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Annals of Ecoizomic and Social Measureme,,t, 5/4, 197(

ON A GENERAL COMPUTER ALGORITHM FOR THE
ANALYSIS OF MODELS WITH LIMITED

1)EPENDENT VARIAI3LES

y Foiasi' D. NFLSON*

Several econometric models/or the analysis of relationships with limited dependent variable.c have been
proposed including the probi. Tobit, IWO -limit pro hit, ordered discrete, and friction models. Widespread
application of these methods has been hampered by the lack of suitable computer programs. ilzis paper
proeides a concise survey of the various models; suggests a generalfunctionul model under which they
may be formulated and analyzed; reviews the analytic problems and the similarities and dissimilarities of
the models; and outlines the appropriate and necessar methods of analysis including, but not limited to,
estimation. it is thus intended to serve as a guide for users of the various models, for the preparation of
suitable computer pro grains, for the users of those programs; and, moore specifically, for the users of the
program package utilizing the functional model as implemented on the NLtER TROLL sy.c:en!.

I NTRODU('TION

Economic relationships involving limited dependent variables arc receiving wide-
spread attention in the Econometrics literature. Much of the discussion has
focused on methodology with only scattered application to real problems, the one
exception being the qualitative variable problem frequently treated with logit and
probit analysis. Since potential applications for these models abound, it is likely
that the scarcity of computer programs and their limited dissemination is partly
responsible for the infrequency of empirical studies using them. In turn, useable
computer routines may be scarce because the models though similar in many
respects are dissimilar enough so as to seem to require a separate algorithm for
each model.

The purpose o this note is to suggest a general functional model which is
readily adaptable to computer coding and flexible enough to fit a wide variety of
limited dependent variable problems.' It should be emphasized that the model
presented here is functional as opposed to theoretical. That is, it is not advocated
as the structural model underlying any limited dependent variable relationship.
Rather we suggest that many of the theoretical relationships may be reformulated
to fit this functional model so that a single computer program may he used to
analyze all of them.

The terminology "limited dependent variable" is used here to denote vari-
ables endogenous to some underlying economic relationship which are not
continuously measurable (or observable) over the entire real line either directly or
even after some transformation such as logarithms. Thus it applies to discrete
(ordinal) variables, qualitative (non-ordinal) variables and to variables subject to
threshold constraints such as non-negativity. Such discontinuities may result from

* Research supported in part by National Science Foundation Grant GJ-1154X3 to the National

bureau of Economic Research, Inc.
'Torn Johnson [I] presents a general discussion of many of the models but falls short of describing

in detail a central model around which a computer algorithm can he constructed.
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theoretical considerations, from physical constraints on the variable or simply
from measurement difficulties.

The effect of the discontiiitiiiies on estimation is that when such a dependent
variable enters the usual sort of regression model the properties of the implied
disturbance term cannot satisfy the assumptions needed for least squares estima-
tion. The alternative estimation method generally ProPosed is maximum liklj
hood. After a suitable choice for the distribution of the disturbances is specified
the distribution of the limited dependent variable is derived and the likelihood
function is constructed. This typically involves both probability density and
distribution functions and yields non-linear normal equations so that iterative
maximization algorithms, generally NewtonRaphson, are suggested for obtain.
ing estimates. These pioceditres arc of course straightforward but they may
become quite expensive and time consuming if computer programs do not exist
for the particular model being examined.

Section 1 of this paper presents a brief review of a number of limited
dependent variable models. Such a survey will serve to motivate the types of
models to be treated and highlight their similarities and dissimilarities. In Section
II the functional model is introduced. It is of course possible to outline a
completely general model but the aim here is for a model which may be easily
implemented in a single computer algorithm. With this goal in mind reasonable
restrictions on the model are imposed and many of the details needed for
implementation are discussed. A final section outlines features which should be
included in a general computer algorithm.

