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ABSTRACT

This paper investigates the effect of (potential) market size on entry of new drugs and

pharmaceutical innovation. Focusing on exogenous changes driven by U.S. demographic trends, we

find that a 1 percent increase in the potential market size for a drug category leads to a 4 to 6 percent

increase in the number of new drugs in that category. This response comes from both the entry of

generic drugs and new non-generic drugs, and is generally robust to controlling for a variety of non-

profit factors, pre-existing trends, and changes in health care coverage.
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1 Introduction

This paper constructs a simple model linking innovation rates to current and future market

size, and provides evidence from the pharmaceutical industry to support this hypothesis. Our

empirical work, which exploits changes in the market size for various drug categories driven by

U.S. demographic trends, finds economically significant and relatively robust effects of market

size on entry of new drugs.

Although many historical accounts of important innovations focus on the autonomous

progress of science and on major breakthroughs that take place as scientists build on each

other’s work,1 economists typically emphasize profit incentives and the size of the target mar-

ket. For example, in his seminal study, Invention and Economic Growth, Schmookler argued

that: “...invention is largely an economic activity which, like other economic activities, is pur-

sued for gain” (1966, p. 206). To emphasize the role of market size, Schmookler entitled two

of his chapters “The amount of invention is governed by the extent of the market.”

The role of profit incentives and market size in innovation is also important both for the

recent endogenous technological change models, which make profit incentives the central driving

force of the pace of aggregate technological progress (e.g., Aghion and Howitt, 1992, Grossman

and Helpman, 1991, Romer, 1990), and for the induced innovation and directed technical

change literatures, which investigate the influence of profit incentives on the types and biases

of new technologies (see, for example, Kennedy, 1964, Drandkis and Phelps, 1965, Samuelson,

1965, Hayami and Ruttan, 1970, and Acemoglu, 1998, 2002, and 2003). A recent series of

papers by Kremer, for example (2002), also build on the notion that pharmaceutical research

is driven by market size and argue that there is generally insufficient research to develop cures

for third-world diseases such as malaria.

In this paper, we investigate the effects of market size for different types of drugs on entry

of new drugs and innovation. A major difficulty in any investigation of the impact of market

size on innovation is the endogeneity of market size–better products will have bigger markets.

Our strategy to overcome this problem is to exploit variations in market size driven by demo-

graphic changes (or past demographic trends), which should be exogenous to other, for example

scientific, determinants of innovation and entry of new drugs.2 We create the potential market

1See, for example, Ceruzzi (2000), Rosenberg (1974) and Scherer (1984). Ceruzzi emphasizes the importance
of a number of notable scientific discoveries and the role played by certain talented individuals in the development
of modern computing. He points out that important developments took place despite the belief of many
important figures in the development of the computer that there would not be a market greater than a handful
of personal computers in the United States (2000, p. 13).

2For many drugs non-U.S. markets may also be relevant. Nevertheless, the U.S. market is disproportionately
important, constituting about 40 percent of the world market (IMS, 2000). Below we also look at the impact
of West European and Japanese demographic changes on the entry rates of new drugs.
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size for various drug categories according to the age distribution of their users at a given point

in time, and then trace changes in potential market size driven by changes in demographics

(holding the age profile of consumption of various drug categories constant over time).3 We

measure entry and innovation using the Food and Drug Administration’s (FDA) approval of

new drugs.4

Our results show that there is an economically and statistically significant response of the

introduction of new drugs to market size. For example, a 1 percent increase in the size of the

potential market for a drug leads to a 4 to 6 percent increase in the number of new drugs. We

check the robustness of our results by controlling for lagged FDA approvals, pre-existing trends,

differences in the non-economic incentives to innovate, advances in biotechnology and changes

in insurance coverage of drug expenditures. New drugs that enter the market comprise both

generics and non-generics, and we find that both respond to market size, though the response

of generics is larger and somewhat more precisely estimated.

We also investigate whether it is the current market size or past or future market sizes

that have the largest effect on entry of new drugs. On the one hand, because changes in

demographics are known in advance, drug entry may respond to anticipated future market

size. On the other hand, because the development process of new drugs can be long, entry

may respond to past market size. We find that current market size and 5-10 year leads of

market size have the strongest effect on entry rates of new drugs, which is consistent with the

predictions of the theoretical model we use to motivate our empirical investigation. Finally,

we also look at the response of pharmaceutical patents to market size, and find a positive,

but statistically insignificant relationship between future anticipated market size and patents,

which might reflect the difficulty of matching patents to drug categories.

There are a number of other studies related to our work. First, Schmookler (1966) docu-

ments a statistical association between investments and sales, on the one hand, and patents and

innovation, on the other, and argues that the causality ran largely from the former to the latter.

The classic study by Griliches (1957) on the spread of hybrid seed corn in U.S. agriculture also

provides evidence consistent with the view that technological change and technology adoption

are closely linked to profitability and market size. Pakes and Schankerman (1984) investigate

this issue using a more structural approach, linking R&D intensity at the industry level to

factor demands and to growth of output. In more recent research, Scott Morton (1999) and
3Loosely speaking, “market size” corresponds to the number of users times their marginal willingness to pay.

Therefore, market size can increase both because the number of users increases and because of their marginal
willingness to pay changes. We focus on changes driven by demographics to isolate exogenous changes in market
size.

4These data were previously used by Lichtenberg and Virahbak (2002), who obtained them under the Freedom
of Information Act. We thank Frank Lichtenberg for sharing these data with us.
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Reiffen and Ward (2002) study the decision of firms to introduce a new generic drug and find

a positive relationship between entry into a new market and expected revenues in the target

market. None of these studies exploit a potentially exogenous source of variation in market

size, however.

Second, some recent research has investigated the response of innovation to changes in

energy prices. Most notably, Newell, Jaffee and Stavins (1999) show that between 1960 and

1980, the typical air-conditioner sold at Sears became significantly cheaper, but not much more

energy-efficient. On the other hand, between 1980 and 1990, there was little change in costs,

but air-conditioners became much more energy-efficient, which, they argue, was a response

to higher energy prices. In a related study, Popp (2002) finds a strong correlation between

aggregate patents and energy prices. These findings are consistent with the hypothesis that the

type of innovation responds to profit incentives, though they do not establish causality.

Third, there is substantial research focusing on innovation in the pharmaceutical industry.

Henderson and Cockburn (1996), Cockburn and Henderson (2001), and Danzon, Nichelson and

Sousa Pereira (2003) study the determinants of success in clinical trials, focusing mainly on

firm and project size. Galambos and Sturchio (1998), Cockburn, Henderson and Stern (1999),

Gambardella (2000), and Malerba and Orsenigo (2000) discuss various aspects of the recent

technological developments in the pharmaceutical industry. Ling, Berndt and Frank (2003)

investigate the complementarity between new technologies and the skills of physicians in the

spread of new drugs.

Most closely related to this study are Lichtenberg and Waldfogel (2003) and Finkelstein

(2003). Lichtenberg and Waldfogel show that following the Orphan Drug Act there were larger

declines in mortality among individuals with rare diseases (compared to other diseases) because

of the incentives created by the Act to develop drugs for these rare diseases. Finkelstein exploits

three different policy changes affecting the reimbursement of costs of vaccination against 6

infectious diseases: the 1991 policy change that all infants be vaccinated against hepatitis B, the

1993 decision of Medicare to cover the costs of influenza vaccinations, and the 1986 introduction

of funds to insure vaccine manufactures against product liability lawsuits for vaccines against

polio, diphteria, tetanus, measles, mumps, rubella, or pertussis. She finds that increases in

vaccine profitability resulting from these policy changes are associated with a significant increase

in the number of clinical trials to develop new vaccines against the relevant diseases.5

The rest of the paper is organized as follows. We outline a simple model linking innovation

to market size in the next section. Section 3 briefly explains our empirical strategy, and Section

5Lichtenberg (2003) also presents evidence suggesting that the types of new drugs changed towards drugs
more useful for the elderly after Medicare was established.
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4 describes the basic data sources and the construction of the key variables. Section 5 presents

the empirical results and a variety of robustness checks. Section 6 contains some concluding

remarks, while the Appendix gives further data details.

2 Theory

We now outline a simple framework to analyze the influence of market size on innovation.

Subsection 2.1 discusses the basic model. Subsection 2.2 derives the implications of potential

delays in the development and approval processes of new drugs. Subsection 2.3 generalizes the

basic model to investigate the response of innovation effort and R&D to anticipated changes in

future market size. Finally subsection 2.4 extends the model to introduce an explicit distinction

between entry of generic drugs and non-generic drugs.

2.1 Basic Model

Consider an economy consisting of a set I individuals, each denoted by i. Time is continuous

t ∈ [0,∞), and all individuals are infinitely lived. There are two types of goods in this economy.
First, a basic good, y, which can be consumed or used for the production of other goods, or

for research expenditure. Individual i has an exogenously given endowment yi (t) at time t.

Second, there is a large number J of drugs, x1, ...., xJ . Each drug has a potentially time-

varying “quality”, q1 (t), ...., qJ (t). Each individual demands only one type of drug. Hence, we

partition the set I of individuals into J disjoint groups, G1,...,GJ with G1 ∪G2 ∪ ... ∪GJ = I,

such that if i ∈ Gj, then individual i demands drug j. More specifically, if i ∈ Gj, then his

preferences are given by: Z ∞

0

exp (−rt) £ci (t)1−γ (qj (t)xji (t))γ¤ dt, (1)

where r is the discount rate of the consumers (also the interest rate in the economy), γ ∈ (0, 1),
ci (t) is the consumption of individual i of the basic good at time t, and xji (t) is the consumption

of individual i of drug j.6 This Cobb-Douglas functional form, which implies an elasticity

of substitution equal to 1 between the basic good and drugs, and the assumption that each

6Alternatively, suppose the preferences of individual i are:Z ∞
0

exp (−ω (t, qj (t)xji (t))) ci (t)1−γ dt,

where ω (t, qj (t)xji (t)) is the discount rate, which is influenced by the quality and quantity of drugs that the
individual consumes (e.g., because they extend his life or affect its quality). If we assume that ω (t, qj (t)xji (t)) =
rt− γ ln (qj (t)xji (t)), we obtain the expression in (1) in the text.

4



individual only consumes one type of drug are for simplicity and do not affect the main results.7

Normalizing the price of the basic good to 1 in all periods, and denoting the price of drug

j at time t by pj (t), individual demands for drugs are given by

xij (t) =

½
γyi(t)
pj(t)

for i ∈ Gj

0 for i /∈ Gj,
(2)

for all i ∈ I and for all j = 1, ..., J .

At any point in time, there is one firm with the best-practice technology for producing each

type of drug. The best-practice firm in drug line j can produce one unit of drug with quality

qj (t) using one unit of the basic good. If there is an innovation for drug line j currently with

quality qj (t), this leads to the discovery of a new drug of quality λqj (t) where λ > 1. For

the purposes of the model, we think that any new innovation is approved (for example by the

FDA) and can be sold to consumers immediately (and is under patent protection indefinitely).

We start with a very simple formulation of the R&D technology whereby one unit of the

final good devoted to R&D for drug line j leads to a flow rate of δj > 0 of discovering a new

drug of this type. Equivalently, if total R&D effort at time t is zj (t), the flow rate of innovation

(the rate of entry of new drugs) for this line of drugs is

nj (t) = δjzj (t) . (3)

Differences in δj’s introduce the possibility that technological progress is scientifically more

difficult in some lines than others, which is the effect emphasized by science-driven theories of

innovation discussed in the Introduction.

The most important feature of this R&D technology for our focus here is that technological

progress is directed in the sense that firms can devote their research effort and expenditure to

developing particular types of drugs. This contrasts with a different model where firms invest

in R&D in an undirected way, and discover new versions of any one of a set of drugs. The

pharmaceutical industry, especially in recent past, is a prime example of an industry where

companies with fairly sophisticated R&D divisions or specialized R&D firms can undertake

research for specific drug lines (e.g., Gambardella, 2000, Malerba and Orsenigo, 2000).8

7One implication of the Cobb-Douglas functional form is that the share of income that an individual spends
on medicine is constant. This implication can be easily relaxed by considering a utility function with an elasticity
of substitution different from 1, as in the factor market models with directed technical change (see, for example,
Acemoglu, 1998, 2002).
It is also straightforward to extend the model so that each individual demands potentially more than one

type of drug, though this would require additional notation.
8Naturally, there exist examples of research directed at a specific drug type leading to the discovery of a

different product, such as the well-known example of Viagra, which resulted from research on hypertension and
angina, and was partly accidentally discovered from the detection of side effects in a clinical study (see, e.g.,
Kling, 1998).
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The demand curves in (2) have an elasticity equal to 1, so an unconstrained monopolist

would like to charge an arbitrarily high price. However, the firm with the best drug in line

j is competing with the next best drug in that line. Consider such a firm with quality qj (t)

charging price pj (t). If this price is arbitrarily high, the next best quality could supply to the

market and make positive profits, driving the best technology to zero profits. Therefore, the

firm with the best drug has to set a limit price to exclude the next best firm–i.e., to ensure

that consumers are happy to buy from it rather than buy from the next best firm even if the

next best firm charges the lowest possible price, i.e., equal to its marginal cost, 1. Suppose that

a consumer buys from the best firm with quality qj (t) and price pj (t) and chooses her optimal

consumption as given by (2), then her instantaneous utility at time t will be:

(qj (t))
γ (1− γ)1−γ γγ (pj (t))

−γ yi (t) ,

and if she purchases from the next best firm, which, by definition, has quality qj (t) /λ and

charges price equal to marginal cost, 1, she will have utility:

λ−γ (qj (t))
γ (1− γ)1−γ γγyi (t) .

The limit price equalizes these two expressions, hence, equilibrium prices for all j and t satisfy:

pj (t) = λ. (4)

The profits of the firm with the best product of quality qj (t) in line j at time t are:

πj (qj (t)) = (λ− 1) γ
X
i∈Gj

yi (t) (5)

= (λ− 1) γYj (t)
where the second line defines Yj (t) ≡

P
i∈Gj

yi (t) as the total income of the group of consumers

demanding drug j. Here λγYj (t) corresponds to the market size (total sales) for drug j.

Throughout we assume that all Yj (t)’s are known in advance, which is plausible in the context

of demographics-driven changes in demand. They can change because the number of consumers

demanding this product changes, or because their incomes change, or also because new varieties

of drugs steal consumers from this particular drug. Notice that profits of drug companies are

independent from quality, qj (t), which is a feature of the Cobb-Douglas utility function.

