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ABSTRACT

An appropriate metric for the success of an algorithm to forecast the
variance of the rate of return on a capital asset could be the incremental
profit from substituting it for the next best alternative. We propose a
framework to assess incremental profits for competing algorithms to forecast
the variance of a prespecified asset. The test is based on the return history
of the asset in question. A hypothetical insurance market is set up, where
competing forecasting algorithms are used. One algorithm is used by each
hypothetical agent in an "ex post ante" forecasting exercise, using the
available history of the asset returns. The profit differentials across agents
(in various groupings) reflect incremental values of the forecasting
algorithms.

The technique is demonstrated with the NYSE portfolio, over the period of
July 22, 1966 to December 31, 1985. For the limited set of alternative
specifications, we find that GARCH(1l,1) ylelds better profits than the 3
competing specifications. The profit from pricing one-day options on the NYSE
portfolio significant. The evidence also suggests that using a limited
estimation period may be preferable to estimating specification parameters from
all available observations. Finally, the hedging activity that requires a
variance determined hedge ratio is an important component of the success of a
variance forecast-algorithm.

Robert F. Engle Che-Hsiung Hong Alex Kane

Dept. of Economics Citibank Graduate School of

D-008 399 Park Avenue International Relations and
University of California New York, NY 10043 Pacific Studies

La Jolla, CA 92093-0519 University of California

La Jolla, CA 92093-0519



Introduction

When probability distributions of asset rates of return are time
varying, forecasts of portfolio variance must be a priority item for
investors. Even clients who restrict themselves to passive strategies
would need periodic variance forecasts to calibrate efficient asset
allocation (e.g., Bodie [1989]).

An algorithm to forecast the variance of the rate of return on a
capital asset would include: (i) a specification of the return-
generating process, and (ii) a procedure to estimate the parameters and
compute implied forecasts, based on available information at the time
the forecast is made. A criterion for choosing between any pair of
competing algorithms is the incremental profit of a switch from the
lesser to the better one.

In this paper we propose a technique to assess incremental profits
for a set of competing algorithms, and thereby evaluate algorithms used
for forecasting the variance of a given portfolio. The proposed
technique resorts to the role of volatility in the pricing of contingent
claims. It incorporates into the analysis considerations of hedge
positions which, too, depend on variance forecasts. If proven reliable,
our technique would be useful for financial decision making and for

research in capital markets. We demonstrate the technique with the NYSE

1. We thank Robert L. McDonald for helpful discussions and suggestions,
and the participants in the UCSD conference on modeling the volatility
in asset pricing for comments.



portfolio experience over the period of July 3, 1962 to December 31,
1985.

We estimate incremental profits of algorithms that forecast
portfolio variance by setting up a hypothetical insurance market. Each
forecasting algorithm is used exclusively by one hypothetical agent in
an "ex post ante" forecasting exercise. The hypothetical agents prepare
a forecast for every period of the exercise using past observations of
the portfolio rates of return. Using the designated algorithm, each
agent sets a price for options of one period maturity, on one dollar’s
worth of the target portfolio. 1In the beginning of each period, upon
examination of the entire set of forecast-induced option prices, each
agent buys any option believed to be underpriced. In the "ex post" part
of the exercise, actual subsequent portfolio returns are used to settle
the agent accounts. The period profits and losses accumulate in the
agent accounts over the entire exercise.

Profits and losses that accumulate over the exercise period
represent the relative success of agents, and hence of the forecasting
algorithms that they represent. In the Present experiment, one-day
options on $1 shares of the NYSE are priced from the following
specifications of the NYSE return process: (i) moving average of squared
daily returns, (ii) ordinary least squares: the variance rate is
estimated from the standard error of an AR(1l) on the daily rate, (iii)
ARMA(1,1) on squared errors, and (iv) GARCH(1l,l1). Each of the four
specifications is used by 3 algorithms that differ in the number of past
observations in the rolling sample used to estimates the specification

parameters. The 3 sample lengths are: (i) 300 days, (ii) 1,000 days,



and (1ii) the entire available history, up to 4901 observations but no
less than 1,000 days.

The main objective of the work presented here is to introduce this
new technology. We have no commitment to the algorithms that were
(quite arbitrarily) chosen to compete. For this set, results of the
experiment with the NYSE portfolio clearly favor the GARCH(1,1)
specification. The worst performer of the specification set has been
ARMA(1,1). The economic performance of the various specifications in
the experiment has been significantly different, suggesting that
inferences about the relationship between stock price and changes in
volatility, as in Poterba and Summers [1986}, should be reexamined with
respect to the specification used to estimate the time-path of stock
variance. Evidence from the experiment also indicates that some
restriction on the length of the rolling sample may lead to improved
forecasts.

We allow agents to hedge their variance-forecast driven transactions
by taking positions in the NYSE stock. Evidence from the experiment
suggests that imperfect hedge ratios affect the risk reduction capacity
in an economically significant way. The hedging activity itself helps
to distinguish better forecasting algorithms.

Theoretical arguments in favor of the proposed forecasting valuation
technique are presented in section I. Section II develops the mechanics
of the valuation method, and describes the details of the experiment
involving the forecasting of the variance of the NYSE portfolio.
Presentation and discussion of the experiment results can be found in
Section III. Summary and discussion of future research conclude the

paper.



I. Theoretical Underpinnings

In the genre of testing for the choice of best forecasts, the case
of the variance of asset returns is unique. While the period variance
of the rate of return of an asset is unobservable, its observed,
realized rate of return allows us to test variance-driven option prices.
The role of variance in "no-arbitrage" pricing of contingent claims
suggests that the best forecast algorithm should be decided on
performance in correctly pricing contingent claims on the asset in
question.

This approach is different from testing the correlation between
option-price implied volatility (perhaps in conjunction with other
variance forecasts) and some measure of subsequently realized variance.
We take the position that variance over any period is unobservable, and
.that we can do without ever observing it directly. Rather, we ask,
which return specification and estimation technique from available data
(that may include some transformation of implied volatility from some
traded contingent claims) would lead to better pricing of some specified
contingent claims. The volatility predicted from that specification,
into any future period, is taken to constitute the variance of the rate
of return on the asset over the future period.

