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I. Introduction

Do market economies allocate risk efficiently?  If not, what

government policies can improve the allocation of risk?  These are

classic questions of economic theory.  One celebrated answer comes

from the Arrow-Debreu theory of general equilibrium.  This theory

teaches that under certain conditions--in particular, if

contingent-claims markets are complete--the allocation of risk will

be Pareto efficient.  In other words, with complete markets,

society can let the invisible hand allocate risk.

This paper explores a deviation from Arrow-Debreu theory that

arises from a simple fact that not everyone is born at the

beginning of time.  In an overlapping-generations economy, markets

must be incomplete, because a person cannot engage in risk-sharing

trades with those who are not yet born. The risks associated with

holding capital assets, for instance, can be shared with others

alive at the same time, but they cannot be shared with future

generations.  As a result, the allocation of risk need not be

efficient, and government policy may be able to make Pareto

improvements.

The suboptimality of risk allocation in stochastic

overlapping-generations models has been discussed in several recent

papers, including Bohn (1998), Shiller (1999), Rangel and

Zeckhauser (1998), and Smetters (2000).  We approach this issue by

considering a simple thought experiment. Imagine that all
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generations ever to be born were here today and able to trade in

complete contingent-claims markets.  How would the allocation of

risk in this complete-markets setting differ from the one the

economy reaches without these prenatal risk-sharing trades?

This approach builds on two traditions.  The first is the

Arrow-Debreu theory of general equilibrium.  In essence, our

thought experiment opens up all markets that are assumed to exist

in Arrow-Debreu theory but, in fact, cannot exist in an

overlapping-generations economy.  The second tradition is the

Rawlsian approach to social justice.  Our thought experiment

envisions a hypothetical time period when all generations are alive

in an "original position" behind a "veil of ignorance." In Rawls's

(1971) work on social insurance, the ignorance concerns cross-

sectional uncertainty about one's station in life.  Here, the

ignorance concerns time-series uncertainty about whether one is

born into a lucky or unlucky generation.

 This theoretical investigation is motivated by practical

issues of public policy. The government influences the allocation

of risk among generations in many ways, most notably through the

social security system.  A benevolent policymaker might try to use

these instruments to achieve the allocation of risk that the

invisible hand would reach if it could. That is, the policymaker

might try to implement the outcome that people would achieve on

their own if, as in our thought experiment, they were able to fully
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trade risks.  Our goal, therefore, is not only to examine how

different the world would be with complete markets but also to

discuss how, without such markets, government policy might

substitute for them.  This analysis sheds light, for instance, on

how the social security trust fund should be invested and how taxes

and benefits should respond to macroeconomic shocks.

We proceed as follows.  Section II presents a stochastic

overlapping-generations model that we use in our main analysis.  To

keep things simple, we assume a single source of risk: uncertainty

about the return on capital.  We begin by describing the

equilibrium in which people can trade only with others alive at the

same time, so each generation bears the entire risk realized during

its lifetime.  We call this the Hobbesian equilibrium, because it

is the equilibrium that nature gives us (and because a person's

involvement in the market economy is "nasty, brutish, and short.")

     In Section III, we introduce the central thought experiment of

the paper.  Maintaining the overlapping-generations framework of

Section II, we posit the existence of complete contingent claims

markets--markets for the consumption good in each period in every

possible history.  The individuals who will make up all generations

participate in these markets in an "original position" that exists

before the beginning of time.  We call the allocation of

consumption determined in the original position the Rawlsian

equilibrium.
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     Sections IV and V solve for the Rawlsian equilibrium in the

model.  In general, one cannot obtain an analytic solution, so we

simplify the problem in alternative ways.  In Section IV we

consider a special case in which only a single generation faces

uncertainty in capital returns, and examine how this risk is shared

with other generations.  In Section V we consider the more general

case in which every generation faces uncertainty.  We derive an

approximate solution that is valid when the shocks are small.  

The solution we find in Section V takes a simple and intuitive

form.  We find that capital-return risk in each period is shared

equally among the generations alive during that period and all

subsequent generations.  In contrast to the Hobbesian equilibrium,

where consumption is serially uncorrelated from generation to

generation, consumption in the Rawlsian equilibrium follows a

random walk.  

We also draw a connection in Section V between our problem and

the well-known Ramsey social planning problem.  The Rawlsian

outcome we examine is determined by decentralized trading among an

infinite number of generations.  Nonetheless, the resulting path of

consumption is the same as would be chosen by a Ramsey social

planner with a particular discount rate on future generations'

utility.  Thus, the Rawlsian approach to generational risk offers

a rationale for studying Ramsey optima.

We next move closer to issues of policy.  Because it is not
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yet feasible to transport people back in time to an original

position, free markets are not a practical way to share

intergenerational risks.  In Section VI, we ask whether government

policies can substitute for the missing markets and ensure the

Rawlsian allocation.  We find a simple policy that does so: a

fully-funded social security system in which the system's trust

fund holds equity.  In this system, benefits are permanently

adjusted in response to shocks to equity returns to keep the system

solvent.  

There is, however, more than one way for policy to achieve any

given allocation of risk.  Policymakers can also implement the

Rawlsian equilibrium if the social security trust fund holds safe

debt.  Yet in this system, benefits must be adjusted in what, at

first glance, may seem a surprising way: they must be negatively

indexed to equity returns.

     Section VII sketches extensions of our basic model, including

one in which both wage growth and capital returns are uncertain.

