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ABSTRACT

A number of theories have been proposed to explain the medium-term momentum in stock
returns identified by Jegadeesh and Titman (1993). We test one such theory--based on the graduate-
information-diffusion model of Hong and Stein (1997)--and establish three key results. First, once
one moves past the very smallest stocks (where thin market-making capacity appears to be an issue)
the profitability of momentum strategies declines sharply with firm size. Second, holding size fixed,
momentum strategies work particularly well among stocks which have low analyst coverage.
Finally, there is a strong asymmetry: the effect of analyst coverage is much more pronounced for
stocks that are past losers than for stocks that are past winners. These findings are consistent with
the hypothesis that firm-specific information, especially negative information, diffuses only

gradually across the investing public.
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1. Introduction

Several recent papers have documented that, at medium-term horizons ranging from
three to twelve months, stock returns exhibit momentum--i.e., past winners continue to perform
well, and past losers continue to perform poorly. For example, Jegadeesh and Titman (1993),
using a U.S. sample of NYSE/AMEX stocks over the period 1965-1989, find that a strategy that
buys past six-month winners (stocks in the top performance decile) and shorts past six-month
losers (stocks in the bottom performance decile) earns approximately one percent per month over
the subsequent six months. Not only is this an economically interesting magnitude, but the
result also appears to be robust: Rouwenhorst (1997a) obtains very similar numbers in a sample
of 12 European countries over the period 1980-1995."

While the existence of a momentum effect in stock returns does not seem to be too
controversial, it is much less clear what might be driving it. Some have suggested a risk-based
interpretation of momentum.’ This is certainly a logical possibility, although there is little
evidence that cuts clearly in favor of a risk story. In this vein, Fama and French (1996) note
that momentum etfects are not subsumed by their three-factor model.

Turning to "behavioral" (i.e., non-risk-based) explanations, there are a number of
theories that can give rise to positive medium-term return autocorrelations. In some of these,

prices initially overreact to news about fundamentais, then continue to overreact further for a

'Rouwenhorst (1997b) finds that momentum strategies also earn significant profits on average
in a sample of 20 emerging markets. See also Haugen and Baker (1996) for confirmatory
evidence from the U.S. and several European countries.

’Conrad and Kaul (1997) argue that momentum effects simply reflect cross-sectional
differences in long-run mean returns. If this is true, it could fit with a risk-based story.
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period of time. The positive—feedback—trader model of DeLong et al (1990) fits in this camp,
as does the overconfidence model of Daniel, Hirshleifer and Subrahmanyam (1997). In other

models, momentum is a symptom of underreaction--prices adjust too slowly to news.

The set of underreaction theories can be further subdivided according the exact
mechanism that is at work. In Barberis, Shleifer and Vishny (1997), there is a representative
investor who suffers from a conservatism bias (Edwards 1968), and who does not update his
beliefs sufficiently when he observes new public information. In Hong and Stein (1997) the
emphasis is instead on heterogeneities across investors, who observe different pieces of private
information at different points in time. Hong and Stein make two key assumptions: 1) firm-
specific information diffuses gradually across the investing public: and 2) investors are unable
to perform the rational-expectations-equilibrium (REE) trick of extracting this information from
prices.” Taken together. these two assumptions are sufficient t© generate underreaction and
positive return autocorrelations.

Our goal in this paper is to test the Hong-Stein version of the underreaction hypothesis.
In other words, we look for evidence that momentum reflects the gradual diffusion of firm-
specific information.” To do so. we begin by sorting stocks into different classes. for which

information is a priori more or less likely to spread gradually. The central prediction is then

3In other words, the focus is on a Walrasian equilibrium with private valuations, not a fully
or partially revealing REE as in Grossman (1976) or Grossman and Stiglitz (1980).

4A recent paper that can be thought of in a similar spirit is Chan, Jegadeesh and Lakonishok
(1996). They show that momentum strategies are profitable even after controlling for post-
earnings-announcement drift (Bernard and Thomas 1989, 1990, Bernard 1992). This suggests
that momentum at least in part reflects the adjustment of stock prices to the sort of information
that (unlike earnings news) is not made publicly available to all investors simultaneously.
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that stocks with slower information diffusion should exhibit more pronounced momentum.’

One natural sorting variable--which forms the basis for our first set of tests-—-is firm size.
It seems plausible that information about small firms gets out more slowly; this would happen
if, e.g., investors face fixed costs of information acquisition. and hence choose in the aggregate
to devote more effort to learning about those stocks in which they can take large positions.

Unfortunately, even if firm size is in fact a useful measure of the rate of information
diffusion, it is likely to capture other things as well, potentially confounding our inferences. For
example, it is probably also the case that market-making or arbitrage capacity is less in small-cap
stocks.® On the one hand. if there are supply shocks. this couid lead to a greater tendency
towards reversals (i.e.. negatively correlated returns) in small stocks, which would obscure the
gradual-information-flow effect we are interested in. On the other hand. one might argue that
whatever behavioral phenomenon is driving positive serial correlation in returns, less arbitrage
means that it will have a bigger impact in small stocks, leading us to overstate the importance
of gradual information flow as the specific mechanism at work. The bottom line is that while
it is certainly interesting to see how momentum profits vary with firm size. this probably does
not by itself constitute a clean test of our central hypothesis.

As an alternative proxy for the rate of information flow, we consider analyst coverage.

The idea here is that stocks with lower analyst coverage should, all eise equal, be ones where

5To obtain this prediction, we are assuming that smart-money arbitrage does not compietely
eliminate differences in momentum across stocks. This property holds in a wide range of
settings. For example, if there is a pool of arbitrageurs that operate across all stocks, it suffices
to assume that they are risk-averse and hence prefer to hold diversified portfolios.

“See, e.g., Merton (1987) and Grossman and Miller (1988) for theories in which investor
participation or market-making capacity can vary across stocks.
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firm-specific information moves more slowly across the investing public. Thus our second set
of tests boils down to checking whether momentum strategies work better in low-analyst-
coverage stocks. The one important caveat is that analyst coverage is very strongly correlated
with firm size (Bhushan 1989). So in this second set of tests, we control for the influence of
size on analyst coverage, by sorting stocks into groups according to their residual analyst
coverage, where the residual comes from a regression of coverage on firm size.’

To preview, we obtain the predicted results for both firm size and residual analyst
coverage. First, with respect to size, once one moves past the very smallest-capitalization stocks
(where thin market-making capacity does indeed appear to be an issue) the profitability of
momentum strategies declines sharply with market capitalization. Second, holding size fixed,
momentum strategies work particularly well among stocks which have low analyst coverage.