In efficient capital markets; when the variance of the rate of
return on a target asset Is constant over time; and where options on the
asset are traded, the option price implies an estimate of the asset
variance. Under such ideal circumstances, indeed by the definition of

market efficiency, option prices would yield preferred estimates of



asset variances. As a practical matter, Schmalensee and Trippi [1978],
and others, have shown that stock-option implied variances yield better
forecasts of standard deviation than do simple estimates of standard
deviation from past returns.

Yet variance forecasts would be particularly valuable when variances
do vary over time. When the variance is time varying, option priecing
becomes more difficult because the hedge ratio that allows arbitrage
pricing depends on the unknown variance. It still is possible to
compute the implied expected variance over the life of an efficiently-
priced option, if surprise changes in variance during the life of the
option would be non-systematic (see Wiggins (1987] and Hull and White
{1989]). Such circumstance is not guaranteed, particularly when the
asset in question is a well diversified portfolio.

The upshot is that forecasts of volatility must be empirically
tested with an appropriate loss function in order to establish the best
alternative forecast. Indeed, with time varying variances, we cannot
even take for granted that the market is efficient with respect to any
variance forecast. Such determination can only be reached when no known
variance-forecasting algorithm can be used to profit from trading in the
asset and its derivatives. The technique proposed here can also be
applied to the question of market efficiency with respect to specific
variance forecasts.

Using realized rates of return to test the rationality of option
prices so as to evaluate the accuracy of variance forecasts, is really a
joint test of the variance forecast and the option-pricing formula that

is used. This fate befalls all theory based empirical work.



Mean-variance models of portfolio theory tell us that investor
utility from a universe of capital assets will be lower if: (i)
uncertainty about the variance of one or more assets increases, and/or
(ii) the investor is misinformed about the probability distribution of
the variance of one or more of the assets. In the first case, when
investors are informed that uncertainty about asset variance is
increased, they will shift portfolio demands. New equilibrium prices
will prevail, and the issue will become history.

In the second case, when a significant number of investors are
misinformed, asset prices may be inefficient with respect to some
information about variance. Well diversified portfolios will be
underpriced if the variance is overestimated, and vice versa. Small
sets of assets (in terms of market value), will be mispriced in the same
way if the information asymmetry involves covariance with a well
diversified portfolio.

As information asymmetry about asset variance develops, investors
with superior information will attempt to gain from it. If options on
the mispriced asset are traded, then a natural strategy would be to set
up a hedged position that includes the asset and options. This position
cannot be made entirely risk-free, because the hedge ratio also would
depend on the variance; furthermore, an exact arbitrage price might be
unknown if unanticipated changes in variance, over the life of the
option, are systematic. Still, a strategy that consistently employs
superior variance information to rebalance an active portfolio of
varlance-driven hedged positions, may be expected to yield a superior

risk-reward ratio.



Even when options on an asset are not regularly traded, a developing
asymmetry in variance informatién could induce such trade. Put another
way, the degree of heterogeneity in expectations of asset variance is a
factor in the demand for a market in options on the asset. Moreover, we
may expect consistently better "variance analysts" to be gainfully
employed by traders of contingent claims on the asset that they
specialize in.

In sum, when it comes to time-varying variance, the profit potential
of a better informed investor will depend on: (i) the degree of
asymmetry of variance information, (ii) the option-pricing formula that
is implicit in the market place (perhaps unknown), with the sensitivity
of implied option prices and hedge ratios to the variance of the
underlying asset.

We chose for our first experiment short-term variance forecasts,
utilized to price short-lived options. We realize that tests of longer-
range forecasts, to be used for pricing longer-maturity options, may be
of greater economic value. The experiment and analysis in this paper,
being mainly concerned with the technique (rather than with identifying
optimal variance forecasts), relates short (one-day) variance forecasts
to profit opportunities from pricing one-day options on the NYSE
portfolio.

Estimates of the relative profitability of alternative variance-
forecast algorithms depend on which option-pricing formula is used. At
the same time, the validity of the experiment does not depend on whether
the user knows with ce?tainty that the formula used is actually implicit
in market prices; only that it is the one he would bet on if and when he

had to write contingent claims on the asset. It is understood, however,



that further experimentation will be required whenever a different
option-pricing formula comes into favor.

Another issue of methodology is transitivity in the dominance
relationship among variance forecasts. When the experiment is performed
with more than two hypothetical agents, representing more than two
competing forecast algorithms, the winner is not guaranteed to dominate
every agent in a different grouping, or in pair-wise competition. This
issue has to be empirically addressed.

Finally, the Jensen Inequality presents itself in this valuation
technique on two levels. First, the square root of a conditionally
unbiased variance forecast, will be conditionally downward biased. If a
specification of a return generating process produces conditionally
unbiased forecasts of variance, then an insurance underwriter who uses
forecasts of standard deviation in pricing contingent claims will have
to adjust the square root of that forecast. Another reason to adjust
the forecast (upwards) arises from the non linearity (concavity) of the
option-pricing formula in standard deviation.

In order to adjust a forecast for Jensen's Inequality, one needs to
estimate the variance of the forecasting error. Estimating the variance
of a variance forecast-error presents a problem, since the realized
variance is unobservable. We elected not to include Jensen Inequality
adjustments in this experiment, since our focus here is on the

techniquez.

II. Application of the Valuation Method to the NYSE Portfolio

2. A crude correction for Jensen's inequality resulted in very little
change in the relative profitability of the forecast algorithms
presented below. This is not sufficient evidence, however, to discard
the problem.



It is best to describe the valuation methodology as it applies to a
specific experiment. Here we apply it to the NYSE portfolio, using
daily returns from July 3, 1962, to December 31, 1985. We begin by

describing the competing variance-forecast algorithms.