Here, the Rawlsian equilibrium shares both kinds of uncertainty

across generations, and this allocation can again be implemented

with an equity-based social security system.  

Section VIII concludes.

II. The Model and the Hobbesian Equilibrium

     This section describes the basic version of our overlapping-
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generations model, which we keep as simple as possible to build

intuition.  A fixed number of people is born each period, and

everyone lives for two periods.  When young, a person supplies

labor inelastically and receives a fixed wage, which we normalize

to one.  Each person consumes only when he is old.  Thus a worker

saves his entire wage when he is young and consumes the return on

this saving, including the principal, when he is old.  There are no

bequests.  We assume log utility over consumption; thus lifetime

utility for an individual born at period t is

(1) Ut  =  log(ct+1),

where ct+1 is the individual's consumption in period t+1, when he is

old. 

Our assumption that only the old consume simplifies the model

by eliminating the intertemporal consumption decision of the young,

which is not essential to the issue of intergenerational risk-

sharing.  In Section VII, we discuss a more general model in which

individuals consume in both periods of life.

     We let Rt denote the gross return on savings between periods

t-1 and t.  Because the generation born at t receives a wage of one

and saves it all, its consumption at t+1 is Rt+1.  We take the

return Rt to be an exogenous random variable.  These assumptions

about factor returns could be justified by positing a linear

technology for output: Y = L + RK.

We assume that Rt is distributed independently over time and



7

has a two-point distribution.   Let � be the average value of the

interest rate.  Rt equals �+xt with probability one half and �-xt

with probability one half.  xt measures the degree of dispersion in

the capital return in period t.  It is natural to focus on the case

in which xt is the same for all t (and we will do so below), but it

will prove useful to have in hand the general case in which xt

varies across periods.  We assume that the lowest possible return,

�-xt, is greater than one; this assures that the model satisfies

Abel et. al's (1989) condition for dynamic efficiency in Diamond's

(1965) sense.

     As a benchmark, we begin by considering the equilibrium of

this model without any intergenerational risk sharing.  This

equilibrium is assumed in most previous work on stochastic

overlapping-generations models. It is based on the realistic

assumption that people can trade only with others who are alive at

the same time.  We also make the standard assumption that the young

enter the market after the current return on savings is realized;

thus there is no remaining uncertainty within a period for the old

and young to share.  As noted above, we call this outcome the

Hobbesian equilibrium.

     Given the environment just described, the Hobbesian

equilibrium is trivial to derive.  The generation born at t saves

its wage and consumes its wealth when old.  Thus, ct+1=Rt+1 and

Ut=log(Rt+1).  Because Rt+1 is random and uncorrelated over time, each
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generation bears all of a single idiosyncratic risk--the return

risk in the period it happens to be old.  Note that consumption is

independently distributed from generation to generation.

This Hobbesian equilibrium is clearly inefficient.  There

would be gains if the old at period t+1 could share the risk it

faces with the generations born at t+1 and later.  However, by the

time these generations are born and ready to participate in

markets, the outcome for period t+1 is already realized, and

private improvements in risk allocation are no longer possible.

III. The Rawlsian Equilibrium

     We now consider a hypothetical world with markets for

intergenerational risk-sharing.  We assume that all generations are

placed in an "original position" that exists before period one,

when the first generation is born.  In this original position, each

person knows when he will be born, but he does not know the future

evolution of the economy; in particular, he does not know whether

his generation will be lucky or unlucky in its realization of

capital returns.  In the original position, everyone can share the

risks they face by participating in contingent-claims markets.

     We use the following terminology.  The "state" in period t is

the realization of R in that period.  Because there are two

possible realizations of R, there are two possible states in each

period.  A "history" of the economy through period t is a sequence



9

of states for periods 1,...,t.  There are 2t possible histories of

the economy through period t, which we index by h=1,...,2t.

     We assume that the markets in the original position are

complete in the sense that there is a market for the consumption

good in each period and each possible history of the economy

through that period.  We index consumption at period t in history

h by th.  For each period t, there are 2t markets for history-

contingent consumption.

     A person born in period t receives a wage of one in all

histories of the economy through t.  Thus, his endowment is one

unit of good th for all h=1,...,2t.  He can sell part of this

endowment and use the proceeds to buy conditional consumption goods

at t+1.  He can also save and thereby transform goods dated at t

into goods dated at t+1.  For each unit of good th that he saves,

he receives units of goods (t+1)h' for each history h' through t+1

that is a continuation of history h.  There are two such histories:

the saver receives �+xt+1 of the good in one history and �-xt+1 in

the other.  Given these possibilities, an agent chooses a basket of

goods dated at t+1 to maximize the expected value of utility,

log(ct+1). 

     A Walrasian auctioneer finds the price that equilibrates

supply and demand in each market for history-contingent

consumption.  We are interested in the set of equilibrium prices

and the resulting allocation of consumption in all possible
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histories of the economy.

     Obviously, this is a hard problem, and we have been unable to

find a general analytical solution.  Therefore, we simplify the

problem in two different ways in the next two sections.  In Section

IV, we assume that capital returns are uncertain in only a single

period; thus there is only one shock.  In Section V, we return to

the general case of many shocks but solve the model using a first-

order approximation.  Thus, we derive a solution that is valid when

the shocks to capital returns are small.  Each of these two special

cases yields its own insights into the nature of the Rawlsian

equilibrium.  

