂) = σ2² (V
0V )−1VΩV (V 0V )−1 (2)

while the OLS estimate of the variance is:

est var(α̂) = σ̂2² (V
0V )−1 (3)

To more easily compare these expressions, let’s consider a simple uni-variate time-series case in

which we regress yt on vt with T periods of data. Suppose that the error term ut follows an AR(1)

process with auto-correlation parameter ρ and that the independent variable vt follows an AR(1)

with auto-correlation parameter λ ≥ 0. In this special case, equations 2 and 3 can be simplified to:

var(α̂) =
σ2²PT
t=1 v

2
t

(1 + 2ρ

PT−1
t=1 vtvt+1PT
t=1 v

2
t

+ 2ρ2
PT−2
t=1 vtvt+2PT
t=1 v

2
t

+ ...+ 2ρT−1
v1vTPT
t=1 v

2
t

)

and

est var(α̂) =
σ̂2²PT
t=1 v

2
t
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As T →∞, the ratio of estimated to true variance equals 1−ρλ1+ρλ .

These formulas make transparent three well known facts about how serial correlation biases

OLS estimates of standard errors. First, positive serial correlation in the error term (ρ > 0) will

cause an under-statement of the standard error while negative serial correlation will cause an over-

statement. This is intuitive: positive serial correlation means that there is less information in

each new year of data than OLS assumes. Second, the magnitude of the bias also depends on

how serially correlated the independent variables is. In fact, when the independent variable is not

serially correlated (λ = 0), there is no bias in the estimated standard errors. This second point is

important in the DD context, where the intervention variable Tst is in fact very serially correlated.

Indeed, for affected states, the intervention variable typically equals 0 period after period until one

year where it turns to 1 and then stays at 1. In other words, the variable “whether a law was

passed by state s by time t” varies little over time within a state, thereby exacerbating any serial

correlation in the dependent variable. Finally, the magnitude of the problem depends on the length

of the time series (T). All else held constant, as T increases, the bias in the OLS estimates of the

standard errors worsens.

2.2 A Survey of DD Papers

This quick review suggests the relevance of a serial correlation problem for existing DD papers

depends on three factors: (1) the typical length of the time series used; (2) the serial correlation of

the most commonly used dependent variables; and (3) whether any procedures are use to correct

for serial correlation.

Since these factors are inherently empirical, we collected data on published DD papers. We

identified all DD papers published in 6 journals between 1990 and 2000: the American Economic

Review, the Industrial and Labor Relations Review, the Journal of Political Economy, the Journal of

Public Economics, the Journal of Labor Economics, and the Quarterly Journal of Economics. We

classified a paper as “DD” if it met two following criteria. First, the paper must focus on specific

interventions. For example, we would not classify a paper that regressed wages on unemployment

as a DD paper (even though it might suffer from serial correlation issues as well). Second, the

paper must use units unaffected by the law as a control. We found 92 such papers. For each of
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these papers, we determined the number of time periods in the study, the nature of the dependent

variable, and the technique(s) used to estimate standard errors.

Table 1 summarizes the results of this exercise. We start with the lengths of the time series.

Sixty-nine of the 92 DD papers used more than two periods of data. Four of these papers began

with more than two periods but collapsed the data into two effective periods: before and after.

Table 1 reports the distribution of time periods for the remaining 65 papers.8 The average number

of periods used is 16.5 and the median is 11. More than 75% of the papers use more than 5 periods

of data. As we will see in the simulations below, lengths such as these are more than enough to

cause serious under-estimation of the standard errors.9

The most commonly used variables in DD estimation are employment and wages.10 Eighteen

papers study employment and thirteen study wages. Other labor market variables, such as retire-

ment and unemployment also receive significant attention, as do health outcomes. Most of these

variables are clearly highly auto-correlated. To cite an example, Blanchard and Katz (1992) in

their survey of regional fluctuations find strong persistence in shocks to state employment, wages

and unemployment. It is interesting to note that first-differenced variables, which might have a

tendency to exhibit negative auto-correlation (and thereby over-state standard errors) are quite

uncommon. In short, the bulk of DD papers focus on outcomes which are likely positively serially

correlated.

How do these 65 papers correct for serial correlation? The vast majority of papers do not

address the problem at all. Only five papers explicitly deal with it. Of these five, four use a

parametric AR(k) GLS-based correction. As we will see later, this correction does very little in the

way of adjusting standard errors. The fifth allows for arbitrary variance-covariance matrix within

state, one of the solutions we suggest in Section 4.

Two additional points are worth noting. First, 80 of the original 92 DD papers have a potential

problem with grouped error terms as the unit of observation is more detailed than the level of the

variation.11 Only 36 of these papers address this problem, either by clustering standard errors or

8When a used several data sets with different time spans, we only recorded the shortest span.
9A period here is whatever unit of time is used. The very long time series in the data, such as the 51 or 83 at the

95th and 99th percentile arise because several papers use monthly or quarterly data.
10When a paper studies more than one variable, we record all the variables used.
11For example, the effect of state level laws is studied using individual level data.
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by aggregating the data. Second, several informal techniques are used for dealing with the possible

endogeneity of the intervention variable. For example, three papers include a lagged dependent

variable in equation 1, seven include a trend specifically for treated states, 15 plot graphs of some

form to examine the dynamics of the treatment effect, 3 examine whether there is an effect before

the law, two see if the effect is persistent, and eleven formally attempt to do triple-differences

(DDD) by finding another control group. We return to the issue on how these informal techniques

interact with the serial correlation problem in Section 5.

In summary, our review suggests that serial correlation is likely an important problem for many

existing DD papers and that this problem has been poorly addressed to date.

3 Over-Rejection in DD Estimation

While the survey above shows that most DD papers are likely to report under-estimated standard

errors, it does not tell us how serious the problem is in practice. To assess magnitudes, we turn to

a specific data set, a sample of women’s wages from the Current Population Survey (CPS).12

We extract data on women in their fourth interview month in the Merged Outgoing Rotation

Group of the CPS for the years 1979 to 1999. We focus on all women between 25 and 50 years

old. We extract information on weekly earnings, employment status, education, age, and state

of residence. The sample contains nearly 900,000 observations. We define wage as log(weekly

earnings). Of the 900,000 women in the original sample, approximately 300,000 report strictly

positive weekly earnings. This generates (50*21=1050) state-year cells with each cell containing on

average a little less than 300 women with positive weekly earnings.

The correlogram of the wage residuals is informative. We estimate first, second and third auto-

correlation coefficients of the residuals from a regression of the logarithm of wages on state and year

dummies (the relevant residuals since DD includes these dummies). The auto-correlation coefficients

are obtained by a simple regression of the residuals on the corresponding lagged residuals. We are

therefore imposing common auto-correlation parameters for all states. The estimated first order

auto-correlation is 0.51, and is strongly significant. The second and third order auto-correlation

12The CPS is one of the most commonly used data sets in the DD literature.
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are high as well ( .44 and .33 respectively), and decline much less rapidly than we would expect if

the residual was following an AR(1) process.13

3.1 Placebo Interventions

To quantify the bias induced by serial correlation in the DD context, we randomly generate laws,

which affect some states and not others. We first draw at random from a uniform distribution

between 1985 and 1995.14 Second, we select exactly half the states (25) at random and designate

them as “affected” by the law (even though the law does not actually have an effect). The inter-

vention variable Tst is then defined as a dummy variable which equals 1 for all women that live in

an affected state after the intervention date, and 0 otherwise.

