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ABSTRACT

Hansen and Jagannathan (HJ, 1991) describe restrictions on the volatility of stochastic discount

factors (SDFs) that price a given set of asset returns. This paper compares the sampling properties of

different versions of HJ bounds that use conditioning information in the form of a given set of lagged

instruments. HJ describe one way to use conditioning information. Their approach is to multiply the

original returns by the lagged variables, and much of the asset pricing literature to date has followed this

ihmultiplicativel. approach. We also study two versions of optimized HJ bounds with conditioning

information. One is from Gallant, Hansen and Tauchen (1990) and the second is based on the

unconditionally-efficient portfolios derived in Ferson and Siegel (2000). We document finite-sample

biases in the HJ bounds, where the biased bounds reject asset-pricing models too often. We provide useful

correction factors for the bias. We also evaluate the asymptotic standard errors for the HJ bounds, from

Hansen, Heaton and Luttmer (1995).
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1. Introduction 

Most asset pricing models can be represented in the form of a fundamental valuation equation: 

 eZRmE ttt =− )|( 1  (1) 

where R is a vector of gross (unity plus rate of) returns on traded assets, Zt−1 is a vector of 

instruments in the public information set at time t−1 and e is a vector of ones. The standard asset 

pricing models in finance specify the form of the random variable, mt, the stochastic discount 

factor (see the review by Ferson, 1995). The elements of the vector mt Rt may be viewed as �risk 

adjusted� gross returns. The returns are risk adjusted by �discounting� them, or multiplying by 

mt, to arrive at the �present value� per dollar invested, equal to one dollar. A stochastic discount 

factor is said to �price� the assets in R if Equation (1) is satisfied. 

Hansen and Jagannathan (HJ, 1991) derive lower bounds for the variance of any stochastic 

discount factor which satisfies the fundamental valuation Equation (1); such bounds may be used as 

a prior diagnostic. If a candidate for mt, corresponding to a particular theory, fails to satisfy the HJ 

bounds, then it can not satisfy the Equation (1).  

Burnside (1994) describes classical hypothesis tests based on the distance between a 

stochastic discount factor (SDF) and the HJ bounds. He evaluates the sampling properties of such 

tests with a Monte Carlo simulation of the consumption-based model from Lucas (1978). Tierens 

(1993) extends the simulation evidence to the Epstein-Zin (1991) model. Both studies find that 

the sample SDF plots outside the sample HJ bounds too often when the model is true. However, 
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both studies limit their attention to cases where there is no conditioning information, so the 

lagged instrument, Zt�1, is a constant.  

This paper focuses on the use of conditioning information in the HJ bounds. For a given 

choice of lagged variables, Zt�1, there are several ways to implement the bounds, but no previous 

study compares the properties of the various approaches. Given Burnside�s (1994) and Tieren�s 

(1993) evidence of biases in models with no conditioning information, an analysis of the 

sampling properties of bounds with conditioning information is important.  

We evaluate the finite-sample properties of HJ bounds with three approaches to conditioning 

information: (1) the multiplicative approach suggested by HJ; (2) the optimal bounds of Gallant, 

Hansen and Tauchen (1990); and (3) the efficient portfolio bounds, based on the unconditionally 

efficient portfolios derived by Ferson and Siegel (2000). We also evaluate asymptotic standard 

errors for the HJ bounds, derived by Hansen, Heaton and Luttmer (HHL, 1995). Our results show 

that the use of conditioning information in the bounds is important, and the way in which 

information is used is important. When sampling error is accounted for, bounds that use no 

conditioning information have little economic content, while bounds that use the conditioning 

information efficiently do have economic content. The optimized bounds have significantly more 

economic content than the multiplicative bounds, once we adjust for sampling errors.  

We document finite-sample biases in HJ bounds with conditioning information. The biases 

imply that the bounds reject asset-pricing models too often. We argue that the magnitudes of the 

biases are economically significant. The bias is the largest in the multiplicative approach and the 

smallest for the efficient portfolio bounds.  
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We provide corrections for the finite-sample bias for each version of the HJ bounds. In 

addition to correcting for bias in the location of the bounds, our adjustment produces bounds 

with smaller standard errors. Our simulations show that the adjustments approximately remove 

the bias in multiplicative and efficient portfolio bounds, but a bias remains in the Gallant, Hansen 

and Tauchen (1990) bounds.  

The paper is organized as follows. In section 2 we review the original HJ bounds. Bounds with 

conditioning information are discussed in Section 3. We present the adjustments for finite sample 

bias in Section 4. Section 5 describes the data that we use in our empirical examples and Section 6 

provides the examples. Section 7 describes a simulation study into the properties of the various 

methods for computing the HJ bounds. Section 8 considers the effects of nonnormality and 

heteroskedasticity in the data. Section 9 evaluates the asymptotic standard errors of HHL. Section 

10 offers a summary and concluding remarks. 

2. The Hansen-Jagannathan Bounds 

We first consider the special case where the conditioning information is a constant, so the 

expectations in (1) are unconditional.  

Assume that the random column n-vector R of the assets� gross returns has mean E(R)=µ and 

covariance matrix Σ/ . When there is no conditioning information a stochastic discount factor is 

defined as any random variable m such that E(mR)=e.  

Proposition 1 (Hansen and Jagannathan, 1991). The stochastic discount factor m with 

minimum variance for its expectation E(m) is given by 
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 [ ] )()()( 1 µ−Σ/′µ−+= − RmEemEm .  (2) 

And the variance of m is  

 [ ] [ ]µ−Σ/′µ−=σ − )()( 12 mEemEem .  (3) 

The proof is provided in Hansen and Jagannathan (1991).  

Hansen and Jagannathan (1991) show that their bound is related to the maximum Sharpe 

ratio that can be obtained by a portfolio of the assets under consideration. The Sharpe ratio is 

defined as the ratio of the expected excess return to the standard deviation of the portfolio return. 

If the vector of assets� expected excess returns is µ − −E m e( ) 1  and /Σ  is the covariance matrix, 

the square of the maximum Sharpe ratio is µ µ− ′ / −− − −E m e E m e( ) ( )1 1 1Σ . Thus, from Equation 

(3) the lower bound on the variance of stochastic discount factors is the maximum squared 

Sharpe ratio multiplied by E m( ) 2 .  

3. Bounds with Conditioning Information 

Recent papers refine and extend the HJ bounds in several directions.2 This paper focuses on 

the use of given lagged variables, tZ , to refine the bounds. To understand how such conditioning 

                                                 

2 HJ (1991) show how restricting 0m >  can refine the bounds. Snow (1991) considers 
selected higher moments of the returns distribution. Bansal and Lehmann (1997) derive 
restrictions on E[ln(m)] that involve all higher moments of m and reduce to the HJ bounds if 
returns are lognormally distributed. Balduzzi and Kallal (1997) incorporate the implications for 
the risk premium on an economic variable. Cochrane and Hansen (1992) state restrictions in 
terms of the correlation between the stochastic discount factor and returns, while Cochrane and 
Saa�-Requejo (1996) bound the Sharpe ratios of assets� pricing errors. Hansen and Jagannathan 
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information can refine the HJ bounds, let 0,t t tr R R e≡ − !  be the n-vector of excess returns, where 

0R  is the riskless asset. We switch to excess returns in this section for intuition; in practice we 

use gross returns to avoid the loss of information implied by excess returns. For excess returns, 

Equation (1) says 

 ( )1 0t t tE m r Z − = , (4) 

which is equivalent to:  

 1{[ ] ( )} 0t t tE m r f Z − =   for all functions f(�), (5) 

where the unconditional expectation is assumed to exist. In other words, if we consider ( )1t tr f Z −  

to represent the excess returns of �dynamic trading strategies,� then the presence of the 

conditioning information 1tZ −  is essentially equivalent to the condition that E(mtrt) = 0 should 

hold, not only for the original excess returns rt, but also for the dynamic trading strategies. The 

larger is the set of strategies for which the condition is required to hold, the smaller is the set of 

mt�s that can satisfy the condition and the tighter are the bounds.  

When there is no conditioning information, ( )f !  is a constant and the SDF must price only the 

original excess returns. HJ observe that Equation (4) implies E(mt rt ⊗ Zt−1)=0, choosing ( )f !  to be 

the function I ⊗ Zt�1. This �multiplicative� approach has become a standard in the asset pricing 

literature.  