In addition to these two basic findings, we also uncover a third interesting regularity.
There is a strong asymmetry, in that the effect of analyst coverage is much more pronounced
for stocks that are past losers than for stocks that are past winners. In other words, low-
coverage stocks seem to react more sluggishly to bad news than to good news. This makes
intuitive sense in the context of a theory based on the flow of firm-specific information. Think
of a firm which has no analyst coverage, but which is sitting on good news. To the extent that

its managers prefer higher to lower stock prices, they will push the news out the door

7Our use of residual analyst coverage as a forecaster of stock returns links us to work by
Brennan, Jegadeesh and Swaminathan (1993). They are interested in understanding a higher-
frequency phenomenon--the fact that at daily and weekly horizons, small stocks seem to lag large
stocks (Lo and MacKinlay 1990). They show that holding fixed size, low-coverage stocks also
tend to lag high-coverage stocks, which they interpret as evidence that analysts are important in
helping stocks adjust to common information. Note that this is quite different than our story,
which focuses on the role of analysts in propagating firm-specific information.
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themselves, via increased disclosures, etc. On the other hand, if the same firm is sitting on bad
news, its managers will have much less incentive 10 bring investors up to date quickly. Thus
the marginal contribution of outside analysts in getting the news out is likely to be greater when
the news is bad. Our evidence fits very well with this informal story.®

The remainder of the paper is organized as follows. In Section 2 we describe our data.
and analyze in detail the cross-sectional determinants of analyst coverage. Section 3 contains
our main results on momentum strategies sorted by firm size and residual coverage. In Section
4 we present complementary results based on an alternative, much more parametrically

structured regression approach. Section 5 concludes.

7. Cross-Sectional Determinants of Analyst Coverage

Our data come from two primary sources. The stock return data is from the CRSP
Monthly Stocks Combined File, which includes NYSE. AMEX, and NASDAQ stocks.
Throughout, we exclude ADRs, REITs, closed-end funds, and primes and scores.” The data
on analyst coverage is from the I/B/E/S Historical Summary File. and is available on a monthly
basis beginning in 1976. For each stock on CRSP. we set the coverage in any given month
equal to the number of I/B/E/S anaiysts who provide Fiscal Year | earnings estimates that
month. If no I/B/E/S value is available (i.e., the CRSP cusip is not matched in the I/B/E/S

database}, we set the coverage equal to zero.

3Short-sales constraints may also be part of the explanation for why bad news gets
incorporated slowly into prices, though they alone would not seem to explain why this effect 1s
more pronounced when there are fewer analysts.

*Specifically, we exclude stocks that do not have a CRSP share type code of 10 or 11.
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Table 1 provides an overview of the extent of analyst coverage on a year-by-year basis,
for both our entire sample (Panel A}, as well as for five size-based subsamples. (Panels B-B).
The first striking thing that emerges from Panel A is how many firms show up as having zero
analysts. This is especially true in the first few years of the sample period, 1976-1978. For
example, in 1976, 77.3% of all firms appear as having zero analysts. There is a marked
deepening of coverage around 1979, with the fraction of uncovered firms dropping to 57%.
After that, things change much more smoothly, with the fraction of uncovered firms declining
gradually to 36.9% in 1996.

While the numbers no doubt largely reflect the reality that many firms are simply not
covered by analysts, we worry that they may also be somewhat contaminated by measurement
error. It is possible that the I/B/E/S data set is missing information on some firms’ analysts.
Alternatively, it is possible that I/ B/E/S has the data, but has assigned a different cusip number
to a firm than CRSP. In this case, we would mistakenly code the CRSP firm as having no
analysts. In principle, such measurement €rror should make our tests err on the side of
conservatism--it will be harder to discern significant differences across stocks that we classify
as low-coverage vs. high-coverage.'” Because of this concern. and because the number of
zeros is so much higher in the first few years, all the tests that we present below use a sample

period that runs from 1980-1996."" However, it should be noted that none of our results are

1The only way we could go wrong would be if the propensity to mismeasure analyst
coverage was somehow related toa stock’s intrinsic autocorrelation characteristics, holding fixed
its size. It is hard to imagine how this could happen.

(lFor reasons that we explain below, we will typically measure analyst coverage six months
pefore we actually begin to implement our momentum strategies. Since our sample period for
measuring returns begins in 1980, we will be using analyst data as far back as 1979.
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materially altered if we instead begin in 1976.
A second key fact that comes out of Table 1 is that for the smallest firms, there is simply

no variation in coverage. In particular. Panel B focuses on those firms that are smaller than the

20th percentile NYSE/AMEX firm. As can be seen, almost all of these firms have zero
analysts--for example, 82% are uncovered in 1988, which is roughly the midpoint of the sample
period we will be using. Consequently, we simply cannot use this part of the population to test
any hypotheses having to do with analyst coverage. Hence all our coverage-related tests begin
with a subsample that excludes those firms that are below the 20th percentile NYSE/AMEX
breakpoint in any given month.'? Note that there is much more variation in analyst coverage
‘n the next size class, which runs from the 20th to the 40th percentile of NYSE/AMEX--in 1988,
only 41.7% of the firms in this class are uncovered, and a substantial fraction have as many as
three or four analysts.

In Table 2. we examine the cross-sectional determinants of analyst coverage. When we
actually implement our trading strategies in the next section, we run a separate regression every
month to create our measure of residual coverage. Because the regressions look so similar
month to month, we oniy present one set in Table 2 for illustrative purposes. corresponding to
December of 1988, which is around the midpoint of our sample period. Again. note that in each
case, the regression is only run on those stocks which are larger than the 20th percentile
NYSE/AMEX breakpoint in the given month.

The first point to note is that unlike some previous researchers who have run similar

2The cutoff point is around $30 million in market cap as of the midpoint of the sample
period, and rises to almost $60 million by 1996.
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regressions (e.g., Bhushan {989 and Brennan and Hughes 1991) we use as our left-hand side
variable log(1 +ANALYSTS), rather than the raw number of analysts. We do this because it
is crucial for our tests in Section 3 that the residuals from our regressions bear no relationship
to firm size. Were we to use the raw number of analysts as the dependent variable instead,
there would be a strong tendency for smaller firms to have lower absolute values of the
residual.’® Even with the log(1+ANALYSTS) specification, of course, we will have to check
carefully that our regressions produce residuals with the desired properties, as the underlying
relationship may not be a perfectly linear one.

In Model 1, we use OLS, and the only two right-hand side variables are log(SIZE),
where SIZE is current market capitalization, and a NASDAQ dummy variable." The size
variable is clearly enormously important, generating an R? of .61. In Model 2, we add 15
industry dummies to the regression.” This has a small effect. raising the R* to .63.