We can then estimate DD (equation 1) using OLS on these placebo laws. The estimation

generates an estimate of the laws’ “effect” and a corresponding standard error. To understand how

well DD performs we can repeat this exercise a large number of times, each time drawing new laws

at random. If DD provides an appropriate estimate for the standard error, we would expect that

we reject the null hypothesis of no effect (β = 0) exactly 5% of the time when we use a threshold

of 1.96 for the t-statistic.15

This exercise tells us about Type I error. Note that a small variant also allows us to assess Type

II error, or power. After constructing the placebo intervention, Tst, we can replace the outcome in

the CPS data by the outcome plus Tst times whichever effect we wish to simulate. For example, we

can replace log(weekly earnings) by log(weekly earnings) plus Tst ∗ .02 to generate a true .02 log
point (approximately 2%) effect of the intervention.16 By repeatedly estimating DD in this data

(with new laws randomly drawn each time), we can assess how often DD finds an effect when there

13Solon (1984) points out that in panel data, when the number of time periods is fixed, the estimates of the auto-
correlation coefficients obtained using a simple OLS regression are biased. Using Solon’s generalization of Nickell’s
(1981) formula for the bias, the first order auto-correlation coefficient of 0.51 we estimate in the wage data, with
21 time periods, would correspond to a true auto-correlation coefficient of 0.6 if the data generating process were
an AR(1). However, Solon’s formulas also imply that the second and third order auto-correlation coefficients would
be much smaller than the coefficients we observe if the true data generating process were an AR(1) process with an
auto-correlation coefficient of 0.6. To match the estimated second and third order auto-correlation parameters, the
data would have to follow and AR(1) process with an auto-correlation coefficient of 0.8.
14We choose to limit the intervention date to the 1985-1995 period to ensure having enough observations prior and

post intervention.
15One might argue that the rejection rate could be higher than 5% as we might accidentally be capturing some real

interventions with the randomization procedure. However, we will show later on that data manufactured to track the
variance structure of the CPS also produces rejection rates similar to those in the CPS.
16The 2% effect was chosen so that there is sufficient power in the data sets we study.
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actually is one.17

3.2 Basic Rejection Rates

The first row of Table 2 presents the result of this exercise when performed in the CPS micro data,

without any correction for grouped error terms. We re-estimate equation 1 as described above for

at least 200 independent draws of placebo laws. The control variables Xist include 4 education

dummies (less than high school, high school, some college and college and more) and a quartic in

age as controls. We report the fraction of simulations in which the absolute value of the t-statistic

was greater than 1.96, i.e. the fraction of simulations where the null hypothesis of no intervention

effect was rejected at the 5% level.

The first column of row 1 shows the results of this exercise in the unaltered micro CPS data.

Here, even though there is no true effect of the placebo laws, we find that the null of no effect

is rejected a stunning 67.5% of the time. Thus, in this setup, DD is over-rejecting by a factor of

thirteen.18 The second column of this row performs a similar exercise but on the CPS data altered

to contain a 2% effect (we added .02 ∗ Tst to the data). We find that, in this case, we reject the
null hypothesis of no effect in 85.5% of the cases.

One important reason for this gross over-rejection has been described by Donald and Lang and

(2001), who apply Moulton’s (1990) general arguments to DD inference. The estimation above

does not account for correlation within state-year cell; it does not allow for aggregate year-to-year

shocks that affect all the observations within a state. In other words, OLS assumes that the variance

matrix for the error term is diagonal while in practice it might be block diagonal, with a constant

correlation coefficient within each state and year cell. As noted earlier, while 80 papers suffer from

this problem, only 36 correct for it.

To properly account for such shocks, one can assume that there is a random effect for each

state-year cell in equation 1:

Yist = As +Bt + cXit + β Tst + νst + ²it (4)

17In this case, we will count only correct rejections, i.e. the number of DD estimates that are significant and
positive.
18The average of the estimated coefficients β̂ was 0. Thus while OLS overestimates standard errors, the estimated

coefficients are unbiased.
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where νst are group random effects. The standard error can be corrected for the correlation at the

group level introduced by the random effect. Row 2 reports rejection rates when we allow for state-

year random effects using the White correction (1984) which allows for an arbitrary intra-group

correlation matrix. We continue to find a 44% rejection rate.19

In row 3, we take a more drastic approach to solve this problem. We aggregate the data into

state-year cells to construct a panel of states over time. To aggregate, we first regress log weekly

earnings on the controls (education and age) and form residuals. We then compute means of these

residuals by state and year. This leaves us with 50 times 21 state-year cells in the aggregate data.

Using this aggregate data, we estimate:

Ȳst = αs + γt + β Tst + ²st (5)

where the bar above the variables refers to the aggregation.

If the correlation within state-year cells were the only reason for over-rejection, aggregation

ought to fully solve the problem, since it would make the variance-covariance matrix for the error

term diagonal. Row 3 displays the results of multiple estimations of equation 5 for placebo laws.

The rejection rate of the null of no effect is almost as high here as when use the micro data and

correct the standard errors for clustering. In about 44% of the simulations, we reject the null

hypothesis of no effect.20

These magnitudes suggest that failing to account for serial correlation when computing standard

errors generates a dramatic bias. As we saw in equation 2.1, one important factor in the DD

context is the serial correlation of the intervention variable Tst itself. In fact, we would expect the

un-corrected estimates of the standard errors for the intervention variable to be consistent in any

variation of the DD model where the intervention variable is not serially correlated. To illustrate

this point, we construct a different type of intervention variable. As before, we randomly select

half of the states to form the treatment group. However, instead of randomly choosing one date

19Practically, this is usually implemented by the “cluster” command in STATA. We also applied the correction
procedure suggested in Moulton (1990). That procedure allows for a random effect for each group, which puts
structure on the intra-cluster correlation matrices and therefore may perform better in finite samples. This is especially
true when the number of clusters is small (if in fact the assumption of a constant correlation is a good approximation).
The rate of rejection of the null hypothesis of no effect was not statistically different under the Moulton technique,
possibly reflecting the fact that the number of clusters is large in this application.
20One might worry that the aggregation process, while it deals with the clustering problem, introduces heteroskedas-

ticity in the data. However, the results in Table 2 do not change if we use standard heteroskedasticity-correction
techniques.
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after which all the states in the treatment group are affected by the law, we randomly select 10

dates between 1979 and 1999. The law is now defined as 1 if the observation relates to a state that

belongs to the treatment group at one of the 10 intervention dates, 0 otherwise. In other words, the

intervention variable is now repeatedly turned on and off, with its value yesterday telling us nothing

about its value today, and thereby eliminating the serial correlation in Tst. In row 4, we see now

that the null of no effect is rejected only 6% of the time in this case. Removing the serial correlation

in the law removes the over-rejection. This strongly suggests that the bias in the standard errors

is due to serial correlation, rather than other properties of the error terms.

In rows 5 and 6, we examine how rejection rates vary as we modify the number of affected

states. When 12 states or 36 states are affected, the rejection rates are 39% and 43% respectively.

The placebo laws so far have been constructed in such a way that the intervention variable

affects all treated states in the same year. In row 7, we create placebo laws such that the date

of passage can differ across treated states. We randomly choose half of the states to form the

treatment group but now randomly choose a passage date separately for each state (uniformly

drawn between 1985 and 1995) in the treatment group. The Tst variable is still defined to equal 1

if state s has passed the law by time t, and 0 otherwise. The rejection rates continue to be high in

this case, with the null of no effect being rejected about 35% of the time.

One might still worry at this point that factors other than serial correlation give rise to these

large rejection rates. Perhaps we are by chance detecting actual laws (or other relatively discrete

changes). Or perhaps other features of the wage data, such as state specific trends or other charac-

teristics of the distribution of the error term, give rise to the over-rejection. To directly address all

of these problems, we replicate our analysis in manufactured data. Specifically, we generate data

whose variance structure in terms of relative contribution of state and year fixed effects matches

the empirical variance decomposition in the CPS. The data is normally distributed and follows an

AR(1) process with an auto-correlation parameter ρ. By construction, we can therefore be sure

that there are no ambient trends and that the laws truly have no effect. Yet, in row 8, where we

assume that ρ equals .8, we find a rejection rate roughly equal to what we found in the CPS, 37%.
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3.3 Magnitude of Effects

These excess rejection rates are stunning, but they might not be particularly problematic if the

estimated “effects” of the placebo laws are economically insignificant. We examine the magnitudes

of the statistically significant intervention effects in Table 3. Using the aggregate data, we perform

200 independent simulations of equation 5 for placebo laws defined such as in row 3 of Table 2. Table

3 reports the empirical distribution of the estimated effects β̂, when these effects are significant.