                                                                                                                                                             

(1996) develop measures of distance between candidate SDFs and the m that would price the 
assets. Hansen, Heaton and Luttmer (1995) develop asymptotic distribution theory for 
specification errors on stochastic discount factors, where the HJ bounds are a special case.  
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HJ�s multiplicative approach is not an efficient use of the lagged instruments. Ferson and 

Siegel (2000) derive unconditionally-efficient portfolios that have the maximum (unconditional) 

Sharpe ratio that can be obtained from a given set of returns, with portfolio weights that may 

depend on the conditioning information. Since the lower bound on SDFs is tighter when the 

maximum Sharpe ratio is higher, such portfolios represent an efficient use of the conditioning 

information. We use these results to construct efficient portfolio bounds, essentially choosing 

( )f !  to be the set of all portfolio weight functions. The portfolio weight functions are restricted 

to sum to 1. Ferson and Siegel (2000) observe that the efficient portfolio weights are robust to 

extreme signals about asset returns, which suggests that estimates of the efficient portfolio 

bounds may have attractive sample properties.  

Gallant, Hansen and Tauchen (GHT, 1990) provide a greatest lower bound from (1), which 

implies that (5) holds for all functions ( )f ! . Bekaert and Liu (1999) show how to compute an 

optimal bound in a multiplicative framework, where the bound is shown to reach the GHT bound 

when the conditional moments are correctly specified. They point out that the GHT bounds are 

invalidated when the conditional moments involved in their computation are incorrectly 

specified.  

In summary, the versions of HJ bounds that we study may be understood through Equation 

(5). First are the multiplicative bounds of Hansen and Jagannathan (1991), who choose f(�) to be 

an identity function. Second are the efficient portfolio bounds, where f(�) is a vector of portfolio 

weights that may depend on Zt and sum to 1. Finally, the optimal bounds of Gallant, Hansen and 

Tauchen (1990) require Equation (5) to hold for all functions f(�). Note that we take the 

instruments as given; thus, we do not study how to choose Zt-1.  
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3.1. Efficient Portfolio Bounds 

Ferson and Siegel (2000) derive portfolios that use the given conditioning information, Z, to 

achieve unconditional mean-variance efficiency. These portfolios are used in our efficient-

portfolio (UE) bounds. Let ( )′== )(),...,()( 1 ZxZxZxx n  denote the shares invested in each of the 

n assets, with the constraint that x′e=1. The observed gross return on the portfolio, RZxRP )(′= , 

has expectation and variance (using iterated expectations given Z to eliminate the unexpected 

returns) as follows: 

 [ ( ) ( )]P E x Z Z′µ = µ   

 [ ]{ }2 2( ) ( ) ( ) ( ) ( )P PE x Z Z Z Z x Zε′ ′σ = µ µ + Σ − µ/ , (6) 

where ( )Zµ  denotes the conditional mean vector of the n returns, given Z, and ( )ZεΣ/  is the 

conditional covariance matrix. Define the following constants: 

 1
1E

e e
 α =  ′Λ 

 (7) 

 2
( )e ZE

e e
′Λµ α =  ′Λ 

 (8) 

 3 ( ) ( )eeE Z Z
e e

′Λ Λ  ′α = µ Λ − µ  ′Λ  
, (9) 

where  

 ( ) [ ]1 1( ) | ( ) ( ) ( )Z E RR Z Z Z Z
− −

ε′ ′Λ = Λ = = µ µ + Σ  /  . (10) 
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Proposition 2 (Ferson and Siegel 2000). Given unconditional expected return µP and n risky 

assets, the portfolio having minimum unconditional variance is determined by the optimal 

weights: 

 







Λ′
Λ′Λ−Λµ′

α
α−µ+

Λ′
Λ′=′

ee
eeZ

ee
eZx P )()(

3

2  (11) 

The variance of the portfolio defined by x(Z) is  

 σ α
α
α

α
α

µ
α

α
µP P P

2
1

2
2

3

2

3

3

3

22 1
= +








 − +

−
 (12) 

The proof is given by Ferson and Siegel (2000).  

To implement the UE bounds we must specify the conditional mean and variance functions, 

µ(Z) and /Σε ( )Z . The efficient set constants α1, α2, and α3 are then estimated using sample 

averages. If these moments are incorrectly specified the portfolio weight given by (11) will no 

longer be efficient, but it still describes a valid dynamic portfolio strategy. The mean variance 

boundary and Sharpe ratio constructed from the strategy provides a valid but inefficient bound on 

stochastic discount factors in this case.  

Fixed-weight combinations of any two portfolios on an unconditional mean-standard-

deviation boundary can describe the entire boundary (Hansen and Richard, 1987). To form the 

UE bounds we pick two �arbitrary� portfolios. One is the global minimum-variance portfolio, 

which has the following mean and variance: 

 µ α α* / ( )= −2 31 . (13) 

 ( )σ α α α* / ( )
2

1 2
2

31= − −  (14) 
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This follows by choosing Pµ  to minimize the quadratic function for σ P
2 , as given in (12). The 

second portfolio is chosen by setting µP equal to an arbitrary target return. For a given {µP, σP} 

hyperbola constructed from the two unconditionally efficient portfolio returns, the corresponding 

HJ bound can be obtained using Equation (3). Here, /Σ  is a 2×2 matrix and µ is a two-vector of 

the unconditional means of the two unconditionally efficient portfolios.  

 

3.2. Optimal Bounds 

This section provides a convenient, closed-form expression for the optimal HJ bounds that 

were originally derived by Gallant, Hansen and Tauchen (1990). First, define the following 

conditional-efficient-set constants, analogous to the efficient-set constants used in traditional 

mean-variance analysis (see, e.g., Ingersoll, 1987): 

 

α

β µ

γ µ µ

ε

ε

ε

( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

Z e Z e
Z e Z Z
Z Z Z Z

= ′ /

= ′ /

= ′ /

−

−

−

Σ

Σ

Σ

1

1

1

 (15) 

Proposition 3: Optimal Hansen-Jagannathan Bounds (Gallant, Hansen and Tauchen, 

1990). The stochastic discount factor m with minimum variance for its expectation E(m) that 

satisfies ( )|E mR Z e=  is given by 

 [ ] [ ]m Z e Z Z Z R Z= + −
′

/ −−ζ ζ µ µε( ) ( ) ( ) ( ) ( )Σ 1   (16) 

where ζ(Z), the conditional mean of m given Z, is defined as 
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 ζ
β

γ γ

β
γ

γ

( ) ( | )
( )

( ) ( )

( )
( )

( )

( )

Z E m Z
Z

Z Z

E m E
Z

Z

E
Z

= =
+

+
+

−
+









+




























1
1

1
1
1

1

  (17) 

and the unconditional variance of m is  

 [ ] [ ]σ

β
γ

γ

α
β

γm

E m E
Z

Z

E
Z

E Z E
Z
Z

E m2

2

2
21

1
1

1
=

−
+



















+








+ −
+









 −

( )
( )

( )

( )

( )
( )
( )

( )   (18) 

A proof of Proposition (3) is available by request to the authors. The result may be verified 

by computing ( )|E mR Z e′ ′=  using Equation (16) for m, which holds for any definition of 

( )Zζ . Then, note that any other stochastic discount factor with the same unconditional mean as 

the m given by (16) can be expressed as m + ε  where ( )( ) 0E E mε = ε = , and thus its variance is 

larger than the variance of m.  

Equation (18) may be used directly to compute the optimal HJ bounds. As with the UE 

bound, it is necessary to specify the conditional mean function µ(Z) and the conditional variance 

function )(ZεΣ/ . The four unconditional expectations that appear in Equation (18) may be 

estimated from the corresponding sample means, independent of the value of E(m). As 

emphasized by Bekaert and Liu (1999), if the moments are incorrectly specified the result may 

not be a valid bound on the variance of SDFs.  

3.3. Discussion 

The optimal bounds provide the greatest lower bound on stochastic discount factors. The UE 

bounds incorporate an additional restriction to functions of the conditioning information that are 
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portfolio weights, which sum to 1.0 at each date. This reduces the flexibility of the UE bounds to 

exploit the conditioning information, and thus they do not attain the greatest lower bound. 

Intuitively, suppose there was only one asset. Then the restricted weight could not respond at all 

to the conditioning information.  

The additional restriction in the UE bounds may be understood in terms of the duality 

between Hansen-Jagannathan bounds and the usual mean-standard deviation diagram for returns. 