II.1 The set of competing variance forecasts

We test 4 specifications for the return generating process of the
NYSE portfolio, and 3 alternative lengths of rolling samples from past
data to update estimates of the specification parameters. The 4
specifications are detailed below with the following notation: Z¢
denotes the portfolio return; a subscript t dates observations and
forecasts; a subscript n on a forecast, or parameter estimate, refers to
the length of the rolling sample that is used every day to produce the
variance forecast for the next day; finally, ¢? denotes a variance

forecast.

(A) Moving Average Variance: the "MA" model

The forecast for the next-day variance, using the most recent n

observations is:

2 1 2
e+l T ol T (Ze - Zno) @)
t-n+l
where
- 1 t
Zne = & T Z¢ . (2)

t-n+l
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(B) Ordinary Least Square: the "OLS" model

The rate of return is assumed to follow an AR(1),

Zt = ap,t + by tZt.1 + e¢ , (3)

and the forecast is:

t
2 1 2
” - L5 2 )
n, t+1 n-1 ton+l t

(C) ARMA(1,1) in the Squared Residual: the "AR" model

As in the OLS model,
Zt - an,t + bn’tzt_l + e¢ , (1)

except that the squared residual follows:

2 2
et = Vn,t + Vp,tet-1 + ug - dp rue.g . (5
The inclusion of this process was motivated by‘the work of Poterba

and Summers [1986], where the sample variance of the residual was

assumed to follow an AR(1). The variance forecast will be:

2 2
Ot+l = Wn,t + Vp,tet - dn,tVe . (6)
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(D) GARCH(1,1): the "ARCH" model

The ARCH (auto regressive conditional heteroskedasticity) family
of specifications was first proposed by Engle [1982]. A sample of its
increasing use for rates of return on capital assets can be found in
Bollerslev, Chou, Jayaraman and Kroner [1990], Bollerslev Engle and
Wooldridge [1988], Chou [1988], French, Schwert and Stanbaugh, Hong
[1987], and references cited there.

As in the OLS model,
Zt = ap,t + by tZ¢-1 + e¢ , ¢))

and the forecast will be:

2 "2 2 2
9t+l = Wn,t + Vp,tet * dn clhe - e ) . &)

The parameters of (1) and (7) are estimated by maximum likelihood,
assuming e¢ to be conditionally normal. We note that (6) and (7)
provide identical forecast equations; they differ only in parameter
estimation where (6) uses least squares, while (7) is maximum likelihood

which optimally weights the observations.

We used 3 alternative sample lengths for n. In the first, we let n
take the entire available set of past observations, but no less than
1,000. Thus, the forecasting experiment begins at June 22, 1966 for all
3 algorithms, leaving 4,902 test forecasts. The second and third
alternatives assume that the parameters of the true specification change

over time. Ideally, one would search for the best sample length. We



chose, quite arbitrarily, 300 and 1,000, respectively, as "short" and
"intermediate" alterhatives to the "long" sample which varies from 1,000
to 5,901 observations.

The 4 specifications and 3 sample lengths produce 12 competing daily
forecasts. To these we added 3 more daily forecasts. The 13-th is a
simple average of all daily forecasts, and the 1l4-th and 15-th are the
daily maximum and minimum forecasts.

A simple average of n equal-quality, conditionally independent
forecasts, will rapidly converge to a perfect forecast (see Kane and Lee
[1984]). Hence, failure of the average forecast indicates economically
significant divergence in quality and mutual dependence of the 12
forecasts.

We added the maximum and the minimum of the daily forecasts to the
set as a check for any forecast bias that affects profits significantly.
If, for instance, a downward bias is indeed present and significant,
then the maximum forecast will beat the minimum forecast, and any of the
individual forecasts that are more severely biased. If some forecasts
are sufficiently upward biased, then the minimum forecast will overcome
the diversification effect of the average forecast and show a better
cumulative profit. At the same time, both the minimum and maximum of
the daily forecasts, are expected to show greater profit volatility than
the average forecast. The two extreme forecasts will hereafter be

referred to as MAXIMUM and MINIMUM, respectively.
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IT.2 The option pricing formula and hedge ratio

The accuracy of the proposed valuation technique may be compromised
if an inferior option-pricing formula is used in the experiment. The
robustness of the technique with respect to the accuracy of the formula
cannot be a-priori assessed, and is left for future research. But there
is reason to think that the rank order of the forecasting algorithm
profitability will not be affected when the formula is not too far off
the mark. We have opted to use the Black-Scholes formula on the
assumption that for maturities of only one business day (hence, no
longer than 4 calendar days), it will be sufficiently accurate.

Agents in the experiment trade one-day options on a $§1 share of the
NYSE portfolio. The exercise price of the options is taken to be $1
plus the risk-free rate. (Merton [1981] used this characterization and
resultant option-pricing formula for his valuation of market timing
ability.) The one-day excess rate of return on the NYSE portfolio, over
the risk-free rate, is assumed to satisfy the required distributional
assumptions. Under these conditions the Black-Scholes call (or put)

option price reduces to:
Pt - ZN[.SUt] -1 N (8)

where Pr is the call or put price, N['] is the cumulative normal
density, and o the standard deviation of the daily rate of return. For
small o the price is linear in o.

With this pricing formula, ignoring uncertainty about the variance,

the hedge ratio for a riskless position involving the stock and call
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option (the number of shares per call), is given by: H¢ = -N[.50¢], (see
also fn 4, and Smith [1976, p.211).

II.3 The daily round of trade among hypothetical agents

Step 1: agents set their call (= put) price. Every day of the
exercise, each agent applies his designated algorithm to the sample of
past observations (with the appropriate length), and computes a forecast
for the variance of the NYSE index of the next day. From this forecast,
using (8), the agent determines his price for a one;day call/put on a §1
share of the NYSE portfolio.

The price of an option is increasing in the underlying asset
variance. As a result, agents with low variance forecasts will believe
that agents with high variance forecasts are overpricing call and put
options, and vice versa3.

Step 2: agents execute trades. The following trades are executed
each day:

(1) every agent buys one call and one put from every agent that

offers them at a lower price. The transaction is executed at the

3. In the experiments we had agents calculate option prices from (8),
which assumes an exercise price of $(1 + risk-free rate). Yet in the
settlement of the accounts from subsequent NYSE returns, we actually
used $1 for the exercise price instead. This corner was cut in order to
avoid the need to determine a source, and then observe daily risk-free
rates of interest.