In Models 3 and 4, we try adding the firm’s book-to-market ratio. We do this because
book-to-market is well known to forecast returns (Fama and French 1992, Lakonishok, Shleifer

and Vishny 1994) and we want o make sure that any return-predicting power we gel out of

13To see this, suppose that a small firm is only ever likely to have zero, one or two analysts.
Thus it is hard to get a residual bigger than two if the regression is run with the raw number of
analysts. In contrast, a large firm may have anywhere from, say, 10 to 20 analysts, so the scope
for large residuals is much greater.

14The NASDAQ dummy is the only variable whose pehavior changes much over the sample
period. In earlier years, it is strongly negative, which is why we include it in our baseline
model. However, by the late 1980°s, it is typically positive, though not always significantly so.

15The dummies correspond to the following grouping of two-digit SIC codes: 1) SIC 01-09;
2) SIC 10-14; 3) SIC 15-19; 4) SIC 20-21; 5) SIC 22-23; 6) SIC 24-27; 7) SIC 28-32; 8) SIC
33-34: 9) SIC 35-39; 10) SIC 40-48; 11) SIC 49; 12) SIC 50-52; 13) SIC 53-59; 14) SIC 60-69;
and 15) SIC 70-79.



analyst coverage is not simply capturing a book-to-market effect. As it turns out. the coefficient
on book-to-market is positive and significant, but it adds nothing at all to the R?. Thus it is
unlikely that any of the resuits we report below are driven by anything to do with book-to-
market.!* In Models S and 6, we undertake a similar experiment with beta.”” The coefficient
on beta is positive and strongly significant, and in this case, the R? is raised a bit, going from
.61 to .63 when we do not use industry dummies.

In Model 7, we add to the industry-dummy specification of Model 2 a number of
variables that are considered in Brennan and Hughes (1991): 1/P, where P is the price of a
share; the variance of daily returns: and five years' worth of annual lagged returns. Although
many of the coefficients are individually significant, the overall impression is that these extra
variables are not very important in explaining the variation in coverage--jointly they raise the
R? from .63 to .65."

Finally, in Model 8, we take the baseline specification of Model | and add a turnover

measure, defined as the number of shares traded over the prior six months divided by total

'8Even if high-coverage stocks do have higher mean returns because they have a higher
loading on book-to-market, this cannot explain our central result. namely that high-coverage
stocks exhibit less momentum.

"Throughout, we calculate beta with the Scholes-Williams (1977) method, using daily
returns and the value-weighted CRSP index in the prior calendar year. We require that 50% of
single-day trade-only returns (computed using closing prices, not bid/ask averages) be available.
This is the same approach used by CRSP in its NYSE/AMEX Excess Returns File.

®Interestingly, our results call into question the conclusions of Brennan and Hughes (1991),
who obtain significant positive coefficients on 1/P. In our regressions, we tend to get the
opposite sign. We conjecture that this arises because we are using log(l +ANALYSTS) on the
left-hand side, rather than the raw number of analysts. Because 1/P is correlated with firm size,
and because firm size is of such dominant importance, any differences in how one models the
analyst-size relationship is likely to have a strong influence on the 1/P coefficient.
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shares outstanding. (Because turnover numbers may not have the same interpretation in a dealer
market, we allow the coefficient on turnover to be different for NASDAQ firms.) Turnover is
significantly positively correlated with coverage on all exchanges, and it raises the R? somewhat,
from .61 to .64. However, with this regression, one needs to be especially careful in attaching
any causal interpretation. On the one hand, it is possible that turnover causes COverage: analysts
may be more inclined to follow naturally high-turnover stocks if this makes it easier to generate
brokerage commissions for their employers. On the other hand, Brennan and Subrahmanyam
(1995) find evidence that some causality runs in the other direction: more analysts reduce the
adverse-selection costs of trading, and thereby attract a greater volume of trade.'” As we argue
in Section 3.D below, depending on which story one believes, it may or may not make sense
to control for turnover in generating our measure of residual analyst coverage.

Overall, the results in Table 2 make it clear that while a number of other variables are
significantly related to analyst coverage, firm size is far and away the dominant factor. Thus
in addition to worrying about the influence of these other variables, it is also important to think
about potential non-linearities in the relationship between log(l +ANALYSTS) and log(SIZE).
In this spirit, we proceed as tollows. We start in Section 3.B by using the simple size-based
regression in Model 1 as our baseline method of generating residual analyst coverage. Next,
in Section 3.C, we rerun all of our tests separately for each of the size classes (except the very
smallest) in Table 1. In this case, we will each month be running a separate cross-sectional
analyst regression for: firms in the 20th-40th NYSE/AMEX percentiles; firms in the 40th-60th

percentiles, etc. Among other things, this approach allows the relationship between

19See also Hayes (1996).
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log(1+ANALYSTS) and log(SIZE) to take on a piecewise linear form, hopefully correcting any
deficiencies that arise from imposing an overly simple linear structure on the entire sample.
In addition, in Section 3.D, we also do sensitivities that take into account the potential
for analyst coverage to be correlated with some of the other more significant-looking variables
considered in Table 2. For example, we use alternative definitions of residual coverage based
on both Model 2, which adds the industry dummies, and Model 8, which adds turnover. And
we redo all our tests in terms of beta-adjusted returns, just in case the pronounced relationship

between beta and analyst coverage might somehow be atfecting the resuits.

3. Momentum Strategies, Cut Different Ways

3.A Cuts on Raw Size

We begin our analysis of momentum strategies in Table 3. In this table, unlike in any
of those that come later, we look at the entire universe of stocks. without dropping those below
the 20th NYSE/AMEX percentile. In so doing, we follow the methodology of Jegadeesh and
Titman (1993) closely in many respects. [n particular. we focus on their preferred six-
month/six-month strategy, we couch everything in terms or raw returns. and we equal-weight
these returns. But there are also three noteworthy differences. First. our sample period of
1980-1996 is more recent. Second, we do not exclude NASDAQ stocks. And third, our
measure of momentum differs from theirs. They sort stocks into ten deciles according to past
performance, and then measure the return differential of the most extreme deciles--which they
denote by P10-P1. In contrast, we place less emphasis on the tails of the performance

distribution. We sort our sample into only three parts based on past performance: P1, which
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includes the worst-performing 30%; P2 which includes the middle 40%: and P3, which includes
the best-performing 30%. Our basic measure of momentum is then p3-pP1.%

We use this alternative, broader-based measure of momentum in order to generate better
signal-to-noise properties for our key tests. Uniike Jegadeesh and Titman (1993), we are not
so much interested in establishing the existence of momentum per se, but in ¢omparing
momentum effects across subsamples of stocks. In some cases, we will be looking at as many
as 12 subsamples, when we sort by size and residual analyst coverage simultaneously. (See
Table 5 below.) If we also were to use ten performance deciles, we would end up chopping the
universe of stocks into 120 portfolios, and we would reach a point where some of the individual
portfolios are quite undiversified, thereby creating larger standard errors in our test statistics.”