For a given value of E m( ) , the value of σm  on the HJ boundary is determined by the maximum 

squared Sharpe ratio when the implicit risk-free rate is E m( ) − −1 1 . In the UE bounds the Sharpe 

ratio for a given E(m) is achieved by a fixed-weight combination of the two unconditionally 

efficient portfolios, weighted according to the fixed value of E m( ) . In the optimal bounds we 

choose E m Z( | )  for each realization of Z subject only to the limitation that E[E(m|Z)] is the fixed 

E(m). This allows the minimization to obtain the unrestricted optimal bound.3  

While the UE bounds do not attain the greatest lower bound, they are nevertheless 

empirically interesting in view of two forms of �robustness.� The first, as emphasized by Bekaert 

                                                 

3 The difference between the two bounds may also be understood using the characterization 
of mean-variance frontiers from Hansen and Richard (1987). If a portfolio minimizes 
unconditional variance for a given mean, in the set of all returns that can be formed by trading 
with Z, it is unconditionally efficient (UE). Hansen and Richard show such UE portfolios are also 
conditionally mean-variance efficient (CE) for each realization of Z. Both the optimal and the UE 
bounds are formed from CE portfolios. Hansen and Richard show that any CE portfolio return is 
w R w Rt t t t1 1 2 11, ,( )+ ++ − , where R t1 1, +  and R t2 1, +  are two UE returns which are also CE. For a given 
realization of Zt, each point on the conditional mean-variance boundary implies a corresponding 
risk-free rate ( ) 1

| 1tE m Z
−

  −   and a weight, wt. In contrast, all UE portfolio returns can be 
formed as wR w Rt t1 1 2 11, ,( )+ ++ − , where w does not depend on Zt. In the UE bounds we fix w to 

correspond to E m( ) − −1 1 .  
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and Liu (1999) is that the portfolio-based bounds remain valid when the conditional moments are 

incorrectly specified. Second, Ferson and Siegel (2000) show that the UE portfolio weights, 

unlike traditional mean-variance optimal weights, are �conservative,� in the sense that they avoid 

extreme positions in risky assets when the conditional moments are extreme. The UE portfolio 

weight, as a function of a conditional expected return, appears similar to the redescending 

influence curves used in robust statistics. Thus, the UE weights should be robust to outlier 

observations. These features may translate into robust sampling properties of the UE bounds.  

4. Bias Correction 

Consider first the case of no conditioning information, as in the fixed bounds. A simple bias-

adjusted estimator assumes normally-distributed returns, and is based on standard results for 

exact finite sample distributions. Assume that T independent observations are made on the asset 

vector R. When the sample average �µ  and the sample covariance matrix S (dividing by T) are 

used, we have the maximum likelihood estimate of the variance bound: 

 [ ] [ ]2 1� � �( ) ( )m e E m S e E m−′σ = − µ − µ .  (19) 

Assuming normality, the quadratic form in (19) has a noncentral chi-squared distribution, directly 

related to the distribution of a maximum squared Sharpe ratio, studied by Jobson and Korkie 

(1980). Using this distribution (also derived as a special case of Shanken 1982 and 1987, k=0) we 

find the mean of $σm
2 . The estimated variance is biased upward (i.e., the true variance is 

overestimated). We solve for a transformation of $σm
2  that is unbiased.  
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Proposition 4. If asset returns are multivariate normal, then the expectation of the estimated 

variance of m in Equation (19) is given by  

 ( ) [ ]22 2� ( )
2 2m m

n TE E m
T n T n

σ = + σ
− − − −

 (20) 

and an unbiased estimator of the variance is given by 

 [ ]22 2
, 

2� �1 ( )m adjusted m
n n E m

T T
+ σ = − σ − 

 
, (21) 

in the sense that ( ) 22
,� madjustedmE σ=σ .  

This expression reveals the importance of the number of assets, n, relative to the number of 

time-series observations, T, for the determination of the bias. Approximately, the adjustment 

shrinks the estimated variance towards the value [ ]2( )E m− , shrinking by the fraction n/T.  

While the finite-sample adjustment in Equation (21) is developed for the case of no 

conditioning information, it may be applied to the multiplicative bounds of HJ. To see this, note 

that Equation (1) implies: 

 ( )1 1 1| 0t t t t tE m R Z e Z Z− − −⊗ − ⊗ = . (22) 

Dividing the components of 1tZ −  by their unconditional means and then taking the unconditional 

expectation implies: 

 ( )1t t tE m R Z e−⊗ =% , (23) 

where ( )  1 1 1/ E.t t tZ Z Z− − −=%  and /.  denotes element-by-element division. Treating 1t tR Z −⊗ %  as 

the expanded set of �returns,� the multiplicative bounds are computed in the same fashion as the 
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fixed bounds. In the finite sample adjustment, n is taken to be the number of original assets times 

one plus the number of lagged instruments. The adjustment in this case is approximate, as it 

ignores the uncertainty due to the fact that ( )E Z  must be estimated by the sample means. In our 

simulations we account for this uncertainty.  

Building on Proposition 4, we provide approximate finite-sample bias corrections for the 

optimal and UE bounds.  

Proposition 5. If asset returns are jointly normal, conditional on Z, and the maximum 

likelihood estimators for ( )|E R Z  and ( )ZεΣ/  are used to form 2
*� mσ  in the UE or optimal 

bounds, then an approximate bias-adjusted estimator is: 

 ( ) ( )22 2
*, *

2 2� � |m adjusted m
T n n E m Var E m Z

T T T
− − σ = σ − +         

 (24) 

Proof:  Both the UE and optimal bounds may be represented as the variance of a particular 

SDF, *m , which may be expressed as 

 ( ) ( ) ( ) ( ) ( )* | |m E m Z e E m Z Z Z R Zε
′   = + − µ Σ − µ/    . (25) 

The optimal and UE bounds differ in the specification of the ( )|E m Z  function. Computing the 

variance of (25), 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2 1* | | |m Var E m Z E e E m Z Z Z e E m Z Z−
ε

 ′     σ = + − µ Σ − µ/       
. (26) 

For an estimated bound we replace ( )Zµ  and ( )1 Z−
εΣ/  with their MLE estimates, which results in 

2
*� mσ . Assuming conditional joint normality of the returns, given Z, we evaluate the right-hand 
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term of Equation (26). Using iterated expectations, we first evaluate the conditional expectation 

given Z of the second term, taking ( )|E m Z  as given and using Proposition 4. Then, taking the 

unconditional expectation of this result we arrive at the approximation 

 ( ) ( ) ( ) ( )22 2
*

2� * |
2 2 2m

T nE m E m Var E m Z
T n T n T n

−     σ ≅ σ + +           − − − − − −     
. (27) 

The approximation arises because we assume that the parameters in the ( )|E m Z  function are at 

their probability limits in (27). Rearranging (27) as before we obtain the adjusted estimator.  

Proposition 5 differs from Proposition 4 by the additional term, ( ) ( )2 / |T Var E m Z   . 

Consistent estimates of this term for the optimal and UE bounds are obtained as the sample 

variances of the relevant expressions, evaluated at the MLE parameter estimates. For the optimal 

bounds, ( )|E m Z  is specified in Equation (17). For the UE bounds, it can be shown that 

 ( ) ( ) ( )2

2

|1
| UEP

UE
P P

Var E R ZE m
Var E m Z

 − µ   =     σ σ 
, (28) 

where UER  is the portfolio formed with the weights given in (11), where Pµ  and 2
Pσ  are chosen 

to correspond to the portfolio located at the point on the UE portfolio frontier tangent to a line 

drawn from ( ) 1
E m

−
    on the expected gross return axis.4  

                                                 

4 These values may be found by selecting Pµ  to maximize ( ){ }21 2/P PE m
−

µ − σ   , where 2
Pσ  

is given by Equation (12). 



 -16-   

 

5. Data 

We use three different data sets in our empirical illustrations. An annual and a quarterly data 

set are constructed for comparability with Hansen and Jagannathan (1991). A monthly data set 

provides an example representative of more recent asset-pricing studies. Summary statistics are 

provided in Tables 1 and 2.  

The annual data set used by Hansen and Jagannathan consists of real returns on a value-

weighted stock index and short term real interest rates, from Shiller (1982). The annual data cover 

the 1891-1985 period. The lagged instruments consist of a constant and the first lagged values of 

the two real returns.5  

The quarterly returns data also follow Hansen and Jagannathan, and they are the real, 3-month 

holding period returns on Treasury bills with initial maturities of 3, 6, 9, and 12 months; a total of 

four asset return series. The returns are computed from the yields reported in the Center for 

Research in Security Prices (CRSP) Fama files for original-issue twelve-month bills. Real returns 

are the nominal returns deflated by the component of the CPI relating to nondurable goods, as in 

Ferson and Harvey (1992). The quarterly data cover the period from the third quarter of 1964 

through the fourth quarter of 1987, which is the same as HJ. The lagged instruments, following HJ, 

consist of a constant and the first lagged values of the real returns and real, per capita consumption 

growth, which we obtain from the Commerce Department via Citibase.  