Reducing the exercise price of options (on $1 shares), by an amount
equal to the daily risk-free rate, will slightly increase the expected
transaction profits to buyers of calls and sellers of puts. In each
transaction of call or put, the buyer is the agent with the higher
variance forecast than the seller’s. Thus, by lowering the settlement
exercise price we have been slightly favoring upward-biased forecasts
for call transactions, and downward-biased forecasts for put
transactions.

As far as overall profits go, since every pair of agents always
trade a straddle (one call and one put, as described in step 2), the
inaccuracy in the settlement exercise price is exactly offset,
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average of the bid (seller’s). and ask (buyer's) price. For every trade,
the agent uses his own variénce forecast to determine the appropriate
hedge ratio. Each trade, call or put, is then separately hedged by each
agent, taking the appropriate position in the stock of the NYSE index.

(ii) The trades in (i) are repeated 2 more times with different
transaction prices: instead of averaging the bid-ask spread, the first
duplicate transactions are executed at the lower (seller’'s) price, and
the second at the higher (buyer’s) price.

Transacting at the lower price creates an asymmetry, where upward-
biased forecasts are preferred to downward-biased forecasts. The
reverse is true when transactions are executed at buyer’'s (higher)
price. A separate accouﬁt of these transactions serves two purposes:
first, the difference in the relative profits of the duplicate
transactions will help smoke out the algorithms that produce forecasts
with a bias that is economically significant. Second, from these
separate transactions we can compose a category that we call "trade at
own price." Here, every agent transacts both "buy" and "sell" orders at
his own price. This category is less sensitive to the price
differentials between agents, and more sensitive to the rank order of
forecasts, when compared with the "average bid-ask price" transactions.
Each of these identical trades (at different prices) is also hedged
(with the same ratio).

Step 3: settle end-of-day accounts, and accumulate profit/loss in
individual agent accounts. At the end of each forecast day, the actual
daily rate of return on the NYSE index is used to compute the
profit/loss of each trade. For the purpose of future analysis, agent

accounts are separated to subaccounts. There are 24 separate sub
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accounts in all, to distinguish the following 4 categories: (1)
transaction price of the trade: bid, ask, average; (2) days of positive
and negative return on the NYSE index; (3) unhedged and hedged trades;
and (4) trades in puts and calls. Finally, each agent sub account is
further partitioned by customer/competitor agent. This partition can be
used to tests any subgroup of competing forecasting agents.

For each agent, profits from all trades for the day, are totaled in
each subaccount. Because each pair of agents trades one straddle,
absolute profits depend on the number of agents (algorithms) in the
experiment. In computing agent profits we wish to eliminate the effect
of the volume of transactions that is proportional to the number of
participating agents. Hence, the total daily profit in each subaccount
is averaged over the number of trades/competitors, dividing it by k-1,
where k is the number of participating agents.

IIT Relative Profitability of the NYSE Variance Forecasts, 6/1966-

12/1985

We report results of the experiment along the categories described
in section II.3 Step 3, beginning with some forecast statistics and the

rank order of profitability for the entire experiment.

ITI.1 Summary statistics of the variance forecasts

Over the experiment period, June 22, 1966 to December 31, 1985, the
annual rate of return, compounded daily, on the NYSE portfolio has been
9.78%, with a standard deviation of 12.86%. The ratio of daily standard
deviation to average return was 20.8.

The annualized average daily forecasts of the standard deviation and

the standard deviation of these forecasts, by algorithm, are presented



in Table 1(a). The first column shows that all algorithms’' average
forecasts of standard deviation were lower than the in-sample standard
deviation of the NYSE return.

The second column of Table 1(a) shows that the variance of the
forecasts was very different across specifications. For example, the
standard deviation of forecasts from the OLS (1,000-5,000) is only
1.24%, indicating a smooth measure of variance, while that of the ARMA
(1,000-5,000) is 7.92%, revealing a widely varying forecast.

The standard deviation of forecasts also varies quite significantly
across sample lengths within each specification, and is not always
smallest for the longest sample length. Within the 3 ARCH
specifications, the shortest sample (300) has the smallest standard
deviation of forecasts. Within the ARMA specifications, the
intermediate sample length (1,000) results in the least variable
forecast.

The right hand column in Table 1(a) displays the betas of the
forecasts of standard deviation. They are estimated from regressions of
the daily forecasts of standard deviation on the subsequent NYSE
returns. The betas are practically zero, indicating that changes in the
forecasts of standard deviation are non systematic.

As a proxy for the accuracy of the variance forecasts, a forecast
error is often defined as the difference between the squared return and
the variance forecast. (With daily observations, taking the squared
deviation from a daily mean would make no difference.)

The first column in Table 1(b) shows the mean forecast error of the
variance, as a percent of the sample variance for the entire period.

Here, too, the variance forecasts appear to have been too low, on

17
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average. The magnitude does not tell us much about the Jensen
inequality, however. 1In 5 out of the 12 algorithms, the percent
difference between the in-sample standard deviation and the average
forecast of the standard deviation, from the first column of Table 1(a),
is smaller than the percent forecast error in the first column of Table
1(b). This measure again describes the level of the forecast on
average, without indicating whether they vary too much or too little,

The second column of Table 1(b) will be small when large,
subsequent, squared returns are associated with large variance
forecasts, indicating the variability of the forecast. It is not a
direct measure of forecast accuracy, however, since the squared returns
are not the true variance, and since the implied loss function is
linear. Thus, for example, there is no penalty for negative variance
forecasts.

The last column in Table 1(b) shows the beta for the forecast error.
The magnitude of the positive betas suggests that large forecasting
errors (as defined here) are more likely in "up markets," days when the
NYSE return is positive.

The statistics in Tables 1(a) and 1(b) do not suggest a clear choice
of specification. On the basis of mean square error, MA(300) and all
the three ARMA specifications look best. But the variance of forecast
error (as proxied here) is smallest for the ARCH specifications. The
standard deviation of the ARCH forecasts themselves, in Table 1(a), is
about average.