The first column in Table 3 confirms that there is significant momentum in the full
sample: the baseline strategy that buys top-30% (P3) winners and shorts bottom-30% (P1) losers
generates 0.53% per month (t-stat = 2.61).2 The next columns break the momentum effect

down by size (measured six months before the start of the ranking period). We use an

©This is similar to the measure used by Moskowitz (1997) and Rouwenhorst (1997b).

21y fact, we have redone all our key tests. using the Jegadeesh-Titman P10-P1 momentum
measure in place of our P3-P1 measure. AS might be expected, the point estimates of interest
--i.e., the differences in momentum between low- and high-coverage firms--are typically larger
in absolute value. However, the standard errors are also larger, so in many cases the t-statistics
turn out to be smaller. This confirms the notion that our P3-P1 measure has better signal-to-
noise properties for the particular type of tests we focus on.

2This is lower than the Jegadeesh-Titman figure of 0.95 % per month. The difference arises
for two distinct reasons noted above. First, our strategy invests in stocks with less extreme past
performance. And second, it turns out that including the smaller NASDAQ firms substantially
damps the results, since as can be seen from Table 3, the momentum measure is actually
negative for the very smallest firms. The different sample period is not responsible for the
difference in results--when we use an NYSE/ AMEX sample and a P10-P1 momentum measure
over our sample period, we obtain numbers almost identical to Jegadeesh and Titman.
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independent sort to generate ten subsamples, with the breakpoints determined by NYSE/AMEX
deciles. Figure 1 illustrates the resuits, plotting the relationship between size and the magnitude
of the momentum effect. As can be seen, there is a pronounced, inverted U-shape. In the very
smallest stocks (which are tiny, with a mean market capitalization of $7 million) momentum 18
actually negative. By the second size decile, momentum profits are significantly positive, and
they reach a peak in the third size decile, where market capitalization averages about $45 million
and where the profits are a striking 1.43% per month (t-stat = 6.66), which is almost three
times the value for the sample as a whole. After the third size decile, momentum profits decline
monotonicaily, to the point where they are essentially zero in the largest stocks.?

The non-monotonic effect of raw size can be easily understood in the context of the
informal theory sketched in the Introduction: smaller firms may have slower information
diffusion, which would lead to greater momentum, but they probably also have more limited
investor participation (i.e., thinner market-making capacity) which can lead to more pronounced
supply-shock-induced reversals.” Under this interpretation, the sharp decline in momentum
profits that occurs between the third and the tenth size classes is testament to the economic
importance of gradual information diffusion in mid-cap stocks.

Another interesting pattern that emerges in Table 3 is that the buik of the momentum

BJegadeesh and Titman also find that momentum profits follow a hump shape with respect
to size. (See their Table III, p. 78). But their results are less dramatic, with only small
differences across subsamples. This is because they only use three size classes, and exclude
NASDAQ firms; much of the interesting variation in size is either blurred or omitted.

% Ajternatively, it may be that many of the tiniest stocks trade at very low dollar prices, 50
we are picking up some discreteness-induced negative correlation. Since we do not pay any
further attention to this class of stocks in what follows, we do not pursue this possibility.
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effect seems to come from losers, as opposed to winners. Consider for example, the column
corresponding to the third size class, where as we noted above, the P3-P1 winners-minus-losers
measure is 1.43% per month. Of that, 1.05%, or about three-quarters of the total, comes from
the difference between average performers and losers, i.e., from P2-P1. As can be seen from
the table, this general tendency holds--with remarkable consistency--in every one of the size
classes (i.e., deciles two through eight) where there are positive momentum profits to begin
with. It suggests that to the extent that stock prices do underreact, they are more prone o

underreact to bad news than to good news. We will return to this theme in greater detail below.

3.B Cuts on Residual Analyst Coverage

Next we turn to the cuts based on residual analyst coverage. Here, and in everything else
that follows, we exclude all stocks that are below the 20th percentile NYSE/ AMEX breakpoint.
Again, this is because the vast majority of these smail stocks simply never have any analysts,
so there is no variation to work with. Within this truncated universe, we create three
subsamples based on residual analyst coverage, with the residuals coming from month-by-month
cross-sectional regressions of log(! +ANALYSTS) on log(SIZE) and a NASDAQ dummy, just
as in Model 1 of Table 2.

In implementing this technigue, we choose to measure residual coverage six _months

before we start our preformation ranking period.”® We use slightly stale" data on analyst

%Concretely, our first month’s worth of observations has the following timing: 1) we
measure residual coverage based on a regression using data as of January 1979; 2) in an
independent sort, we rank stocks on their performance in the six months from June 30, 1979 to
December 31, 1979 and assign them to either P1, P2 or P3; and 3) we then calculate the
realized returns for the coverage/past-performance portfolios over the next six months, which
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coverage in order to address a possible endogeneity concern. McNichols and O’Brien (1996)
find that analysts are more likely to begin covering firms when they are optimistic about their
near-term prospects. When one combines this finding with Womack’s (1996) evidence that there
is stock price drift for up to six months in response to analyst recommendations, it raises the
possibility that recent innovations in analyst coverage may be informative about future returns.
Although we have no reason to expect that this form of endogeneity would bias any of our key
tests one way or another, we adopt the stale data approach as a simple precaution. Intuitively,
any patterns that we now find will be driven by the permanent component of coverage, and not
by recent (and possibly return-predicting) innovations in coverage.*

Table 4 presents the results of this approach. Before getting to the returns for the three
subsamples, it is important to check that they have the desired characteristics with respect to size
and coverage. Ideally, the subsamples will contain stocks of the same size, yet will display a
healthy spread in coverage. Ascan be seen from the table, the variation in coverage is certainly
there. The low-coverage subsample, which we denote by SUBI. has median coverage of 0.1
(mean of 1.5) and the high-coverage subsample SUB3 has median coverage of 7.6 (mean of
9.7).7 We do a little less weil in terms of size matwching. SUBI has a somewhat larger mean
size than SUB3 ($962 million vs. $455 million) and at the same time a smaller median size

($103 million vs. $180 miilion). Evidently, due to non-linearities in the analyst-size

run until June 30, 1980.

%These caveats notwithstanding, our results seem very insensitive to exactly when we
measure analyst coverage. We have experimented with measuring it zero, twelve and eighteen
months prior to our ranking period, and in each case we obtain very similar results.

7'The "medians” are not integers because they are time-series means of monthly medians.
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relationship, the simple linear regression technique is giving us residuals that do not have exactly
the same size distribution across the three subsamples.”® We wiil attempt to remedy this
deficiency shortly, in Table S. For the moment. it suffices to say that the imperfect size
matching in Table 4 does not color any of the conclusions.