Our monthly data set includes the total returns (price change plus dividends) on twenty five 

industry portfolios from Harvey and Kirby (1996), measured for the period February, 1963 to 

                                                 

5 These data are published in Shiller (1989), Chapter 26, Tables 26.1-26.2. 
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December, 1994.6 The portfolios are created by grouping individual common stocks according to 

their SIC codes and forming value-weighted averages (based on beginning-of-month values) of the 

total returns within each group of firms. Table 2 shows the industry classifications for the 25 

portfolios and their summary statistics. The instruments are: (1) the lagged value of a one-month 

Treasury bill yield, (2) the lagged dividend yield of the Standard and Poors 500 (S&P500) index.  

6. Empirical Results 

In this section we present sample versions of the various HJ bounds. The �fixed� bounds use 

no conditioning information, and so are determined by a fixed-weight combination of the basic 

asset returns, as in Equation (2). We compute maximum likelihood estimates of the bounds using 

the sample mean vector and covariance matrix. Under more general assumptions these are 

consistent method-of-moment estimates.  

To form the efficient portfolio and optimal bounds we must specify the conditional mean 

function µ(Z) and the conditional variance function /Σε ( )Z . Initially, we simply regress the 

returns on a constant and the lagged instruments. The fitted values of the regression are taken as 

µ(Z) and the sample covariance matrix of the residuals is our estimate of the (fixed) conditional 

covariance matrix. We estimate the portfolio constants 1α , 2α , and 3α , replacing the 

unconditional expectations by the corresponding sample averages. For the optimal bounds, we 

use Equation (18) to define the minimum variance boundary, where the unconditional 

expectations are estimated by their corresponding sample means. For the UE bounds, we use 

                                                 

6 We are grateful to Campbell Harvey for providing the data. 
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Equation (11) to form two portfolios. One sets the target mean Pµ  equal to the grand mean of the 

asset returns, the other is the global minimum variance portfolio, with target mean given by 

Equation (13).  

6.1. Economic Significance 

Figure 1 illustrates the results of estimating the various bounds using the monthly data set 

over the July 1963 - December 1994 period with no finite sample adjustments. A valid stochastic 

discount factor must lie above the bounds, �in the cup.� The bounds using conditioning 

information plot above the fixed bounds, illustrating that conditioning information allows one to 

obtain a seemingly-more-powerful diagnostic, ruling out more stochastic discount factors. Also, 

there are substantial differences between the various bounds, which suggests that the choice of 

which bound to use is a substantive decision.  
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Figure 1. Unadjusted HJ bounds from monthly data, July 1963 - December 1994 
with the estimated conditional model (�FFC�) and unconditional model (�FFU�).  
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A striking feature of Figure 1 is that the sample multiplicative bound plots above the sample 

optimal bound. The theory of Section 3 implies that this cannot occur, except as a result of 

misspecification or finite sample error. Thus, the figure motivates a study of the sampling 

properties of the bounds.  

Figure 2 applies the finite sample adjustments to the bounds. Now the ordering of the 

various bounds appears reasonable, with the optimal bounds plotting above. The effect of the 

finite-sample bias adjustment to the multiplicative bounds appears substantial. This suggests that 

there may be substantial finite-sample biases.  
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Figure 2. Bias-adjusted HJ bounds from monthly data, July 1963 - December 
1994 with the estimated conditional model (�FFC�) and unconditional model 
(�FFU�).  

 

The differences between the various bounds, and the effects of the finite-sample adjustment 

appear substantial, but it is important to address the economic significance of these effects. Using 

an example from the Lucas (1978) consumption-based model, we find that the consumption SDF is 



 -20-   

 

so far outside the bounds that our results would not change inferences about the validity of that 

model. A simple model of habit persistence, like the one used by HJ, produces a similar result. 

However, when the SDFs of interest are closer to the bounds the results will be economically 

significant. There are reasons to think that many interesting SDFs are close to the bounds. 

Intuitively, the boundary of the admissible region for SDFs is formed from a combination of asset 

returns. Many SDFs in the literature are also a combination of asset returns. To illustrate, we 

consider the example of the �three-factor model� of Fama and French (1993, 1996). 

Fama and French advocate a linear model in which three return factors describe the SDF. The 

factors are a market portfolio return, the difference between the returns of a small-stock and a large-

stock portfolio (SMB) and the difference between a high and a low book-to-market portfolio 

(HML). While there is some controversy over the justification for this model it has been popular in 

recent studies. 

A linear beta pricing model implies an SDF in which mt in Equation (1) is a linear function of 

the factors (see Dybvig and Ingersoll, 1982, or Ferson and Jagannathan, 1996): mt = a(z) + B(z)' 

Ft, where Ft is the vector of factors. Farnsworth et al (2000) estimate SDF formulations of the 

Fama-French model using a monthly data set for July, 1963 - December 1994, only five months 

shorter than our sample period, and we use their results here. Following Cochrane (1996) they 

assume that the coefficients a(z) and B(z) are linear functions of the lagged instruments, a 

Treasury bill and a dividend yield. In this case we have a conditional version of the model, which 

we denote by �FFC� in the graphs. When a(z) and B(z) are constants, so that no lagged 

instruments are used in forming the SDF, we have an unconditional model (�FFU�). 
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In Figure 1, with no bias adjustments, the Fama-French SDFs plot close to the fixed bounds 

but below the bounds with conditioning information. While no standard errors are shown, if we 

superimpose the sampling variation from the subsequent tables, it is likely that the model would 

be rejected using the biased bounds with conditioning information.  

In Figure 2, with the bias adjustments applied, the SDFs are the same as in the previous 

figure.7 The SDFs now plot close to the multiplicative bounds. After bias adjustment one would 

not reject the Fama-French SDF using the multiplicative bounds, as the SDFs are within two 

standard errors of the adjusted bounds. This reverses the conclusion from Figure 1, illustrating 

that the biases in the bounds are economically significant. Unlike the multiplicative bounds, 

Figure 2 suggests that the optimal bounds would be likely to reject the Fama-French SDF. The 

point FFC lies 2.02 standard errors below the optimal bound, while FFU is 4.15 standard errors 

below.8 Thus, the choice between bounds with conditioning information is also a matter of 

economic significance.  

                                                 

7 For some values of E(m) the adjusted 2� mσ  can be less than zero, and this occurs in Figure 2 
for the fixed bounds. As we describe below, the fixed bounds have little economic content when 
sampling variation is accounted for, which confirms the importance of conditioning information. 
The local concavity of the fixed-bound curve for values of mσ�  near zero is explained by the fact 
that the square root function has infinite slope at zero.  

8 These examples ignore the sampling error in the location of the FFC and FFU points, and 
should therefore be only taken as illustrative. See Burnside (1994) and Tierens (1993) for 
examples that account for only this source of sampling error in specific SDF models.  
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7. Simulation Results 

We conduct a simulation study of the sampling properties of the various bounds. The 

experiments accommodate data that are dependent over time. For example, the monthly dividend 

yields and lagged interest rates have first order sample autocorrelations in excess of 0.9, while 

asset returns have smaller autocorrelations as may be seen in Tables 1 and 2. We focus on 

capturing the autocorrelation of the lagged instruments. Using these instruments to model the 

conditional means of the asset returns, the simulated asset returns inherit mild serial dependence.  

We estimate a first-order VAR for the lagged instruments, and we use the estimated 

coefficient matrix as parameters of the model. The parameters for the conditional means of the 

asset returns are estimated by regressions on the lagged instruments. The residuals from the 

VAR, ZU , and the deviations of the asset returns from their conditional means, rU , represent the 

shocks in the model. We concatenate these as ( ),r ZU U  and compute the sample covariance 

matrix as a parameter of the simulation. We generate the artificial shocks in the simulations by 

drawing data with this covariance matrix, either from a normal distribution or by resampling 

from the actual residuals. We build up the time series of the simulated instruments recursively 

using the VAR coefficients and the simulated ZU  shocks. We find that the artificial instruments 

have autocorrelations very similar to the sample data. The artificial returns are formed as the 

conditional means, evaluated at the values of the artificial instruments, plus an independent draw 

from the rU  distribution. (In a later section we explore the robustness of the results to more general 

data generating schemes.) 
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In each simulation trial the bounds are estimated from a sample of artificial data, in the same 

way that we estimate the bounds in the previous section. The estimated HJ curve may be described 

in any given example by the values of the three coefficients, a, b, and c, as 

 [ ] [ ]22� ( ) ( ) 1 ( ) 1m a b E m c E mσ = + − + − . (29) 

Thus, for each simulation trial we record the values of a, b, and c. We use 5,000 Monte Carlo 

trials for each data set. For a given ( )E m  the values of a, b, and c, that summarize a simulation 

trial, determine a value of 2� mσ . The 5,000 values of 2� mσ , one for each simulation trial, are used to 

produce the summary statistics shown in the tables. The number of observations in each of the 

artificial samples is equal to that of an actual data set. For example, in the quarterly data set each 

of the 5,000 trials uses an artificial sample of 93 quarters, representing the four assets and 

instruments. We conduct simulations corresponding to the annual, quarterly and monthly data 

sets. Subsequent tables summarize the results of the simulations at ( ) 1E m = . (Graphical 

summaries showing a range of ( )E m  values are available by request to the authors).  