IV. The Case of a Single Shock

The original position we have described includes many markets

for sharing risks.  In this section, we consider a special case in

which only one generation faces uncertainty.  In this example, the

uncertainty concerns the capital return in period j for the

generation born at j-1.  In the notation introduced above, xj>0 and

xt=0 for all t=/j.  This example helps develop intuition about the

model, and it is a building block for the more general analysis

below.

     A. Solution for the Rawlsian Equilibrium

     In this example, the possible histories of the economy

collapse to a simple set.  In period j, there are two possible
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states of the economy: the good state (G) in which Rj=�+xj and the

bad state (B) in which Rj=�-xj.  R=� in all other periods.  There

is only one possible history of the economy through t for t<j, and

two possible histories through t�j: the history with state G at j

and the history with state B at j.  Thus there is only one market

for consumption in each period t<j, and two markets for each period

t�j.  We index the goods in the various markets by t for t<j and

by ti, i=G and i=B, for t�j.

     The Appendix describes in detail the solution for the Rawlsian

equilibrium.  Here, we sketch the approach and results.

The starting point is the budget constraints and objective

functions of individuals in the original position.  Using these, we

solve for history-contingent consumption demand as a function of

the relative prices of contingent consumption goods and then for

the equilibrium relative prices.  In equilibrium, there is no trade

in goods dated before j, when the shock occurs.  The only motive

for trade is to share the risk from the shock, and goods before j

cannot be contingent on the shock.  The key prices are those for

contingent goods dated j and later; we denote these prices by PtG

and PtB.  The Appendix shows that equilibrium relative prices

satisfy

(2) Pti/P(t+1)i = �   for i = G, B; 

(3) PtB/PtG = Q � [�
2 + (�-1)xj]/[�

2 - (�-1)xj].

These equations fully describe the path of equilibrium relative
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prices.

     These equilibrium conditions are simple to interpret.

Condition (2) concerns the prices of the good in different periods

but the same realization of history.  It is a no-arbitrage

condition.  In this economy, people trade consumption between t and

t+1 both by saving and by participating in markets.  In

equilibrium, the two activities must yield the same return.  

     Condition (3) gives the relative price of consumption in the

good and bad histories.  This price is the same for all periods

t�j; this follows from a no-arbitrage condition and the fact that

agents can trade across periods at a fixed rate.  The key result is

that Q>1: it costs more than a unit of consumption in the good

history to buy a unit in the bad history.  This is necessary to

induce agents to demand greater consumption in the good history,

when more resources for consumption are available. 

     The Appendix also derives equilibrium consumption of each

generation.  For generations born before j-1, consumption in the

Rawlsian equilibrium is the same as in the Hobbesian equilibrium.

For the generation born at j-1 (the one that experiences the

shock), consumption when old is given by

 (4)     cjG  =  [(1+Q)� + (1-Q)xj]/2

         cjB  =  [(1+Q)� + (1-Q)xj]/2Q .

For all generations born at j and later, consumption in the

Rawlsian equilibrium is
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 (5)     ctG = �(1+Q)/2;

         ctB = �(1+Q)/2Q,  t�j+1.

Equations (2) though (5) fully describe the Rawlsian equilibrium.

     B. Discussion of the Rawlsian Equilibrium

     The solution we have just described has two notable

properties.  First, the ratio of consumption in the good and bad

histories is equal to Q>1 for all generations born at j-1 and

later.  All these generations--those who are old when the shock

occurs and those who come later--suffer the same proportional loss

in consumption from a bad shock.  In other words, the risk from the

shock is spread equally across generations.  

This contrasts sharply with the Hobbesian equilibrium.  In

that equilibrium, the return risk in period j affects only the old

in that period.  The ratio of consumption by the old in period j in

the two histories is (�+xj)/(�-xj), which is greater than Q.  Thus,

this generation reduces its risk by moving from the Hobbesian

equilibrium to the Rawlsian equilibrium, where it can share risk

with future generations.  

     The second notable result concerns average consumption in the

Hobbesian and Rawlsian equilibria.  For generations born at j and

later, average consumption over the good and bad histories is

[(1+Q)2/4Q]�.  This exceeds �, which is these generations'

consumption in the Hobbesian equilibrium.  Thus, average

consumption is higher in the Rawlsian equilibrium than in the
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Hobbesian equilibrium for all these generations.  A bit more

algebra shows that for the generation born at j-1, average

consumption is lower in the Rawlsian equilibrium.  Of course, for

all generations, utility must be higher in the Rawlsian

equilibrium, for the Hobbesian allocation is still feasible.

     These results have a simple interpretation.  In the Hobbesian

equilibrium, the generation born at j-1 is uniquely disadvantaged:

it is the only generation facing return uncertainty.  In the

original position, it reduces this uncertainty through the

contingent-claims markets.  In essence, it buys insurance from

later generations.  But later generations are willing to sell

insurance only if they are compensated for taking on the risk.

This compensation is reflected in a value of Q greater than one.

As a result, later generations obtain more consumption in the good

history than they give up in the bad history.

V. The Case of Many Small Shocks

     Having explored the special case of a single shock, we now

examine a more general case in which there are shocks in every

period: xt is positive for all t.  In the original position, there

are now 2t markets for history-contingent consumption in period t.

These markets yield rich opportunities for sharing risks among

generations.

     A. Solution for the Rawlsian Equilibrium
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     We are interested in solving for equilibrium consumption in

all possible histories, of which there are 2t through period t.  We

simplify this hard problem by using a first-order approximation

that is valid as long as the shocks, xt, are small.  That is, we

derive the Rawlsian equilibrium when there are small fluctuations

in capital returns.