Firms are forward-looking, and discount future profits at the rate r. The discounted value

of profits for firms can be written by a standard dynamic programming recursion. Vj (t | qj),
the value of a firm that owns the most advanced drug of quality qj in line j at time t, is:9

rVj (t | qj) − V̇j (t | qj) = πj (qj)− δjzj (t | qj)Vj (t | qj) (6)
9Throughout, we assume that the relevant transversality conditions hold and discounted values are finite.
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for each j = 1, 2, ..., J , where πj (qj) is the flow profits in drug line j given by (5), and zj (t | qj)
is equilibrium R&D effort at time t on this line by other firms when current technology is qj
(because of the standard replacement effect first emphasized by Arrow, 1963, the firm with

the best technology does not undertake any R&D itself, see, for example, Aghion and Howitt,

1992). To simplify notation, we will typically use zj (t) instead of zj (t | qj). Intuitively, the
flow value of owning the best technology in line j, rVj (t | qj), is equal to the flow profits, πj (qj)
plus the potential appreciation of the value, V̇j (t | qj), but also takes into account that at the
flow rate nj (t) = δjzj (t) there will be a new innovation, thus the current firm will lose its

best-practice status, and make zero profits thereafter.

Note that entry of new drugs that are not technologically superior, but steal customers

from the incumbent, such as the entry of generics, can also be included in zj (t), especially

since equation (5) shows that the profits of a new entrant are independent of the quality of its

product, as long as it is sufficient to take over (part of) the market. Thus for now, we think

of zj (t) and nj (t) as corresponding to the entry of both generic and non-generic drugs, and in

subsection 2.4, we present a model with separate entry rates of generics and non-generics.

There is free entry into R&D to develop better quality drugs. Therefore, if there is positive

research for some drug line j = 1, 2, ..., J at time t, then the free entry condition ensuring zero

profits must hold. In other words,

if zj (t) > 0, then δjVj (t | qj) = 1. (7)

Alternatively, we might have zj (t) = 0, and δjVj (t | qj) ≤ 1, in which case research is not

profitable, and in equilibrium, there will be no innovation.

An equilibrium in this economy is sequences of prices pj (t)|j=1,..J that satisfy (4), consumer
demands for drugs xi (t)|i∈I that satisfy (2) and sequences of R&D levels zj (t)|j=1,..J that satisfy
(7) with Vj (·) given by (6).
An equilibrium is straightforward to characterize. Differentiating equation (7) with respect

to time implies that we must always have V̇j (t | qj) = 0 for each j = 1, 2, ..., J as long as

zj (t) > 0. Substituting this equation and (7) into (6) yields the levels of R&D effort in the

unique equilibrium:

zj (t) = max

½
δj (λ− 1) γYj (t)− r

δj
; 0

¾
, (8)

for each j = 1, 2, ..., J , and for all t. From now on, unless otherwise stated, we assume that

Yj (t)’s are such that all equilibrium research levels are strictly positive, i.e., zj (t) > 0 for all j

and t, so that zj (t) = (δj (λ− 1) γYj (t)− r) /δj, and we will often drop the max operator.
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The most important feature of (8) is that it highlights the market size effect in innovation,

which is the main focus of this paper. The greater is the market size for a particular drug, the

more profitable it is to be the supplier of that drug, and consequently, there will be greater

research effort to acquire this position. Our empirical work below investigates the strength of

this effect in the pharmaceutical industry over recent decades. In addition, naturally, a higher

productivity of R&D as captured by δj also increases R&D, and a higher interest rate reduces

R&D since current R&D expenditures are rewarded by future revenues.

Another important implication of this equation is that there are no transitional dynamics.

At any point in time, the amount of effort devoted to developing a particular drug line is

determined by the current market size. Past market sizes and anticipated future market sizes

do not affect current research effort. This is an implication of the linear R&D technology,

which ensures that whenever there are profit opportunities, there will immediately be sufficient

R&D to arbitrage them, thus ensuring V̇j (t | qj) = 0. The intuition for the lack of response to
anticipated changes in future market size here highlights an important effect in quality ladder

models of technological progress: with a greater market size in the future, firms would like to

own the best-practice product at the time when the market size has actually become larger.

Investing in R&D in advance could be useful to the extent that it achieves this objective.

However, it is not beneficial to invest in R&D too much in advance, since some other firm

would improve over this innovation by the time the new and larger market size materializes.

With the linear model here, zj can change discontinuously, so investing even a little bit in

advance of the actual increase in the size of the market is not profitable.10

Combining equations (3) and (8) gives entry of new drugs as (ignoring the max operator):

nj (t) = δj (λ− 1) γYj (t)− r. (9)

This equation relates innovation or entry of new products, which we will approximate with

FDA approval of new drugs, to market size (total expenditure of consumers in this line of

drug). In addition, this equation also encapsulates the alternative view of the determinants

of innovation, which maintains that cross-drug distribution of R&D is determined largely by

technological research opportunities or perhaps by other non-profit related motives. If there

are large and potentially time-varying differences in δj’s, then these may be the primary factor

determining variations in R&D across drug lines, and market size may have only a small effect.

Whether or not this is so is an empirical question.

10In practice, companies may also have an incentive not to market their discoveries before the market size
increases in order to prevent competitors from leapfrogging their new product.
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2.2 Delays in Development and Approval

The baseline model ignores the potential delays in the process of development and approval

of new drugs (for example, DiMasi et al., 1991, report that the eventual marketing of a drug

may be as much as 15 years after the beginning of initial research). To incorporate such delays

in the simplest possible way, suppose that it takes an interval of length T after the research

decision for the drug to be developed, gain approval, and enter the market. Therefore, we now

have nj (t) = δjzj (t− T ), where zj (t− T ) is the rate of innovation at time t− T .

Given this structure, the key value function changes to:

rVj (t | qj) − V̇j (t | qj) = πj (qj)− δjzj (t− T )Vj (t | qj) . (10)

Equation (10) is a delayed differential equation rather than an ordinary differential equation,

so a general analysis is more difficult. Nevertheless, the unique equilibrium in this case is still

easy to characterize because of the simple structure here. Now the free entry condition is:

if zj (t− T ) > 0, then exp (−rT ) δjVj (t | qj) = 1, (11)

which recognizes that innovation effort at time t− T will lead to revenues at time t, hence the

discounting for the interval of length T . Equations (10) and (11) together imply that:

zj (t− T ) = max

½
exp (−rT ) δj (λ− 1) γYj (t)− r

δj
; 0

¾
, (12)

which is very similar to (8), except for the term exp (−rT ). This term takes into account

that because of the development and approval delays, costs of R&D are incurred before the

benefits accrue. This equation also makes it clear that longer development and approval delays

discourage innovation.

Equation (12) may give the impression that there should now be a response of innovation

to future market sizes. This is not the case, however, since what we measure in the data is

not the actual R&D expenditure, but entry of new drugs. Since nj (t) = δjzj (t− T ), the key

prediction of the model for entry of new drugs changes to:

nj (t) = exp (−rT ) δj (λ− 1) γYj (t)− r,

which only differs from (9) by the term exp (−rT ). This analysis therefore shows that delays
in development and approval processes do not change the basic predictions relating to entry of

new drugs, though the predictions about the timing of R&D and patenting are different (and

this is useful to bear in mind when we look at patents below).
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2.3 Anticipation Effects

We now generalize this basic setup to obtain a reaction to (anticipated) future market sizes.

We change the baseline model in one dimension: we assume that one unit of final good spent

for R&D in line j leads to the discovery of a better drug at the flow rate δjzjφ (zj), where zj
is the aggregate research effort devoted to the discovery of a new drug in this line. We also

assume that φ0 (z) ≤ 0 for all z, which implies that greater research effort runs into decreasing
returns within a given period (there are constant returns to scale when φ (z) = 1 for all z), but

throughout zφ (z) is strictly increasing in z, so that greater aggregate research effort always

leads to faster innovation in the aggregate.

Finally, free entry into R&D for all lines implies that any new firm can enter taking zj (t)

as given, thus without taking into account the reduction that its entry causes in the innovation

rates of other firms.11 Given this specification, the value function changes to:

rVj (t | qj) − V̇j (t | qj) = πj (qj)− δjzj (t)φ (zj (t))Vj (t | qj) , (13)

for each j = 1, 2, ..., J , which only differs from (6) because the flow rate of innovation is now

δjzj (t)φ (zj (t)) rather than δjzj (t).

Since each potential entrant takes the aggregate research effort in each line of drug as given,

it anticipates that one unit of the basic good spent for R&D in drug line j will lead to an

innovation at the flow rate δjφ (zj (t)). Thus, the free entry condition is

δjφ (zj (t))Vj (t | qj) = 1, (14)

for each j = 1, 2, ..., J (again as long as zj (t) > 0).

An equilibrium is defined similarly to before, except that now the sequence of R&D levels

zj (t)|j=1,..J have to satisfy (14) instead of (7) with Vj (·) given by (13).
To make further progress in this case, let us assume that Yj (t) = Yj for all t, so that market

sizes remain constant over time. Differentiating (14) with respect to time, and substituting into

(13) and rearranging, we obtain J equilibrium differential equations in zj (t)’s:

żj (t)

zj (t)
=

1

εφ (zj (t))
[r + δjzj (t)φ (zj (t))− δjφ (zj (t)) (λ− 1) γYj] , (15)

where εφ (zj (t)) = −φ0 (zj (t)) zj (t) /φ (zj (t)) is the elasticity of the φ function.
11This is the natural assumption given free entry. The alternative would be to assume that there is a

consortium of firms in each line, jointly maximizing profits. In this case, the free entry condition below would
change to: δj

£
φ (zj (qj (t))) + zj (qj (t))φ

0 (zj (qj (t)))
¤
Vj(qj (t)) = 1. This does not affect any of the results of

the analysis.
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Since consumer incomes are now assumed to be constant, the steady-state equilibrium must

have żj (t) = 0. This implies that the steady-state R&D level in drug line j = 1, 2, ..., J is:

zSj =
δjφ

¡
zSj
¢
(λ− 1) γYj − r

δjφ
¡
zSj
¢ . (16)

In the special case where φ (.) = 1, this equation boils down to (8) in the basic model. Moreover,

the steady-state R&D levels have the same features as the equilibrium there: a greater market

size increases R&D, a greater δj, which corresponds to better research opportunities for this

drug line, increases R&D, and higher interest rates reduce R&D.

An important feature of this equation is that the equilibrium behavior of zj (t) is inde-

pendent of research and profitability in other drug lines. This feature simplifies the dynamics

substantially. In addition, the right hand side of (15) is strictly increasing in zj (t) whenever

zj (t) = zSj , which implies that there can be at most one intersection of the right hand side

with the 0 axis, and at this point of intersection, żj (t) /zj (t) is increasing in zj (t), as drawn in

Figure 1. Therefore, (15) defines an unstable differential equation. This implies that starting

away from the steady-state, the equilibrium zj (t) has to immediately jump to its steady-state

value as given by (16). Hence, there are no transitional dynamics in this extended model either.

However, there is now an equilibrium response to anticipated future changes in market size.

Consider the following situation: it is suddenly announced at date t0 that Yj will increase to

Ŷj in some future date t̂ > t0. How will this fully-anticipated change in market size affect

equilibrium R&D? Suppose there is no change in zj (t) until t̂. This implies that zj (t) has to

jump up discontinuously at t = t̂. But this implies that anticipating this jump, Vj (t | qj) will
be changing before t̂, in particular, V̇j (t | qj) < 0. Since zj (t) is constant, this would violate

the free entry condition, (14). This reasoning implies that there should be no anticipated

jumps in zj (t), in particular no jump at t = t̂, which is only possible if zj (t) jumps by a

small amount initially at t = t0, and then smoothly increases towards the new steady-state

equilibrium. Therefore, in this model there are no transitional dynamics starting away from

the steady-state, but R&D responds to anticipated future market size changes. Nevertheless,

the same considerations as in the baseline model limit this response. In other words, even if

a change in market size is anticipated far in advance, increasing R&D investment too far in

advance would not be profitable because another firm is likely to innovate further before the

actual increase in market size materializes. In terms of our empirical work, even if demographic

changes are anticipated at least 20 or 30 years in advance, we may expect significant innovation

responses much later, perhaps 5 or 10 years in advance or even contemporaneously.12

12A previous version of the paper also investigated a number of other generalizations, which we omit because
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2.4 Generics and Non-Generics

The analysis so far did not distinguish between generics and non-generics. In the empirical

work, we first look at all entries, and then distinguish between generics and non-generic drugs–

which better correspond to “innovation”. We now briefly discuss how the predictions of the

model change when we incorporate a distinction between generics and non-generics. We do

this in the simplest possible way, and assume that pharmaceutical firms can engage in R&D to

discover new drugs as described above, or they can engage in costly development to introduce a

generic version of an already-existing drug (without quality improvement).13 Although bringing

a generic drug to the market does not involve original research, it still requires substantial

resources spent upfront (for the approval process or for marketing).14

Let us suppose that one unit of the final good devoted to prepare a generic for the market

in drug line j leads to successful entry at time t at the flow rate θj, so entry of new generics

at time t is given by gj (t) = θjhj (t), where hj (t) is total generic development expenditure

for drug line j at time t. In practice, in addition to technological factors, length of patents on

non-generics influences θj. We assume that θj > δj, since introducing a generic to the market

must be easier than inventing a new drug.

If there is entry of a generic into drug line j at time t, we assume that both the incumbent

and the generic entrant receive profits of µ (λ− 1) γYj (t) where Yj (t) is defined in (5), and µ ∈
[0, 1/2). Recall that if the generic entrant and the incumbent engage in Bertrand competition,

then they will both charge marginal cost, and we would have µ = 0. The formulation here allows

some degree of non-Bertrand (e.g., Cournot) competition or collusion, so µ > 0 is possible. If

of space constraints.
Briefly, we allowed research to be only imperfectly directed, so that research towards the drug line j leads to

a flow rate of pδj of discovering a new drug of this type, and to a flow rate of (1− p) δj0/J any j0 = 1, ..., J ,
where 1 ≥ p > 0. When p = 1, we have the model of subsection 2.1, while with p → 0, research becomes
undirected. Interestingly, this generalization does not affect the results of the model, and even with p→ 0, the
innovation rates are given exactly by (9), and thus the results do not depend on the assumption of perfectly
directed research.
We also generalized to set up by allowing “technological drift”, meaning random innovations arising from non-

profit and non-economic motives, which again did not affect the results, and led to an equilibrium relationship
similar to (9). Details are available upon request.
13An alternative approach would be to link the entry of non-generics directly to the delayed entry of generics,

since generics can only enter after the patents on previous non-generics expire. Nevertheless, because introducing
a generic into the market still involves significant upfront costs, we expect profit incentives to play a major role
here. A hybrid model incorporating both such delays and profit incentives is significantly more complicated to
analyze.
14Prior to 1984, the FDA demanded a similar application process for approval of a generic drug as for a

non-generic. For example, the generic drug’s safety and efficacy had to be demonstrated through clinical trials.
DiMasi et al (1991) suggest that the cost of approval for a generic was as much as 40% of the cost of a non-
generic. The Hatch-Waxman Act in 1984 allowed a company to obtain FDA approval for a generic drug by
demonstrating that it is molecularly similar to and has the same active ingredients, indications and strength as
the non-generic, substantially reducing the costs of introducing a generic. Reiffen and Ward (2002) estimate the
cost of introducing a new generic to be around $5 million after the Act, compared to over one hundred million
dollars before (DiMasi et al, 1991).
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µ = 0, there would be no entry of generics, and the results in subsection 2.1 would apply.