7.1. A Benchmark: The �True� HJ Bounds 

Since we do not wish to tie our results to a particular model economy (and corresponding SDF) 

we use large-scale simulation to find the benchmarks against which the sampling properties are 

measured. In order to determine the �true� bounds, we form artificial samples just like in the 

simulations, but with one million observations. Values of the true bounds are the sample values in 

the artificial sample with 1,000,000 observations. (Averaging across 100 simulations with 10,000 

observations produces similar results.) 
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The true variance bounds are shown in Table 3, where the simulations use normally distributed 

data. A comparison across the three panels shows that the bounds are the highest in the quarterly 

data set. This reflects the high Sharpe ratios that appear in samples of Treasury bill returns, 

consistent with HJ (1991). 

Comparing the different bounds for the same data set confirms that, abstracting from sampling 

error, the different bounds can produce vastly different results. For example, in monthly data the 

multiplicative bound for 2
mσ  is about three times the fixed bound. The optimal bound is almost four 

times the fixed bound, suggesting that the way in which conditioning information is used also 

makes a difference. The differences are also large in the quarterly data set. In the annual data, the 

differences between the various bounds are relatively small.  

7.2. The Location of the Sample Bounds 

Table 3 reports the mean of the estimated bounds, 2� mσ , taken across the 5,000 simulation 

trials. Comparing these values with the true bounds shows the expected finite sample bias. All of 

the bounds display an upward bias; i.e., the sample bounds are higher than the true bounds. Thus, 

some valid stochastic discount factors are expected to plot outside of the sample HJ bounds. The 

upward bias of the fixed bounds is consistent with the previous studies of Burnside (1994) and 

Tierens (1993). Table 3 extends the evidence to the bounds with conditioning information. The 

expected sample bounds range from 113% to 200% of the true bounds on 2
mσ .  

Consistent with Propositions 4 and 5, the finite sample biases are more extreme where the 

number of time series observations is small relative to the number of assets. For example the annual 

data include 95 observations on 2 assets, and the ratio of estimated to true bounds is 113% to 129%. 

The monthly data include 383 observations on 25 assets, and the ratio of estimated to true bounds is 
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159% to 200%. The quarterly data presents an intermediate case. In each data set the multiplicative 

bounds have the largest bias; in the quarterly and monthly data the differences are substantial. The 

ratio of the estimated to the true bound is slightly closer to 1.0 for the UE than for the optimal 

bound.  

The relation of the Hansen-Jagannathan bounds to the maximum squared Sharpe ratio provides 

intuition for the extreme sampling bias of the multiplicative bounds, compared with the other 

bounds. It is well known from the classical mean-variance analysis that portfolios based on the 

usual MLE estimates of the mean returns and their covariance, tend to be biased in favor of 

overstated Sharpe ratios. This intuition is reflected in Propositions 4 and 5. The bias is greater, for a 

given sample size T, when more assets are included in the portfolio.9 Since the multiplicative 

bounds create additional �assets,� the maximum Sharpe ratio and, thus, the bound on 2
mσ , is likely 

to be more upwardly biased. The smaller finite-sample bias of the UE bound, in contrast, reflects 

the robustness of UE portfolios, discussed by Ferson and Siegel (2000).  

7.3. Bias Adjustment 

Table 3 reports the averages of the bounds, adjusted for finite sample bias, taken across the 

5,000 simulation trials (Adj. Mean). A comparison with the true bounds and the unadjusted means 

shows the effectiveness of the adjustment to the location of the bounds. The expected adjusted 

bounds range from 90% to 131% of the true bounds. The range is tighter in the annual data, where 

                                                 

9 See Frost and Savarino (1988), MacKinlay (1987), and Green and Hollifield (1992) for 
illustrations.  
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all adjusted bounds are within 10%, and the widest in the monthly data, where the adjustment factor 

is larger.  

The adjustments provide a dramatic improvement in quarterly and monthly data, especially for 

the fixed and multiplicative bounds. For example the adjustment reduces the quarterly 

multiplicative bound bias from 71% to 8.5%, and the monthly multiplicative bound bias from 

100% to 3%− . It performs even better on the fixed bounds. Since we draw normally distributed 

data in these simulations, the adjustment to the fixed bound would be exact if the data were 

serially independent. In the multiplicative bound the products of normals imply nonnormal 

dynamic strategy returns, which reduces the accuracy of the adjustment. (We consider nonnormal 

and heteroskedastic artificial data below.)  

The adjustments for finite sample bias also provide significant improvements in the location of 

the optimal and UE bounds. Before adjustment, the biases of these bounds range from 28% to 59% 

in the quarterly and monthly data. After adjustment the biases are roughly halved.  

7.4. The Precision of the Bounds 

The value of the bounds as a diagnostic tool also depends not only on their location, but also 

on their precision. The simulations provide information on the sampling variation of the bounds. 

Table 3 reports the standard deviations of the bounds, evaluated at E(m)=1, with and without 

adjustment, taken across the 5,000 simulation trials. Recall that the adjustment approximately 

shrinks the uncentered second moment of the stochastic discount factor, multiplying it by a factor 

less than 1.0. This results in smaller standard errors. Thus, our finite sample adjustments provide 

another benefit, in addition to reducing the bias in the location of the bounds. They also produce 

bounds with greater precision. 
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Comparing the various bounds for a given data set, the fixed bounds have the smallest 

standard deviations. Of course, they also have the smallest average values. Among the bounds 

with conditioning information, the UE bounds always have the smallest standard deviations. 

Thus one appeal of the UE bounds is their relative precision.  

Table 3 shows that none of the bounds have much economic content in the annual data set. 

Negative values of 2
mσ  lie within two standard deviations of the true version of each bound. In 

the quarterly and annual data sets the bounds do place substantive restrictions on 2
mσ . In these 

data sets the bounds with conditioning information are much more restrictive of SDF variances 

than the fixed bounds. In particular, the fixed bound in monthly data has virtually no economic 

content, as the true bound is within two standard errors of zero. This result was also illustrated in 

Figure 2. 

The efficient portfolio and optimal bounds are more restrictive of SDF variances than the 

multiplicative bounds. For example, in the monthly data set a value of 2
mσ  = 0.128 is two 

standard deviations below the true multiplicative bound. For the efficient portfolio bound the 

corresponding value is 0.148, while for the optimal bound it is 0.173. In the quarterly sample the 

UE and optimal bounds have even larger advantages. Thus, when we consider both the location 

and the precision of the bounds, the efficient use of the conditioning information produces 

markedly tighter bounds, relative to the standard multiplicative approach. This reinforces the 

impression from Figure 2 that it is important to efficiently use the conditioning information in 

variance bounds.  
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8. Effects of Nonnormality and Heteroskedasticity 

The previous simulations use strong assumptions about the data generating process. These 

include (1) normality and, consistent with normality, (2) homoskedasticity. There is evidence in 

the literature inconsistent with each of these assumptions. In this section we explore the 

robustness of the results to the use of alternative assumptions.  

We conduct two experiments in which we generalize the data generating process by 

progressively relaxing the assumptions (1) and (2). This provides information on how robust our 

previous results are to alternative data generating schemes. For each experiment we conduct a 

new large scale simulation to define a �true� bound, as the true bound may depend on the 

specification of the moments in the data generating process.  

8.1. Nonnormality 

In the first experiment we relax the assumption that the shocks in the data generating process 

are normally distributed. Instead of drawing normally distributed shocks with a given covariance 

matrix, we use an approach similar to the bootstrap (see, e.g. Efron, 1982). We resample vectors 

from the sample of residuals ( ),r ZU U , choosing dates randomly with replacement. The artificial 

data are otherwise generated as before. The simulated data will be homoskedastic but not 

normally distributed, on the assumption that the sample is not normally distributed.  