     The advantage of using a first-order approximation is that it

eliminates any possible interaction among the shocks in different

periods.  (This is shown formally in the Appendix.)  Thus, we can

use the results in the previous section to show the effect of any

individual shock, and we can find the effect of a series of shocks

by summing the effects of the shocks.

     Consider, then, a shock in period j.  Equations (3)-(5) show

consumption for period j and after.  Substituting the expression

for Q in equation (3) into equations (4)-(5) yields consumption in

terms of the size of the shock, xj, and the average return �.

Taking a first-order approximation in xj around xj=0 yields

(6) ctG  =  � + [(�-1)/�]xj;

ctB  =  � - [(�-1)/�]xj.

(If you really want to see the details, go to the Appendix.)

     According to equation (6), the shock to the capital return

causes consumption to rise or fall by a fraction (�-1)/� of the

shock for each generation born at j-1 and later.  Note there is no

distinction here between the generation born at j-1, who lives
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through the shock, and later generations.  They share the risk

equally and in an actuarially fair way, so that all generations

have the same average consumption.  The previous result that later

generations have higher average consumption no longer holds,

because the relative price of consumption in the good and bad

histories approaches one as the shock becomes small.  That is, the

compensation future generations demand to take on risk is second-

order, so it vanishes as the shock becomes small.

While equation (6) shows how consumption responds to a single,

small shock, the result for a series of small shocks is found by

summing the effects of each shock.  To express equilibrium in a

particular history, we let �t be an indicator variable equal to one

in the good state and minus one in the bad state.  The history of

the economy through t is given by the sequence {�1, �2,...., �t}.

In any history, consumption in the Rawlsian equilibrium is given by

t
(7)      ct  =  � + � �j[(�-1)/�]xj.

j=1

If the shocks are all the same size (xj=x for all j), then this

expression reduces to

(8) ct  =  � + (N
G
t-N

B
t)[(�-1)/�]x, 

where NG
t is the number of periods through t with good realizations

of the shock and NB
t is the number with bad realizations.  A

generation's consumption is raised by a fixed amount for every good

shock in the past and reduced by the same amount for every bad



17

shock.

     Note that the last equation implies

(9) ct - ct-1 =  �t[(�-1)/�]x .

In each period, the change in consumption is proportional to the

current shock.  Thus, even though consumption in the Hobbesian

equilibrium was serially uncorrelated, consumption in the Rawlsian

equilibrium follows a random walk.  The reason is that full risk-

sharing causes each shock to be spread equally over current and

future generations.  Rather than a shock affecting only the

generation living through it, it affects later generations as well.

Intergenerational risk sharing makes the impact of a shock both

smaller and more persistent.

     B. Rawls Meets Ramsey

     Our random-walk result for Rawlsian consumption may seem

familiar: it resembles Hall's (1978) result for the optimal plan

for a single, infinite-horizon Ramsey consumer under uncertainty.

The resemblance is not a coincidence.  Any Pareto-efficient

equilibrium solves a social planner's problem for some set of

weights on the welfare of different agents.  In our model, the

Rawlsian equilibrium solves a planner's problem for maximizing a

weighted average of the utility of different generations.  For this

planner's problem to become the Ramsey model, the only missing

ingredient is for the weights to decline exponentially over time.

     One can show the weights do in fact decline exponentially with
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the discount factor �=1/�.  The following is a sketch of the proof.

Consider an infinite-horizon social planning problem with log

utility, a gross interest rate �, and an arbitrary discount factor

�(t) for discounting utility between periods t and t+1.  Under

certainty, consumption grows between t and t+1 at a rate �(t)�.

With small shocks, certainty-equivalence holds, and expected

consumption growth equals �(t)�.  In our solution for the Rawlsian

equilibrium, however, consumption is expected to remain constant.

Thus, the discount factor must be the constant �=1/�.  This

establishes that the social planning problem associated with the

Rawlsian equilibrium is the Ramsey problem with this particular

discount factor.

     This correspondence between the Rawlsian equilibrium and the

Ramsey model is noteworthy.  Economists often use Ramsey problems

when studying the allocation of consumption over time. One

justification for this approach is Barro's (1974) model, where the

discount factor measures the extent of altruism among generations.

The Rawlsian equilibrium, however, suggests a different

rationale for studying the Ramsey problem and a different

interpretation of the discount factor.  In our environment, to

replicate the Rawlsian equilibrium, the social planner has to

distribute risk optimally but not pursue deterministic transfers

across generations.  If the discount factor � were not equal to

1/�, the planner would want to move resources from earlier to later
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generations, or vice versa.  When the discount factor � is exactly

1/�, the planner's only remaining goal is to allocate risk

efficiently.  Thus, only this discount factor replicates the

equilibrium that generations would choose on their own in the

original position.  In this way, the Rawlsian equilibrium pins down

the discount rate in the Ramsey model without invoking

intergenerational altruism.

VI. Implications for the Design of Social Security

     So far, we have considered how optimal intergenerational risk

sharing, as modeled by complete contingent-claims markets, affects

the allocation of resources.  We now move closer to issues of

policy and consider what institutions might support this optimal

allocation. The natural institution to consider is social security,

because it takes resources from some generations and gives

resources to others, which is what is needed to share generational

risk.  But how should we design a social security system if our

goal is to implement the allocation of resources in the Rawlsian

equilibrium?