Turning to the returns numbers, two patterns emerge that hold up throughout our
subsequent analysis. First, as predicted by the theory, there is more momentum in stocks with
low residual coverage. The P3-P1 momentum measure is 1.13% per month in the low-residual-
coverage subsample SUBL, and only 0.72% per month in the high-residual-coverage subsample
SUB3.? The difference of 0.42% between SUBI and SUB3 in this regard is highly statistically
significant, with a t-stat of 3.50. Moreover, the economic magnitude is clearly important--
momentum profits are roughly 60% higher in SUBI than in SUB3.

The second key finding is that the effect of residual coverage on the P3-P1 momentum
measure is entirely driven by what happens in the loser stocks in P1.** P1/SUBI stocks

underperform P1/SUB3 stocks by 0.70% per month. This difference is also highly significant,

%What seems to be going on is this: after a point. the numboer of analysts simply maxes out.
and no longer increases with size. Thus with a linear model. the very largest firms--the Intel’s
and GM’s of the world--tend to show up as having abnormaily low coverage relative to their
size, thereby landing in SUB1. This pushes the mean size in SUBI up relative to that in SUB3.

¥Eor the full sample in Table 4, the P3-P1 value is 0.94% per month. This is higher than
in Table 3 because we have now dropped the smallest firms, which as seen above, have negative
momentum.

®ndeed, the numbers in P3 go slightly the "wrong way"--low-coverage winners show a bit
worse continuing performance than high-coverage winners. Although this difference between
P3/SUBI and P3/SUB3 is statistically significant in Table 4, it, much more so than our other
results, appears to be fragile. For example, it totally disappears when we work with beta-
adjusted returns in Table 6 below. To the extent that-there is a premium for beta our sample
period, this should not be surprising, since as we saw in Table 2, low coverage is associated
with lower values of beta. In fact, the median beta in SUBI is .75, vs. .95 in SUB3.
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with a t-stat of 5.16. In other words. one attractive strategy, which we call the "loser-analyst-
spread trade”, or "LAST" strategy, is simply to buy the stocks in P1/SUB3 and short those in
P1/SUBI, without ever dealing with any of the winner stocks in P3. This strategy is not only
size-neutral, it is also (unlike the Jegadeesh-Titman strategy) momentum-neutral. So to the
extent that anybody ever makes an argument that momentum returns are proxying for a risk

factor, our LAST strategy earns 0.70% per month with no loading on that risk factor.’

Taken together, these two patterns suggest that analyst coverage is especially important
in propagating bad news. This ties together nicely with our earlier finding that the bulk of
momentum profits seem to come from loser stocks. And as we noted in the Introduction, it also
makes intuitive economic sense. When firms are sitting on good news, managers probably have
every incentive to push this news out to investors as fast as possible, which makes analysts less
important. In contrast, when there is bad news, managers are likely to be less torthcoming, so

outside analysts have a more crucial role to play.

3.C Two-Way Cuts on Size and Residual Coverage

In Table 5, we disaggregate the analysis of Table 4 by size. The methodology is exactly
the same except we look at four separate subsamples. The first includes all stocks between the
20th and 40th NYSE/AMEX percentiles, the second includes those between the 40th and 60th
percentiles, and so forth. We have two motivations for doing this disaggregation. First, as a

matter of economics, it seems reasonable to conjecture that the marginal importance of coverage

1Ses below for a discussion of whether the LAST strategy is significantly exposed to other
risk factors, such as beta, industry factors, or book-to-market.
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will be greater in the smaller stocks., which have fewer analysts on average, and are probably
less well-researched in other ways. Second, as a matter of methodology, this approach should
give us better size matches across residual coverage classes. since we now will be running the
analyst coverage regressions separately for each size-based subsample. Compared to our earlier
approach, this is like allowing the analyst-size relationship to be piecewise linear.

As can be seen from the table, the size matching is now almost flawless, except for in
the largest class of stocks. Consider first the results for the smallest size class, that
corresponding to the 20th-40th percentile range. The mean size is $63 million in SUBI, vs. $64
miilion in SUB3. (The medians are $59 and $61 million respectively.) Yet we still have a good
spread in coverage, with a mean of 0.0 analysts in SUBI and 3.7 analysts 1n SUB3. And the
basic results from Table 4 carry over. The P3-P1 momentum measure is 1.51% per month in
SUBL, and 1.15% per month in SUB3. The difference of 0.36% is statistically significant, (t-
stat of 2.13) even though the standard errors are quite a bit higher with the smaller sample.

As we move to progressively larger size classes, tWO things happen. First, the overall
momentum effect shrinks, just as in Table 3. Second, the differential in momentum between
SUB! and SUB3 shrinks also. consistent with the hypothesis that the marginal importance of
analysts should decline with size. In the next size class, covering the 40th-60th percentile range
—-in which stocks average around $200 million in market capitalization--the SUB3-SUBI
momentum differential is not much smaller, at 0.33% (t = 1.95). But by the time we get to the
60th-80th percentile range--with mean size of close to $700 million--the differential is down to
0.18% (t = 1.18). And it is essentially zero for the largest size class.

Overall, the size disaggregation effort in Table S lends further credence to our
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interpretation of the evidence. It makes it clear that the earlier numbers in Table 4 are not an
artifact of imperfect size matching in the full sample. And it is comforting to know that analyst
coverage has more of an impact on momentum in precisely those parts of the size distribution
where one a priori suspects that gradual information diffusion is likely to be important and where
momentum effects are most pronounced to begin with.

Table 5 also helps put into perspective the exient to which firm size and residual
coverage might each be capturing something related to the phenomenon of gradual information
flow. On the cne hand, it is natural to focus most of the attention on residual coverage as a
proxy for this phenomenon--it makes for a cleaner test of our hypothesis because it is less likely
than size to be bringing in other confounding factors. But in gauging the quantitative
significance of the results, it is important to recognize that, if we hold size tixed, we cannot
hope to capture the full magnitude of any gradual-information-flow effect.

To be specific, return to the results for the smallest set of firms in Table 5--those in the
20th-40th percentile range. Among these firms, those with the fewest analysts have momentum
of 1.51% per month: those with the most analysts have momentum of 1.15% per month. While
the difference of 0.36% is good-sized, it is still just a fraction of the total momenwum effect.
One reading of this might be that gradual information diffusion can only "explain” a fraction of
the overall momentum in stock returns. However, such an inference is at best superficial.
Recall that even the most heavily-covered stocks in this class have only three or four analysts.
and only average $60 million in market cap. Thus they might naturally be expected to have
siower information diffusion than, say, a $10 billion company with 25 analysts. The bottom line

is that residual analyst coverage, viewed in isolation. is unlikely to provide a full picture of the
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importance of gradual information flow. This is where the cuts on raw size in Tables 3 and 5

add potentially useful evidence.