Not surprisingly, this distribution appears quite symmetric: half of the false rejections are negative

and half are positive. On average, the absolute value of the effects is roughly .02, which corresponds

roughly to a 2 percent effect. Nearly 60% fall in the 1 to 2 % range. About 30% fall in the 2 to

3% range, and the remaining 10% are larger than 3%.

These magnitudes are especially large considering that DD estimates are often represented as

elasticities.21 For example, suppose that the law under study corresponds to be a 5% increase

in the child-care subsidy. An increase in log earnings of .02 would correspond to an elasticity of

.4. Similarly, in many DD estimates, the affected group is often only a fraction of the sample,

meaning a measured 2% effect on the full sample would indicate a much larger effect on the treated

subsample.22

To summarize, our findings suggest that the standard errors from the OLS estimation of equa-

tions 1 grossly understate the true standard errors, even if one accounts for group data effects in

the micro data. In other words, reporting simple DD estimates and their standard errors without

accounting for serial correlation will generate many spurious results.23

3.4 Varying Serial Correlation

How does over-rejection vary with the serial correlation in the dependent variable? We address this

question in two different ways. First, we use other outcome variables in the CPS as left-hand side

21The DD estimates are normalized using the magnitude of the change in the policy variable of interest.
22For example, when studying the effects of changes unemployment insurance benefits on job search, one would

examine the full sample of the unemployed, not only those who actually took up the program. This use of all people
eligible for a program rather than all recipients is often motivated by an attempt to avoid the endogeneity caused by
selective take-up.
23Mapping these findings to the existing literature on DD requires more care. Researchers often use informal

techniques along with the mechanical DD procedure we have described. For example, to check for endogeneity, they
will test whether a law appears to have an “effect” before it was passed. We discuss whether these informal techniques
interact with the over-rejection rates in Section 5.

12



variables. Second, we experiment with various auto-correlation parameters in the manufactured

data.

The first part of Table 4 estimates equation 5 on employment rate, average weekly working

hours and change in log wages, as well as the original log weekly earnings. As before, the table

displays the rejection rate of the null hypothesis of no effect in 200 independent simulations with

random draws of the intervention variable, both in raw data and in data altered to create a 2%

effect of the intervention. We also report in Table 4 estimates of the first, second and third order

auto-correlation coefficients for each of these variables. As we see, the false rejection problem

diminishes with the serial correlation in the dependent variable. As expected, when the estimate of

the first-order auto-correlation is negative (as it is the case for change in log wages), we find that

the conventional standard errors tend to underestimate the precision of the estimated treatment

effect.

The second part of Table 4 uses manufactured data. The error structure is designed to follow

an AR(1) process. As before, the manufactured data has the same number of states and years as

the CPS data and is constructed so that the relative importance of state effects, year effects and

the error term in the total variance matches the variance composition of the wage data in the CPS.

Not surprisingly, the false rejection rates increase with the auto-correlation parameter in the AR(1)

process. There is exactly the right rejection rate when there is no auto-correlation. But even at

moderate levels, such as a ρ of .2 or .4, rejection rates are already two to four times as large as they

should be. As noted earlier, with an AR(1) parameter of 0.8, the rejection rate using the standard

OLS formula is close to what we observe in the CPS data. And again, when the auto-correlation

is negative, there is under-rejection.

3.5 Varying the Number of States and Time Periods

The stylized exercise above focused data with 51 states and 21 time periods. Many DD papers use

fewer states (or treated and control units), either because of data limitations or a desire to focus

only on comparable controls. For similar reasons, several DD papers use fewer time periods. In

Table 5, we examine how the over-rejection rate varies with these two important parameters. As

before, we use the CPS as well as manufactured data to analyze these effects. We also examine
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rejection rates when we have added a treatment effect to the data.

Rows 1-4 and 10-13 show that varying the number of states does not change the extent of over-

rejection.24 Rows 5-9 and 14-18 vary the number of years. As expected, the extent of over-rejection

falls as the time span gets shorter, but it does so at a surprisingly slow rate. For example, even with

only 7 years of data, the over-rejection rate is 16% in the CPS, three times too large. Around 70%

of the DD papers in our survey use at least that many periods. With 5 years of data, the rejection

rate varies between 8% (CPS data) and 17% (manufactured data). When T=50, the rejection rate

rises to nearly 50% in the manufactured data.

4 Solutions

4.1 Parametric Methods

A first natural solution to the serial correlation problem would be to specify the auto-correlation

structure for the error term, estimate its parameters, and use equation (2) to estimate true standard

errors. We implement several variations of this basic correction method in Table 6.

Row 2 performs the simplest of these parametric corrections, wherein an AR(1) process is

estimated in the data.25 This technique does little to solve the serial correlation problem: the

rejection rate is still 34.5%. The failure here is in part due to the under-estimation of the auto-

correlation coefficient. As is well understood, with short time-series the OLS estimation of the

auto-correlation parameter is biased downwards. In the CPS data, OLS estimates a first-order

auto-correlation coefficient of only 0.4. Similarly, in the manufactured data where we know that

the auto-correlation parameter is .8, a ρ̂ of .62 is estimated (row 7). If we impose a first-order

autocorrelation of .8 in the CPS data (row 3), the rejection rate goes down to 12.5%, a clear but

only partial improvement.

In row 8, we establish an upper-bound on the power of any potential correction, by examining

24In the CPS data, we vary the number of states by randomly selecting some states and discarding others. In both
types of data, we continue to treat exactly half the states.
25Computationally, we first estimate the first order auto-correlation coefficient of the residual by regressing the

residual on its lag, and then uses this estimated coefficient to form an estimate of the variance-covariance matrix of
the residual. The matrix is block diagonal, with a matrix of the form Ω (in equation 2) in each block. The results
are the same whether or not we assume each state has its own auto-correlation parameter.
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how well the true variance-covariance matrix does. In other words, we use the variance-covariance

matrix implied by an AR(1) process with ρ of .8 to estimate standard errors. As expected, the

rejection rate is now indistinguishable from 5% when there is no effect. More interestingly, when

there is a 2% effect, the rejection rate is now 32.3%. This will be a useful benchmark for other

corrections.

Another problem with this parametric correction may be that we have not correctly specified

the auto-correlation process. As noted earlier, an AR(1) does not fit the correlogram of wages in

CPS. In rows 9 and 10, we use the manufactured data to see the effect of such mis-specification of

the autocorrelation process. In row 9, we generate data according to an AR(2) process with ρ1 = .55

and ρ2 = .35. These parameters were chosen because they match well the estimated first, second

and third auto-correlation parameters in the wage data when we apply the formulas to correct for

small sample bias given in Solon (1984). We then correct the standard error assuming that the error

term follows an AR(1) process. The rejection rate rises significantly with this mis-specification of

the auto-correlation structure (30.5%).

In row 10, we use a process that provides an even better match of the time-series properties of

the CPS data: the sum of an AR(1) (with auto-correlation parameter 0.95) and a white noise (the

variance of the white noise is 13 % of the total variance of the residual).26 When trying to correct

the auto-correlation in this data by fitting an AR(1), we reject the null in about 39% of the case,

close to what we found for the CPS data in row 2.