The results of the first experiment are summarized in Panels A-C of Table 4. The true values 

of the fixed-weight bounds are the same as in Table 3, because the fixed bound is a consistent 

estimator and no lagged instruments are used. The true bounds that use lagged instruments are 

affected only very slightly by nonnormality. The other results are also similar to those in Table 3. 
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Among the bounds with conditioning information, the multiplicative bounds have the largest 

bias, and the UE bounds the smallest. The UE bounds have the smallest standard errors. Using 

the true location and accounting for the standard deviations, the UE and optimal bounds are more 

restrictive of the data than the multiplicative bounds. The performance of the finite sample 

adjustment is consistent with our previous observations. Its performance is not degraded by the 

nonnormality in the data.  

8.2. Heteroskedasticity 

Heteroskedastic data raises some new issues. First, the expected values of objects like 

( ) ( )1Z Z−
ε′µ Σ/ , which appear in both the optimal and UE bounds, will differ from their 

expectations under homoskedasticity if the conditional mean and elements of the conditional 

covariance matrix are correlated. Thus, the �true� locations of the bounds are expected to shift. 

Second, the issue of correctly specifying the heteroskedasticity becomes potentially important. In 

our previous simulations the artificial econometrician essentially uses the correct data generating 

process, but needs to estimate the parameters. Under heteroskedasticity, the correct process may 

not be obvious. If the wrong specification is used, the estimated optimal bounds may not be 

valid, and the UE bounds will be inefficient. In our simulations we assume that the artificial 

econometrician has correctly identified the data generating process to be the one we actually use. 

However, the parameters of the process must be estimated on the artificial data. In this sense, the 

experiment is symmetric with the previous cases. (See Bekaert and Liu, 1999, for cases where the 

data generating process may be incorrectly specified.)  

In the second experiment we allow for both nonnormality and conditional heteroskedasticity 

in the data generating process. There are many ways to model conditional heteroskedasticity, and 



 -30-   

 

we experimented with several alternatives. Given the large size of the conditional covariance 

matrix (25 × 25 in the monthly data) relative to the number of time-series observations (383) 

standard approaches such as ARCH and GARCH seem impractical.  

We adopt a constant correlation structure for the conditional covariance matrix. The 

correlations are taken from the sample correlation matrix of the regression residuals rU , formed 

as in the first two experiments. The conditional standard deviations are modeled by regressing 

the absolute residuals on the lagged instruments and saving the coefficients as parameters. For a 

given draw of Z in the simulation the conditional standard deviation is the regression coefficient 

applied to that Z, multiplied by π / 2 . This approach is advocated by Davidian and Carroll 

(1987) and is similar to the approaches of Ferson and Foerster (1994) and Schwert and Seguin 

(1990). The conditional covariance is then formed as the constant correlation, multiplied by the 

conditional standard deviations implied by the value of Z. Modeling the conditional 

heteroskedasticity as described above, the generated data do not match the moments of the 

sample data as closely as in the previous experiments. We shrink the estimated time-varying 

covariance matrix towards the fixed covariance matrix to obtain a better match.10  

Panels D-F of Table 4 show the results of the second experiment. Compared to the previous 

experiments the locations of the true bounds are raised slightly in most of the cases. The ratios of 

                                                 

10 The regression model for the heteroskedasticity produces returns whose regression R2 on Z 
are implausibly high. We therefore shrink the conditional variance matrix towards the 
unconditional covariance matrix of the returns. In the annual and monthly data we use the simple 
average of the two. This produces artificial returns that more closely match sample regression 
results. In the quarterly data we find that a shrinkage factor of 0.5 is too small, and a shrinkage 
factor of 0.9 toward the fixed covariance of rU  is used.  
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the estimated to the true bounds, however, are similar. The biases vary from 15% to 107% across 

the cases, and the relative performance of the different bounds is similar to that observed before. 

The multiplicative bounds have the largest bias. The UE bounds have the smallest standard 

deviations, among the bounds with conditioning information. The finite-sample bias adjustments 

continue to perform well. The adjusted location of each estimated bound is within 11% of the 

true bound in the annual and quarterly data, except in the case of the optimal bound in quarterly 

data (18%). Even in monthly data the bias is cut in half, or better, by the adjustment. Accounting 

for sampling variation, the optimal and UE bounds are more restrictive of SDF variances than the 

multiplicative bound, confirming the importance of the efficient use of conditioning information 

in the bounds.  

9. Asymptotic Standard Errors 

Hansen, Heaton and Luttmer (HHL, 1995) derive an asymptotic standard error for the 

minimum second moment of a stochastic discount factor, in the case where there is no 

conditioning information. In the appendix we modify their results to use asset returns instead of 

asset prices and payoffs, and to accommodate arbitrary values of ( )E m . A consistent estimator 

for the asymptotic variance of 2� mσ  is obtained as the asymptotic variance of ( )1/ tT φ∑ , where  

 ( ) ( ){ }2� �� 2t t tR E m R e′ ′φ = − α − µ − α −       , (30) 

where ( )1� �S e E m−α = − µ   . We estimate the asymptotic variance of ( )1/ tT φ∑  using the 

Newey-West (1987) estimator. The number of autocovariance terms is determined by examining 
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the sample autocorrelations of tφ , and including the lags where the sample autocorrelations 

exceed two approximate standard errors.11  

Table 5 summarizes our evaulation of the sampling properties of the HHL asymptotic 

standard errors for the fixed variance bounds.12 The �Empirical SD� and �Adjusted Empirical� 

are the standard deviations from the simulations, repeated from the previous tables for 

convenience. �Average Asymptotic� is the mean value of the HHL standard errors, taken over the 

5,000 trials and �Adjusted Asymptotic� refers to the asymptotic standard error of the adjusted 

bounds. The table shows that the asymptotic standard errors are fairly reliable in the annual and 

quarterly data. They are understated, but by less than 10%, in each of the three experiments. In 

the monthly data, where the number of time series (383) is small relative to the number of assets 

(25), the asymptotic standard errors are less reliable. They are understated by almost 20% when 

the data are homoskedastic, and by as much as 44% under heteroskedasticity. In the monthly data 

the levels of the bounds are smaller numbers, on the order of 0.05 (versus 0.10 in annual and 

quarterly data), so a given absolute error represents a larger percentage bias. 

                                                 

11 This criterion results in 12 lags in the monthly data, and zero lags in the annual and 
quarterly data.  

12 We also studied extensions of HHL�s results to the multiplicative and optimized bounds, 
obtaining an approximate solution in the multiplicative case. Simulations showed that first-order 
approximations are not sufficiently accurate to obtain a reliable standard error.  
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10. Summary and Conclusions 

This paper offers a number of refinements and insights into the volatility bounds on 

stochastic discount factors, first developed by Hansen and Jagannathan (HJ, 1991). When there is 

no conditioning information the bounds are formed from fixed-weight combinations of the asset 

returns, with weights depending on the sample mean and covariance matrix. In the presence of 

conditioning information most studies in the literature have followed Hansen and Jagannathan, 

multiplying the returns by the lagged variables and constructing bounds with these �dynamic 

strategy� returns. We find that sample values of these bounds are upwardly biased, the bias 

becoming substantial when the number of assets is large relative to the number of time-series 

observations. This means that studies using the biased bounds run a risk of rejecting too many 

models for the stochastic discount factor. We argue that the magnitude of the bias is 

economically significant. We provide a finite-sample adjustment for this bias.  

We compare Hansen and Jagannathan�s �multiplicative� approach with two alternative 

approaches to the use of conditioning information. One approach, following Ferson and Siegel 

(2000), is based on unconditionally mean-variance efficient dynamic trading strategies. We call 

these the �efficient-portfolio� (UE) bounds. The second approach, based on Gallant, Hansen and 

Tauchen (1990), provides the theoretically tightest possible bounds. We present a closed-form 

solution for this �optimal� bound, which simplifies the implementation and analysis. We also 

evaluate asymptotic standard errors for the HJ bounds, derived by Hansen, Heaton and Luttmer 

(1995). Our simulation study leads to several conclusions.  

(1) Multiplicative bounds are easy to use but they can be terribly biased. Our finite-sample 

adjustment improves their specification, in the sense that the expected bias in the location of the 
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adjusted bounds is small. However, the sampling variation in the multiplicative bounds is larger 

than in the other bounds with conditioning information, and the bounds are less restrictive of 

SDF variances once sampling error is taken into account. If we could only use one version of the 

bounds with conditioning information, we would eliminate the multiplicative bound, based on 

these results.  