Table 1(c) introduces the simulation of option valuation that we use
to transform differences in variance forecasts to differences in pricing

options on the NYSE index portfolio. First, the daily variance forecast



of each algorithm is transformed to a one-day call price (equal to put
price). The first column in Table 1(c) shows the average call price in
cents per one-day call on a $1 share on the NYSE, with an exercise price
of $1 plus the daily risk free rate. Next, we pretend that every day,
each forecaster buys one call and one put at his own price, based on his
variance forecast. Holding this straddle with an exercise price of $1
(the risk-free rate is actually neglected here), the end-of-day payoff
to each forecaster is identical, and equal to the absolute rate of
return on a 1§ share of the NYSE over the forecast day. The day t
profit_to forecaster i equals: Irc|-2Pic, where ry is the daily NYSE
return and Piy is the (ith forecast-driven) call price for day t, because
put and call prices are equal. This profit varies across forecasters as
their forecasts differ.

Note that the objective here is to identify the best option-pricing
forecast algorithm. Hence, we are looking for the agent with the
smallest cumulative absolute profit from holding the straddle, and with
the smallest variance of profit.

The first column of Table 1(c) shows the average daily price that
agents would have assigned to a call (put) on a $1 share of the NYSE,
with an exercise price of $1 plus the daily risk-free rate, over the
entire forecast period. It is of an order of .28 cents as reflected by
the average price of the AVERAGE forecast.

The second column in Table 1(c) shows the average daily profit from
holding one straddle a day, over the sample forecast period. The last
column shows the standard deviation of the daily profit. The bottom
panel in Table 1l(c) introduces the additional forecasters, the MAXIMUM,

MINIMUM and AVERAGE forecasters.
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Using option prices in this way, too, does not indicate a.winning
forecast algorithm. The smallest absolute profit goes to the OLS(300)
and OLS(1,000) algorithms. The average loss of the first, amounts to
.12% of the average price of a straddle per day. For comparison, the
average profit from the most accurate (by this standard) ARCH
specification, using a sample length of 1,000, is 1.60%. Yet the
standard deviation of profits of OLS agents is not the lowest. The
difference between the standard deviation of OLS(1,000) and ARCH(1,000)
is 6.5% of the average straddle price. Hence, we have to conclude that
at this level of aggregation, the data is insufficient to tell the
entire story of how each of these contingent-claim pricing agents would
fare if they had to compete with each other in the contingent-claims
market.

The AVERAGE forecast fails to dominate in either average profit or
standard deviation, implying that the forecasts are significantly
different in quality and not conditionally independent. MAXIMUM is a
better forecast than MINIMUM as a result of the prevailing sample
downward bias of the variance forecasts and perhaps, to some extent, due
to the Jensen Inequality.

It is interesting that while all agents’ variance forecasts are (on
average) too low, the average profit from holding the straddle is
negative for 4 out of 12 forecast algorithms. This lack of effect of
the forecast downward bias has occurred despite the Jensen Inequality
that is expected to exaggerate the degree of underpricing due to

concavity of the option formula. Further, since the straddle makes for
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a risky position, we would expect it to earn a positive risk premium,
and hence such effect would also go the other waya.

The probable explanation lies in the properties of the sample,
namely, in the frequency of "up" and "down" markets. Recall that we use
$1 as the exercise price for a $1 share of the NYSE, while using a
pricing formula that assumes the exercise price to be $1 plus the risk-
free rate. This would not affect the price of a straddle in any
significant way, because the derivatives of the call and put prices with
respect to the exercise price differ only by the risk-free rate to
maturity and offset each other. However, as far as realizations go, if
the frequency of negative realized returns on the stock is greater than
expected, then the deficiency of returns on the put will exceed the
extra returns on the call, accumulating a bias toward smaller profits.
Indeed, the average excess return on the NYSE for the experiment period
(less than 5%) has been below the historical average (of more than 8%),

giving credence to this explanation.

III.2 Rank order by overall profit

The overall result of the experiment is given in Table 2. It
summarizes agent profits from all hedged trades over the entire period,
from transactions at the average of the bid and ask prices.

Turning first to the question of whether the algorithms are of

similar quality with independent pricing errors we note from Table 2

4. The hedge ratio of a put, 1-N(di), is here slightly smaller in
absolute value than the call’s: -N(d;). With a one-period maturity,
di=[log(8/X)+re+.502] /0, is the well known term from the Black-Scholes
formula, where S and X are the current stock and exercise price,
respectively. With an exercise price of S(i+rg), d; reduces to .50. So
here, the hedge ratio for a straddle, the sum of the hedge ratios of the
put and call, is slightly negative. Hence, the unhedged straddle has a
positive beta and should earn a positive risk premium.
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that the AVERAGE forecast is inferior to ARCH(1,000), and only
marginally superior to the other two ARCH specifications. This
indicates that the 3 ARCH forecasts are distinctly better than the
remainder of the 12. As for conditional independence of the forecasts,
note that the standard deviation of the average daily profit of the
AVERAGE forecast is by far the smallest. This indicates that the
pricing errors of the competing agents offset one another for the large
part, so that the average pricing error is small. For this to happen,
the pricing errors of the agents have to be quite independent.

The losses of the MAXIMUM forecast are significantly worse than the
MINIMUM. This despite the indication from Tables 1l(a) and 1(b) that all
forecasts are biased downward, on average. One would expect that a
reason may be that the MINIMUM option price (and forecast) is non
negative, while MAXIMUM forecasts and option prices are unbounded, hence
inherently more variable. However, the standard deviation of the daily
profits of the MAXIMUM and MINIMUM forecasts are similar (and by far the
largest, as expected).