However, attempting to correct for the auto-correlation by specifying different processes does

not look like a plausible option: it is clearly difficult to find the right process. In rows 4 and 5,

we correct the standard errors in the CPS data by imposing the specific AR(2) and AR(1) plus

white noise processes that we have seen match fairly well the CPS data. The rejection rates remain

high.27

26Note that an AR(1) plus white noise seems a priori a very reasonable process for the CPS data. Indeed, even
if the wage follows an AR(1) in the population, the repeated cross-section in the CPS implies that a non-persistent
sampling error is added to the error term each year.
27Similar results hold if we estimate the parameters of the processes, as in row 2, rather than impose them.
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4.2 Block Bootstrap

An alternative correction method with which we experiment is block bootstrap (Efron and Tib-

shirani, 1994). Block bootstrap is a variant of bootstrap which maintains the auto-correlation

structure by keeping all the residuals of a state together. We implement block bootstrap as follows.

We first estimate equation 1 and compute the residuals. This gives a vector of residuals ²i for each

state. We then draw for each state a new residual vector from this distribution (with replacement).

Adding this residual back to the original predicted value gives us a new outcome variable Y 1it . We

then estimate equation 1 for this outcome. By repeatedly sampling from the residual distribution of

²i, we can form different Y
k
it and repeat this exercise to estimate a sequence of β̂k. The distribution

of these parameters then gives us a test statistic.

The results of the block bootstrap estimation are reported in Table 7. They are not encouraging.

The rejection rates are still high: 35% in the CPS data (row 2) 29% in the manufactured data as

well (row 3). The problem appears to be the small number of blocks or states. In row 4, when we

allow for 400 states (and 200 states passing the law), block bootstrap delivers a close to correct

rejection rate. Since very few applications in practice can rely on that many groups, block bootstrap

does not appear to be a realistic solution to the serial correlation problem.

4.3 Empirical Variance-Covariance Matrix

Both the most parametric and the most non-parametric methods seem to fail because of lack of data:

there are not enough time periods to estimate the time series process and perform a parametric

correction, and not enough states for block bootstrap. However, the techniques we tried above did

not make use of the fact that we have a large number of states that can be used to estimate the

auto-correlation process in a flexible way. Specifically, suppose that the auto-correlation process

is the same in all states. In this case, if the data is sorted by states and (by decreasing order of)

years, the variance-covariance matrix of the error term is block diagonal, with 50 identical blocks

of size T by T (where T is the number of time periods). Each of these block is symmetric, and

the element (i, i + j) is the correlation between ²i and ²i−j . We can therefore use the variation

across the 50 states to estimate each element of this matrix, and use this estimated matrix to
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compute standard errors from equation 2. This is equivalent to treating the problem as a system

of T seemingly unrelated equations estimated jointly (1 for each year), with 50 data points (one

for each state) in each year. We implement this technique in Table 8. The rejection rate we obtain

(in 200 simulations) is 7.75% in the CPS (row 2) and 10% in the manufactured data (row 9), a

significant improvement over the two previous methods.

This correction method however has important limitations in practice. First, as the number

of states drops, the rejection rates increase (rows 4, 6 and 8). A second obvious issue is that this

method does not deliver consistent estimates of the standard error if the data generating process

is not the same across all states. Finally, the technique has low power. In column 2 of row 2, we

see that the rejection rate is only 8.5% when a true 2% effect is associated with the laws.

4.4 Arbitrary Variance-Covariance Matrix

This procedure can be generalized to an estimator of the variance covariance matrix which is

consistent in the presence of any correlation pattern within states over time. Of course, we cannot

consistently estimate each element of the matrix Ω in this case, but we can use a generalized White-

like formula to compute the standard errors.28 This estimator for the variance-covariance matrix

is given by:

V = (X 0X)−1
 ncX
j=1

u0juj

 (X 0X)−1

where nc is the total number of states, X is matrix of independent variables and uj is defined for

each state to be:

uj =
TX
t=1

ejtxjt

where the summation is over all elements in the state, ejt is the residual at time t (in that particular

state) and xjt is a row vector of dependent variables (including the constant).
29 This estimator of

the variance-covariance matrix is consistent as the number of states tends to infinity.

The results for this estimation procedure are shown in Table 9. Despite its generality, the

arbitrary variance-covariance matrix does quite well. The rejection in the unaltered CPS data is

28This is analogous to applying the Newey-West correction (Newey and West 1987) in the panel context where we
allow for all lags to potentially be important.
29This is implemented in a straightforward way by using the cluster command in STATA and choosing entire states

(and not only state-year cells) as clusters.
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6% (row 2, column 1). Moreover, the procedure has relatively high power compared to what we

found in Table 8 (row 2, column 2). In the manufactured data, we can also see how well it does

relative to the upper-bound. We saw in Tables 4 6, that with the correct covariance matrix, the

rejection rate in the case of a 2% effect was 78% in manufactured data with no auto-correlation

and 32% in AR(1) data with ρ = .8. The arbitrary variance-covariance matrix comes nearly these

upper-bounds, achieving rejection rates of 74% and 27.5% respectively.

Again, however, rejection rates increase significantly above 5% when the number of groups

declines (15% with 6 states, 8.5% with 10 states). This method, therefore, seems to work well,

when the number of treated units is large enough.

4.5 Ignoring Time Series Information

Another possible solution to the serial correlation problem is to simply ignore the time series

component in the estimation and when computing the standard errors.30 To do this, one could

simply average the data before and after the law and run equation 1 on this averaged outcome

variable as a panel of length 2. The results of this exercise are reported in Table 10. The rejection

rates are approximately correct now at 6%. Moreover, the power of .295 in row 2 is quite high

relative to other techniques.

Taken literally, however, this solution will work only for laws that are passed for all the treated

states at the same time. If states pass the law at different times, “before” and “after” are no

longer the same and are not even defined for states that never pass the law. One can however

slightly modify the technique in the following way. First, one regress Yst on state fixed effects, year

dummies, and any relevant covariates. One then divides the residuals of the treatment states only

into two groups: residuals from years before the law, and residuals from years after the law. The

estimate and the standard error come from an OLS regression of this two-period panel on an after

dummy. This procedure does as well as the simple aggregation (row 3 vs. row 2) for laws that are

all passed at the same time. It also does well when the laws are staggered over time (row 4).

The downside of these procedures (both raw and residual aggregation) is that they do poorly

when the number of states is small. With 20 states, residual aggregation has a rejection rate of

30One could still use time-series data for specification checks.
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9.5%, nearly twice too large. With only 6 states, the rejection rate is as high as 31.5%.31 The

extent of over-rejection in fact appears to increase faster in this case than in the clustering method

presented above.

4.6 Randomization Inference

We have so far isolated two procedures that appear to do fairly well when the number of states is

sufficiently large. In this section, we present an estimation technique that does well irrespective of

the sample size. The principle behind the test is simple, and motivated by the simulation exercises

carried out throughout this paper. To compute the standard error for a specific experiment, we

propose to compute DD estimates for a large number of randomly generated placebo laws and to

use the empirical distribution of the estimated effects for these placebo laws to form significance

test for the true law.32

This test is closely related to the randomization inference test (or Fisher’s exact test), discussed

in the statistical literature (see Rosenbaum (1996) for an overview of this test and its applications).