     The first result concerning social security design follows

naturally from the results we have already seen:

Proposition 1: Without government intervention, the economy cannot

reach the optimal allocation of risk across generations.
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Similarly, a social security system that relies completely on

private accounts also fails to allocate risk optimally.

The first part of the proposition states that the Hobbesian

equilibrium is not the same as the Rawlsian equilibrium, which we

established in the preceding sections. The second part of the

proposition follows for the same reason.  In this model, a social

security system with private individual retirement accounts does

not move the allocation of risk away from the Hobbesian

equilibrium: each generation still bears the full risk of shocks to

the capital return rather than sharing the risk with other

generations.  Similar results about the sub-optimality of the

equilibrium without intervention are presented by authors such as

Bohn (1998) and Rangel and Zeckhauser (1998).

     Although it is easy to see that a privatized social security

system does not implement the Rawlsian equilibrium, it is less

obvious how to describe policies that do.  In overlapping-

generations models, the government can often achieve the same

allocation of resources in several equivalent ways.  For example,

a tax or transfer can occur when a person is young or old; with

appropriate discounting, this does not matter for the resulting

allocation of consumption.  For concreteness and realism, we focus

on policies that resemble social security systems: the young pay

taxes based on their wages, and the old receive transfers.  We
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examine two ways to implement the Rawlsian equilibrium, as

expressed in equation (8).

The first is described in this proposition:

Proposition 2: The government can implement the Rawlsian

equilibrium using a fully-funded social security system with a

trust fund invested in equity claims to capital.  The social

security benefit responds positively to the capital return, and it

follows a random walk.

The proof is straightforward.  In essence, the government here

takes over the economy and enforces the Rawlsian allocation.  It

taxes 100 percent of wages (recall that there is no first-period

consumption), invests the tax revenue in capital, and then pays out

a benefit determined by equation (8).  Providing a social security

benefit equal to consumption in the Rawlsian equilibrium ensures

that the system replicates that equilibrium.  This system is

feasible because the Rawlsian equilibrium is feasible.

This social security system may seem remote from real-world

policy, but there is another, more natural way to describe this

system.  The tax rate is constant, the system is fully-funded and

invested in equity, and the benefit rises or falls as the economy

realizes shocks.  In each period, the benefit is based on the

system's "permanent income."  That is, the benefit is set at a
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level that could remain constant if there were no more shocks.

Seen in this light, the system resembles some proposals for social

security reform, which often involve adjusting benefits in response

to changes in the system's expected resources.

     In the system just described, the social security trust fund

must be invested in equity claims to capital.  There is, however,

another way to reach the Rawlsian allocation that does not require

the trust fund to hold equity claims:

Proposition 3: The government can implement the Rawlsian

equilibrium using a fully-funded social security system invested in

riskless bonds.  In this system, the benefits received by the old

are negatively indexed to the current return to capital.

To establish this proposition, imagine we were in a world

described by Proposition 2, where the trust fund is invested in

equity claims to capital.  Then suppose the government makes three

changes.  First, it sells its equity claims to the private sector.

Second, it uses the proceeds from that sale to buy riskless debt

from the private sector.  Third, it adjusts the social security

benefit to insure the private sector against the uncertainty

inherent in holding the equity claims.  Meanwhile, the private

sector engages in the opposite transaction: it buys the equity

claims with the proceeds from its debt sale. 
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In this new system, the social security benefit is consumption

in the Rawlsian equilibrium, as determined in equation (8), minus

�tx.  This last term represents the negative indexation: it offsets

the gain or loss that the private sector experiences from issuing

riskless bonds and buying risky capital.  (Note that under our

small-shock assumption, riskless bonds pay �, while risky capital

earns �+�tx.)  This scheme reaches the same allocation of

consumption and risk as in Proposition 2--the Rawlsian allocation.

But the asset allocation has changed: risky capital is now held in

the private sector, rather than by the government.  

     The message of Propositions 2 and 3 can be summarized as

follows.  In the Hobbesian equilibrium, capital risk in any period

falls entirely on the generation that is old in that period.  To

move toward the Rawlsian equilibrium, a social security system has

to share that risk with future generations.  There are two ways to

do this.  The social security system can hold the economy's capital

stock and the risks associated with it.  Or the social security

system can insure generations for the capital risk they bear

through negative indexation.

VII. Two Extensions

     This section considers two ways to generalize our model.

First, we allow wages as well as capital returns to be uncertain.

Second, we assume that agents consume in both periods of their
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lives.  The derivations parallel those for our basic model, so we

only sketch the analysis.

     A. Wage-Growth Uncertainty

     In reality, wages as well as capital returns are uncertain.

A generation can suffer bad luck in the form of low wage growth,

such as the productivity slowdown from 1974 to 1996.  Here we

examine intergenerational risk-sharing in the presence of wage as

well as asset-return uncertainty.

      Let Wt denote the wage in period t and Ht=Wt/Wt-1 denote the

gross growth rate of the wage. H represents the growth in the value

of the human capital with which a person is endowed at birth.  As

a first step toward realism, we allow the mean of H, which we call

�, to be greater than one.  Paralleling our assumption about R, we

assume that Ht has a two-point distribution: Ht equals �+zt with

probability one half and �-zt with probability one half, where zt

is a positive constant.  Wage-growth Ht is serially uncorrelated,

so the level of the wage follows a random walk with drift; this

seems realistic as a first approximation.  We assume �+zt < �-xt,

which assures dynamic efficiency in Diamond's sense.  We make no

assumption about the contemporaneous correlation of Ht and Rt.