(2) Optimal bounds are more difficult to implement than the multiplicative bounds, requiring 

a specification for the conditional means and variances of the asset returns. The magnitudes of 

the finite-sample biases are less than in the multiplicative case. The bias adjustment is the least 

effective for these bounds. However, accounting for sampling error the optimal bounds are the 

most restrictive of SDF variances. Based on these results we would prefer to use the optimal 

bound in a setting where we had a high degree of confidence in the specification of the 

conditional means and variances of the asset returns.  

(3) Efficient-portfolio bounds are similar in complexity to the optimal bounds, also requiring 

a specification of the conditional moments. However, unlike the optimal bounds they are 

theoretically robust to an incorrect specification of the conditional moments (Bekaert and Liu, 

1999). The UE bounds have smaller standard errors than either the multiplicative or the optimal 

bounds. Using our adjustments, the finite-sample bias is smaller than in the case of the optimal 

bounds. However, the UE bounds are not as restrictive of SDF variances as the optimal bounds. 

Based on these results, we advocate the UE bounds in settings where robustness and precision of 

the bounds are the important concerns.  

(4) Asymptotic Standard Errors for the fixed bounds are mildly understated in our annual 

and quarterly samples, by less than 10%. The degree of bias is worse when the number of assets 
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is large relative to the number of time series observations. In our monthly sample, where thelevel 

of the bounds is a smaller number, the percentage bias is 20% or larger.  

Appendix 

Asymptotic Standard Errors: Fixed Bounds 

This shows how we modify results from HHL (1995). They work in terms of asset prices and 

payoffs, while we use gross asset returns, which are more likely to be stationary. Following HHL 

(1995) consider the following two optimization problems. 

 ( ) ( ) 0 ( )  such that  1,  
m

Min Var m E mR E m m= =  (A.1) 

 [ ]( ) ( ){ }22
0( ) 2m Max E R m e

α
′ ′σ ≡ − α − µ − α µ − . (A.2) 

The optimized values of the two problems are identical. To see this, recall that the stochastic 

discount factor that solves (A.1) is of the form ( )0 *m m R′= + α − µ  where ( )1
0* e m−α = Σ − µ/ , 

as in Equation (2). From the first-order conditions to problem (A.2), the optimal value of α  is 

the same *α , and at this value 

 ( ) ( )2 1
0 0m e m e m−′σ = − µ Σ − µ/ , (A.3) 

which is also the solution to (A.1), as in Equation (3).  

To obtain the asymptotic variance for the sample version of the bounds, define 

 ( ) ( ){ }2
0( ) 2t t tR m R e′ ′φ α ≡ − α − µ − α −    (A.4) 
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Similarly let � ( )tφ α  be the value of (A.4) when the sample mean, �µ , replaces µ , and let 

( )1
0� �S e m−α ≡ − µ  be the optimum value of α , evaluated at the MLE estimates ( )�,S µ . We may 

then express the sample estimate of the fixed bound as ( ) ( )2 � �� 1/m tt
Tσ = φ α∑ , and the true value 

as ( )2 *m tEσ = φ α   . We use the following decomposition: 

 ( ) ( ) ( ) ( ) ( )2 2 1 1 1� � ��� * * *m m t t t tt t t
T T E

T T T
    σ − σ = φ α − φ α + φ α − φ α          

∑ ∑ ∑  (A.5) 

The first term of (A.5) isolates the uncertainty due to the estimate of the optimal α , while the 

second captures the time-series variation in �
tφ , given the population value, *α .  

The first term of (A.5) converges in probability to zero under standard assumptions, and 

therefore does not contribute to the asymptotic variance of the estimator. To see this, consider an 

exact, second-order Taylor series expansion of ( ) ( )�1/ *tt
T φ α∑  about ( ) ( )� �1/

t
T φ α∑ . Since �α  

is optimal at the sample estimates, the first-order condition for problem (A.2) implies that the 

first term in the Taylor expansion is zero. Using the second term of the expansion and the first-

order condition for problem (A.2), we have: 

 ( ) ( ) ( ) ( ){ }( )1
0 0

1 1� �� ��* *
2t tt t

TT e m e m S
T T

−  ′ ′φ α − φ α = − µ − − µ Σ α − α/ 
 
∑ ∑  (A.6) 

The right-hand side of (A.6) is the product of two terms. The first converges in distribution to a 

normal with mean zero under standard assumptions. The second term, ( )� *α − α , converges 

almost surely to zero. Thus, the product of the two terms converges in probability to zero. 
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The preceding arguments imply that the asymptotic variance of ( )2 2� m mT σ − σ  is the 

asymptotic variance of ( ) ( )�1/ *tt
T T φ α ∑ . We obtain consistent estimates of the asymptotic 

variance by replacing *α  with a consistent estimator, �α , as described in the text, and using the 

time series of the ( )� �tφ α  to estimate the spectral density at frequency zero. 
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Table 1. Summary Statistics 

Consumption growth is the growth rate of seasonally adjusted U.S. real per capita expenditures for 
consumer nondurable goods. All returns are deflated (real) returns stated as decimal fraction per 
period, as described in the data section. Mean is the sample mean, σ is the sample standard 
deviation, ρ1 is the first order sample autocorrelation and R2 is the R-squared value from a 
regression of the variable on the lagged instruments. The lagged instruments in the quarterly data 
set consists of a constant and the first lagged values of the consumption growth and the real return 
series. In the annual data set, a constant and a single lag of the two returns are used as instruments. 
 
------------------------------------------------------------------------------------------------------------------------- 

Variable Mean σσσσ  1ρρρρ  R2 
------------------------------------------------------------------------------------------------------------------------- 
Panel A: Annual Data Set: 1891-1985 (95 observations) 
------------------------------------------------------------------------------------------------------------------------- 

Consumption Growth 0.01815 0.03470 -0.1442 0.0195 

S&P 500 Real return  0.07835 0.18986 0.03646 0.0272 
T-bill Real return  0.02335 0.09491  0.31871 0.1217 

------------------------------------------------------------------------------------------------------------------------- 
Panel B: Quarterly Data Set: 1964Q4-1986Q4 (93 observations) 
------------------------------------------------------------------------------------------------------------------------- 

Consumption Growth  0.00364  0.00997  0.06570 0.0381 

3-month Bill -0.00653 0.01293  0.37726  0.21355 
6-month Bill -0.00649 0.01492  0.28553  0.19919 
9-month Bill -0.00619  0.01716  0.19880  0.17938 
12-month Bill -0.02429  0.03974  0.08040  0.07763 

------------------------------------------------------------------------------------------------------------------------- 
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Table 2. Monthly Returns and Instruments 

Monthly returns on 25 portfolios of common stocks are from Harvey and Kirby (1996). The 
portfolios are value-weighted within each industry group. The industries and their SIC codes are 
in the following table. Mean is the sample mean of the gross (one plus rate of) return, σ is the 
sample standard deviation and ρ1  is the first order autocorrelation of the monthly return. 2R  is 
the coefficient of determination from the regression of the return on the two lagged instruments. 
The sample period is February of 1963 through December of 1994 (383 observations). 
 
------------------------------------------------------------------------------------------------------------------------- 
 Industry SIC codes Mean σ ρ1 

2R  
------------------------------------------------------------------------------------------------------------------------- 

1 Aerospace 372, 376 1.0107 0.0644 0.13 0.09414 
2 Transportation 40, 45 1.0094 0.0648 0.08 0.06622 
3 Banking 60 1.0086 0.0631 0.10 0.03665 
4 Building materials 24, 32 1.0097 0.0608 0.09 0.06724 
5 Chemicals/Plastics 281, 282, 286-289, 308 1.0094 0.0525 -0.01 0.04625 
6 Construction 15-17 1.0109 0.0760 0.16 0.08692 
7 Entertainment 365, 483, 484, 78 1.0135 0.0662 0.14 0.05069 
8 Food/Beverages 20 1.0117 0.0449 0.05 0.03799 
9 Healthcare 283, 384, 385, 80 1.0113 0.0524 0.01 0.02134 
10 Industrial Mach. 351-356 1.0089 0.0587 0.05 0.06382 
11 Insurance/Real Estate 63-65 1.0095 0.0581 0.15 0.05912 
12 Investments 62, 67 1.0097 0.0453 0.05 0.07559 
13 Metals 33 1.0075 0.0610 -0.02 0.02885 
14 Mining 10, 12, 14 1.0108 0.0535 0.01 0.05654 
15 Motor Vehicles 371, 551, 552 1.0095 0.0584 0.11 0.06550 
16 Paper 26 1.0095 0.0536 -0.02 0.03265 
17 Petroleum 13, 29 1.0102 0.0518 -0.02 0.03931 
18 Printing/Publishing 27 1.0114 0.0586 0.21 0.10077 
19 Professional Services 73, 87 1.0111 0.0693 0.13 0.07523 
20 Retailing 53, 56, 57, 59 1.0106 0.0597 0.15 0.04893 
21 Semiconductors 357, 367 1.0080 0.0559 0.08 0.07575 
22 Telecommunications 366, 381, 481, 482, 489 1.0085 0.0412 -0.05 0.03498 
23 Textiles/Apparel 22, 23 1.0100 0.0613 0.21 0.08511 
24 Utilities 49 1.0078 0.0392 0.02 0.05663 
25 Wholesaling 50, 51 1.0109 0.0614 0.13 0.03930 
 