Before laying out the test in more details, it will be useful to give a simple, motivating illustration

of the way randomization inference works. Suppose we have outcome data (such as sick days) on

individuals, half of whom have received a flu shot. Define Yi to be the outcome and Ti be the

indicator for vaccination, both for individual i. Suppose that the we make the hypothesis that the

treatment effect is constant:

Yi = ai + θTi

Now, let us assume that the flu shot was administered to a random group, so that ai is orthogonal

to Ti. To estimate the effect of the shot, we could take the difference in mean outcomes between

those receiving the shot and those not receiving it. Call this estimator θ̂(Ti, Yi). How can we test

hypotheses about this parameter? We would use the OLS estimate of the standard error but this

estimates rests on strong assumptions, such as homoskedasticity, normal distribution of the error

and independence between observations. Instead, to test whether the coefficient is different from 0,

31At these small samples (as small as 12), the normal approximation to the t-distribution will clearly not work.
But this alone is not causing the over-rejection since for small degrees of freedom, a threshold of 1.96 should not
produce this high of a rejection rate. For example, for 6 degrees of freedom, a 1.96 threshold should only produce
roughly a 10% rejection rate. Donald and Lang (2001) discuss inference in small-sample aggregated data sets.
32The code needed to perform this test is available from the authors upon request.
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one can use the fact that under the null of no effect, people in the treatment and control groups are

statistically the same. One can, therefore, generate a set of placebo interventions T̃i and estimate

the “effect” of these placebos. Repeated estimation will give us a distribution of effects for such

placebos. We can then observe where the original estimate θ̂ lies in this distribution to test the

hypothesis that the coefficient is 0.

For example, to form a two-tailed test for whether the initial estimate is significantly different

from 0 at the 5% level, we would use the 2.5% and 97.5% values in the distribution θ̂(Ti, Yi) as our

cut-off value. The intuition behind this test is quite simple. Since the flu shot is assumed to be

random, we can generate other truly random, zero-effect shots and see what estimates these produce

in the data we have. Notice the advantages of this procedure. We are making no assumptions about

the error term (except for the randomness of the flu shot itself). It need not be homoskedastic,

normal or even independent across individuals. Further, this test does not rest on any large sample

approximation: it is therefore valid for any sample size. Under the assumption that the treatment

effect is constant across unit (i.e θ is not indexed by i), we could test other hypotheses in the same

way: if we want to test whether the estimate is different from θ0, we first form Yi0 = ai − θ0Ti0, to

make the treatment and the control comparable under the null, and we apply the same technique

to the transformed data.33

The statistical inference test we propose for the DD model follows naturally from this example.

To form the estimate of the law’s effect, we estimate by OLS the usual aggregate equation:

Ȳst = αs + γt + β Tst + ²st

We then generate a placebo law that affect 25 randomly chosen states in a random year, Pst and

estimate using OLS:

Ȳst = αs + γt + γ Pst + ²st

Repeating this procedure many times for random placebo laws produces a distribution of γ̂. Define

G(.) to be this distribution and γ̂ to be the random variable drawn from this distribution. To test

the hypothesis that our estimate is statistically different from 0, we simply need to ask where β̂

lies in the G(.) distribution. For example, to form a two-tailed test of level p, we would simply

33One can use the same technique to form entire confidence intervals.
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identify the γ̂ at the p
2 lower and upper tail of the distribution and use these values as cutoffs: If

the estimated coefficient lies outside these two cutoff value, we reject the hypothesis that it is equal

to 0, otherwise we accept it. As before, note that we have not used any information about the error

term. Instead, we have relied solely on the random assignment of the laws.34

In Table 11, we assess how well this procedure performs in the aggregated CPS data as well

as in manufactured data with a known auto-correlation structure. Again, we randomly generate

intervention variables. For each randomly generated intervention Tst , we construct the test statistic

for a 5% cutoff. We perform 200 independent draws of Tst. For each of these draws, we perform

400 draws of Pst to construct the distribution G(γ̂).

We see that the basic randomization inference procedure leads us to reject the null hypothesis

of no effect in 6% of the simulations (row 2, column 1). Notice that the procedure also seems fairly

powerful, leading to rejecting in 23% of the cases when there is an effect (row 2, column 2). As

before, in the manufactured data, we can compare its performance to the upper-bound. We saw

in Tables 4 6, that with the correct covariance matrix, the rejection rate in the case of a 2% effect

was 78% in manufactured data with no auto-correlation and 32% in AR(1) data with ρ = .8. The

performance of randomization inference, 30% and 84 % is comparable to these upper-bounds.

There is an additional assumption behind this test, namely the requirement that we know the

exact statistical process determining which units get treated (e.g. in the flu shot example, the

statistician know that half of the sample was randomly selected to get the treatment). In practice,

we will not know the true process by which laws are generated. If a particular law took place in

1988, and we are estimating its effect, should we assume when generating the placebo laws that

the law could only have been passed in 1988, that it could have been passed at any random time

between 1971 and 2000, or something else? Rows 3 to 5 consider the effect of using different (and

simpler) assumptions about the law generating process. Each row allows the laws for the test

distribution to lie in a different window around the actual law date. In row 3 for example, we

assume that it lies in a 5 year window centered on the actual date. In row 4, we assume a 3 year

window. In row 5, we force the placebo laws to occur in the same year as the actual laws; in other

34The theoretical justification for this test rests on the proof of the validity of using the randomization distribution.
These tests use the strong assumption of randomization of the treatment to map out the distribution of the test
statistic. The only difference in our case is that state laws are not random unconditionally, but instead that they are
random conditional on the state fixed effects and year dummies.
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words, we permute only which states were affected by the laws. As can be seen, both in terms

of type I and type II errors, all the procedures produce very similar results.35 The next few rows

repeat the exercise using a progressively smaller number of states. Even with as few as 6 states,

the procedure produces exactly the right rejection rates.

To summarize, Table 11 makes it clear that, of all the techniques we have considered, randomiza-

tion inference performs the best. It removes the over-rejection problem and does so independently

of sample size. Moreover, it appears to have power comparable to that of the other tests. Although

randomization inference testing is well known in statistics, it is largely ignored in the econometrics

literature. Difference in differences estimation, which deals with small effective sample size, and

complicated error distribution, seems a particularly fertile ground for the application of this testing

technique.

5 Implications for Existing Papers

This paper has highlighted an important problem with DD estimation and proposed several solu-

tions to deal with it. What are the implications for the existing stock of papers which use the DD

estimation technique but do not explicitly correct for serial correlation? We have already seen that

most of these papers use long time series and variables which are likely quite auto-correlated. One

possibility, however, is that some of the informal techniques used in these papers might indirectly

help alleviate the auto-correlation problem.

As we noted earlier, researchers have developed a set of diagnostic tests that are often per-

formed in conjunction with the estimation of equations 1 or 5. These tests are meant to assess the

endogeneity of the interventions, something that is not a problem in our setup, as we construct

random interventions that are by definition exogenous. It is possible that these tests may inciden-

tally lessen the auto-correlation problem. In Table 12, we report rejection rates when we perform

the OLS estimation of equations 1 and 5 in combination with several commonly used diagnostic

35Similar problems may arise in determining how many states were affected. If we see 25 of 50 states affected, was
the process one in which each state had a 50% iid chance of being affected or was it one in which exactly 25 states will
be affected? Simulations which vary this additional element show that the results are not affected by which selection
process is assumed (even if it differs from the actual process). It is worth noting that while these results tell us that
in simulations, using incorrect approximations do not make a difference, this may not be a general theoretical result.
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techniques.36 We concentrate on 3 data sets: micro CPS wage data (with clustering of the error

term by state-year cell), aggregate CPS wage data, and manufactured data where the error term

follows an AR(1) process with an autocorrelation parameter of 0.8.

The first diagnostic test looks for pre-existing “effects” of the law. We re-estimate the original

DD with the Tst variable but also include a dummy for “this state will pass a law next year”. We

then reject the null hypothesis of no effect only if the coefficient on the law is significant and the

coefficient on the pre-law dummy is either insignificant or opposite signed. This diagnostic test

implies only a small reduction in the rejection rates.

The second diagnostic test examines persistence of the effect. We reject the null hypothesis of

no effect if the estimated coefficient is statistically significant under OLS and the effect persists

three years after the intervention date. Again, this does not lead to a significant reduction in the

rejection rate in any of the data sets.