In addition, we assume that in a market that already includes the incumbent and a generic

producer, there is no further room for a third producer, so we can ignore the potential entry

from further generic producers. Allowing for further entry of this sort introduces additional

notation, but does not affect our qualitative results.

Given this structure, the value of innovation (for a non-generic) is now given by

rVj (t | qj) − V̇j (t | qj) = πj (qj)− δjzj (qj)Vj (t | qj)− θjhj (t) [Vj (t | qj)−Wj (t | qj)] , (17)

where πj (qj) = µ (λ− 1) γYj (t) as before and Wj (t | qj) is the value of being one of two
producers supplying drug j at time t. The main difference between this expression and (6)

above is the last term, which takes into account that at the flow rate θjhj (t) there will be

entry of a generic, in which case the innovator loses its monopoly position, and the associated

value Vj (t | qj), and becomes one of two producers, receiving value Wj (t | qj). With a similar
reasoning to before, this value is given by:

rWj (t | qj) − Ẇj (t | qj) = µπj (qj)− δjzj (t)Wj (t | qj) . (18)

Intuitively, the only reason why the flow of profits captured by Wj (t | qj) will come to an end
is because there is a better drug introduced to the market, which happens at the rate δjzj (t).

Free entry requires that

zj (t) ≥ 0, and δjVj (t | qj) ≤ 1 with complementary slackness
hj (t) ≥ 0, and θjWj (t | qj) ≤ 1 with complementary slackness.

These conditions are similar to (7) above, but written out explicitly in the form of a comple-

mentary slackness condition to emphasize that there may not be R&D for new drugs or any

generic entry under certain conditions. Let us next assume that

µθj < δj (19)

for all j. If this assumption does not hold, entry of new generics is so rapid that it ceases

to become profitable for pharmaceutical companies to introduce new drugs, and consequently,

quality improvements come to an end. As long as Assumption (19) holds, similar arguments

to before imply that the unique equilibrium is given by:

zj (t) =
µθj (λ− 1) γYj (t)− r

δj
, (20)

hj (t) =
(δj − µθj) (λ− 1) γYj (t)

θj − δj
.
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It can also be verified that if µ = 0, the equilibrium of Proposition 1 applies, and if Assumption

(19) does not hold, there will be no R&D, i.e., zj (t) = 0, and thus limt→∞ hj (t) = 0 (or

Pr limt→∞ hj (t) = 0) as there will eventually be two producers in the market for drug j.

Moreover, the entry rate of non-generics and generics, nj (t) and gj (t), are:

nj (t) = µθj (λ− 1) γYj (t)− r, (21)

gj (t) =
θj (δj − µθj) (λ− 1) γYj (t)

θj − δj
.

There are a number of important points to note about this equilibrium. First, the entry

rates of both non-generics and generics respond positively to market size. Therefore, this

model generalizes the key prediction of our baseline model in subsection 2.1. Second, other

comparative static results are now quite different than in the baseline model. The entry rates

of non-generics no longer respond to δj (and zj (t) is decreasing in δj). Instead, they respond

positively to µ and θj (two parameters that should intuitively make entry of generics more

profitable). This is because the rate of entry of non-generics is determined to ensure 0 profits

for generics; once generic drugs enter the market, their producers will continue to make profits

until there is a new and better drug. Finally, differentiating the equations in (21) with respect

to Yj (t) shows that either generics or non-generics may respond more to changes in market size

(it depends on whether µ or (δj − µθj) / (θj − δj) is larger). Plausibly, we expect µ to be small

and θj−δj to be large, and therefore, generic entry to be more responsive to changes in market
size than non-generic entry.15

3 Empirical Strategy

3.1 Empirical Specification and Estimation Issues

As r → 0, we can take logs on both sides of equation (9) to obtain:

log nj (t) = constant+ log δj + logmj (t) , (22)

where mj (t) ≡ λγYj (t) is the market size for drug line j at time t. We measure entry of new

drugs (or innovation), nj (t), as new drug approvals by the FDA (Food and Drug Administra-

tion) in broad drug categories as described below.16 This measure, denoted by Nct for drug

category c at time t, includes entry of generic drugs. Although generic drugs do not correspond

to “innovation” according to the standard use of this term, they are still driven by the same

15In practice, the presence of uncertain delays in the development and approval process for non-generics may
also imply a smaller response to the current market size for these drugs.
16Besides new drug approvals and patents, which we also use below, there is a third proxy for innovation

rates: clinical trials. We were unable to obtain data on clinical trials for a sufficient number of drug categories.
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profit incentives as innovation, and are similar to innovation in the context of our model.17

After presenting results using all drug approvals, we separate generics from non-generics, and

investigate whether the relationship between market size and entry differs for the two types

of drugs. Instead of actual market size, mj (t), we will use potential market size driven by

demographic changes, which we denote by Mct, and discuss its construction below.

Adding other potential determinants, time effects and an error term capturing other unob-

served influences, and allowing the coefficient of logMct to differ from 1 as it would with more

general preferences than Cobb-Douglas, we arrive at an estimating equation of the form:

logNct = α · logMct +X 0
ct · β + ζc + µt + εct, (23)

where Nct is the number of new drugs in category c in time period t, Mct is potential market

size, X 0
ct is a vector of controls, including a constant, with β as the corresponding vector of

coefficients, ζc’s are a full set of category fixed effects that correspond to the log δj terms

above, µt’s are a full set of time effects capturing any common time component, and finally,

εct is a random disturbance term, capturing all omitted influences. The specification with the

dependent variable in logarithm is useful, since it ensures that drug category fixed effects and

time effects have proportional impacts on entry of new drugs.

One problem with equation (23) is that Nct is a count variable (number of new drugs), so

it can equal 0. In our data, this is not common, but in most specifications there are typically

a few drug category-time cells where Nct is equal to 0. This makes it impossible to estimate

(23). We take a number of approaches to this problem. First, we change (23) to

log Ñct = α · logMct +X 0
ct · β + γ · dct + ζc + µt + εct, (24)

where Ñct = Nct if Nct ≥ 1 and Ñct = 1 if Nct = 0, and the variable dct is a dummy that

equals 1 when there are no approvals, i.e., dct = 1 if Nct = 0 and dct = 0 otherwise. This

procedure, which was first used by Pakes and Griliches (1980), has the advantage of simplicity

and flexibility (the data determine how Nct = 0 should be treated). The drawkback is that the

variable dct is mechanically a function of Nct, so it can introduce various biases.

More satisfactory is to consider the following Poisson model (see, for example, Wooldridge,

1999, 2002, or Hausman, Hall, and Griliches, 1984):

Nct = exp(α · logMct +X 0
ct · β + ζc + µt) + εct, (25)

17Moreover, if generics and non-generics are imperfect substitutes, generics would correspond to new products,
and their entry would increase consumer welfare in a manner similar to technological improvements, and in fact,
formally correspond to technological change in the product variety models (e.g., Romer, 1990, Grossman and
Helpman, 1991).
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which is a slight variant on equation (23) above. Estimates from the two models are typically

similar when there are only a few empty approval cells. When there are more empty cells, as

when we look separately at generics and non-generics, there are larger discrepancies between

the two models, and in those cases we favor the Poisson model.

The estimation of (25) would lead to biased estimates, however, since the fixed effects, the

ζc’s, cannot be estimated consistently. To deal with this problem, we follow Hausman, Hall,

and Griliches (1984), and transform (25) to obtain:

Sct =
exp(α · logMct +X 0

ct · β + µt)PT
τ=1 exp(α · logMcτ +X 0

cτ · β + µτ)
+ εct, (26)

where Sct = Nct/
PT

τ=1Ncτ is the number of drugs approved in category c at time t, divided by

the total number of drugs approved in category c, and T is the total number of time periods

in the sample. This transformation removes the drug category dummies, and the coefficient

of interest, α, can be estimated consistently. We estimate this equation using nonlinear least

squares (NLLS) as well as maximum likelihood (ML). Woodridge (1999) shows that NLLS

estimation strategy has good consistency properties, even when the true model is not Poisson.

Finally, we also report some estimates from the negative binomial model which relaxes the

distributional assumptions of the Poisson model in a maximum likelihood context (see, for

example, Wooldridge, 2002, or Hausman, Hall, and Griliches, 1984).

In addition to equations (24) and (26), which have the contemporaneous value of logMct

on the right hand side, we also estimate equations with leads and lags of logMct to determine

whether there are significant delays and anticipation effects. Such effects are possible, since, as

reported by DiMasi et al. (1991), it can take as long as 15 years for a drug to enter the market

from the time of initial research. Furthermore, changes in demographics can be anticipated

a long time in advance, so drug approvals may respond to anticipated future market sizes, as

highlighted by our analysis in subsection 2.3.

3.2 Potential Market Size and Identification

Throughout, we exploit the potentially exogenous component of market size driven by demo-

graphic trends, combined with differences in the age distribution of users for different types of

drugs. We obtain the age composition of users (and expenditure) from micro drug consumption

data, and the changes in U.S. demographics from the CPS (Current Population Survey) data.

Our measure of potential market size is:

Mct =
X
a

uca · pat, (27)
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where pat is the U.S. population or income of age group a at time t, and uca is the time-invariant

measure of consumption of drug category c by individuals in age group a. We take time periods

to be either five-year or ten-year intervals.

We compute Mct in two alternative ways: first, we use the U.S. population for age group a

at time t for pat and the average number of drugs in category c used per person in age group

a for uca; and second, we use the total income of age group a for pat and the average share of

drugs in category c in the total expenditure of those in age group a for uca. The latter, which

we refer to be as the income-based measure, corresponds more closely to market size in the

theoretical model, which is a combination of the number of consumers and their incomes, and

will be our main measure.18 For both measures, the over-time source of variation is not from

changes in individual use, but purely from demographic changes captured by pat–i.e., uca’s are

not time-varying. So for example, changes in prices, which potentially result from innovations

and affect consumption patterns, will not cause over-time variation in Mct.

The major threat to the validity of our empirical strategy is from potentially time-varying

omitted variables (any variable that is not time-varying is taken out by the drug category fixed

effects). Omitted variables related to market size or profit opportunities may induce a bias in

the implied magnitudes, but will not lead to spurious positive estimates of the effect of market

size (in other words, the presence of such variables is essentially equivalent to mismeasurement

of the appropriate market size). More threatening to our identification strategy would be

omitted supply-side variables. If our instrument is valid, it should be orthogonal to variation

in supply-side determinants of entry. We attempt to substantiate our identifying assumption

further by including lagged dependent variables, and adding controls such as pre-existing trends

and proxies for other incentives to undertake research in a particular field.19

4 Data and Descriptive Statistics

4.1 Basic Data Sources

The demographic data come from the March CPS, 1964-2000. We construct five age groups,

0-20, 20-30, 30-50, 50-60, and 60+. These divisions are motivated by drug use patterns of

these age groups. To construct income shares, we divide household income equally among the

18If preferences have a Cobb-Douglas form as in (1) and are stable, the expenditure measure of uca will always
be constant. With non-Cobb-Douglas preferences, changes in prices will induce changes in uca over time. In
this case, by using a time-invariant measure of uca, we remove this potentially endogenous source of variation.
19Another source of endogeneity may be that innovations in certain drug categories extend the lives of the

elderly, thus increasing their Mct. Lichtenberg (2003) provides evidence that new drugs extend lives. This
source of endogeneity is not likely to be quantitatively important, however, since the variation resulting from
extended lives in response to new drugs is a small fraction of the total variation in Mct. Nevertheless, we will
also report estimates that instrument Mct with past demographics, purging it from changes in longevity.
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members of the household. Figure 2 shows population shares for the five age groups, and Figure

3 shows the corresponding income shares (i.e., income of the corresponding age group divided

by total income). To facilitate comparison with Figure 4, this figure starts in 1970. Both figures

show a large amount of variation across age groups over time. In particular, it is possible to

trace the baby boomers, as the fraction of those in the age bracket 20-30 in the 1970s, and

those in the age bracket 30-50 in the 1980s and the 1990s.

The FDA classifies all prescription drugs into 20 major drug categories, which are further

subdivided into 159 categories. These categories are based on a combination of therapeutic

intent and chemical structure.20 We drop 4 of the 20 major categories from this classification:

Anesthetics, Antidotes, Radiopharmaceuticals and Miscellaneous.21 We obtain a total of 34

categories by breaking 10 of the 16 remaining categories into finer groups when there are signif-

icant heterogeneity in terms of the age distribution of users across subcategories. We separate

the major categories of Antimicrobials, Psychopharmacologics, Nutrients, Hormones, Dermato-

logics, Neorologics, Ophthalmics, Otologics, Pain Relief and Respiratory because within these

categories there are subcategories with significantly different age profiles of users. For example,

within Antimicrobials, 0-20 year-olds use Antibiotics (except Tetracyclines) the most, while

Antivirals are used most by people 30 and older. Appendix Table A1 lists the 34 categories.

Our main data source for drug use is the Medical Expenditure Panel Survey (MEPS), which

is a sample of U.S. households over the years 1996-1998. The survey has age and income data for

each household member, and covers about 25,000 individuals in each year. There is also a list of

prescription drugs used by each person (if any), and the amount spent on drugs. In all, there are

about 500,000 medications prescribed. We construct drug use per person and expenditure share

for each category and each of our five age groups. Appendix Table A1 reports these numbers,

and shows a large amount of variation across drug categories. Many of the categories are

used more by older people than by younger, but there are numerous exceptions. For example,

Contraceptives are used most by 20-30 and 30-50 year-olds, and Penicillins and Antibacterials

are used most by individuals in the youngest group. We construct the measures of potential

market size according to equation (27) by combining data from the MEPS and the CPS.