 Dividend yield na 1.631 0.6909 0.98 na 
 Treasury bill yield na 3.8005 0.9083 0.98 na 
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Table 3. Finite Sample Properties of Bounds on Stochastic Discount Factor Variances 

For each bound, this table shows the mean and standard deviation of the lower bound on 2
mσ  

taken across 5,000 simulation trials. The bound is evaluated at E m( ) =1. n is the effective 
number of assets and T is the number of times series observations. Mean and Std. refer to the 
unadjusted bounds, while Adj. Mean and Adj. Std. refer to the bounds adjusted for finite sample 
bias. The true bound is based on large-scale simulation with 1,000,000 observations.  
 

----------------------------------------------------------------------------------------- 
      Adj. Adj.  
Type of Bound n T True Mean  Std. Mean Std.  
----------------------------------------------------------------------------------------- 
Panel A:   Annual Data:  
----------------------------------------------------------------------------------------- 
 

  fixed     bound 2 95 0.197 0.223 0.103 0.194 0.099  
  mult      bound 6 95 0.211 0.273 0.121 0.190 0.112 
  UE        bound 2 95 0.203 0.248 0.108 0.216 0.104 
  optimal bound 2 95 0.212 0.265 0.115 0.232 0.110 
----------------------------------------------------------------------------------------- 
Panel B:   Quarterly Data:  
----------------------------------------------------------------------------------------- 
 

  fixed     bound 4 93 0.488 0.561 0.193 0.488 0.182  
  mult      bound 20 93 0.914 1.564 0.414 0.992 0.319 
  UE        bound 4 93 0.915 1.167 0.306 1.051 0.287 
  optimal bound 4 93 1.144 1.509 0.336 1.369 0.315 
----------------------------------------------------------------------------------------- 
Panel C:   Monthly Data:  
----------------------------------------------------------------------------------------- 
 

  fixed     bound 25 383 0.104 0.200 0.058 0.121 0.054  
  mult      bound 75 383 0.313 0.626 0.114 0.305 0.092 
  UE        bound 25 383 0.329 0.523 0.096 0.421 0.089 
  optimal bound 25 383 0.386 0.615 0.115 0.506 0.107 
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Table 4. Sensitivity Analyses  

This table shows the true bounds, obtained by a large scale simulation with 1,000,000 
observations, together with the mean and standard deviation of the bounds on 2

mσ  taken across 
5,000 simulation trials. Each bound is evaluated at E m( ) =1. Mean and Std. refer to the 
unadjusted bounds, while Adj. Mean and Adj. Std. refer to the bounds adjusted for finite sample 
bias.  
 
 
 
----------------------------------------------------------------------------------------- 
      Adj. Adj.  
Type of Bound   True Mean  Std. Mean Std.  
----------------------------------------------------------------------------------------- 
Experiment 1: Serially Dependent, Nonnormal Data 
==================================================== 
Panel A:   Annual Serially Dependent, Nonnormal Data 
----------------------------------------------------------------------------------------- 

  fixed     bound   0.197 0.227 0.108 0.199 0.105  
  mult      bound   0.213 0.279 0.128 0.195 0.119 
  UE        bound   0.205 0.249 0.112 0.218 0.108 
  optimal bound   0.211 0.271 0.123 0.239 0.118 
 

----------------------------------------------------------------------------------------- 
Panel B:   Quarterly Serially Dependent, Nonnormal Data 
----------------------------------------------------------------------------------------- 

  fixed     bound   0.488 0.558 0.166 0.485 0.157  
  mult      bound   0.908 1.598 0.407 1.018 0.314 
  UE        bound   0.901 1.108 0.276 0.995 0.259 
  optimal bound   1.137 1.543 0.340 1.400 0.318 
 

----------------------------------------------------------------------------------------- 
Panel C:   Monthly Serially Dependent, Nonnormal Data 
----------------------------------------------------------------------------------------- 

  fixed     bound   0.104 0.203 0.061 0.123 0.057  
  mult      bound   0.300 0.628 0.120 0.307 0.096 
  UE        bound   0.321 0.509 0.098 0.408 0.091 
  optimal bound   0.384 0.612 0.124 0.509 0.116 
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Table 4. Sensitivity Analyses (Continued) 
------------------------------------------------------------------------------------------------------------------------- 
Experiment 2: Serially Dependent, Nonnormal, Conditionally Heteroskedastic Data 
====================================================================== 
Panel D:   Annual Serially Dependent, Nonnormal, Conditionally Heteroskedastic Data 
------------------------------------------------------------------------------------------------------------------------- 

  fixed     bound   0.201 0.233 0.112 0.204 0.108 
  mult      bound   0.223 0.295 0.137 0.210 0.126 
  UE        bound   0.213 0.264 0.117 0.232 0.112 
  optimal bound   0.219 0.276 0.124 0.243 0.119 
 

------------------------------------------------------------------------------------------------------------------------- 
Panel E:   Quarterly Serially Dependent, Nonnormal, Conditionally Heteroskedastic Data 
------------------------------------------------------------------------------------------------------------------------- 

  fixed     bound   0.494 0.572 0.172 0.498 0.163 
  mult      bound   0.995 1.538 0.386 0.972 0.298 
  UE        bound   0.898 1.017 0.260 0.910 0.244 
  optimal bound   1.138 1.487 0.331 1.348 0.309 
 

------------------------------------------------------------------------------------------------------------------------- 
Panel F:   Monthly Serially Dependent, Nonnormal, Conditionally Heteroskedastic Data 
------------------------------------------------------------------------------------------------------------------------- 

  fixed     bound   0.103 0.202 0.057 0.123 0.053 
  mult      bound   0.313 0.647 0.125 0.323 0.100 
  UE        bound   0.320 0.521 0.100 0.419 0.093 
  optimal bound   0.381 0.584 0.104 0.478 0.096 
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Table 5. Evaluation of Asymptotic Standard Errors 

This table evaluates the asymptotic standard errors for the fixed variance bound, adapted from 
Hansen, Heaton and Luttmer (1995), as in Equation (30). The variance bounds are evaluated at 

( ) 1E m = . Empirical SD is the standard deviation of the estimated bound, taken over the 5,000 
simulation trials. Adjusted Empirical is the standard deviation of the bias-adjusted bound. 
Average Asymptotic is the average of the asymptotic standard error across the 5,000 trials. 
Adjusted Asymptotic is the average asymptotic standard error for the bias-adjusted variance 
bound, adjusted for finite-sample bias according to Equation (24). 
 
 
 
----------------------------------------------------------------------------------------------------------------- 
 Empirical Adjusted Average Adjusted 
Type of artificial data SD Empirical Asymptotic Asymptotic 
----------------------------------------------------------------------------------------------------------------- 
Panel A:   Annual Data 
----------------------------------------------------------------------------------------------------------------- 
 
  normal 0.103 0.099 0.100 0.097 
  nonnormal, homoskedastic 0.108 0.105 0.102 0.099 
  nonnormal, heteroskedastic 0.112 0.108 0.105 0.101 
 
----------------------------------------------------------------------------------------------------------------- 
Panel B:   Quarterly Data 
----------------------------------------------------------------------------------------------------------------- 
 
  normal 0.193 0.182 0.174 0.165 
  nonnormal, homoskedastic 0.166 0.157 0.154 0.145 
  nonnormal, heteroskedastic 0.172 0.163 0.157 0.149 
 
----------------------------------------------------------------------------------------------------------------- 
Panel C:   Monthly Data 
----------------------------------------------------------------------------------------------------------------- 
 
  normal 0.058 0.054 0.048 0.044 
  nonnormal, homoskedastic 0.061 0.057 0.050 0.047 
  nonnormal, heteroskedastic 0.057 0.053 0.032 0.030 
   
 
 