3.D Sensitivities

In Tables 6-9, we redo the analysis of Table 4, using a variety of alternative
specifications. First, in Table 6, we depart from Jegadeesh and Titman’s (1993) focus on raw
returns. Given thai our economic story is all about firm-specific information, it seems sensible
to focus on returns adjusted for any market-wide factors. In Table 6 ail the returns--both in the
pre-formation and post-formation periods--are market-model adjusted. using individual stock
betas.’? As can be seen, the use of this beta adjustment does not significantly alter our central
results. The P3-P1 momentum measure for the entire sample actually rises somewhat, to
1.20% per month (it was 0.94% in Table 4), and the difference between the low-coverage SUB1
and the high-coverage SUB3 also goes up a bit, to 0.49%, with a t-stat of 4.04 (it was 0.42%
in Table 4). Finally, the LAST strategy, which is long P1/SUB3 and short P1/SUBI, continues
to do well--though not quite as well as before--generating an average beta-adjusted return of
0.50% per month (t-stat = 3.64).

In Table 7, we go back to using raw returns. but we now generate the coverage residuals
from Model 2 of Table 2, which includes the 15 industry dummies. As can be seen, the results
are not much changed. The difference in P3-P1 momentum between SUB1 and SUB3 falls

slightly, to 0.33% per month, but is still strongly significant, with a t-stat of 3.06. As for our

2This is also a useful precaution since, as was seen in Table 2, analyst coverage is
correlated with beta.
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LAST strategy which operates only in P1, it now generates a monthly return of 0.60% (t-stat
= 5.03). Note that given the combined results in Tables 6 and 7, it appears that one can design
a profitable LAST strategy that is not only size-neutral and momentum-neutral, but beta-neutral
as well as neutral to any industry factors. This makes it al the more improbable that one can
explain the substantial returns to this strategy based on any kind of risk story.”

However, a final caveat on this point is that we have not checked whether the profits to
the LAST strategy continue to be large after controlling for book-to-market effects. One might
think that this correction would be relevant in light of the evidence in Table 2 that analyst
coverage is positively correlated with book-to-market. As it turns out, though, the differences
in book-to-market across SUBI and SUB3 are too small to matter much. Using our Model 1
residuals, the median value of book-to-market is .57 in SUBI and .69 in SUB3 (the means are
.67 and .78 respectively). Based on the evidence in Fama and French (1992), this book-to-
market spread corresponds to a return differential of roughly 0.10% per month, oniy a small
fraction of the profits to our LAST strategy.”

In Table 8, we again use raw returns, and this time generate the coverage residuals from
Model 8 of Table 2. which includes the turnover variables. But before turning to the numbers.

we should point out that it is far from clear that it makes economic sense to control for turnover

Moskowitz (1997) argues that momentum effects are in part explained by industry factors.
Whether or not this is correct on average, Table 7 suggests that our results about cross-sectional
differences in the power of momentum strategies are not driven by industry factors.

MGee their Table IV (pp. 442-443), which covers the period 1963-1990. Our SUB1 and
SUB3 median values of book-to-market correspond roughly to the fourth and fifth deciles of
their book-to-market distribution, respectively. On average, for each decile one moves between
the second and the ninth, there is a 0.10% per month return increment.
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in this way. As noted above, it may well be that the positive correlation of coverage and
turnover reflects causality running from the former to the latter: high-coverage stocks have lower
adverse-selection costs of trading, and hence attract more trading volume (Brennan and

Subrahmanyam 1995). To the extent that this story is true, we should not use Model 8 to

generate our residuals-—-we will just be reducing the exogenous variation in coverage by
regressing it on a noisy proxy for itself, thereby weakening the power of our tests.

On the other hand, there are other stories, according to which it is more sensible to use
Model 8. To take a simple example, one might argue that our basic measure of firm size is
misleading, because for some stocks. the "float" (i.e.. those shares that trade on a regular basis
in the public market) is much smaller than the market cap. And it is possible that both analyst
coverage, as well as costs of arbitrage, are driven primarily by float, rather than by market cap.
In this setting, a turnover control--presumably a good proxy for float--would be warranted.

Overall, this discussion suggests that by using a turnover control as in Table 8, we are
erring on the side of being tco conservative--the control may or may not make economic sense,
and it potentially wastes some statistical power. We also end up sacrificing further power
because of two data limitations: 1) we can only run the turnover-adjusted tests for the shorter
sample period 1984-1996. due to a lack of earlier turnover data on NASDAQ; and 2) we also
lose roughly 12% of the firms--typicaily among the smaller ones—-from our Table 4 sample
because of the requirement that turnover numbers be available for six months prior to the
measurement of analyst coverage. With all these flags in mind, the results in Table 8 are
surprisingly strong. The difference in P3-P1 momentum between SUB1 and SUB3 falls slightly

relative to Table 4, to 0.31% per month, but even with the shorter sample it is still significant,
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with a t-stat of 2.23. The return to the LAST strategy is now 0.56% per month, with a t-stat
of 3.58. The bottom line is that our results appear to be robust, even to this (possibly ill-
conceived) control for the correlation between turnover and analyst coverage.

In Table 9, we do everything else the same as in Table 4, except that we skip a month
between the six-month ranking period and the six-month investment holding period. Jegadeesh
and Titman (1993) suggest this approach as a way (o check that neither bid-ask bounce nor any
other high-frequency phenomenon is coloring any of the results. As it turns out, nothing
changes--the numbers are almost identical to those in Table 4.

Finally, in Table 10, we break our sample into three subperiods: 1980-1984; 1985-1590:
and 1991-1996. We then exactly repeat our baseline analysis from Table 4 for each subperiod.
Our principal results hold up well to this time disaggregation. The P3-P1 momentum measure
is meaningfully larger for the low-coverage SUBI in each of the three subperiods: the difference
between SUBI and SUB3 bounces around from 0.65% to 0.31%. Even more impressively, the
LAST strategy earns positive and statistically significant returns in each of the three subperiods.

In fact, the only surprise in Table 10 is that there appears to be little momentum on
average in the last subperiod, which runs from 1991-1996. The overail point estimate for P3-P1
over this period is only 0.33%. compared to values of 1.14% and 1.38% for the first two
subperiods respectively. It is hard to say whether this reflects just noise in a short sample, or
the fact that more arbitrageurs have caught on to momentum effects and are beginning to drive

them out of existence.”® In any case, what is noteworthy from our perspective is that while the

3 Alternatively—and in the spirit of our basic story--one might speculate that increased analyst
coverage in the latter part of the sample is partially responsible for the decline in momentum,
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average degree of momentum may be declining over time, there is not yet any evidence that the

cross-sectional differences in momentum that we are emphasizing have begun to disappear.