We supplement theMEPS data with the National AmbulatoryMedical Care Survey (NAMCS),

20Other authors, for example Lichtenberg (2003), use a different classification system based on diseases. For
our purposes, the FDA classification is attractive, both because it enables us to construct a better classification
of all approved drugs currently on the market, and because the microdata surveys give the FDA classes for the
drugs that the respondents use (see Data Appendix for details).
21We drop the Anesthetics, Radiopharmaceuticals and Miscellaneous categories because most of the items

in these categories were not developed for a distinct market. Radiopharmaceuticals are used for diagnostic
purposes, and the Miscellaneous category mainly contains surgical and dental tools. The Antidote category is
dropped because there are few drugs approved and there is little use of these drugs in the surveys. See the Data
Appendix for further details on the contruction of our categories.
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which is an annual survey of doctors working in private practices. The survey includes drug

use for the years 1980, 1981, 1985, and 1989-2000. Observations are at the doctor-patient-visit

level; there are about 40,000 visits per year. Doctors are selected randomly, surveyed for a

week, with patient-visits selected randomly from the week. The main use of the NAMCS is

that it covers a longer time period, enabling us to check whether the age composition of users

across categories has changed over time. Using the NAMCS data, we construct a second drug

categorization, with 30 categories.22

Table 1 gives correlations between various measures of drug use. Panel A shows a high degree

of correlation between the NAMCS surveys at various dates, indicating that the age profile of

users has not changed significantly over the 1980s and the 1990s. The overall correlation row

looks at the unconditional correlation. We also report weighted correlations, where observations

are weighted by cell size in the MEPS or NAMCS. Weighted correlations are larger than the

overall correlation because our estimates of the age distribution of users are less precise when

there are fewer individuals using drugs in a particular category. The third row reports mean

correlation by drug, which calculates the within category correlation between the two measures

and then averages it across all categories. This measure is more informative for the question of

whether the age distribution of users for a particular drug has changed over time.

Panel B performs the same calculation for the three waves of the MEPS, and similarly shows

substantial persistence in the age distribution of drug expenditure. Finally, panel C shows a

high degree of correlation between expenditure shares and use per person in the MEPS data.

But perhaps surprisingly, there is low correlation between the NAMCS and the MEPS. This

is because the two surveys yield very different estimates for total use of each category (but

very similar estimates of relative use by age groups within each category, as shown by the high

level of mean correlation by drug). We conjecture that this reflects the fact that NAMCS,

which samples doctors in private practice rather than individuals, is not as representative as

the MEPS.

The last major data source is a list of new FDA drug approvals. We exclude over-the-counter

drugs, the so-called orphan drugs,23 and drugs that have the same identifying characteristics

22Appendix Table A2, which is available upon request, compares this classification system with the 34 category
system developed with the MEPS. Some of the 159 categories have been dropped from one classification system,
but not from the other, because there were not sufficient observations to construct reliable estimates of drug
use from one of the surveys. Appendix Table A2 shows that the two systems are closely related. In general
the 34 category system is a slightly less aggregated version of the 30 category system. Nevertheless, there are
a number of cases where a given FDA category is combined with a second FDA category in one system, but
with a third FDA category in the other system (e.g., Misc. Antibacterials are with Sulfonamides in the MEPS
system, but with Antiseptics in the NAMCS system).
23These drugs treat rare conditions, affecting fewer than 200,000 people. An example is botox, first developed

to treat adult dystonia, which causes involuntary muscle contractions. We drop these drugs because we have
difficulty matching them consistently, and because they receive special inducements under the Orphan Drug
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(i.e., same name, company, and category, or the same FDA approval number). We focus on

the time period 1970-2000. Since we can only match FDA categories for drugs that are still

listed by the FDA, the quality of the approvals data deteriorates as we go back in time. In

addition, because we are using age composition from the 1990s, the quality of our measures of

potential market size also deteriorates as we go back in time. Our approvals dataset for 1970-

2000 comprises 6,595 prescription drugs, including both generics and non-generics (see the

Appendix). Since 1970 there have been about half as many approved non-generics as generics.

Figure 4 shows the share of drug approvals over time to compare with changes in income

shares depicted in Figure 3 (or population shares shown in Figure 2). To construct Figure 4,

we compute drug approvals over five-year intervals for the 34 categories. We then combine the

34 categories into five groups, based on the age group that accounts for the largest fraction of

use in that category (thus this cut of the data uses only part of information that we will exploit

in the regression analysis), and compute the share of drug approvals by dividing the number of

approvals in a given category by total approvals in that time period.24 Comparing this figure

with Figure 3, a positive association between contemporaneous changes in population share

and changes in drug approvals for the corresponding age group can be detected visually. For

example, the income share of the 30-50 group increases over the sample, and so does the entry

of drugs most used by this group. Both the shares of income and entry of drugs for those 0-20,

on the other hand, show a downward trend, while those for the 60+ age group show an increase

followed by a decline. Table 2 also shows changes in income shares by age group and in FDA

drug approvals (for all drugs as well as separately for generics and non-generics), and confirms

the patterns depicted in Figures 3 and 4. These patterns are explored in greater detail in the

regression analysis below.

5 Results

5.1 Basic Specifications

Table 3A provides the basic results from the estimation of (24) and (26) with non-linear least-

squares (NLLS) and ordinary least-squares (OLS), and Table 3B reports maximum likelihood

estimates of the Poisson and negative binomial models. We start with the potential market size

measure constructed using MEPS data. These basic specifications do not contain any covariates

Act.
24There are large fluctuations in the total number of approvals, presumably because of a number of institu-

tional changes. For example, it was discovered in 1989 that some FDA officials were taking bribes to speed up
the approval process for generic drugs. As a result, in the early 1990s the approval process for generics was
greatly slowed. See, for example, The Washington Post, August 16, 1989. When we separate our approval data
into generics and non-generics, we see a large drop in generics approvals in the early 1990s, but only a small
decline for non-generics. We thank Ernie Berndt for suggestions on this issue.

20



other than drug category effects and time effects. The results show a large and significant effect

of (potential) market size (logMct) on entry of new drugs.

In column 1 of Table 3A, we start with our basic “income-weighted” measure of logMct,

constructed using expenditure data from the MEPS data set, and income from the CPS, with

the time periods corresponding to five-year intervals. Since our estimates of age composition in

smaller categories are less precise, observations are weighted by MEPS cell sizes (total expendi-

ture for income-based measures in the cell and total drug use for population-based measures).

The standard errors throughout are corrected for heteroscedasticity using the Huber-White

formula. The NLLS estimate of α in this basic specification is 6.04 with a standard error of

1.95, which is significant at the 1 percent level. The OLS estimate is somewhat smaller, 4.52,

with standard error 2.00, thus significant only at the 5 percent level.25

Potential market size appears to explain a sizable fraction of the total variation in the entry

of new drugs (for example, the partial R2 of the OLS specification is 0.20), and the empirical

relationship is not driven by outliers. Figure 5 shows a plot of the residuals of logNct against

the residuals of logMct in the OLS regression, in both cases after drug category and period

dummies are taken out. Observations are labeled by their drug category codes (see Appendix

Table A1), and each code appears more than once, since there are multiple periods. The line in

the figure corresponds to the estimated relationship reported in column 1. Although categories

42, 43 and 61 (Anorexiants, Central Nervous System drugs and Vitamins/Minerals) typically

fit the pattern less well and are outliers in either direction, excluding these has little effect on

our estimate of α. For example, dropping these three categories leads to an NLLS estimate of

7.07 (s.e.= 2.29).

The quantitative magnitude of the effect in column 1 is large but plausible, implying that

a 1 per cent increase in our market size measure leads to about a 6 percent increase in drug

approvals. Since there are a total of 6,595 approvals between 1970 and 2000, thus on average

32 approvals in every five-year interval in each of our 34 categories, the estimate of 6.04 implies

that a 1 percent increase in market size leads to the entry of about two new drugs. Total phar-

maceutical sales was approximately $130 billion in 1999 (IMS, 2000), which implies an average

annual expenditure of $3.8 billion per category. A 1 percent increase therefore corresponds to

$38 million, or about $570 million over 15 years, which is the life of a typical drug. Since entry

costs for non-generics are around $800 million (in 2000 dollars, DiMasi et al, 2001), while for

generics they have varied between $5 million and over $100 million (DiMasi et al, 1991, Reiffen

and Ward, 2002), entry of two new drugs in response to an increase of $570 million in revenue

25Clustering the standard errors at the level of drug categories has little effect because there is no residual
serial correlation–see the lagged dependent variable specifications reported in Table 6.
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is within the range of plausible responses.

In column 2, we use ten-year intervals instead of the five-year intervals, both to reduce

the potential noise in the entry of new drugs during the five-year intervals and also to check

whether ten-year intervals correspond more closely to the relevant match between market size

and entry. The estimate of α using NLLS is now 4.95 with standard error 1.90, significant at

the 1 percent level. The smaller NLLS estimate indicates that there might be some attenuation

with the ten-year invtervals, but the ten-year OLS estimate is slightly larger than the five-year

estimate. In the remainder, we mainly focus on five-year intervals.

Although the income-weighted measure of market size seems more satisfactory, in columns 3

and 4 we also look at the effects of changes in market size driven purely by population changes.

Using this measure leads to estimates that are slightly larger for both NLLS and OLS, and are

estimated with about the same level of precision.26

To see the effect of weighting on the estimates, columns 5 and 6 report unweighted regres-

sions. Without weights, the NLLS estimates are smaller than in columns 1 and 2, but still

significant at the 1 percent level, and the OLS estimates, also smaller than in columns 1 and

2, are significant at the 5 percent level. We conjecture that this somewhat weaker relationship

without weights reflects the less precise estimation of age composition in the smaller categories,

which is illustrated by the correlations in Table 1.27

The results in Table 3B are broadly similar, and show that the main results are robust to

different estimation methods. In panel A of that table, we use maximum likelihood to estimate

equation (26). The number below the estimate is the maximum-likelihood standard error, while

the number in curly brackets is the robust standard error that does not impose the Poisson

structure to calculate the standard errors, and instead uses the Huber-White formula. The

estimates are unweighted. In the first two columns, we compute market size using income and

expenditure. The estimates are larger than the corresponding estimates in columns 5 and 6

of Table 3A. In panel B we use a weighted maximum likelihood procedure, and obtain similar

estimates to those in columns 1-4 of Table 3A. Finally, we also report estimates from the

negative binomial model in panel C, which allows for overdispersion of the Poisson parameter.

In this case, the estimates of α are slightly smaller than those in columns 1-4 of Table 3A, and

26We also estimated these models using West European and Japanese demographic information in addition
to U.S. information (obtained from the United Nations website, esa.un.org/unpp/). Using the total population-
based market size measure combining European, Japanese and U.S. populations gives similar results to those
obtained using only U.S. information. For example, the NLLS specification using this total market size and
five-year intervals gives an estimate of 5.27 (s.e.=1.50), as compared to the corresponding estimate of 6.16 in
column 3.
27This conjecture also receives support from the fact that when we construct our potential market size measure

using the NAMCS, which has a more even distribution of observations across drug categories, the unweighted
and weighted results are similar (see Table 7 below).
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still significant at 1 or 5 percent.

5.2 Delays and Anticipation Effects

The theoretical analysis suggested that delays in the development and approval processes are

unlikely to create delays in the entry of new drugs in response to changes in market size, but

there is room for new drugs to enter before the actual increase in market size because of anticipa-

tion effects, especially since demographics-driven changes in market size should be anticipated

in advance. We investigate the role of delays and anticipation effects in this subsection by

including lags (logMc,t−1) and leads (logMc,t+1) of potential market size on the right hand side

of our estimating equations.

Columns 1 and 2 of Table 4 replicate the basic five-year and ten-year specifications from

Table 3A for comparison. Columns 3 and 4 include the market size from the previous period

and show that new drug entry responds mainly to current market size (in fact, the coefficient

on lag market size is negative, though insignificant, presumably because current and previous

market sizes are highly correlated). For example, in column 3, the coefficient on current market

size is larger than our baseline, 13.56 (s.e.=4.45) with NLLS, and 8.62 (s.e.= 3.91) with OLS.28

Columns 5 and 6 show that lag market size is also typically insignificant when entered by itself

(with the exception of Panel A in column 5, where it is significant but much smaller than the

estimate with current market size in column 1). These results therefore show no evidence of

significant delays in the response of new drug entries to changes in market size.

In column 7, we include the current and one period ahead market size. Both the contem-

poraneous and lead market sizes are individually insignificant, but jointly significant at the 1

percent level. The coefficient on lead market size is much larger. In column 8, when we use

ten-year intervals, instead, the coefficients are about the same magnitude, but current market

size is significant at the 1 percent level (and similar to the baseline) while the lead market

size is insignificant. Columns 9 and 10 show large and significant coefficients when we include

only future market size.29 These results therefore suggest that there may be some anticipation

effects, perhaps with five- or ten-year leads, which is consistent with the possibility of limited

anticipation effects highlighted by the theoretical model.30

28We construct the lagged market size measures for 1960s using demographic information from the CPS, so
the number of observations does not decline. The results are similar if we only use the post-1970 data.
29We have also extended the sample for the lead specification by combining the population projections of

the U.S. Census Bureau for 2010 with the incomes from the 1990s (the results are also similar if we use a
linear extrapolation to predict future income). Using this additional period yields similar results. For example,
re-estimating the specification in column 4 with NLLS, the estimate on current market size is 3.10 (s.e.=3.75)
and the estimate on lead market size is 4.33 (s.e.=4.03), jointly significant at 1 percent. The specification in
column 6 gives an estimate on lead market size of 7.10 (s.e.=1.86).
30Here “limited” does not refer to the strength of the effect, but to the fact that the response to market size
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5.3 Potential Supply-Side Determinants of Innovation

In this subsection, we investigate the robustness of the baseline results to controlling for po-

tential non-profit determinants of innovation, such as changes in scientific incentives or oppor-

tunities captured by the δj’s in the theoretical model.

First, recall that the major threat to our identification strategy is changes in the δj’s (since

permanent differences in δj’s are already taken out by our drug category fixed effects). If the

δj’s change over time, they are also likely to be serially correlated. Adding lags of logNct to

our basic specifications is therefore a simple way to check for the importance of these concerns.

Columns 1 and 2 of Table 5 report the results of estimating a lagged dependent variable

specification, by adding a one-period lag of the dependent variable, logNct−1, to our basic

specifications. In the OLS version, the basic regression therefore changes to:

logNct = α · logMct + ψ · logNct−1 + γ · dct + δc + µt + εct. (28)

Since logNct−1 is correlated with the error term mechanically, estimates to this equation would

be biased, and we deal with this problem by instrumenting logNct−1 with logNct−2. This is a

valid instrument as long as there is no additional autocorrelation in the error term, εct (see, for

example, Blundell and Bond, 1998). This specification is also useful more generally to check for

other sources of serial correlation in the entry rate of new drugs (such serial correlation would

make the arguments for the exogeneity of logMct less compelling).

The estimates of α from equation (28), reported in columns 1 and 2, are quite similar to

the baseline. The coefficient on the lagged dependent variable, logNct−1, is essentially 0 and

insignificant for five-year intervals; for ten-year intervals, though significant with OLS, it is

again insignificant with NLLS. These results therefore show that there is no significant residual

serial correlation, due to either changes in scientific opportunities or other sources, and that

controlling for such serial correlation has no effect on our estimates.