     In this version of the model, the consumption of generation t

when old is WtRt+1 in the Hobbesian equilibrium.  It is the product

of a random-walk variable (the wage) and a serially uncorrelated

variable (the return to capital).  Because there are two possible
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realizations of Rt and two of Ht, there are a total of four possible

states each period.  This means there are 4t possible histories of

the economy through period t.  In the original position, there is

a market for consumption in each period in each of these histories.

     The analysis of this model parallels the previous discussion.

One can first solve the model for the case of a wage-growth shock

in a single period to see how the risk from this shock is shared

among generations.  One can then derive a first-order approximation

to the general case of wage-growth and capital-return shocks in

each period.  If uncertainty is constant over time (that is, if

xt=x and zt=z for all t), then the approximate solution for

consumption in the Rawlsian equilibrium is

   (10) ct  =  ��
t[1 + (NR

t
G - NRt

B)x(�-�)/�2  + (NHt
G - NHt

B)z/�],

where NR
t
G is the number of periods in which the realization of the

R-shock is good and the other N's are defined similarly.

      To interpret this expression, note that ��t would be the

consumption of generation t when old if wage growth and the capital

return were always equal to their means of � and �.  Shocks to R

and H cause random-walk movements in consumption relative to this

baseline.  Each shock to the capital return permanently raises or

lowers consumption by a fraction x(�-�)/�2; each shock to wage

growth raises or lowers consumption by a fraction z(1/�).

Consumption follows a random walk, with the innovation in each

period depending on both of the shocks.  Generalizing another



26

earlier result, we can show that this consumption behavior is the

same as would be chosen by a Ramsey social planner with discount

factor �/�.  

As in our earlier analysis, moving from the Hobbesian to the

Rawlsian equilibrium reduces the impact of shocks on the

generations who receive them.  In the Hobbesian equilibrium, a

positive shock to the capital return at t raises the consumption of

the old at t by a fraction x/�. In the Rawlsian equilibrium, the

effect is x(�-�)/�2, which is a fraction (�-�)/�<1 of the effect in

the Hobbesian equilibrium.  Similarly, a positive wage shock raises

the consumption of the generation that receives it by z/� in the

Hobbesian equilibrium, and z/� in the Rawlsian equilibrium; the

latter is a fraction �/�<1 of the former.

In the complete markets of the original position, the two

kinds of risk are shared differently.  As before, a generation that

receives a capital-return shock shares the risk with future

generations.  However, the original position does not create

opportunities to share wage-growth risk with future generations.

Because the wage follows a random walk, a wage-growth shock at t

already has a proportional effect on all generations born at t and

later in the Hobbesian equilibrium, leaving no room for additional

risk-sharing.  There is, however, an opportunity to share the risk

from a wage-growth shock at t with the generation that is old

during that period.  In the Hobbesian equilibrium, this generation
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is unaffected by the shock, because its wage was determined in the

previous period.  By contrast, in the Rawlsian equilibrium, a wage-

growth shock at t affects the consumption of the old at t; this

allows a smaller effect on the young at t and all later

generations.

       The addition of wage uncertainty has little effect on the

nature of the social security systems that implement the Rawlsian

equilibrium.  Propositions 1-3 of the previous section still hold.

The only difference is that both shocks affect the system's

resources and hence cause random-walk movements in the level of

social security benefits.

     B. Consumption in Both Periods of Life

We now relax the assumption that individuals consume only when

old.  In particular, we assume that an individual born in period t

receives utility of 

 (11) Ut  =  �log(c
y
t) + (1-�)log(c

o
t+1),

where cy
t and c

o
t are the consumption of the young and the old in

period t.  Our earlier model is the special case in which �=0.

Once again, the Hobbesian equilibrium is simple to derive.

The assumption of log utility leads to the result that an agent

saves a fraction 1-� of his wage.  Consumption when young is �Wt,

and consumption when old is (1-�)WtRt+1.

     To derive the Rawlsian equilibrium, we continue to assume that

there are two possible values of Rt and two possible values of Ht



28

for each t.  Thus, there are again 4t history-contingent

consumption goods for each t.  In this case, however, an agent born

at t consumes goods dated at both t and t+1.  

At an intuitive level, it is easy to see the Rawlsian

equilibrium that arises in this setting.  Each agent smooths

consumption over the two periods of his life; thus, a shock at t

has the same proportional effect on cy and co for all generations

born at t and later.  Along with this smoothing across periods for

each generation, we have the same smoothing across generations as

before using the complete contingent-claims markets. 

One detail is that a shock to wage growth or the capital

return in period t affects both cy and co for generations born at

t and later but affects only co for the generation born at t-1,

because cy
t-1 is determined before period t.  The Appendix gives

formulas for cy
t and c

o
t.  The key qualitative features are that the

ratio of cy
t to c

o
t is a constant, and that c

y
t and c

o
t each follow a

random walk, rising or falling each period in response to current

shocks to wage growth and the capital return.  There is perfect

risk-sharing both across the old and young alive at the same time

and across different periods.

       Turning to the implementation of the Rawlsian equilibrium,

we find that the spirit of our earlier results continues to hold.

The only qualification to Propositions 1-3 concerns the behavior of

taxation.  Consider Proposition 2, which describes a fully-funded
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trust fund that holds equity claims to capital.  Once again, the

social security benefit equals consumption when old in the Rawlsian

equilibrium.  Yet, because agents now consume when young, taxes on

the young are no longer 100 percent.  Instead, taxes are set such

that the after-tax wage equals consumption when young in the

Rawlsian equilibrium.  