3.E Cumulative Returns in Event Time

We have focused throughout on the six-month/ six-month strategy, because it has become
a standard benchmark for evaluating momentum strategies. But of course this is somewhat
arbitrary. To provide more information, Figure 2 plots cumulative returns in event time. In
so doing, we use the methodology of Table 6--we assign stocks to performance categories based
on six months’ prior beta-adjusted returns, and do an independent sort based on the analyst-
coverage residuals from Model 1. We then track cumulative beta-adjusted returns on a month-
by-month basis, out to 36 months.

In Panel A, we plot the cumulative returns to the P3-P1 momentum strategy separately
for the low-coverage subsample SUB1 and the high-coverage subsample SUB3. There appear
to be two distinct things going on. First, up to about the ten-month mark, we sc€ roughly a
linear extrapolation of our earlier results: momentum strategies continue to eamn incremental
monthly profits in both SUB3 and SUBL. but the effect is stronger in SUBI1, so that the
cumulative differential keeps on widening. After this point, something else quite interesting
happens. The cumulative performance of the high-coverage subsample SUB3 flattens out--in
other words, there is no more momentum left after ten months for the high-coverage stocks.™

But the low-coverage subsample SUBI continues to display some momentum out to about the

%This is similar to Jegadeesh and Titman’s finding that momentum effects die out after about
twelve months.
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two-year mark. Consequently, the cumulative differential between SUB1 and SUB3 keeps on
growing until this point. Twenty-four months after portfolio formation, the total P3-P1 profit
for SUBI is 19.63%, vs. 8.90% for SUB3, a difference of 10.73%.

This dynamic pattern is, of course, completely consistent with the theory of gradual
information diffusion that we have been emphasizing. In the context of this theory one would
interpret Figure 1A as follows: high-coverage SUB3 firms underreact by roughly 9% to the
information contained in lagged six-month returns, and it takes them a little less than a year to
fully catch up. In contrast, low-coverage SUBI firms underreact by more, on the order of 20%.
Their adjustment to long-run equilibrium not only invoives more movement in the first year, but
also requires a longer period of time to fully piay itself out.

In Panel B, we explore the dynamics of our LAST strategy. Focusing only on the past-
loser stocks in P1, we plot the cumulative returns for P1/SUBI, P1/SUB3, and the LAST
portfolio that is short the former and long the latter. The time profile that emerges is almost
identical to that in Panel A, and is consistent with our earlier conclusion that virtually all of the
SUB1 vs. SUB3 action is coming from the losers in P1. In particular, the high-coverage
P1/SUB3 stocks continue to perform poorly for about ten months. and then flatten out. The
low-coverage P1/SUBI stocks not only perform worse over the first ten months, but continue
to do poorly until about two years out. Consequently, the LAST strategy keeps on earning

incremental profits up to the two-year mark, with the cumulated profit amounting to 9.32%.

4. An Alternative. More Tightly Structured Regression Approach

In this section, we take a somewhat different approach to measuring the same basic
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phenomenon. In the most general terms, our central hypothesis is that stocks which are small
and which have low residual analyst coverage should display more positively autocorrelated
returns at medium horizons. A simple (perhaps naive) way o test this would be to estimate a
serial correlation coefficient for each stock, and then regress this serial correlation coefficient
on measures of the stock’s analyst coverage and size.

This is what we attempt to do now. More precisely, at the beginning of each year t, we
collect all stocks which have a market capitalization greater than the 20th percentile
NYSE/AMEX breakpoint, and for which we have complete return data through year t+5. We
then estimate for each stock 1 the serial correlation of its six-month excess returns (relative o0
T-bills), using 49 overlapping observations over the five-year period from t to t+5. and call this
variable RHO,.” Next, we perform a cross-sectional regression. running RHO,, against
log(1 + ANALYSTS)) and log(SIZE,), as well as a NASDAQ dummy variable.*®

We should note one caveat associated with this method. For any stock i. our measure
of serial correlation RHO, is affected not only by the correlation of its firm-specific information,
but also by its loading on any common factors. To see this, suppose the Teturns on stock i, Ty,

are given by a one-factor model (suppressing constants).

37t is well known that in a small sample, one obtains downward-biased measures of serial
correlation. Kendall (1954) shows that the bias is given by -(1 +3p)/T, where p is the true value
and T is the number of independent observations. This does not affect the conclusions from our
cross-sectional regressions, however. We could easily rescale all our estimates of RHO; to de-
bias them, and none of our regression t-statistics would change.

38A]] the right-hand-side variables are measured at the start of year t, so one can think of this
regression as an attempt 10 forecast stock i's serial correlation over the next five years.
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r, = bm, + ¢ (n

where m, is the common factor, b is the loading on this factor, and e, represents firm-specific
information. Even if we assume for simplicity that the common factor is serially uncorrelated,

(cov(m,, m;) = 0) a regression of r, 0N Iy produces the following theoretical coefficient o,

p; = cov(ey, E1)/ (bvar(my) + var(e,)) (2)

This suggests that. all else equal. our constructed left-hand side variable RHO;, will be
lower for stocks with higher factor loadings--i.e., higher betas. This is potentially a matter of
concern because as we have seen in Table 2, there is a positive cross-sectional correlation
between beta and analyst coverage. Thus one might mistakenly conclude that high coverage is
reducing RHO; by reducing the serial correlation of firm-specific information, when in fact it
is proxying for a beta effect. In order to address this issue, we have rerun the regressions that
we present below, adding firm betas to the right-hand side. As it turns out. none of our resuits
is materially altered.”

Before turning to these results, it is useful to discuss how this general approach compares
to what we have done above. The main difference is that it imposes more parametric structure,
some of which may be unwarranted. For example, the regression approach we are now

proposing does not allow for asymmetries across winners and losers; yet we have seen that such

¥For example, when we add beta to the regression, the coefficient on the coverage term
reported in Panel A of Table 10 betow does indeed drop in absolute magnitude, as predicted,
but only by about 12% of its value--an economically and statistically insignificant change.
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asymmetries are pronounced in the data. In addition, the regression approach only makes sense
if residual analyst coverage is a firm-level attribute that is "quasi-fixed"--i.e., that does not vary
much over five-year periods of time. If there is significant high-frequency variation in residual
coverage, this is again something that the less structured method of the previous section will be
better equipped to handle.

The offsetting advantage is that if the parametric structure we impose with the regression
is not too inappropriate, our statistical power along certain dimensions should be enhanced. In
particular, if we are interested in doing the analysis over very short intervals of time--e.g., o
check the stability of our estimates--the regression approach may be especially useful.

Table 11 summarizes the results. In Panel A, we present the coefficients on the coverage
and size variables from cross-sectional regressions run each year over the 14 years 1979-
199240 We also aggregate the annual information in two different ways. First, we calculate
Fama-MacBeth (1973) time-series averages of the coefficients. Second, we run a giant pooled
regression with year dummies. Not surprisingly, this latter approach tends to produce point
estimates almost identical to the Fama-MacBeth method, but higher t-statistics.