A plausible conjecture is that non-profit incentives to develop drugs would be particularly

responsive to opportunities to save lives or cure major illnesses. Motivated by this reasoning,

our second strategy looks at variation in the health benefits of new drugs across categories.

New drugs in our data set include both drugs that are demanded by the consumers but do not

“save lives”, such as Prozac, Paxil, Vioxx, or Viagra, or those that actually save lives such as

heart medicines or cancer treatments (see Lichtenberg, 2003, on the effect of pharmaceutical

innovations on declines in mortality). To investigate this issue, we measure the number of

is 5-10 years before the change in market size, not further in advance. If we include further leads of market
size, these are much smaller and insignificant. For example, the 15 years lead when included by itself is highly
insignificant; the NLLS estimate is 1.57 (s.e.=2.52), and the OLS estimate is 1.16 (s.e.=6.06).
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life-years lost corresponding to each drug category using the Mortality Detail Files from the

National Center for Health Statistics from 1970-1994. Following Lichtenberg (2003), for each

death, we subtract the person’s age from 65, then calculate the total number of life-years lost

for all the deaths resulting from diseases related to drugs in each category.31

We add this measure of life-years lost to the right hand side of our baseline regression

models as a proxy for this source of non-profit incentive to undertake research. Since we are

using mortality data prior to 1995, we drop the last time period from the regression. The

baseline regression for the years 1970-1994 is reported in column 3 of Table 5, and leads to

an estimate of approximately the same size as the baseline using all years. Column 4 reports

the result of using the life-years lost variable, and finds no change in our estimate of α. The

coefficient on the life-years lost variable (unreported) is small and insignificant.32

Starting in column 3, in addition to NLLS estimates in panel A and OLS estimates in panel

B, which use current market size, we also report NLLS estimates with leads of market size in

panel C. These specifications typically yield results very similar to those in Table 4.

Third, we investigate the implications of differences in scientific funding for various drug

categories. Using the Computer Retrieval of Information on Scientific Projects (CRISP) dataset

(details in the Data Appendix), we construct a variable measuring the total amount of federal

funding for research projects in all drug categories, and include this variable as a control on

the right hand side. To the extent that government funding also responds to potential market

size (for example, because drug companies have a greater tendency to apply for funding in

areas where they plan to do research), this variable would be correlated with our market size

measure. In practice, the correlation is low, and columns 5 and 6 show that the inclusion of

this variable, or both its current and lag values, has little effect on our estimates of α.

Fourth, to control for potential trends in scientific opportunities across drug categories,

we add proxies for pre-existing trends. We construct an estimate for pre-existing trends as

∆c = (logNc,60 − logNc,40)/2, where logNc,60 is the log approvals for category c in 1960 and

logNc,40 is the log approvals in 1940. We then estimate the equation:

logNct = α · logMct +
X

i=80,90

∆c · σi + δc + µt + εct, (29)

where σi’s are dummies for the 1980s and 1990s. This specification allows drug categories that

31For example, if someone dies at age 32, this counts as 33 life years lost; people dying older than 65 receive
no weight in this calculation.
Note that the Mortality Detail Files are coded by disease class, so we must convert the classification to our

system. Since many of our categories contain diseases or conditions that do not lead to death, we obtain a
number of empty cells.
32We also ran separate regressions using five- and ten-year lags of life years lost (both unreported), and again

found no change in our estimates of α.

25



have grown at different rates between 1940 and 1960 to also grow at different rates in the 1980s

and the 1990s. Column 7 reports the results of this exercise. The estimate of α is similar to

our baseline estimate, 6.23, with standard error 1.88. Column 8 repeats the same exercise with

∆c = (logNc,70 − logNc,40) /3 as the measure of pre-existing trends. The resulting estimate is

again similar to our baseline. These results are perhaps not surprising, since pre-1970 approvals

are considerably noisier, thus only an imperfect control for pre-existing trends.

An alternative, and substantially more demanding, strategy is to include linear time trends.

To do so, we estimate:

logNct = α · logMct + ηC · t+ δc + µt + εct, (30)

where c refers to the 34 detailed drug categories, and C refers to the relevant 16 major drug

category, i.e., the one which detailed category c belongs to. We expect technological differences

to be captured by which of the 16 major drug categories each drug belongs to, since these

categories are based on therapeutic intent, while the subcategories are based on use by age

group. The estimates, reported in column 9, are close to our baseline. For example, with

NLLS, the estimate of α is 5.60 (s.e.=2.10). The OLS estimate is smaller and insignificant.

Using lead market size instead of current market size results in a similar pattern: the NLLS

estimate, 8.46 (s.e.=2.53), is significant at 1 percent, while the OLS estimate (not reported to

save space), 4.99 (s.e.=2.81), is significant at 10 percent.

We also investigate the potential effects of advances in biotechnology, such as the use of

recombinant DNA, or other technological changes, during the late 1980s and the 1990s. In

terms of our model, these developments would correspond to changes in the δj’s. In column 10,

we drop the categories of Cancer and Cardiovascular, which, according to the FDA approval list,

have witnessed the entry of the greatest number of orphan drugs, presumably by biotechnology

firms. Although, as noted above, our dependent variable does not include these drugs, we also

check whether our results are driven by entry of new drugs in these categories. The estimates

in column 10 are close to those in column 1 of Table 3A, demonstrating that the estimates of

α are not sensitive to dropping these two categories.

In addition, there is anecdotal evidence that biotechnology firms were first active in produc-

ing insulin (the Glucose and Thyroid category) and in the Hematologic category.33 In column

11, we drop these two categories, and again find that our results are essentially unchanged.

To assess the role of biotechnology firms further, we add the approvals of a group of prod-

ucts known as biologics, where biotechnology firms have been active, to our measure of drug
33Biotechnology firms were also active in producing human growth factor, but since there are only a small

number of individuals using these drugs in the MEPS and NAMCS, these drugs are not included in our approvals
dataset.
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approvals. These products include some vaccines, blood and plasma related products, and other

products such as interferon and erythroproteins (used for red blood cell production), and are not

included in our baseline measure because they go through a separate FDA regulatory process.

The results of this regression, reported in column 12, show little change in the estimates of α.34

Finally, to see whether the advent of biotechnology or other technological advances of the

past two decades have changed the relationship between market size and entry of new drugs,

we estimated our baseline models including an interaction between a post-1985 (or post-1990)

dummy and market size. Our estimates showed no evidence of significant interactions. For

example, in a specification parallel to the NLLS model of column 1 of Table 3A, the estimate

of α is 5.24 (s.e.=1.96), and the interaction with the post-1985 dummy is 0.10 (s.e.=0.07), thus

quantitatively very small and insignificant.

The results in this subsection therefore show that a number of controls for other (non-

market-size related) determinants of the entry of new drugs have little effect on our main

findings. Although these results are not conclusive on the effect of scientific or other non-profit

considerations in pharmaceutical research, they suggest that the effect of potential market size

on entry and innovation is relatively robust.

5.4 Changes in Health Insurance Coverage

Our market size measure only exploits changes in potential market size driven by demographic

trends. Another source of variation in market size comes from changes in coverage of drug

expenditure in private or public health insurance programs. Finkelstein (2003), for example,

exploits changes in the coverage of various vaccines to estimate the effect of these policies on

the development of new vaccines.

During our sample period, there were significant changes in the coverage of drug expenditure

in health insurance plans. For example, the percentage of 0-20 year-olds with some form

of private health insurance coverage fell from about 73% to 68% between 1974 and 1996,

while the percentage of 60+ year-olds with private insurance rose from 62% to 75% (authors’

calculations from the National Health Interview Survey). Furthermore, there have been changes

in Medicaid eligibility rules, designed to insure more poor children. These changes in health

insurance coverage induce additional changes in market sizes. We now investigate both whether

controlling for this source of variation affects the estimates of the impact of the demographics-

driven potential market size measure,Mct, and whether we can improve our measure of potential

market size by including information on health insurance coverage.

34We also repeated our basic regressions without the categories where biologics are most common, Antivirals
(12), Hematologics (20) and Immunologics (80), with little effect on the estimates of α.
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We use the National Health Interview Survey (NHIS, 1974-1996) to construct the fraction

of each age group covered by a private health insurance plan. Because there is no consistent

information on prescription drug coverage, we assign prescription coverage to any individual

with both doctor and surgical coverage. Prescription drug coverage is highly correlated with

this measure in the years where we can observe it. The NHIS also includes information on

Medicaid and Medicare. Because Medicare does not cover prescription drugs, it enables us to

perform a simple “falsification test”.

First, with direct parallel to our Mct measure, we use the NHIS to construct the following

insurance coverage variable:

H̄ct =
X
a

uca · p̄a · fat, (31)

where fat is the fraction of age group a in period t with private health insurance, uca is the

expenditure share as described above, and p̄a is the sample average income of age group a (in

this section, we always use income-based market size and weights). We use p̄a rather than pat

to isolate changes due to drug insurance coverage rather than demographic changes. We then

add log H̄ct to our estimating equations (24) and (26).

Column 1 of Table 6 shows that the addition of this variable has no effect on the estimates

of α relative to those in Table 3A, and that our baseline results are robust to controlling for

separate trends in private health-care coverage. For example, in the NLLS specification the

coefficient is now 5.21, as opposed to 6.04 in Table 3A. The coefficient on log H̄ct itself is

positive, though insignificant.

Next, we construct alternative measures of log H̄ct using Medicaid and Medicare coverage

rates for fat (though all individuals above 65 are covered by Medicare, not all of them take up

the benefits). Not surprisingly, with Medicaid and Medicare, the estimates of α are unaffected

and the effect of log H̄ct is substantially weaker, presumably because these measures exploit

much less of the variation in actual market size. Columns 4-6 investigate the implications of

adding the H̄ct measures in the specifications with lead market size, and show similar results.

Columns 7-9 take an alternative approach and construct a market size measure incorporating

both demographic changes and changes in insurance coverage:

eHct =
X
a

uca · pat · fat, (32)

where uca, pat and fat are as defined above.

Using log eHct instead of logMct in column 7 leads to a similar coefficient relative to column

1 of Table 3A (4.27 with standard error of 1.24). The difference in magnitude may be because
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insurance-driven and demographics-driven market sizes affect different types of drugs, or be-

cause the demographics-driven changes are anticipated further in advance, potentially enabling

a greater response. The most likely explanation, however, is that eHct is a worse measure of

market size than Mct because (32) effectively assigns 0 use to those without insurance.35

We next construct an alternative measure of eHct from information on Medicaid coverage.

Changes in Medicaid eligibility have made children more likely to be covered. In the 1970s,

about 9% of 0-20 year olds were covered by Medicaid; this fraction rose to 17% by the late

1990s. Column 8 shows a very small and marginally significant effect of Medicaid insurance on

the rate of entry of new drugs.

Finally, as a falsification exercise, we use a measure of eHct calculated from information on

Medicare take-up rates. Since Medicare does not cover prescription drugs, this measure should

not predict new drug entries (though note that Mct and eHct are correlated by construction).

Reassuringly, the estimate in column 9 shows no positive effect of Medicare coverage.

5.5 Reverse Causality

Lichtenberg (2003) shows that new drugs have increased the average age at death (and hence, to

a lesser extent, life expectancy) by as much as 1 percent per year. This introduces the potential

for reverse causality whereby the market size for successful drugs may be endogenously larger,

because their users live longer. We think this is not a first-order concern, since drug-induced

changes in population are likely to be small relative to the demographic changes that we are

exploiting. Nevertheless, we further address this issue by instrumenting for current population

using the corresponding population from 10 years before. For example, we use the population

fraction of 50+ year-olds in 1970 as an instrument for the population fraction of 60+ year-olds

in 1980. The fraction of 50+ year-olds is highly correlated with the fraction of 60+ year-olds

10 years later, but is unaffected by new drugs that are developed in the intervening 10 years.

These instrumental-variables (IV) estimates show no evidence of reverse causality. In column

2 of Table 7, we instrument for market size with past market size. With NLLS, the estimate is

5.56 (s.e. =1.69), slightly lower than the non-instrumented estimate for the same time period

reported in column 1. Columns 3 and 4 show the corresponding results using ten-year intervals.

The IV estimates in column 4 give larger coefficients than the corresponding non-instrumented

results, particularly with NLLS, and both are significant at the 1 percent level.

35Another possibility is that the effect of demographics-driven market size was somewhat overestimated in
Table 3A because of the correlation between this measure and insurance coverage. However, the estimates in
columns 1-6 in this table suggest that this is not a major concern.
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5.6 Results from the NAMCS

The rest of Table 7 repeats some of our main specifications using data from the NAMCS. This

is a useful exercise because the NAMCS has a more even distribution of users across drug

categories than the MEPS, and also because it starts in 1980, enabling us to check whether use

of drug consumption and expenditure data from the late 1990s introduces any biases. However,

as noted above, the NAMCS is less representative, since the data are reported by doctors in

private practice, whereas the MEPS is a sample of all U.S. households.

Column 5 shows our baseline regression, with the same specification as column 3 of Table 3A

(we cannot repeat the specifications of columns 1 and 2, since the NAMCS does not provide drug

expenditure information). The estimate of α using NLLS, 2.86, is insignificant and considerably

smaller than the corresponding MEPS estimate. The OLS estimate is also smaller than the

corresponding MEPS estimate, but is significant at the 1 percent level. Column 6 uses the

MEPS data with the NAMCS classification system, and obtains estimates similar to column 3

of Table 3A. This shows that the disparity between the NAMCS results and Table 3A is not

due to differences in classification systems, but is probably driven by the non-representative

nature of the NAMCS data.36

In column 7, we use ten-year time intervals, and find similar results to column 5; the NLLS

is insignificant while the OLS is significant at the 5 percent level. Columns 8 and 9 report

unweighted results, which are larger than the weighted estimates. This contrasts with the

pattern from the MEPS, and is consistent with our conjecture that the differences between

weighted and unweighted results in the MEPS were largely because of the less precise age

distribution estimates for the smaller categories in that data set (this is not a problem in the

NAMCS, which leads to a more precise estimate of age distribution of users in the smaller

cells).

Finally, we use the NAMCS to investigate whether our reliance on drug use data from the

late 1990s induces any systematic bias.37 We construct an alternative estimate of market size,

M1980
ct , with the use per person numbers, u1980ca , only from the 1980 NAMCS survey. We then

36Using an alternative market size variable constructed with the fraction of total use for each age group for
uca, rather than use per person for each age group, leads to very similar estimates from the two surveys, which
are also close to the MEPS estimates reported in Table 3A. Although this alternative measure has the advantage
of not being sensitive to the total expenditure by category in NAMCS, the baseline measure we use appears to
be both more natural and theoretically better motivated.
37To see the potential reason for concern, suppose that a Gastrointestinal drug that is a major improvement

over existing drugs enters the market before the first year of the MEPS, 1996, and is consequently used by a
large number of 30-50 year-olds for the 1970-2000 period. The drug use and expenditure shares we estimate from
the MEPS for Gastrointestinals would include the use and expenditure of that drug. As a result of the entry of
this successful drug, we may overestimate the importance of Gastrointestinals for 30-50 year-olds. Nevertheless,
this will not lead to spurious positive estimates of the effect of potential market size on entry, since overtime
variation in our measure of market size is still purely driven by demographic changes.
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estimate equations (24) and (26) in the post-1980 sample, instrumenting logMct with logM1980
ct .