     In this system, the key parameters are again adjusted in the

spirit of the permanent income hypothesis, in the sense that shocks

affect the system's resources, leading to permanent changes in

benefits and taxes.  A good shock to the capital return raises

benefits and reduces taxes.  A good shock to wage growth raises

both benefits and taxes.  (This last result ensures that some of

the windfall to the young is taxed away to be shared with the

current old).  The system's parameters are always adjusted in a way

that maintains a fixed ratio of the benefit to the after-tax wage.

Both the level of taxes and the social security benefit follow a

random walk. 

 

VIII. Conclusion

This paper has explored an approach to analyzing

intergenerational risk sharing.  According to this approach,

policymakers designing institutions that share generational risk

should attempt to achieve the allocation that the various

generations would reach on their own if they could have traded in
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complete contingent-claims markets.  That is, policy should achieve

what the invisible hand would if it could.

This approach can be used not only for deriving the optimal

allocation of consumption but also as a guide for the design of a

social security system.  An obvious but important result from our

analysis is the suboptimality of private retirement accounts--a

possible social security reform that has received much attention in

recent years. Private retirements accounts merely replicate the

equilibrium without any intergenerational risk sharing.  That is,

private retirement accounts leave all generations facing more risk

than they should.

Another robust conclusion from our analysis is that the

government should spread capital risk among generations in a way

that appears absent from current policy.  If equity claims to

capital are held privately, as they are now, then optimal

intergenerational risk sharing requires that social security

benefits be negatively indexed to the capital return: social

security benefits should be cut when the stock market is doing

well. In the absence of such negative indexation, the government

should invest the social security trust fund directly in capital.

Negative indexation and government ownership of capital seem to be

the only mechanisms that allow current capital risk to be shared

optimally with future generations.

     Several recent proposals for social security reform have, in
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fact, included such provisions.  The Clinton administration, for

instance, proposed investing the social security trust fund in

equities, as envisioned in our Proposition 2.  The negative

indexation of benefits to equity returns may seem less likely, but

in fact it is part of the Feldstein proposal for social security

reform (see, for example, Feldstein and Samwick, 1999, and

Feldstein and Ranguelova, 2001).  In this plan, individuals would

have private accounts invested in capital markets; the more they

earn in these accounts, however, the less they would receive in

supplemental benefits.  This "clawback" provision, as it is often

called, resembles the negative indexation envisioned in our

Propostion 3.  Either approach could implement the Rawlsian

equilibrium, raising the expected welfare of all generations.  In

theory, intergenerational risk sharing offers the prospect of a

free lunch.

     Admittedly, given economists' limited understanding of these

issues, it may be too early to jump to policy conclusions.  Even

with the extensions in Section VII, the model in this paper makes

many strong assumptions: individuals within a generation are

homogeneous, wages and capital returns are exogenous, all

generations are the same size, and so on.  Addressing real-world

issues of social security reform will require relaxing these

assumptions.  Fortunately, the concept of a Rawlsian equilibrium--

the equilibrium in an overlapping-generations model with complete
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contingent-claims markets--is quite general.  Future work could

investigate the nature of the Rawlsian equilibrium and the

institutions that can implement it in a richer variety of settings.
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APPENDIX

     This Appendix presents details of our analysis that are

omitted from the text.

     Equilibrium Prices with a Single Capital-Return Shock

     Here we derive the Rawlsian equilibrium when there is a single

capital-return shock in period j.  We do this by deriving two

necessary conditions for the equilibrium, equations (2) and (3).

     Equation (2) states that, for t�j, the relative price of

consumption at t and t+1 in the same history must equal the gross

interest rate �.  To see why this condition must hold, suppose

first that Pti/P(t+1)i<�.  In this case, an agent born at t can buy a

unit of good ti, save it to acquire � units of good (t+1)i, sell

enough of good (t+1)i to pay for his purchase of good ti, and still

have some left over.  This arbitrage possibility would create an

infinitely large demand for good ti, which could not be satisfied

by the finite suply.

     Now suppose that Pti/P(t+1)i>�.  In this case, no agent born at

t will save, because he can obtain a higher return by selling his

endowment of good ti and buying good (t+1)i.  Thus the capital

stock is zero in period t.  This cannot be an equilibrium, because

no capital in period t means there are not enough resources from

t+1 onward to make every generation as well off as in the Hobbesian

equilibrium.  If some generation is worse off than in the Hobbesian

equilibrium, the allocation cannot be the Rawlsian equilibrium,



     1 If the capital stock is zero in period t, the economy's resources from t+1
on are given by the certain wage of one at t+1, t+2,....  In the Hobbesian
equilibrium, consumption is �>1 at t+1, t+2, .... Thus there are not enough
resources to give each generation its consumption level in the Hobbesian
equilibrium with certainty.  And one can show that randomization would only make
matters worse, because it would create uncertainty about consumption without
raising its average level.
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because agents have the option of avoiding the markets and

receiving their Hobbesian consumption levels.1 

     Now consider equation (3), which gives the relative price of

consumption in the good and bad histories.  This equation follows

from two underlying conditions. The first is a first order

condition for utility maximization: the relative price Q must equal

the ratio of marginal utilities of consumption in the good and bad

histories.  With log utility, the ratio of marginal utilities is

the inverse of the ratio of consumption levels.  Thus Q = ctG/ctB for

t�h .