All the evidence in Panel A points to a consistent negative effect of analyst coverage on
a stock’s serial correlation. Of the yearly coefficients. 13 out 14 are negative, the majority
significantly so. The Fama-MacBeth and pooled estimates are strongly significant. The point
estimates for size are also negative, but statisticaily insignificant.

In Panel B, we modify the specification by adding an interaction term, given by

40We have to stop in 1992 because we need to g0 five years forward from that point to
calculate RHO,.
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log(! + ANALYSTS)*log(SIZE). This is motivated by our evidence in Table 5 that the
importance of analyst coverage is decreasing in firm size. The cross-sectional regressions bear
out this finding. The coverage and size terms increase in magnitude relative to Panel A (the size
term is now statistically significant) and the interaction term is positive, as expected, implying
that the negative influence of coverage on serial correlation becomes weaker for larger firms.

It is interesting to compare the economic magnitudes implied by Table i1 to those in our
earlier tables. Think of two equal-sized firms, one with the SUBI median coverage of 0.1 (from
Table 4), the other with the SUB3 median coverage of 7.6. According to the Fama-MacBeth
coverage-term estimate of -0.0125 in Panel A of Table 11, the SUBI firm should have a serial
correlation coefficient that is .026 higher than that of the SUB3 firm. (.0125x(log(8.6)-log(1.1))
= .026) When one combines this with the observation that the past return differential between
P1 and P3 stocks is approximately 60%, this implies that a P3-P1 momentum strategy should
be expected to return 1.56% more over six months for the SUBI firm, (.026x60% = 1.56%),
or about 0.25% per month extra. This is very much in the same ballpark as--albeit a bit smaller
than--the SUB1/SUB3 differential of 0.42% per month reported in Table 4.

A similar caiculation based on the interactive specification in Panel B can be used to back
out the implied momentum differentials for firms in varying size classes. For example, consider
the smailest class of firms (those between the 20th and 40th NYSE/AMEX percentiles) in the
first column of Table 5, which have a mean market cap of around $60 million. Comparing a
SUBI firm in this class with median coverage of 0.0 to a SUB3 firm with median coverage of
3.1, the Fama-MacBeth coefficients in Panel B imply that a momentum strategy will return

1.91% more over six months for the SUBI firm, or roughly 0.60% per month extra. This is
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again roughly in line with--although in this case somewhat larger than--the analogous number
of 0.36% reported in Table 5.

Overall then, Table 11 provides further comfort as to the robustness of our central
results. Even with a very different measurement approach, we get not only the same qualitative
outcome--higher six-month return autocorrelations among lower-coverage stocks--but remarkably

comparable economic magnitudes.

5. Conclusions

Recently, a number of researchers--e.g., Barberis, Shleifer and Vishny (1997), Daniel.
Hirshleifer and Subrahmanyam (1997), and Hong and Stein (1997)--have begun to develop
behavioral models that aim to unify a range of previously documented "anomalies” in asset
returns. In a critique of this work, Fama (1997) argues that one should not be too impressed
if these models simply rationalize those existing patterns that they were specifically designed to
capture. Rather, the acid test should be the "out-of-sample” one: the ability to generate new
hypotheses that are ultimately borne out in future empirical work: "The over-riding question
should always be: does the new model produce coherent rejectable predictions...” (p- 10)

We agree wholeheartedly with this sentiment, and this paper represents an attempt to take
one step in the indicated direction.’! The gradual-information-diffusion model of Hong and
Stein (1997) was built for the express purpose of delivering both medium-term momentum and

long-term reversals in stock returns; in the spirit of Fama (1997), then, it should be evaluated

417 recent paper with a similar motivation is Klibanoff, Lamont and Wizman (1997). They
test the behavioral hypothesis that investors react more strongly to news that is " salient"--in this
case, news about countries that appears on the front page of The New York Times.
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more on the basis of other, previously untested auxilliary predictions. Here we have focused
on one relatively simple and clear-cut such hypothesis, namety: if momentum comes from
gradual information flow, then there should be more momentum in those stocks for which
information gets out more slowly.

Rather than restating all our findings, at this point it suffices to say that they are strongly
consistent with the above hypothesis. This is not to claim that alternative interpretations of some
or all of the evidence cannot be put forth. If concrete alternatives are in fact offered, it will be
necessary to do more refined testing to sort things out. But in any case, we hope that this effort
has demonstrated at least one point: non-classical models of asset pricing can do more than just
provide ex-post rationalizations of existing anomalies; they can--and should--be subject to the

same standards of out-of-sample empirical testing as more traditional theories.
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Table 1 (Continued): Descriptive Statistics for Analyst Coverage, 1976-1996

Panel B: Stocks Below 20" Percentile, NYSE/AMEX Breakpoints

# of Analysts at Coverage Percentiles

Mean Median % of firms
No. of Size Size un-
YEAR Firms  (Millions) (Millions) 10 20 30 40 50 60 70 80 90 covered
76 1525 43 41 0 0 0 0 0 0 0 0 0 99.3%
77 1696 6.0 53 0 0 0 0 H 0 0 0 0 98.7%
78 1565 5.1 48 0 0 0 0 0 0 0 0 0 98.4%
79 1498 6.2 §6 0 0 0 0 0 0 0 0 0 94.1%
80 1556 7.9 7.0 0 1] 0 0 0 c 0 0 0 94.5%
81 1595 8.8 8.0 0 0 0 0 4] 0 0 0 0 93.0%
82 1977 81 72 0 0 0 0 0 0 0 0 0 93.2%
83 1968 9.8 86 0 0 0 0 0 0 0 0 0 92.3%
84 2201 12.9 11.0 0 0 0 0 0 t] 0 0 1 86.2%
85 2467 109 9.0 0 0 0 0 0 0 0 0 1 84.3%
86 2318 11.3 92 0 0 0 0 0 0 0 0 1 85.0%
87 2389 126 10.5 0 0 0 0 0 0 0 o 1 81.5%
88 2597 96 83 0 0 0 0 0 0 0 0 1 82.0%
89 2537 103 8.7 0 0 0 0 0 0 0 0 1 81.1%
90 2506 9.7 7.9 0 0 0 0 0 0 o 1 2 76.6%
91 2425 7.3 58 0 0 0 0 0 0 0 0 1 80.8%
92 2232 1.3 93 0 0 0 0 0 0 0 0 1 83.6%
93 2148 15.3 13.3 0 0 0 0 0 0 0 1 1 79.8%
94 2311 20.3 173 0 0 0 0 0 0 0 1 2 75.9%
95 2651 19.7 17.7 0 0 0 0 0 0 0 1 2 71.4%
96 2647 236 20.4 0 0 0 0 0 0 1 1 2 69.5%
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