For comparison, using our baseline measure only for 1980 onwards with the NAMCS data, we

obtain a NLLS estimate of 4.64 (s.e.= 3.58) and an OLS estimate of 5.76 (s.e.= 4.00) in column

10. Instrumenting with logM1980
ct in column 11 leads to an estimate of α equal to 4.79 (s.e.=

3.98) with NLLS and 6.63 (s.e.= 4.57) with OLS, in both cases similar to the estimate in column

10. This comparison suggests that using microdata from the 1990s to construct rates of drug

use is unlikely to create any significant bias.

5.7 Generics vs Non-Generics

Table 8 shows the results of some of our specifications using only generic drugs to construct

Nct. Table 9 reports similar regressions for non-generics. Because we now look at generics

and non-generics separately, there are more empty cells; for example, using all drugs and five-

year intervals, there are 9 empty cells, but there are 27 and 24 for generics and non-generics,

respectively. Therefore, in Tables 8 and 9, the NLLS results should be more reliable than the

OLS estimates (but we also report the latter for completeness).

Column 1 in both Tables 8 and 9 reports the basic specifications for five-year intervals

using the income-based measure of market size, similar to column 1 in Table 3A. For generics,

the NLLS estimate, 7.70 (s.e.=2.69), is significant at the 1 percent level.38 The corresponding

estimate in Table 9 for non-generics, 4.41 (s.e.=1.91), is smaller, though still significant at

1 percent. The larger estimate for generics suggests that the entry of generic drugs is more

responsive to market size, but the results also show a significant response of non-generics.

Columns 2 and 3 investigate the robustness of this result when we control for serial corre-

lation by including lagged entry on the right hand side and when we control for major drug

category trends (respectively, estimating equations (28) and (30)). The lagged dependent vari-

able is not significant and has little effect on the point estimates of α either with generics or

non-generics, though with generics, the estimate, 8.08 (s.e.= 5.34), is only significant at 10 per-

cent. The estimate for non-generics, 4.55 (s.e.= 1.91), continues to be significant at 1 percent.

Controlling for linear trends, on the other hand, has almost no effect on the estimates, which

continue to be significant at 1 percent in both cases.

Columns 4 and 5 investigate anticipation effects. For generics, when both current and lead

market sizes are entered together, neither market size is significant, though the estimate on
38Because the requirements to gain FDA approval for generic drugs changed in 1984 with the Hatch-Waxman

Act, we investigated whether the relationship between potential market size and new drug approvals also
changed. The answer seems to be no. For example, interacting market size with a post-1985 dummy in the
NLLS specification, the estimate of α is 7.94 (s.e. 2.71) and the coefficient on the interaction is 0.15 (s.e. 0.08),
i.e., quantitatively very small. There is a large increase in approvals of generics in the late 1980s followed by a
decrease in the early 1990s, which are mostly captured by the time dummies.
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current market size is similar to column 1, while the estimate on lead market size is negative

and small. When lead market size is entered by itself, it is significant for five-year intervals,

thus there might be some limited response of generics to anticipated future market sizes. The

pattern is somewhat different for non-generics: lead market size is insignificant both when

entered together with current market size and when used by itself.39

Columns 6 and 7 of Table 8 investigate the impact of lag market size. When current and

lag market size are present together, current market size is significant and lag market size has

a negative and insignificant coefficient. On the other hand, lag market size on its own has

a statistically significant effect on entry of generics in column 7. The evidence is therefore

inconclusive as to whether lag market size matters for generic entry.40 In contrast, in non-

generics regressions lag market size is insignificant both when entered together with current

market size and by itself, and we do not report these specifications in Table 9 to save space.

The FDA has labeled some non-generics as priority drugs because they appear to offer sig-

nificant clinical improvement over available products and therapies. The FDA has a second

classification, whether or not a drug contains a new molecule (an active ingredient that has not

been marketed before in the U.S.). Research by the National Institute for Health Care Man-

agement (2002) suggests that drugs labeled priority or new molecules (but not both) generate

less revenue than other non-generics, but those that are both priority drugs and new molecules

generate more revenues. To look at the relationship between market size and a potential mea-

sure of more significant innovation, we construct a new measure of Nct, which only includes

approvals for drugs that are designated to be both new molecular entities and priority drugs.

In the basic specification reported in column 6 of Table 9, we find an estimate of 4.06, which

is very similar to the estimate in column 1 but statistically insignificant because of the large

standard error (3.48). Column 7 looks at the impact of the five-year lead market size, and

obtains a coefficient estimate of 4.71 (s.e.= 2.79), which is significant at 10 percent. Therefore,

these estimates are similar to the estimates from columns 1 and 2, but the standard errors

are considerably larger. Most probably, the significantly larger standard errors result from the

presence of many fewer new molecular entities and priority drugs than generics or non-generics

in our data (there are only a total of 190 such drugs in our 1970-2000 dataset).

39We also experimented with longer leads, and obtained similar results. Lack of a significant anticipation effect
for non-generics is somewhat surprising, especially given the evidence that there might be some anticipation
effects for generics. This might be because the non-generic results are less precise, making it difficult to detect
anticipation effects. Note also that when we look at priority drugs and new molecules in columns 6 and 7, lead
market size has more predictive power than current market size, but is only significant at 10 percent.
40We expected lag market size to matter and generic entry to lag behind non-generics because of patent

protection for non-generics.
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5.8 Patents

Finally, we investigate the effect of potential market size on patents. We obtained data on

pharmaceutical patents from Thomson Derwent Inc., and with the help of a specialist at this

company, we mapped these patents into our FDA classification system.41 However, the mapping

of patents for chemicals into FDA categories is imperfect and necessarily introduces a significant

amount of noise, which makes inference more difficult in this case.

Firms typically apply for a patent prior to the clinical trial stage of drug development, or

about 5-10 years before the drug is approved.42 Given the results so far, we might expect

patents to respond to future demographic changes.

In columns 8 and 9 of Table 9, we estimate equations (24) and (26), except that Nct is now

the number of patents in a particular drug category. The estimates of α are positive and of

similar magnitude to the estimates for non-generics (e.g., 3.12 for current market size and 4.38

for lead market size), but because of the much larger standard errors, they are statistically

insignificant.43 There may be a number of reasons for the much larger standard errors with

patents.44 First, this may simply reflect the imperfect match between the patent data and the

FDA categories, especially bearing in mind the potential use of certain chemical structures in

multiple drug lines. Second, the significant costs and uncertainty involved in the development

of new molecules and patentable products may be creating substantial attenuation (e.g., a drug

intended for the 1990s may be patented in the 1980s or 1990s, depending on delays in the

research process). Third, pharmaceutical companies may respond more to profit incentives at

the later stages of the research process than at the earlier stages. Finally, patents may be

more responsive to OECD demand than to U.S. demand. To investigate this last possibility, we

looked at the relationship between changes in market size derived from European, Japanese and

U.S. demographic changes. In this case, we find estimates of the five-year lead of market size

on patents that are broadly similar to the results for non-generics and statistically significant at

5 percent (for example, 4.23 with standard error 1.82 with NLLS and 3.07 with standard error

1.28 with OLS). Although this result suggests that OECD demand may be more important for

patents, we are currently unable to make more progress in distinguishing between these various

41We could not use the data from the Hall-Jaffe-Trachtenberg patent dataset (see Jaffe and Trachtenberg,
2002) because we were unable to map their classification based on chemical structure to our drug categories.
42The firm therefore loses a significant fraction of the life of the patent before it can begin marketing the

drug. Part of the Hatch-Waxman Act allowed pharmaceutical companies to apply to the FDA for an extension
of the life of their patents, if they could show that they lost marketing time while waiting for approval. The
maximum extension is 5 years, and depends, among other things, on the length of the initial FDA approval
process. Overall, companies have a maximum of 14 years of patent protection after FDA approval.
43We obtain similar results with ten-year or fifteen-year leads of market size.
44Finkelstein (2003) also finds weaker results for vaccine patents than for later stages of development.
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explanations, and the weaker results for patents remain a puzzle.

6 Concluding Remarks

This paper investigates the response of entry of new drugs and pharmaceutical innovation to

changes in potential market size of users, driven by U.S. (or OECD) demographic changes. Our

results indicate that a 1 percent increase in the potential market size for a drug category leads

to approximately 4-6 percent growth in the entry of new drugs approved by the FDA. This

response comes from the entry of both generics and non-generics, though the effect on generics

is larger and somewhat more robust.

This finding, if further proven to be robust, has important implications both for research

on the pharmaceutical industry, and for the endogenous growth and directed technical change

literatures. It provides evidence that, as conjectured by these models, R&D and technological

change are directed towards more profitable areas. Furthermore, the magnitude of the effect,

which is important for evaluating various theoretical predictions of these models, is substantial.

For example, directed technical change models suggest that the relative demand curves for

factors can be upward, rather than downward, sloping if the development of new technologies

responds to a 1 percent increase in market size by more than 1 percent (see, for example, equa-

tions (21) and (22) in Acemoglu, 2002)–the corresponding number implied by our estimates is

in the range of 4 to 6. Second, these findings imply that pharmaceutical research towards drugs

with relatively small markets may be limited, which is a key premise of recent work by Kremer

(2002). Building on this premise, Kremer suggests that there needs to be selective government

incentives for developing drugs against malaria and other third-world diseases.

We view this research as part of a broader investigation of the effects of profit incentives

on innovation. Evidence from a single industry may be nonrepresentative, for example because

the pharmaceuticals may be more research oriented than other industries. Future research

investigating the response of innovation and entry of new products to market size both in specific

industries and at the economy-wide level is necessary to substantiate the results presented here.
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8 Data Appendix

8.1 Prescription Drug Use and Expenditure, and Drug Categories from the MEPS

The MEPS is an annual survey of randomly sampled households; we use the 1996, 1997 and
1998 surveys. We obtain each person’s age, the name of the prescription drug(s) used, and total
expenditure (there are multiple records for people who use more than one prescription drug).
Over the 3 years, we have about 500,000 drugs used and about 75,000 people. Expenditure
includes out-of-pocket expenses, as well as amounts paid by insurers, collected from surveys
sent to insurance companies.
We begin with the 159 therapeutic categories, obtained from the FDA’s National Drug

Code (NDC) Directory. The names of these categories can be found in the second column of
Appendix Table A1. The NDC Directory contains a file with the therapeutic category for most
FDA approved drugs currently on the market. We assign each drug in the MEPS to one of the
159 categories by matching it by national drug code with a drug in the NDC file. We cannot
match about 10 percent of the drugs mentioned in the MEPS; these are usually not commonly
used drugs, and make up less than 5 percent of the total drugs used.
We calculate drug use and expenditure by ten-year age group, using the survey weights.

We divide these by the corresponding population and income for that year and age group, as
estimated from the CPS, to obtain drug use and expenditure per person for each age group
and category. The results are very similar if we construct use per person as a weighted average
of use per person in the survey, i.e., without using CPS information. We prefer the former
methodology because it enables us to construct income-based measures without relying on
MEPS income data.
The FDA has assigned each of the 159 categories to one of 20 major therapeutic categories.

Within each major category, we separate minor categories when there is sufficient heterogeneity
in the age structure of drug expenditure (using drug use yields the identical classification
system). From Table A1, it is apparent that we separate categories when there is considerable
variation. For example, within Antimicrobials (categories 10-12) category 10 is used more by
0-20 year olds, category 11 has a steadily upward sloping age profile of users, and category 12
is used approximately equally by individuals over age 30.
As noted in the text, we drop four major categories: Anesthetics, Antidotes, Radiophar-

maceuticals, and Miscellaneous. We also drop several minor categories when there are not
sufficient observations to estimate a reliable age structure. We use about 1,500 observations
as our cutoff rule. We obtain this number from observing that only categories with more than
1,500 observations have fairly smooth age profiles.
Finally, we aggregate the initial ten-year age groups into 5 age groups, 0-20, 20-30, 30-50,

50-60, 60+, since most of our 34 categories show sharp peaks in one of the 5 groups.
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8.2 Prescription Drug Use and Drug Categories from the NAMCS

The NAMCS differs from the MEPS in several important ways. First, it covers the years 1980,
1981, 1985, and 1989-2000 (in constructing our classification system and estimating drug use,
uca, we aggregate all years of NAMCS data). Second, the survey is based on doctor-patient
visits. It does not cover doctors at institutions or hospitals, unless they are considered to have a
private practice. For each visit in the sample, there is a list of drugs prescribed, with a maximum
of 5 to 8, depending on the year. Since we do not have information on expenditure, we weight
multiple drugs for a single patient equally (as we do in constructing drug use per person with
the MEPS). The survey also contains information on the doctor’s primary diagnosis, but it is
not possible to create a consistent map between drugs prescribed and the diagnosis.
From 1993-2000, the NAMCS provides the FDA category for each prescribed medication.45

We use this information to construct a mapping of medications to FDA class, which we can use
to assign drugs from earlier survey years. Our worst success rate is in 1980, where we matched
about 85% of prescribed drugs; in most years the match rate is well above 90%. Because of
these high rates, we believe that the bias from only using prescribed drugs in earlier years that
were still being prescribed in the early 1990s is not large.
We initially construct drug use per person by ten-year age group as we do with the MEPS.

We obtain 30 drug categories, as shown in Appendix Table A2, which is available upon request.
We find that the same 5 age groups are suitable for the NAMCS data. We use the same
cutoff rule of 1500 observations for the NAMCS as for the MEPS for dropping FDA categories.
Different FDA categories are excluded from the two surveys, e.g., Antifungals from the NAMCS
and Anterior Pituitary from the MEPS.

8.3 Drug Approvals from the FDA

We have obtained a list of FDA drug approvals from Frank Lichtenberg. Over-the-counter drugs
and orphan drugs (of which only a few can be matched) are excluded. Moreover, biologics, which
go through a separate approval process, are not in this dataset.
We match drugs in the approval list to FDA categories by drug name. 13,916 of 16,220

prescription drugs (86%) approved since 1970 are matched, while before 1970, the match rate
is about 45%. This motivates our focus on drug approvals between 1970 and 2000. Drugs that
have the same approval number and FDA class as a previously approved drug and drugs for
which the corresponding FDA category is dropped because of insufficient observations in the
MEPS are excluded. Finally, we drop drugs with the same name, MEPS category and different
dosage from a previously approved drug, leaving us with our sample of 6,595 drugs. Of these,
1,928 are non-generics, and 190 are priority drugs and new molecules.