Overall, the results indicate that there are significant incremental
profits from switching among variance-forecast algorithms in a
competitive asset market. These profit (which appear to be non
systematic) are mostly driven by the variance of the variance
forecasting-errors, a property that is difficult to asses with standard
statistics. This should be stated, however, in the context of the
small, arbitrary, set of specifications that are part of the experiment.
(See Pagan and Hong [1988], Pagan and Ullah [1988], and Pagan and

Schwert [1989] for discussion of the quality of variance estimators.)
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More specific indications of the quality of forecasts from Table 2
are:

(i) The ARMA specification appears as the experiment’s worst
performer. Poterba-Summers [1986] made a powerful argument that
variance shocks should matter little to stock prices. Using an ARMA
specification, they show that shocks to the variance of stocks do not
persist and hence, should have little effect on value. Our experiment
suggests that in the context of asset prices vis-a-vis changes in
variance, persistence needs to be examined with better forecast
algorithms.

(ii) The results suggest that some restriction on the length of
forecasting sample may be profitable. A straight forward application of
the technique proposed here will allow identification of a preferred
sample length for the appropriate specification. The question of
whether business cycles or shifts in monetary policies affect the
parameters (particularly in terms of persistence) of various return
process. specifications can be addressed using the technique proposed
here.

(iii) The dominance of the ARCH specification is quite striking. It
justifies the new interest in testing asset pricing models with ARCH
- estimates in order to account for rational forecasts of market variance
and asset covariances.

The significance of potential profits from better forecasting can be
judged from the annualized average profit of the agents. From table
1(c), the average investment in one straddle (one call and one put on $1
share of the NYSE) was in the order of .6 éents per day. Table 2 shows

the annualized profit from an average daily trade from such average



investment (actually less, because the profit is stated per trade and
agents could be taking offsetting positions). For the best 3
forecasters in Table 2, the total annual profit (from 250 daily sessions
per year) was in the order of 10 cents, with an annualized daily
standard deviation of about 2 cents. Such large profits are obviously
due in part to the even larger losses of the big losers. Still, bear in
mind that none of the algorithms in the experiment has been condemned in
the literature as inadequate, and empirical studies have made extensive
use of these and similar ones. We shall show results from pairwise

trades below.

III.3 Trade at your own price and ranking within option categories

Table 3 reports agent relative performance in a different way. It
reports profitability in the 4 separate option-trade categories:
sell/buy; call/put. The table reports profits from hedged trades at
their own prices: the "sell" transactions are executed at the low
(seller’s) price. The "buy" transactions are executed at the high
(buyer’'s) price. Thus, each transaction between two agents is reported
at a different price (with a different profit) in each trader account.

If the net position of an agent were "long one straddle" (at own
price) each day, then his average profit would be identical to that
reported in Table 1(c). The difference in profits as reported in Table
3 results from the frequency of long and short trades with the various
agents. It is not affected by the difference in prices across agents,
and hence profits cannot be driven by the magnitude of the forecast

differences across agents. Rather, profits will be driven by the
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frequency and timing of above and below-average forecasts. This measure
of profitability is very sensitive to agent bias vis-a-vis other agents.

Average profits from all transactions at own price, as reported in
Table 3, must be worse than those at average of bid-ask price in Table
2. When transacting at "own price," as compared with "average of bid-
ask prices," every transactor loses half of the bid-ask spread.

Another reason why, at own prices, agents profits are less than
those reported in Table 1l(c) is that now, each agent gets to execute
more net transactions on days when his forecast is more extreme relative
to other agents. At "own price,” same-day transaction prices are same
for both, "buy" or "sell," transactions. Hence, long positions exactly
offset short ones. With an extreme forecast, the agent will be on the
same side of most or all transactions. If more often than not, extreme
forecasts ére biased even for the better forecasters, then profits must
be smaller in Table 3 from those in Table 1l(a).

The relative performance at own price, as reported in Table 3, is
quite similar to profit from trading at bid-ask prices, as reported in
Table 2. Moving from average bid-ask to own price, we find a switch in
ranks at the top, where the AVERAGE forecast now ranks 1, and displaces
ARCH(1,000) that ranks 2. The ranking from 3 down to 8 remains
unchanged, and there is only little change farther down the line. This
implies that the rank order of profitability is not mostly driven by the
magnitude of the forecasting error of the big losers, but also by the
number of positions "on the correct side" that agents take. Further
evidence of that will be given in smaller groups and pairwise

comparisons.



The individual transaction categories in Table 3 reveal that the
profit differentials between better and worse performers are larger for
"buy" than for "sell" transactions, but not so for "put" versus "call"
transactions. This suggests that the relative quality of forecasts
across competing algorithms does not differ in up market from down
market dayss. At the same time, it appears that the algorithms are more

distinct in quality when they forecast higher variances, compared with

days when they forecast lower ones.

III.4 The effect of hedging variance-driven put-option trades

In general, the overall portfolio positions of information traders
will be affected by their variance forecasts in two ways: the desired
(short vs. long) position, and the hedge ratio of the position.

Agents with more accurate variance forecast, will also be better
hedged. It is therefore interesting to see how the hedging activity
affects the profitability of trading on variance forecasts.

Table 4 isolates the effect of the hedging activity with put trades
(the effect of hedging straddles is negligible). The results are quite
striking. For unhedged trades, the AVERAGE forecast is a clear winner.
Its average profit is 15% higher than the next (ARCH1000) competitor.
Otherwise, profitability ranking is similar to that in the other tables.
When the hedge activity is incremented into the agent accounts, all 3 of
the ARCH specifications fare better than the AVERAGE (ARCH1000 by 33%).

In general, the better forecasts gained in profitability relative to the

5. We also split the sample by the sign of the NYSE realized daily
return and recalculated relative profits. There was no noticeable
difference between "up" and "down" days.
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inferior ones, pushing down the relative profitability of the AVERAGE
forecast.

Note that the hedging activity, unlike trading in options, is not a
zero sum game. An agent with a variance forecast that is too high will
buy puts at a high price. 1In addition, he will take a larger than
called for, long position in the stock. The entire portfolio will
amount to a net long position in the stock which, for its part, has a
positive expected rate of return6. Results were similar for trades in
call options.

While hedging tended to exaggerate the relative profits from put
trades, it also served its original purpose of reducing risk. The

standard deviation of all profits/losses decreased significantly, but

more so for the successful forecasts with better hedge ratios.