The third test looks for pre-existing trends in the treatment sample. We perform a regression in

the pre-period and estimate whether there is a significant time trend in these years for the difference

between control and treatment states). Under this test, we reject the null of no effect if the OLS

coefficient is statistically significant and if there is no statistically significant pre-existing treatment

trend or a treatment trend of opposite sign of the intervention effect. The rejection rates are lower

under this test but remain above 20%.

Finally, in the last test we allow for a treatment specific trend in the data. Under this test,

we reject the null if the OLS coefficient is significant and stays significant and of the same size

after controlling in the regression for a yearly trend interacted with the treatment dummy. This

diagnostic test leads to a bigger reduction in the rejection rate, especially in the aggregate data

(.105 and .150), though this is still at least twice as large as we would want.37 In short, the results

in Table 12 therefore confirm that the existing stock of DD papers is very likely affected by the

36Of course, we can only study the formal procedures which people use. One can always argue that informal
procedures (such as looking at the data) will lead one to avoid the serial correlation problem. Such a claim is by
construction hard to test using simulations. The only way to defend it would be go back to the original papers and
submit them to the procedures discussed above.
37Moreover, it is not clear that these tests are rejecting the “right” ones. Any stringent criterion will reduce the

rejection rate, but how are we to assess whether the reduction is sensible? We investigated this by computing the
marginal rejection rate of the randomization inference test, conditional on passing the treatment trend diagnostic
test. The odds that, having passed the trend test, an intervention would pass the randomization inference test are
only 26% suggesting that the treatment trend reduces the rejection rate but not in a way that alleviates the serial
correlation problem.
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estimation problem discussed in this paper.38

6 Conclusion

Our results suggest that, because of serial correlation, DD estimation as it is commonly performed

grossly under-states the standard errors around the estimated intervention effect. While the bias

induced by serial correlation is well understood in theory, the sheer magnitude of this problem in

the DD context should come as a surprise to most readers. Since a large fraction of the published

DD papers we surveyed report t-statistics around 2, our results suggest that the findings in many of

these papers may not be as precise as originally thought to be and that far too many false rejections

of the null hypothesis of no effect have taken place.

We propose three solutions to deal with the serial correlation problem in the DD context.

Collapsing the data into pre- and post- periods or allowing for an arbitrary covariance matrix within

state over time have been shown to be simple viable solutions when sample sizes are sufficiently large.

Alternatively, a simple adaptation of the randomization inference testing techniques developed in

the statistics literature appears to fully correct standard errors irrespective of sample size.

38We have attempted variants on these diagnostic tests, such as changing what constitutes an “effect” in the pre-
period or what constitutes a trend. We have also attempted all the tests together. The results were qualitatively
similar.
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Table 1: Survey of DD Papersa

Number of DD papers 92
Number with more than 2 periods of data 69
Number which collapse data into before-after 4

Number with potention serial correlation problem 65

Number with some serial correlation correction 5
GLS 4

Arbitrary variance-covariance matrix 1

Distribution of time-span for papers with more than 2 periods Average 16.5
Percentile Value

1% 3
5% 3
10% 4
25% 5.75
50% 11
75% 21.5
90% 36
95% 51
99% 83

Informal manipulations of data Number
Graph time series of effect 15
See if effect persists 2
Examine lags of law to see timing of effect 2
DDD 11
Include trend specific to passing states 7
Explicitly include lead to look for effect prior to law 3
Include laggged dependent variable 3

Number which have clustering problem 80
Number which deal with it 36

Most commonly used variables
Employment 18

Wages 13
Health/Medical Expenditure 8

Unemployment 6
Fertility/Teen Motherhood 4

Insurance 4
Poverty 3

Consumption/Savings 3

aNotes: Data comes from a survey of all articles in six journals between 1990 and 2000:American
Economic Review; Industrial Labor Relations Review; Journal of Labor Economics; Journal of
Political Economy; Journal of Public Economics; and Quarterly Journal of Economics. We define
an article as “Difference-in-Difference” if it: (1) examines the effect of a specific interventions and
(2) uses units unaffected by the intervention as a control group.
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Table 2: DD Rejection Rates for Placebo Lawsa

Data Law Type Technique Rejection Rate
No Effect 2% Effect

A. REAL DATA

CPS micro 25 states, one date OLS .675 .855
(.027) (.020)

CPS micro 25 states, one date Cluster .44 .74
(.029) (.025)

CPS aggregate 25 states, one date OLS .435 .72
(.029) (.026)

CPS aggregate Serially uncorrelated laws OLS .06 .895
(.014) (.018)

CPS aggregate 12 states, one date OLS .433 .673
(.029) (.027)

CPS aggregate 36 states, one date OLS .398 .668
(.028) (.027)

CPS aggregate 25 states, multiple dates OLS .48 .71
(.029) (.026)

B. MANUFACTURED DATA

AR(1), ρ = .8 25 states, one date OLS .373 .725
(.028) (.026)

aNotes:

1. Each cell represents the rejection rate of the null hypothesis of no effect (at the 5% significance level)
on the intervention (law) variable for randomly generated placebo interventions. The number of
simulations for each cell is at least two hundred.

2. CPS data are data for women between 25 and 50 in the fourth interview month of the Merged
Outgoing Rotation Group for the years 1979 to 1999. The dependent variable unless otherwise
specified is log weekly earnings. In row 3 to 7, data are aggregated to state-year level cells after
controlling for demographic variables (education and age). Manufactured data are data generated
so that the variances match the CPS variances. The ρ refers to the auto-correlation parameter in
manufactured data.

3. All regressions also include, in addition to the intervention variable, state and year fixed effects. In
the individual level regression they include the demographic controls as well.

4. Standard errors are in parenthesis and computed using the number of simulations.

5. “Effect” specifies whether an effect of the placebo law has been added to the data.
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Table 3: Magnitude of DD Estimatesa

CPS Aggregate Data

No Effect 2% Effect
Positive Negative Positive Negative

Rejection Rate .18 .17 .715 .0075
(.022) (.022) (.026) (.005)

Average Coefficient .02 -.02 .026 -.017

Fraction of effects < .01 0 0 0 0
(.000) (.000) (.000) (.000)

in (.01,.02] .59 .58 .33 1
(.028) (.028) (.027) (.000)

in (.02,.03] .31 .3 .39 0
(.027) (.026) (.028) (.000)

in (.03,.04] .084 .12 .16 0
(.016) (.019) (.021) (.000)

> .04 .014 0 .12 0
(.007) (.000) (.019) (.000)

aNotes:

1. The positive (negative) columns report results for estimated effects of interventions which are positive
(negative).

2. CPS data are data for women between 25 and 50 in the fourth interview month of the Merged
Outgoing Rotation Group for the years 1979 to 1999. The dependent variable is log weekly earnings.
Data are aggregated to state-year level cells after controlling for the demographic variables (education
and age).

3. All regressions also include, in addition to the intervention variable, state and year fixed effects.

4. Standard errors are in parenthesis and computed using the number of simulations.
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Table 4 Varying Auto-correlationa

Data and Dependent Variable Technique Rejection Rate
No Effect 2% Effect

A. REAL DATA

ρ̂1, ρ̂2, ρ̂3
CPS agg, Log wage .509, .440, .332 OLS .435 .72

(.029) (.026)
CPS agg, Employment .470, .418, .367 OLS .415 .698

(.028) (.010)
CPS agg, Hours worked .151, .114, .063 OLS .263 .265

(.025) (.025)
CPS agg, Changes in log wage -.046, .032, 002 OLS 0 .978

(.000) (.009)

B. MANUFACTURED DATA

ρ1
AR(1) 0 OLS .053 .783

(.013) (.024)
AR(1) .2 OLS .123 .738

(.019) (.025)
AR(1) .4 OLS .19 .713

(.023) (.026)
AR(1) .6 OLS .333 .700

(.027) (.026)
AR(1) .8 OLS .373 .725

(.028) (.026)
AR(1) -.4 OLS .008 .7

(.005) .026)

aNotes:

1. Each cell represents the rejection rate of the null hypothesis of no effect (at the 5% significance level)
on the intervention variable for randomly generated interventions. The number of simulations for
each cell is at least two hundred.