45Several drugs change FDA classes over the 8 years. In most cases, when we construct the 30 categories
these drugs stay within the same category; we drop those that do not.
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8.4 CRISP Data

The Computer Retrieval of Information on Scientific Projects (CRISP) dataset contains fed-
erally funded research projects at universities, hospitals and other institutions. Many of the
grants are for very basic research, so they cover the earliest stages of drug development. The
projects are funded by the National Institutes of Health and the Substance Abuse and Mental
Health Services Administration, as well as a variety of other agencies such as the FDA and the
Center for Disease Control and Prevention. We have obtained a dataset with all pojects in the
CRISP database for 1972-1995 from Frank Lichtenberg. In 1995 there were 57,553 grants, for
a total of about 11 billion dollars.
Each record lists the project’s investigator and affiliation, and the amount awarded. Most

projects list one or several diseases which the researchers intend to study. For each disease
listed, we know whether it is of primary, secondary or tertiary importance in the project. In
our analysis, we use only primary diseases, and divide the award amount evenly between them.
Our results are not sensitive to alternative weighting schemes.
The disease classification system has about 2,900 diseases, though these are arranged in a

heirarchical structure into 35 major disease classes. We map the detailed disease classes into our
classification scheme, though there are no matches of primary disease to the five of the smallest
MEPS-based categories, Contraceptives, Skeletal Muscle Hyperactivity, Vertigo/Motion Sick-
ness, Non-narcotic Analgesics, and Central Pain Syndromes. Our results are not sensitive to
dropping these categories from the regressions.

8.5 Patents

We have obtained patent data from Thomson Derwent Inc. We use all pharmaceutical patents
granted in the United States, between 1970-2000. We use these data instead of the Hall-Jaffe-
Trachtenberg patent data because the latter use a classification for pharmaceuticals based on
chemical structure, which we are not able to map into our FDA classification system. The
Thomson Derwent patents are classified by chemical structure and therapeutic intent, and a
specialist at the company has mapped this system into the FDA system. Because the mapping
is not precisely one to one, about five percent of the patents fall into two of our categories,
which we drop. We are left with 275,406 patents. This number is comparable to the number
of pharmaceutical patents in the Hall-Jaffe-Trachtenberg patent dataset. Since we were unable
to obtain citations to construct a weighting system, we assign all patents equal weight.

40



1980/1990 1990/2000 1980/2000

Overall Correlation 0.955 0.878 0.852

Weighted Correlation 0.967 0.862 0.862

Mean Correlation by Drug 0.851 0.778 0.732

1996/1997 1997/1998 1996/1998

Overall Correlation 0.996 0.996 0.992

Weighted Correlation 0.999 0.999 0.997

Mean Correlation by Drug 0.919 0.955 0.902

MEPS/NAMCS MEPS use/MEPS expenditure

Overall Correlation 0.187 0.962

Weighted Correlation 0.360 0.983

Mean Correlation by Drug 0.813 0.853

Notes: Overall correlation is the correlation of use per person (or average expenditure share for expenditure 
cells) across all categories.  In weighted correlations, observations are weighted by total use or expenditure from 
the MEPS or NAMCS. Mean correlation by drug computes correlations separately by drug, then takes the 
average.

Table 1:

Correlations Between Different Drug Use Measures
Panel A: NAMCS over time

Panel C: Correlation Between NAMCS and MEPS, and Between MEPS Use and Expenditure

Panel B: MEPS over time



Age Group 1970-1980 1980-1990 1990-2000

0-20 26.29 26.74 27.43

20-30 25.96 26.61 27.09

30-50 26.32 27.14 28.04

50-60 25.78 26.31 27.11

60+ 25.82 26.58 27.30

Age Group 1970-1980 1980-1990 1990-2000

0-20 6.49 6.33 5.37

20-30 3.81 4.54 3.87

30-50 6.22 6.85 6.23

50-60 5.57 6.22 5.86

60+ 6.22 7.21 6.38

Age Group 1970-1980 1980-1990 1990-2000

0-20 6.32 5.90 3.95

20-30 2.64 3.74 2.89

30-50 6.06 6.68 5.68

50-60 5.33 5.88 5.36

60+ 5.92 6.96 5.81

Age Group 1970-1980 1980-1990 1990-2000

0-20 4.62 5.29 5.09

20-30 3.43 3.95 3.40

30-50 4.34 4.96 5.37

50-60 4.03 4.98 4.91

60+ 4.90 5.71 5.53

Notes: In Panel A, log income by age group is the log of mean income over the ten year interval, from the 
March CPS.  In panels B, C and D each of the 34 drug categories is assigned one age category, based 
on the age group that uses that category most.  See text and Appendix Table A1 for details.  Log of drug 
approvals is the log of the sum of all approvals in the indicated 10 year interval, for all drug categories 
corresponding to the given age category.  

Panel C: Log Drug Approvals of Generics by Age Group, From FDA

Table 2: 

Population by Age Group and Drug Approvals Over Time
Panel A: Log Population by Age Group, From CPS

Panel D: Log Drug Approvals of Non-generics by Age Group, From FDA

Panel B: Log Drug Approvals of All Drugs by Age Group, From FDA



(1) (2) (3) (4) (5) (6)

6.04 4.95 6.16 5.16 5.51 4.02
(1.95) (1.90) (2.04) (1.84) (1.84) (1.51)

R Squared 0.86 0.91 0.86 0.91 0.75 0.84

4.52 4.65 5.74 5.27 3.41 4.39
(2.00) (2.13) (2.42) (2.21) (1.62) (2.11)

R Squared 0.87 0.92 0.86 0.91 0.80 0.86

Number of Observations 204 102 204 102 204 102

Length of Time Interval 
(Years) 5 10 5 10 5 10

Drug Category Weights Yes Yes Yes Yes No No

Market Size and Weights 
Include Income Yes Yes No No Yes Yes

Notes: Huber-White robust standard errors are reported in parentheses. Counts of drug approvals are computed 
from the FDA dataset of New Drug Approvals, by counting drug approvals for each category over five- and ten-
year intervals (see Appendix for details).  Market Size is obtained by multiplying the time-invariant average 
expenditure share of users in a particular age group, calculated from the MEPS, by total income of that age group 
at that date, from the CPS, and summing over all age groups.  When market size does not include income, use 
per person is multiplied by population.  See text for details.  All regressions include drug and period dummies, 
and the 34 drug categories constructed from the MEPS, as described in the Appendix.  In panel A, the Poisson 
model is estimated by NLLS (with the Hausman, Hall and Griliches, 1984, transformation).  See equation (26) in 
the text.  In panel B, if a cell is empty, log approval is set equal to zero, and a dummy variable, equal to 1 when 
the cell is empty, is added to the regression; see equation (24).  Regression weights are cell size for the category 
from the MEPS, either total expenditure or total use.  

Log Market Size

Table 3A:

Effect of Changes in Market Size on New Drug Approvals

Panel B: OLS, dependent variable is log drug approvals

Panel A: NLLS for Poisson model, dependent variable is count of drug approvals

Log Market Size



(1) (2) (3) (4)

6.25 5.98 6.55 6.23
(0.52) (0.57) (0.67) (0.74)
{1.53} {1.50} {1.81} {1.73}

6.56 6.18 8.58 7.90
{1.74} {1.91} {1.66} {1.70}

5.40 5.11 5.39 5.27
(1.58) (1.70) (2.14) (2.30)
{2.07} {1.64} {2.87} {2.25}

Number of Observations 204 102 204 102

Length of Time Interval 
(Years) 5 10 5 10

Market Size and Weights 
Include Income Yes Yes No No

Notes: Maximum Likelihood standard errors in parentheses, and Huber-White standard errors in curly brackets.  
Drug approvals, market size variables, and regression weights are constructed as in Table 3A.  All regressions 
include drug and period dummies, and use the 34 MEPS-based drug categories.  In panels A and B the 
Poisson model is estimated using maximum likelihood.  In panel C the negative binomial model is estimated 
using maximum likelihood.  

Panel A: Poisson ML, dependent variable is count of drug approvals

Log Market Size

Table 3B:

Effect of Changes in Market Size on New Drug Approvals

Panel C: Negative Binomial ML, dependent variable is count of drug approvals

Log Market Size

Panel B: Weighted Poisson ML, dependent variable is count of drug approvals

Log Market Size



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

6.04 4.95 13.56 6.50 1.06 5.04
(1.95) (1.90) (4.45) (2.24) (3.97) (1.93)

-6.16 -3.89 3.34 -0.39
(3.15) (2.20) (1.38) (2.24)

7.64 5.01 8.78 8.69
(4.86) (3.65) (2.30) (3.13)

R Squared 0.86 0.91 0.86 0.91 0.86 0.90 0.88 0.96 0.88 0.95

4.52 4.65 8.62 5.67 0.81 5.41
(2.00) 2.13 (3.91) (2.65) (3.35) (2.80)

-3.32 -2.14 2.29 1.34
(2.97) (2.43) (1.47) (2.15)

6.00 4.92 6.84 8.08
(4.39) (5.23) (2.76) (4.67)

R Squared 0.87 0.92 0.87 0.91 0.86 0.91 0.88 0.96 0.88 0.96

Number of Observations 204 102 204 102 204 102 170 68 170 68

Length of Time Interval 
(Years) 5 10 5 10 5 10 5 10 5 10

Log Market Size

Table 4:

Delays and Anticipation Effects

Panel A: NLLS, dependent variable is count of drug approvals

Notes: Huber-White standard errors in parentheses.  Drug approvals and market size variables are constructed as in Table 3A.  Lag Market Size refers to 
one-period lag of Log Market Size, and Lead Market Size refers to one-period lead of Log Market Size.  All regressions use income-based market size and 
income-based weights.  Regressions include drug and period dummies and all 34 drug categories.  In panel A, the Poisson model is estimated using 
NLLS (with the Hausman, Hall and Griliches, 1984, transformation), and in panel B empty approval cells are set equal to zero and a dummy variable for 
empty cells is added to the OLS regression, as in Table 3A.  

Lag Market Size

Lead Market Size

Lag Market Size

Lead Market Size

Log Market Size

Panel B: OLS, dependent variable is log drug approvals



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

5.78 6.44 5.28 5.24 5.74 5.72 6.23 6.24 5.60 5.43 5.93 6.32
(1.89) (1.75) (1.76) (1.83) (1.84) (1.83) (1.88) (1.72) (2.10) (1.88) (1.99) (2.11)

0.02 0.52
(0.29) (0.35)

R Squared 0.86 0.92 0.85 0.85 0.86 0.86 0.57 0.61 0.49 0.83 0.85 0.85

4.23 5.16 5.00 4.73 4.46 4.68 4.66 4.68 3.23 4.25 4.55 4.66
(1.99) (2.21) (2.18) (2.22) (1.97) (2.26) (2.17) (1.97) (3.33) (2.09) (2.00) (2.04)

-0.43 1.98
(0.42) (0.68)

R Squared 0.87 0.93 0.88 0.88 0.87 0.89 0.87 0.87 0.89 0.77 0.87 0.86

8.78 8.77 8.78 8.63 9.03 8.36 8.46 8.62 8.76 8.77
(2.30) (2.50) (2.47) (2.43) (2.51) (2.45) (2.53) (2.66) (2.51) (2.47)

R Squared 0.88 0.88 0.88 0.89 0.89 0.89 0.62 0.86 0.88 0.88
Length of Time Interval 
(Years) 5 10 5 5 5 5 5 5 5 5 5 5

Life Years Lost No No No Yes No No No No No No No No
CRISP Funding No No No No Yes Yes No No No No No No
Pre-existing Trends 
Interacted with Period 
Dummies

No No No No No No Yes Yes No No No No

Major Drug Category 
Trends No No No No No No No No Yes No No No

Categories Excluded None None None None None None None None None Cancer, 
Cardio

Thyroid, 
Blood

Biologics 
Included

Table 5:

Panel A: NLLS for Poisson model, dependent variable is count of drug approvals

Potential Supply-Side Determinants of Innovation 

Lead Market Size

Log Market Size

Panel B: Linear Regressions, dependent variable is log drug approvals

Panel C: NLLS for Poisson model, dependent variable is count of drug approvals

Lagged Dependent 
Variable

Log Market Size

Lagged Dependent 
Variable



Notes to Table 5: Huber-White standard errors in parentheses.  Drug approvals and market size variables are constructed as described in Table 3A.  In 
all regressions, market size is computed using income and expenditure shares.  All regressions include 34 categories, drug and period dummies, and are 
weighted by cell size.  In panels A and B, the number of observation is 204 in columns 1, 5, and 12; 102 in 2, 7, 8, and 9, 170 in 3, 4 and 6; and 192 in 10 
and 11. In panel C, the number of observation is 170 in columns 3, 4, 5, and 12; 136 in column 6; 68 in 7, 8, and 9; and 160 in 10 and 11. In columns 1 
and 2 the lagged dependent variable is instrumented with the twice lagged dependent variable.  Life years lost is defined as the number of years prior to 
age 65 for each death in the US, as calculated from the Mortality Detail Files.  See text for details.  Column 4 includes a count of total life years lost due 
to diseases in the corresponding category and time interval. Columns 5 and 6 include the amount of funding from NIH grants for research in each 
category in each category in the particular interval, as calculated from the CRISP database (see Appendix for details).  Column 6 also includes the lag of  
this variable.  1940/1960 trend for category c is one-half the log difference of drug approvals for category c between 1960 and 1940.  In column 7, the 
1940/1960 trend is interacted with period dummies for the 1980's and 1990's decades.  Column 8 reports the corresponding regressions for the 
1940/1970 trends.  See text for details. The interactions were generally insignificant, and are not reported.  Major drug category trends are linear time 
trends interacted with dummies for the 16 major drug categories.  See text for details. In column 12 FDA approvals of biologics for each category and 
time interval are added to the dependent variable. 



(1) (2) (3) (4) (5) (6) (7) (8) (9)

5.21 5.79 5.85 4.27 0.19 -3.05
(2.30) (1.92) (2.04) (1.24) (0.12) (3.36)

7.79 8.10 8.51
(2.72) (3.35) (2.47)

2.59 0.08 -1.68 4.16 -0.35 -5.80
(2.93) (0.12) (3.37) (3.77) (1.23) (4.74)

R Squared 0.86 0.86 0.86 0.88 0.88 0.88 0.86 0.85 0.85

3.58 3.98 4.32 3.11 0.25 -2.22
(2.22) (1.99) (2.04) (1.21) (0.08) (2.94)

5.89 6.25 6.65
(2.94) (3.29) (2.77)

2.36 0.20 -1.70 3.48 -0.30 -4.85
(2.38) (0.08) (2.78) (3.48) (1.08) (4.90)

R Squared 0.87 0.87 0.87 0.88 0.88 0.88 0.87 0.86 0.86
Number of Observations 204 204 204 170 170 170 204 204 204
Length of Time Interval 
(Years) 5 5 5 5 5 5 5 5 5

Type of Insurance Any Private Medicaid Medicare Any Private Medicaid Medicare Any Private Medicaid Medicare

added to the OLS regression as in Table 3A. 