III.5 Transitivity in the relative-profit relation

There is no reason to expect that the relative profit relation
across forecasts is transitive. This issue is investigated in Table 5.

The first 6 columns of Table 5 show the ranking of agents within the
forecasting group, as the least profitable are dropped out. The first
column in Table 5 shows the ranks of all 15 forecasts. When the bottom
three forecasts are dropped, there are some changes in the ranks. Along
- the way, dropping the 3 worst forecasters at a time, slight changes take
place, in the form of switches between forecasts that perform similarly.

The expected change occurs in the rank of the AVERAGE, which

6. The portfolio will still have a less than adequate risk premium,
perhaps even a negative expected excess return because of the
overpricing of the put option.
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deteriorates as the group becomes smaller and inferior forecasts
dropped..

The last two columns in Table 5 show how the best forecast in the
tested group (ARCH 1,000) fares in pairwise trades with all other
forecasts, both when traded at the high and low price. These
comparisons show that ARCH 1,000 is preferred to all other forecasts in
the group. It is apparent that this forecast is downward bias, though.
When trading at the low price, ARCH 1,000 loses to MAXIMUM which is
always on the buy side. At the same time, when trading at the high
price, ARCH1000 still wins against MINIMUM which is always on the sell
side.

The magnitude of the gains of ARCH 1,000 against all other forecasts
is striking. Even against the next best specification on a pairwise
basis, OLS 300, the gain at the average of bid-ask prices would be 6.31

cents per year on an average investment of less than .6 of one cent.

Summary

The paper proposes a technique to compare variance forecast
algorithms using an economic value criterion. It takes advantage of the
role of variance in pricing contingent claims. This is accomplished by
setting up a hypothetical option market, where each agent represents a
competing variance forecast-algorithm.

The technique has been demonstrated with one-day options on the NYSE
portfolio over the period 1966-1985. We show that the economic value to
improved accuracy of variance forecasts, from switching across some

widely used forecast algorithms, is large by any standard.
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For the limited set of specifications tested here, it has been
demonstrated that ARCH specifications appear the most suitable, and that
some restriction on the length of the rolling sample is preferred. We
have shown that variance-forecast accuracy bears significant economic
profits.

Examination of the relative forecast profits with the proposed
technique reveals the economic significance of various statistical
properties of the forecast errors. In particular, it appears that
differences in the variance of the forecast errors may be generating
most of the large economic losses from using inadequate variance
forecasts.

In subsequent research we intend to apply this technique to longer-
term options. There, the issue of the appropriate option-pricing
formula will have to be reevaluated. Testing of the technique will
include the introduction of new assets, such as currency and bond
options. In addition, the importance of adjustment for the Jensen

Inequality problems will be examined.
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Table 1(a)

Summary Statistics of the Daily Forecasts of Standard
Deviation (Annualized Percents)

Algorithm Daily Standard Deviation
Specification Sample Length (n) Average SD Beta
ARCH . 300 11.72 4.09 .01
ARCH 1,000 11.77 4.11 .01
ARCH 1,000-5,000 11.76 4.59 .01
MA 300 12.41 3.17 .01
MA 1,000 12.36 2.28 .00
MA 1,000~5,000 10.93 1.32 .00
QLS 300 12.06 3.11 .01
OLs 1,000 11.97 2.50 .00
oLS 1,000-5,000 10.59 1.24 .00
ARMA 300 9.55 8.58 .01
ARMA 1,000 10.67 6.70 .01
ARMA 1,000-5,000 9.95 7.92 .00

Annualized Sample SD of the NYSE daily rate of return =
12.86




Table 1(b)
Summary Statistics of the Daily Variance Forecast Errors

Specification Mse/av(®)  sp(se)/av(®) petalc)
Sample Length (n)

ARCH 300 .0696 1.9640 .22
ARCH 1,000 .0626 1.9531 .22
ARCH 1,000-5,000 . 0420 1.9631 .22
MA 300 .0097 2.0492 .24
MA 1,000 .0466 2.0934 .24
MA 1,000-5,000 .2682 2.0758 .25
oLSs 300 .0642 2.0469 .24
oLs 1,000 .1045 2.0921 .24
oLSs 1,000-5,000 .3136 2.0760 .25
ARMA 300 .0048 2.6773 .18
ARMA 1,000 .0420 2.3929 .20
ARMA 1,000-5,000 .0235 2.6001 .19

(a) The ratio of squared realized return minus the variance
forecast divided by the sample variance

(b) Standard deviation of the daily forecast error divided
by the sample standard deviation.

(c) The beta of the variance forecasting error, i.e., the
regression coefficient of the variance forecast error
(sgqared realized return less the variance forecast) on the
realized market-index return.



Table 1(c)

Summary Statistics of th? ?imulated Option Prices
and Average Realized Profits!?) from Holding Straddles(P)

Specification Average Option Average Profit SD of
and Sample Length Price (cents) from Straddle Profit
ARCH 300 .2958 .0118 .5152
ARCH 1,000 .2969 .0095 .5124
ARCH 1,000-5,000 .2960 .0114 .5146
MA 300 .3132 -.0229 .5369
MA 1,000 .3118 -.0202 .5514
MA 1,000-5,000 .2759 .0517 .5456
OoLS 300 .3043 -.0051 .5368
oLs 1,000 .3021 -.0007 .5512
OLS 1,000-5,000 .2673 .0688 .5457
ARMA 300 .2411 .1212 .6374
ARMA 1,000 .2693 .0647 .5860
ARMA 1,000~5,000 .2513 .1008 .6201
MAXIMUM .4045 -.2056 .5515
MINIMUM .1623 .2789 5554
AVERAGE .2854 .0326 .5250

(a) The calls and put are on $1 share of the NYSE. Prices
and profits are reported in cents.

(b) The profit from holding a straddle on a $1 share with
and exercise price of $1 is equal to the absolute rate of
return less the price of the straddle that is here equal to
twice the value of the call.