2. CPS data are data for women between 25 and 50 in fourth interview month of the Merged Outgoing
Rotation Group for the years 1979 to 1999. The dependent variable unless otherwise specified is log
weekly earnings. Data are aggregated to state-year level cells, after controlling for the demographic
variables (education and age). Manufactured data are data generated so that the variances match
the CPS variances.

3. All CPS regressions also include, in addition to the intervention variable, state and year fixed effects.

4. Standard errors are in parenthesis and computed using the number of simulations.

5. The variables ρ̂i refer to the estimated auto-correlation parameters of lag i.
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Table 5 Varying N and Ta

N T Rejection rate Rejection rate
No Effect 2% Effect

A. REAL DATA

CPS aggregate 50 21 .435 .72
(.029) (.026)

CPS agg 20 21 .36 .53
(.028) (.029)

CPS agg 10 21 .425 .525
(.029) (.029)

CPS agg 6 21 .45 .433
(.029) (.029)

CPS agg 50 11 .29 .675
(.026) (.027)

CPS agg 50 7 .16 .63
(.021) (.028)

CPS agg 50 5 .08 .503
(.016) (.029)

CPS agg 50 3 .0775 .39
(.015) (.028)

CPS agg 50 2 .073 .315
(.015) (.027)

B. MANUFACTURED DATA

AR(1), ρ=.8 50 21 .35 .638
(.028) (.028)

AR(1), ρ=.8 20 21 .35 .538
(.028) (.029)

AR(1), ρ=.8 10 21 .3975 .505
(.028) (.029)

AR(1), ρ=.8 6 21 .393 .5
(.028) (.029)

AR(1), ρ = .8 50 11 .335 .588
(.027) (.028)

AR(1), ρ=.8 50 5 .175 .5525
(.022) (.029)

AR(1), ρ=.8 50 3 .09 .435
(.017) (.029)

AR(1), ρ=.8 50 50 .4975 .855
(.029) (.020)

aNotes:

1. Each cell represents the rejection rate of the null hypothesis of no effect (at the 5% significance level)
on the intervention variable for randomly generated interventions. The number of simulations for
each cell is at least two hundred.

2. CPS data are data for women between 25 and 50 in the fourth interview month of the Merged Outgoing
Rotation Group for the years 1979 to 1999. The dependent variable unless otherwise specified is log
weekly earnings. Data are aggregated to state-year level cells after controlling for the demographic
variables (education and age). Manufactured data are data generated so that the variances match
the CPS variances. The parameter ρ measures the auto-correlation.

3. All CPS regressions also include, in addition to the intervention variable state and year fixed effects.

4. Standard errors are in parenthesis and computed using the number of simulations.

5. N refers to the number of states used in the simulation and T refers to the number of years. When
the CPS data is used, we randomly drop states or years to fulfill the criterion.
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Table 6: Parametric Solutionsa

Data Technique Estimated ρ Rejection rate
No Effect 2% effect

A. REAL DATA

CPS agg OLS .435 .72
(.029) (.026)

CPS agg Standard AR(1) .368 .345 .705
correction (.027) (.026)

CPS agg AR(1) correction .12 .4435
imposing ρ=.8 (.019) (.029)

CPS agg AR(2) correction .228 .5725
imposing ρ1 = .55 (.024) (.029)
and ρ2 = .35

CPS agg AR(1) + White Noise .335 .638
ρ = .95 and n/s=.13 (.027) (.028)

B. MANUFACTURED DATA

AR(1), ρ=.8 OLS .373 .765
(.028) (.024)

AR(1), ρ = .8 Standard AR(1) .622 .205 .715
correction (.023) (.026)

AR(1), ρ = .8 AR(1) correction .06 .323
imposing ρ=.8 (.023)

AR(2), ρ1 = .55 Standard AR(1) .444 .305 .625
ρ2 = .35 correction (.027) (.028)

AR(1)+ white noise Standard AR(1) .301 .385 .4
ρ = .95, noise/signal=.13 correction (.028) (.028)

aNotes:

1. Each cell represents the rejection rate of the null hypothesis of no effect (at the 5% significance
level) on the intervention variable for randomly generated interventions. The number of
simulations for each cell is at least two hundred.

2. CPS data are data for women between 25 and 50 in the fourth interview month of the
Merged Outgoing Rotation Group for the years 1979 to 1999. The dependent variable unless
otherwise specified is log weekly earnings. Data are aggregated to state-year level cells, after
controlling for the demographic variables (education and age). Manufactured data are data
generated so that the variances match the CPS variances. An AR(1) + white noise process is
the sum of an AR(1) plus an iid process, where the auto-correlation for the AR(1) component
is given by ρi and the relative variance of the components is given by the noise to signal
ratio (n/s).

3. All CPS regressions also include, in addition to the intervention variable, state and year fixed
effects.

4. Standard errors are in parenthesis and computed using the number of simulations.

5. the AR(1) correction is implemented in stata using the xtgls command.
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Table 7 Block Bootstrapa

Data Technique N Rejection rate
No Effect 2% Effect

A. CPS DATA

CPS aggregate OLS 50 .435 .72
(.029) (.026)

CPS aggregate Block Bootstrap 50 .35 .60
(.028) (.027)

B. MANUFACTURED DATA

AR(1), ρ=.8 OLS 50 .38 .735
(.028) (.025)

Block Bootstrap 50 .285 .645
(.026) (.028)

AR(1), ρ = .8 OLS 400 .415 1
(.028) (.000)

Block Bootstrap 400 .075 .98
(.015) (.008)

aNotes:

1. Each cell represents the rejection rate of the null hypothesis of no effect (at the 5% significance
level) on the intervention variable for randomly generated interventions. The number of
simulations for each cell is at least two hundred.

2. CPS data are data for women between 25 and 50 in the fourth interview month of the
Merged Outgoing Rotation Group for the years 1979 to 1999. The dependent variable unless
otherwise specified is log weekly earnings. Data are aggregated to state-year level cells after
controlling for the demographic variables (education and age). Manufactured data are data
generated so that the variances match the CPS variances.

3. All CPS regressions also include, in addition to the intervention variable, state and year fixed
effects.

4. Standard errors are in parenthesis and computed using the number of simulations.
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Table 8: Empirical Variance-Covariance Matrixa

Data Technique N No Effect 2% Effect

A. REAL DATA

CPS agg OLS 50 .435 .72
(.029) (.026)

CPS agg Empirical 50 .0775 .085
variance (.015) (.016)

CPS agg OLS 20 .36 .53
(.028) (.029)

CPS agg Empirical 20 .0825 .08
variance (.016) (.016)

CPS agg OLS 10 .425 .525
(.029) (.029)

CPS agg Empirical 10 .0825 .0975
variance (.016) (.017)

CPS agg OLS 6 .45 .433
(.029) (.029)

CPS agg Empirical 6 .165 .1825
variance (.021) (.022)

B. MANUFACTURED DATA

AR(1), rho=.8 Empirical 50 .105 .16
variance (.018) (.021)

aNotes:

1. Each cell represents the rejection rate of the null hypothesis of no effect (at the 5% significance
level) on the intervention variable for randomly generated interventions. The number of
simulations for each cell is at least two hundred.

2. CPS data are data for women between 25 and 50 in the fourth interview month of the
Merged Outgoing Rotation Group for the years 1979 to 1999. The dependent variable unless
otherwise specified is log weekly earnings. Data are aggregated to state-year level cells after
controlling for demographic variables (education and age). Manufactured data are data
generated so that the variances match the CPS variances.