Notes: Huber-White standard errors in parentheses.  Drug approvals and market size variables are constructed as in Table 3A.  In columns 1-6 log market 
size and lead market size are computed as in Table 3A. Health insurance market size is computed by multiplying the time-invariant average expenditure 
share of users in a particular age group, by average income of that age group for 1970-2000, by the fraction of people in that age group with with the 
corresponding type of health insurance.  In columns 7-9 market size is obtained by multiplying the time-invariant average expenditure share of users in a 
particular age group, by total income of that age group, by the fraction of people in that age group with the corresponding type of health insurance, as 
calculated from the NHIS, and summing over all age groups.  See text for details.  All regressions use income-based market size and income-based 
weights.  Regressions include drug and period dummies and all 34 drug categories.  In panel A, the Possion model is estimated using NLLS (with the 
Hausman, Hall and Griliches, 1984, transformation), and in panel B empty approval cells are set equal to zero and a dummy variable for empty cells is 

Panel B: OLS, dependent variable is log drug approvals

Log Market Size

Lead Market Size

Lead Market Size

Health Insurance 
Market Size

Health Insurance 
Market Size

Table 6:

Controlling for Changes in Health Insurance

Panel A: NLLS for Poisson model, dependent variable is count of drug approvals

Log Market Size



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

6.04 5.56 4.95 8.54 2.86 6.18 2.90 4.41 4.60 4.64 4.79
(1.95) (1.69) (1.90) (3.37) (2.04) (2.59) (3.73) (2.49) (2.51) (3.58) (3.98)

R Squared 0.86 0.86 0.91 0.91 0.76 0.83 0.83 0.68 0.78 0.63 0.63

4.52 3.91 4.65 5.96 3.76 6.51 3.96 4.84 6.45 5.76 6.63
(2.00) (2.11) (2.13) (3.94) (1.39) (2.84) (1.95) (1.61) (3.20) (4.00) (4.57)

R Squared 0.87 0.87 0.92 0.92 0.86 0.83 0.93 0.82 0.89 0.90 0.90

Number of Observations 204 204 102 102 180 180 90 180 90 120 120

Number of Categories 34 34 34 34 30 30 30 30 30 30 30
Length of Time Interval 
(Years) 5 5 10 10 5 5 10 5 10 5 5

Data Set Used for Market 
Size MEPS MEPS MEPS MEPS NAMCS MEPS NAMCS NAMCS NAMCS NAMCS NAMCS

Instrument for Market Size 
with Previous Market Size No Yes No Yes No No No No No No No

Weights Yes Yes Yes Yes Yes Yes Yes No No Yes Yes
Instrument Market Size 
with 1980 Based Market 
Size

No No No No No No No No No No Yes

Table 7:

Instrumenting for Market Size and Results Using NAMCS

Notes: Huber-White standard errors in parentheses.  In columns 1-4 and 6, market size is computed as in Table 3A, and is income-based for columns 1-
4.  In columns 5 and 7-11, market size is computed as in Table 3A, except using the NAMCS instead of the MEPS.  In columns 5-11, regressions include 
30 drug categories, constructed from the NAMCS, as explained in the Appendix.  All regressions include drug and period dummies.  Regression weights 
in columns 1-4 are total expenditure of the category, as computed from the MEPS.  Regression weights in columns 5 and 7-11 are total use for the 
category, computed from the NAMCS.  Regression weights in column 6 are total use, computed from the MEPS. In columns 1 and 2, current market size 
is instrumented with the market size 10 years earlier of the age group that is 10 years younger.  For example, the market size of 20-30 year-olds in 1970 is 
instrumented by the market size of 10-20 year-olds in 1960.1980-based market size is constructed in the same way as market size, except that only the 
1980 NAMCS data are used.  In column 11 current market size is instrumented with this variable.

Panel A: NLLS, dependent variable is count of drug approvals

Panel B: Linear Regressions, dependent variable is log of drug approvals

Log Market Size

Log Market Size



(1) (2) (3) (4) (5) (6) (7)

7.70 8.55 8.08 8.44 14.54
(2.69) (5.34) (2.12) (5.39) (7.27)

0.84
(0.57)

-1.81 7.64
(7.35) (3.24)

-5.26 4.90
(5.16) (1.88)

R Squared 0.78 0.72 0.86 0.79 0.79 0.79 0.78

9.03 12.80 8.01 5.68 13.36
(2.42) (6.39) (3.18) (4.45) (6.84)

1.81
(1.01)

4.10 10.02
(6.91) (3.69)

-3.48 5.15
(4.77) (1.62)

R Squared 0.84 0.90 0.86 0.85 0.85 0.84 0.84

Number of Observations 204 136 204 170 170 204 204

Log Market Size

Panel A: NLLS, dependent variable is count of drug approvals

Lag Market Size

Lag Market Size

Panel B: OLS, dependent variable is log drug approvals

Notes: Hubler-White standardard errors in parentheses. Dependent variables include only approvals of generic drugs.  Market size is the income-
based measure, constructed as in Table 3A.  All regressions include period and category dummies, and are weighted by category size as described in 
Table 3A.  All time periods are 5 years.  Lagged dependent variable is instrumented with twice lagged dependent variable, as in Table 6.

Table 8:

Generics: Effect of Changes in Market Size on New Drug Approvals

Lead Market Size

Log Market Size

Lagged Dependent 
Variable

Lagged Dependent 
Variable

Lead Market Size



(1) (2) (3) (4) (5) (6) (7) (8) (9)

4.41 4.55 4.49 -3.37 4.06 3.12
(1.91) (1.91) (1.69) (3.30) (3.48) (2.32)

-0.11
(0.17)

5.99 2.61 4.71 4.38
(4.10) (2.28) (2.79) (3.10)

R Squared 0.83 0.85 0.85 0.85 0.85 0.83 0.80 0.88 0.94

1.97 3.50 2.29 -1.01 1.03 2.27
(1.78) (2.00) (1.90) (2.99) (1.43) (1.47)

-0.69
(0.67)

1.93 0.89 -0.70 2.52
(4.05) (2.25) (2.07) (1.76)

R Squared 0.84 0.86 0.88 0.86 0.88 0.87 0.84 0.94 0.97

Dependent Variable All Non-
Generics

All Non-
Generics

All Non-
Generics

All Non-
Generics

All Non-
Generics

Priority & 
New Mol.

Priority & 
New Mol. Patents Patents

Number of Observations 204 170 170 204 204 204 102 204 170

Notes: Huber-White standard errors in parentheses.  Dependent variables in columns 1-5 include only approvals of non-generic drugs.  Dependent 
variables in columns 6 and 7 include drugs that the FDA has designated as both priority and new mocecules, as described in the Appendix.  Patents 
counts for the dependent variable in columns 8 and 9 are computed from the Derwent Inc. patent dataset, by counting patents for each category over ten-
year intervals (see Appendix for details). Market size is the income-based measure, constructed as in Table 3A.  All regressions include period and 
category dummies, and are weighted by category size as described in Table 3A.   All time periods are 5 years.  Lagged dependent variable is 
instrumented with twice lagged dependent variable, as in Table 6.  

Log Market Size

Log Market Size

Lagged Dependent 
Variable

Panel B: OLS, dependent variable is log drug approvals or patents

One Period Lead Market 
Size

Panel A: NLLS, dependent variable is count of drug approvals or patents

Lagged Dependent 
Variable

Table 9:

Non - Generics and Patents: Effect of Changes in Market Size on Innovation

One Period Lead Market 
Size



Class Description 0-20 20-30 30-50 50-60 60+

Age Group with 
Peak Share of 

Use

0.61 0.30 0.38 0.44 0.45
10 (0.40) (0.09) (0.26) (0.10) (0.16)

0.02 0.06 0.06 0.09 0.12
(0.11) (0.13) (0.31) (0.14) (0.30)

0.03 0.03 0.08 0.09 0.07
(0.16) (0.08) (0.43) (0.15) (0.18)

0.00 0.00 0.03 0.11 0.43
(0.01) (0.01) (0.11) (0.12) (0.75)

0.05 0.10 0.69 2.68 6.05
(0.01) (0.01) (0.15) (0.19) (0.65)

0.01 0.04 0.16 0.27 0.41
(0.02) (0.04) (0.23) (0.38) (0.33)

0.08 0.19 0.57 0.70 0.57
(0.06) (0.07) (0.46) (0.18) (0.23)

0.04 0.01 0.03 0.02 0.01
(0.46) (0.07) (0.35) (0.09) (0.04)

0.11 0.01 0.01 0.01 0.02
(0.75) (0.04) (0.09) (0.03) (0.08)

0.03 0.08 0.24 0.52 0.83
(0.03) (0.04) (0.27) (0.19) (0.47)

0.01 0.01 0.13 0.67 1.37
60 (0.01) (0.00) (0.12) (0.21) (0.66)

0.06 0.09 0.07 0.09 0.13
(0.20) (0.16) (0.27) (0.12) (0.25)

0.05 0.04 0.09 0.14 0.24
(0.13) (0.06) (0.29) (0.14) (0.38)

0.02 0.38 0.34 1.30 0.67
(0.02) (0.13) (0.26) (0.33) (0.26)

0.02 0.10 0.35 1.02 1.70
(0.01) (0.03) (0.22) (0.21) (0.54)

0.01 0.21 0.10 0.01 0.01
(0.06) (0.47) (0.42) (0.02) (0.03)

0.00 0.01 0.02 0.02 0.03
(0.08) (0.09) (0.33) (0.14) (0.36)

(Share of Use in Parentheses)

0-20

Appendix Table A1:

Summary of Classifications and Drug Use by Age Group, Computed From 
MEPS, 1996-1998

Use Per Person

Penicillins, Cephalosporins, 
Lincosamides, Sulfonamides, 

Misc. Antibacterials

Hematologics20

30-50

30-50

60+

11 Tetracyclines, Urinary Tract 
Antiseptics, Quinolones

12 Antifungals, Antivirals

41 Antipsychotics/Antimania, 
Antidepressants

42 Anorexiants

30 Cardiovascular - Renal

40 Sedatives/Hypnotics, 
Antianxiety

Misc. Central Nervous System

50 Gastrointestinals

61 Vitamins/Minerals

Hyperlipidemia, Electrolyte 
Replenishment/Regulation, 

Calcium Metabolism

43

70 Adrenal Corticosteroids

Androgens/Anabolic Steroids, 
Estrogens/Progestins71

72 Blood Glucose, Thyroid

73 Contraceptives

80 Immunologics

60+

60+

60+

60+

0-20

30-50

50-60

0-20

60+

60+

60+

50-60

20-30



Class Description 0-20 20-30 30-50 50-60 60+

Age Group with 
Peak Share of 

Use

0.09 0.09 0.09 0.12 0.17
(0.25) (0.26) (0.27) (0.12) (0.11)

0.01 0.01 0.01 0.02 0.04
(0.18) (0.07) (0.27) (0.11) (0.37)

0.00 0.01 0.03 0.03 0.08
(0.03) (0.03) (0.34) (0.11) (0.49)

0.05 0.11 0.26 0.29 0.27
101 (0.08) (0.08) (0.44) (0.16) (0.23)

0.00 0.01 0.05 0.16 0.17
(0.02) (0.03) (0.25) (0.27) (0.44)

0.00 0.00 0.01 0.06 0.41
(0.00) (0.01) (0.05) (0.08) (0.86)

0.06 0.05 0.05 0.08 0.16
(0.23) (0.09) (0.22) (0.11) (0.36)

0.02 0.01 0.01 0.03 0.04 0-20
(0.30) (0.07) (0.22) (0.14) (0.27)

0.02 0.01 0.03 0.05 0.13
(0.12) (0.05) (0.24) (0.13) (0.47)

0.09 0.29 0.59 0.89 1.13
140 (0.05) (0.08) (0.35) (0.17) (0.35)

0.00 0.01 0.02 0.04 0.07
(0.06) (0.03) (0.32) (0.17) (0.43)

0.00 0.00 0.01 0.06 0.14
(0.00) (0.00) (0.13) (0.19) (0.68)

0.01 0.01 0.02 0.02 0.01
(0.15) (0.10) (0.45) (0.15) (0.15)

0.00 0.01 0.03 0.03 0.05
(0.07) (0.07) (0.37) (0.12) (0.37)

0.20 0.14 0.22 0.47 0.66
(0.20) (0.07) (0.23) (0.16) (0.35)

0.15 0.20 0.29 0.45 0.41
(0.17) (0.10) (0.33) (0.17) (0.24)

0.07 0.05 0.07 0.08 0.08
(0.29) (0.09) (0.31) (0.12) (0.18)

Dermatologics, Topical Anti-
Infectives90

Appedix Table A1 (cont.)

91 Topical Steroids

100 Extrapyramidal Movement

Skeletal Muscle Hyperactivity, 
Anticonvulsants

110 Oncolytics

120 Misc. Ophthalmics, Glaucoma

121 Ocular Anti-Infective

130 Topical Otics

131 Vertigo/Motion Sickness

General Analgesics, Narcotic 
Analgesics, Antiarthritics, 

NSAID

Non-Narcotic Analgesics141

142 Antigout

143 Central Pain Syndromes

150 Antiparasitics

160 Antiasthmatics, Nasal 
Decongestants

161 Antitussives, Antihistamines, 
Corticosteroids

162 Cold Remedies

60+

60+

60+

30-50

Use Per Person

60+

60+

60+

60+

30-50

30-50

30-50

Notes: Construction of the 34 categories is described in the Data Appendix. Each category includes the indicated 
FDA sub-categories. Use per person is the mean number of drugs in the class used per person in the age group.  
Share of use is the fraction of drugs used in the category by the age group. 

30-50

30-50

20-30

60+

60+

(Share of Use in Parentheses)



Figure 1: Response to an Anticipated Increase in Market Size
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Figure 2: Share of Population by Age Group, 1964-2000, 
from CPS
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Figure 3: Share of Income by Age Group, 1970-2000, from 
CPS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1970 1975 1980 1985 1990 1995 2000

Year

Sh
ar

e

0-20
20-30
30-50
50-60
60+

Figure 4: Share of Drug Approvals by Age Group, 1970-2000, 
from FDA
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Figure 5: Approvals Residuals vs Market Size Residuals

Notes: Log approvals residuals and log market size residuals are residuals from OLS regressions of log
approvals and log income-based market size on category and time dummies, weighted by expenditure
with five year intervals. Fitted values are predicted log approvals residuals obtained from OLS
regression in Table 3A Panel B, column 1.