Table 2

Annualized Daily Profits(®) From a1l Trades(b),
Over the Entire Forecasting Period, By Algorithm

Specification Average SD Beta Rank
ARCH 300 9.67 2.01 .014 3
ARCH 1,000 10.75 2.04 .015 1
ARCH 1,000~5,000 9.52 2.46 .012 4
MA 300 - .61 2.50 .005 9
MA 1,000 - 3.96 2.43 .009 11
MA 1,000-5,000 4.61 2.03 -.009 6
OLS 300 3.83 2.10 .000 7
oLs 1,000 .70 2.17 .003 8
oLs 1,000-5,000 6.14 2.46 -.014 5
ARMA 300 -14.16 3.50 -.012 14
ARMA 1,000 - 2.25 2.60 -.003 10
ARMA 1,000-5,000 - 5.68 2.92 -.017 13
MAXTMUM -24.81 3.95 .025 15
MINIMUM - 4.15 3.95 -.029 12
AVERAGE 10.39 1.18 -.001 2

(a) The profits are per-competitor, i.e, the daily profit
from all transactions is divided by k-1 (where k is the
number of agents/algorithms).

(b) Trades are at the average of the bid-ask prices, and
hedged.



Table 3

Annualized Daily Profits (@) From Trades at "Own Price,"

Over the Entire Forecasting Period,

By Type of Transaction and Algorithm

Specification sell(P) se11(P) pyy(c) Buy (¢)

and Length (n) Call Put Call Put Total Rank
ARCH 300 - .87 - 1.90 -10.29 - 6.88 -19.94 3
ARCH 1000 .07 =~ 1.26 =~ 9.65 - 6.89 =-17.73 2
ARCH 1000-5000 - 1.10 - 2.34 =10.52 - 7.60 -21.56 4
MA 300 - 1.72 - 2.46 -=18.11 =14.77 =37.06 8
MA 1000 - 3.82 - 4.99 =-19.24 -16.77 -44.82 10
MA 1000-5000 - 6.15 - 7.57 = 9.04 = 7.21 =29.97 6
OLS 300 - 1.93 - 3.15 =14.46 -13.48 -33.02 7
oLS 1000 = 3.93 - 5.47 =15.47 -13.48 -38.135 9
OLS 1000-5000 =~ 7.87 - 9.52 = 6.92 = 5.53 -29.84 5
ARMA 300 -23.25 -24.06 =-18.27 -15.87 -~-81.45 14
ARMA 1000 -11.54 =12.97 -13.30 =-11.28 -49.09 11
ARMA 1000-5000 -17.32 =-18.96 =13.73 -=12.41 -62.42 12
MAXIMUM .0 .0 -47.18 =-41.37 -88.55 15
MINIMUM =-31.73 =33.01 .0 .0 -64.74 13
AVERAGE - 1.67 =-3.41 - 7.02 - 5.16 =17.26 1

(a) The profits are per-competitor, i.e,
profit is divided by k-1 (where k is the

agents/algorithms).

(b) Trades are at the a

hedged.

(c) Trades are of type at the agent'

and hedged.

the total daily
number of

gent's (seller) lower price, and

s (buyer) higher price,



Table 4

The Effect of Hedging Variance-Driven Put-Option Trades(2)

Spec. Hedged Transactions Unhedged Tranactions

And Sample Profit SD Beta Profit SD Beta

Length (n) (1) (2) (1)-(2)
ARCH 300 10.76 2.66 .07 6.42 3.51 -.06 4.34
ARCH 1,000 11.34 2.76 .08 9.05 3.58 -.08 2.29
ARCH 1,000-5,000 10.23 3.37 .09 8.03 4.30 -.09 2.20
MA 300 .62 3.08 .08 1.59 4.21 -.16 - .97
MA 1,000 - 3.44 2.93 .05 - .66 3.90 -.07 -2.78
MA 1,000-5,000 4.66 2.36 -.04 2.70 3.56 08 1.96
OLS 300 4.49 2.53 03 3.34 3.58 -,05 1.15
OLS 1,000 .77 2.59 -.00 1.29 3.60 03 - .52
OLsS 1,000-5,000 5.83 2.88 -.08 1.96 4.34 18 3.87
ARMA 300 -13.45 4.47 .05 -13.06 5.97 10 - .39
ARMA 1,000 - 2.11 3.40 .04 - 1.82 4.39 04 - .29
ARMA 1,000-5,000 - 6.02 3.68 .03 - 3.89 4.84 07 -2.13

MAXIMUM -21.91 5.74 .30 -12.42 6.84 =-.44 -9.49
MINIMIM - 4.93 4.31 -.13 -11.37 6.83 .44 6.44
AVERAGE 10.26 1.42 .00 8.83 1.92 .01 1.43

(a) Trades are at bid-ask spread. Profits are in cents per
competing agent per year from daily trade of one put on $1
of the NYSE portfolio.



Table 5
Transitivity in Relative Profits Across Forecasts

Av. Annualized Daily(2)

Specification Rank in Groups(b) Profit of ARCH 1,000
and Sample by Size in Pairwise Trades With:
Size 15 12 9 6 3 2

Low Price(®) High Price(d)

ARCH 300 3 2 2 2 3 3.11 3.07
ARCH 1000 1 1 1 1 1 1 0 0
ARCH 5000 4 3 3 3 2 2 1.98 1.74
MA 300 9 6 5 5 4.61 8.66
MA 1000 11 10 8.44 12.17
MA 5000 6 7 7 10.58 5.31
OoLS 300 7 5 4 4 5.39 7.23
OLS 1000 8 9 8 9.57 10.86
OLS 5000 5 8 9 12.22 4.80
ARMA 300 14 27.53 13.57
ARMA 1000 10 11 17.51 10.60
ARMA 5000 13 12 9.72 12.36
MAXIMUM 15 - 1l.16 25.73
MINIMUM 12 34.74 1.07
AVERAGE 2 4 6 6 9.72 6.33

(a) Profits are stated in cents

(b) Transactions are at average of bid-ask prices
(c) Transactions are executed at the seller's price
(d) Transactions are executed at the buyer's price