     The other condition underlying (3) is that, in each possible

history, the present value of total consumption beginning in period

j must equal the present value of resources beginning at j, given

the gross interest rate � that holds from j+1 on.  The present

value of resources is the gross return on capital at j plus the

present value of wages at j, j+1, ... If the present value of

consumption were greater than the present value of resources, the

allocation would not be feasible.  If the present value of

resources were larger than the present value of consumption, the

allocation would be inefficient, and hence could not be a Walrasian



35

equilibrium.

     In the good history, the gross capital return in period j is

�+xj and the wages at j, j+1, ... are 1, 1, ...  The  present value

of these resources is � + xj + �/(�-1).  In the bad history, the

wages are the same but the capital return at j is �-xj; the present

value of resources is � - xj + �/(�-1).  The ratio of these two

present values must equal the ratio of the present values of

consumption in the two histories.  Recall that the ratio of

consumption in the two histories is Q in each period; this implies

that the ratio of present values of consumption is Q.  Setting Q

equal to the ratio of present values of resources yields equation

(3).    

     Equilibrium Consumption Levels with a Single Capital-Return

Shock

     Given the relative prices in equations (2)-(3), one can derive

equilibrium consumption levels from agents' utility-maximization

problems.  A generation born in period t�j has an endowment of one

unit of good tG and one unit of good tB, because his wage is one in

both histories.  If we treat good tG as the numeraire, the value of

an agent's endowment at t is (1+Q).  The agent wishes to consume in

period t+1 in each history.  Given the relative prices in (2) and

(3), the agent's budget constraint is

   (A1)     c(t+1)G + Qc(t+1)B = �(1+Q).

Maximizing the average of utility, log(Ct+1), over the two histories
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subject to (A1) yields the solutions for c(t+1)G and c(t+1)B in equation

(5).

     The generation born at j-1 and old in period j receives a unit

of good j-1 (this is not indexed by G or B because the shock has

not yet occurred).  By saving, he can transform his unit of good j-

1 into �+xj units of good jG and �-xj units of good jB.  He wishes

to consume goods jG and jB, and faces the budget constraint

     (A2)    cjG + QcjB = � + xj + Q(�-xj) .

Maximizing expected utility subject to (A2) yields the consumption

levels in (4).   

     The Case of Many Small Shocks

     Equation (6) gives a first order approximation in xj of

equations (4) and (5), the equilibrium consumption levels in the

example of a single capital-return shock.  To see how (6) is

derived, consider ctG for t�j+1.  Evaluating the expression in (5)

at xj=0 yields ctG=�, since Q=1 when xj=0.  Differentiating with

respect to xj yields

   (A3)     dctG/dxj = (�/2)(dQ/dxj) .

Taking the derivative of Q (equation (3)) and evaluating it at xj=0

yields 

   (A4)     dQ/dxj�xj=0  =  2(�-1)/�
2 .

Substituting (A4) into (A3) yields 

   (A5)     dctG/dxj�xj=0  =  (�-1)/� .

This result leads to the approximate solution for ctG in (6).  The
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results for ctB and for consumption at t=j are obtained similarly.

     Our use of first-order approximations makes it easy to go from

one shock to the general case of xt>0 for all t.  In the general

case, we are interested in deriving 

     cth(x1,...,xt)

for all periods t and all histories h through t.  A first-order

approximation in x1,...,xt yields

   (A6)     cth  �  cth(0,...,0) + �
t
s=1�cth/�xs(0,...,0)xs .         

     In this expression, the first term on the right is �, the

equilibrium consumption level when there are no shocks.  Within the

sum, a term �cth/�xs(0,...,0) can be determined as follows.  Consider

cth(0,...,0,xs,0,...,0), i.e. cth as a function of xs when all other

x's are zero.  Differentiating this function with respect to xs and

evaluating it at xs=0 yields �cth/�xs(0,...,0).  But

cth(0,...,0,xs,0,...,0) is just the solution for conditional

consumption in period t when there is a single capital-return shock

at s.  This solution is given in equations (4) and (5).  In

deriving (6), we used the results that the derivatives of (4) and

(5) evaluated at xs=0 are (�-1)/� when the capital-return shock at

s is good and -(�-1)/� when the shock is bad.  These results imply

�cth/�xs(0,...,0)=�s(�-1)/�.  Substituting this result into (A6)

yields equation (7), the approximate solution for consumption in

the general case.

     The Rawlsian Equilibrium in the General Case
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     Here we provide approximate solutions for consumption in the

Rawlsian equilibrium when agents consume in both periods of life

and both wage growth and the capital return are uncertain.  We

assume constant levels of uncertainty: xt=x and zt=z in all periods.

The results are generalizations of equations (8) and (10) and are

derived in the same way as those equations:

   (A7)     ci
t  =  c

i
t*[1 + (N

R
t
G - NRt

B)Kx  + (NHt
G - NHt

B)K'z],

               K=(1-�)(�-�)/[�2-��(�-�)],  K'=1/(�-��+��) ,

where ci
t for i=y,o are consumption of the young and the old and c

i
t*

is consumption in the certainty case of Rt=� and Ht=� for all t

(cy
t*=��

t and cot*=(1-�)�
t�).  As discussed in the text, the ratio of

cy
t to c

o
t is a constant equal to c

y
t*/c

o
t* = �/[(1-�)�].  Both c

y
t and

cot follow random walks in response to shocks to H and R.
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