3. All CPS regressions also include, in addition to the intervention variable, state and year fixed
effects.

4. Standard errors are in parenthesis and computed using the number of simulations.
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Table 9: Arbitrary Variance-Covariance Matrixa

Data Technique # States Rejection Rate
No Effect 2% Effect

A. REAL DATA

CPS agg OLS 51 .435 .72
(.029) (.026)

CPS agg Cluster 51 .06 .27
(.014) (.026)

CPS agg OLS 20 .36 .53
(.028) (.029)

CPS agg Cluster 20 .0625 .1575
(.014) (.021)

CPS agg OLS 10 .425 .525
(.029) (.029)

CPS agg Cluster 10 .085 .1025
(.016) (.018)

CPS agg OLS 6 .450 .433
(.029) (.029)

CPS agg Cluster 6 .15 .1875
(.021) (.023)

B. MANUFACTURED DATA

AR(1), ρ=.8 Cluster 50 .045 .275
(.012) (.026)

AR(1), ρ=0 Cluster 50 .035 .74
(.011) (.025)

aNotes:

1. Each cell represents the rejection rate of the null hypothesis of no effect (at the 5% significance level)
on the intervention variable for randomly generated interventions. The number of simulations for
each cell is at least two hundred.

2. CPS data are data for women between 25 and 50 in the fourth interview month of the Merged Outgoing
Rotation Group for the years 1979 to 1999. The dependent variable unless otherwise specified is log
weekly earnings. Data are aggregated to state-year level cells after controlling for the demographic
variables (education and age). Manufactured data are data generated so that the variances match
the CPS variances.

3. All CPS regressions also include, in addition to the intervention variable, state and year fixed effects.

4. Standard errors are in parenthesis and computed using the number of simulations.
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Table 10 Ignoring Time Series Dataa

Data Technique N Rejection rate
No Effect 2% Effect

A. REAL DATA
CPS agg Federal OLS 50 .435 .72

(.029) (.026)
Federal Simple Aggregation 50 .060 .295

(.014) (.026)
Federal Residual Aggregation 50 .053 .210

(.013) (.024)
Staggered Residual Aggregation 50 .048 .335

(.012) (.027)

CPS agg Federal OLS 20 .36 .53
(.028) (.029)

Federal Simple Aggregation 20 .060 .188
(.014) (.023)

Federal Residual Aggregation 20 .095 .193
(.017) (.023)

Staggered Residual Aggregation 20 .073 .210
(.015) (.024)

CPS agg Federal OLS 10 .425 .525
(.029) (.029)

Federal Simple Aggregation 10 .078 .095
(.015) (.017)

Federal Residual Aggregation 10 .095 .198
(.017) (.023)

Staggered Residual Aggregation 10 .103 .223
(.018) (.024)

CPS agg Federal OLS 6 .450 .433
(.029) (.029)

Federal Simple Aggregation 6 .130 .138
(.019) (.020)

Federal Residual Aggregation 6 .315 .388
(.027) (.028)

Staggered Residual Aggregation 6 .275 .335
(.026) (.027)

B. MANUFACTURED DATA
AR(1), ρ=.8 Federal Simple Aggregation 50 .050 .243

(.013) (.025)
Federal Residual Aggregation 50 .045 .235

(.012) (.024)
Staggered Residual Aggregation 50 .075 .355

(.015) (.028)
AR(1), ρ=0 Federal Simple Aggregation 50 .053 .713

(.013) (.026)
Federal Residual Aggregation 50 .045 .773

(.012) (.024)
Staggered Residual Aggregation 50 .105 .860

(.018) (.020)

aNotes:
1. Each cell represents the rejection rate of the null hypothesis of no effect (at the 5% significance level) on the intervention variable for

randomly generated interventions. The number of simulations for each cell is at least two hundred.

2. CPS data are data for women between 25 and 50 in the fourth interview month of the Merged Outgoing Rotation Group for the years
1979 to 1999. The dependent variable unless otherwise specified is log weekly earnings. Data are aggregated to state-year level cells after
controlling for demographic variables (education and age). Manufactured data are data generated so that the variances match the CPS
variances. All CPS regressions also include, in addition to the intervention variable, state and year fixed effects. Standard errors are in
parenthesis and computed using the number of simulations.
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Table 11: Randomization Inferencea

Data Technique N Rejection rate Rejection rate
No Effect 2% Effect

A. CPS DATA
CPS agg OLS 51 .435 .72

(.029) (.026)
CPS agg Randomization Inference 51 .065 .235

(.014) (.024)
CPS agg RI 5 year window 51 .06 .23

(.014) (.024)
CPS agg RI 3 year window 51 .06 .23

(.014) (.024)
CPS agg RI same year 51 .04 .24

(.011) (.025)

CPS agg OLS 20 .36 .53
(.028) (.029)

CPS agg Randomization Inference 20 .045 .1
(.012) (.017)

CPS agg RI 5 year window 20 .04 .125
(.011) (.019)

CPS agg RI 3 year window 20 .065 .095
(.014) (.017)

CPS agg RI same year 20 .045 .115
(.012) (.018)

CPS agg OLS 10 .425 .525
(.029) (.029)

CPS agg Randomization Inference 10 .055 .115
(.013) (.018)

CPS agg RI 5 year window 10 .055 .095
(.013) (.017)

CPS agg RI 3 year window 10 .05 .125
(.013) (.019)

CPS agg RI same year 10 .07 .115
(.015) (.018)

CPS agg OLS 6 .450 .433
(.029) (.029)

CPS agg Randomization Inference 6 .04 .07
(.011) (.015)

CPS agg RI 5 year window 6 .035 .065
(.011) (.014)

CPS agg RI 3 year window 6 .03 .06
(.010) (.014)

CPS agg RI same year 6 .055 .07
(.013) (.015)

B. MANUFACTURED DATA
AR(1), rho=0.8 Randomization Inference 50 .05 .3

(.011) (.025)
iid data Randomization Inference 50 .08 .84

(.019) (.026)

aNotes:
1. Each cell represents the rejection rate of the null hypothesis of no effect (at the 5% significance level) on the intervention

variable for randomly generated interventions.

2. CPS data are data for women between 25 and 50 in the fourth interview month of the Merged Outgoing Rotation Group for the
years 1979 to 1999. The dependent variable unless otherwise specified is log weekly earnings. Data are aggregated to state-year
level cells after controlling for education and age. Manufactured data are data generated so that the variances match the CPS
variances. All CPS regressions also include, in addition to the intervention variable, state fixed effects and year fixed effects.
Standard errors are in parenthesis and computed using the number of simulations.
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Table 12: Effect of Informal Testsa

Data: CPS Aggregate AR(1), ρ = .8
No Effect 2% effect No Effect 2% effect

Ho : β = 0 Rejected if:

OLS coef significant (OLS) .360 .725 .345 .625
(.034) (.031) (.034) (.031)

OLS+No effect before the law .400 .634 .325 .565
(.033) (.032) (.033) (.035)

OLS+Persistence of effect .378 .602 .305 .565
(.033) (.031) (.033) (.035)

OLS+No treatment specific .248 .518 .235 .530
trend in pre-period (.029) (.035) (.030) (.035)

OLS+Coef significant .106 .418 .150 .375
with treatment specific trend (TREND) (.018) (.018) (.025) (.034)

aNotes:

1. Each cell represents the rejection rate of the null hypothesis of no effect (at the 5% significance level)
on the intervention variable for randomly generated interventions. The number of simulations for
each cell is at least two hundred.

2. CPS data are data for women between 25 and 50 in the fourth interview month of the Merged Outgoing
Rotation Group for the years 1979 to 1999. The dependent variable unless otherwise specified is
log weekly earnings. Data are aggregated to state-year level cells after controlling for demographic
variables (age and education). Manufactured data are data generated so that the variances match
the CPS variances.

3. All CPS regressions also include, in addition to the intervention variable, state and year fixed effects.

4. Standard errors are in parenthesis and computed using the number of simulations.
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