I. Rivmw ol SOME Lir%IITEI) DEPENDENT VAroAI3Ij MODELS

A. Binomial choice Models

In these models each measuring unit or individual is faced with the choice ofone of two mutually exclusive alternatives and the choice made is thought todepend on some vector of exogenous variables. One way to formalize the choice
mechanism is to view the decision maker as having associated with each alterna-tive some preference function, say

i, =f1(X1) ti

'21 J2(X) + t7j,

and choosing that alternative which yields the higher preference. Assumingfj(Xj),j= 1,2, is of the form f1(X1) alternative 2 is chosen if
J7 >Ii>( +V21Vh >0

13 'X 4- u1 >0
2These models appear to have been hrst examined in the Context of economics by Tobin [81 whooutlined the method of estimation which he termed "probit regression analysis." Theil [71, amongothers, treated the same problem with 'logic' analysis. The distinction between the two lies in theassumptions made regarding the distribution of the underlying disturbance.
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where = - a and u, = V21 Vi The model can he rewritten in the alternative
form:

Y1 = I3'X ±u
wi=o ify1<()

=1 ifO
where Y1 is some latent (i.e., unobserved) variable and W1 is the observed
dependent variable which indicates the choice made. Maximum likelihood esti-
mation requires some assumption about the distribution of u. If that distribution
is normal, i.e., u1 IN (0, if2), the likelihood function is given by

L(/3, cr1 W, X)
=

where P(x) represents the standard normal cumulative density function, P(x) =
J1/'J2irexp (-u2/2) die.

Unfortunately X/cr is observationally equivalent to (k)'X7(ku) where k
is any positive constant so that a is not estimable and fi is estimable only up to a
scale factor. Thus we estimate a (1/cr)f3, say, which is equivaknt to normalizing
a- at unity.

An interesting related model is

Y ='X1+u1
=l ifYZ,
=0 ifYj>Z;

where Z is some observed variable. A concrete example might be the estimation
of a wage expectation function for say new labor force entrants. Expectations ()
are not observable but we might argue that when faced with a job offer (that is an
offered wage of Z1) the entrant will accept the job (W, = 1) only if that offer meets
or exceeds his expectation. The appropriate likelihood function, under the
assumption of normality, is given by

L(, aIW X, Z)=
(Z1_PZ) P'X)

In this case a- is estimable because observations on Z1 provide information on the

scale of Y.
In another variation on the same model Z, is replaced by some constant

threshold. If p'X includes an intercept term then a- is again not estimable since

(c- - 'X)/cr is observationally equivalent to (c --a0 - a'X)/(kcr) where a0 =

kp0 + (1- k)c and a = k. If that constant is also unknown and to be estimated the

identification problem is further compounded and estimation will require some

normalization on either /3 or the threshold parameter.
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/ 3B. Multinornial choice Mode s

An obvious generalization of the binomial choice model is to allow lot morethan two alternatives in the set of possible choices. Such models fit a large andimportant set of problems encountered in economics and are mentioned here forthat reason. Regretably the functional model to he presented here cannot be usedto analyze these models. This is the one class of limited dependent Variablemodels, however, for which there seems to be wide dissemination of Suitablecomputer programs. The approach used in these prograns is logit analysis achoice dictated in part by the fact that a specification of the underlying
disturbancedistributions such that the selection probabilities are of the logistic form leads totractable likelihood functions, while almost every other choice of distributionsleads to nearly insurmountable computational difficulties.

C. Ordinally Discrete Dependent Variables4

Another extension of the binary choice model is to allow for more than twoalternatives but to require that those alternatives be ranked in some well definedorder. Such models might arise when the magnitude of the observed dependentvariable reflects the magnitude but not the scale of some underlying but unob-served dependent variable. As an example years of schooling might be a proxymeasure for accumulated human capital but it may not be reasonable to assumethat twice as much education implies twice as much capital. Alternatively theobserved dependent variable may have the scale relevant to a particular relation-ship being examined but it may he measurable only in coarse discrete units.In the case with unknown scale the model appears as:
Yl =f.3';; +,
W=l ifY,<1

=2 ifILl:y,<L2

=Si
=S if1y

If the u's are independently and normally distributed with mean zero thelikelihood function is

L(f3,jX, (T) W2(ff)(cr)
As in the binomial choice model, o is not identifiable and the set of thresholdsand the intercept cannot all be estimated. After suitable normalization, forexample o- = I and p = Owe can estimate UI) to a multiplicative scale factor and

Refer to McFadden [3] for a description of the most general multinomjal model, an extensivebibliography of practical appJicatj(ns and a discu33to of the estimatjfln problems.4See McKelvey [4] for a detailed discussion of the models.
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the difference between the thresholds up to the same scale. Estimates of the 's

would represent the relative scale among the values taken on by the observed
dependent variable.

When the scale of the variable W is known the model is the same except for
replacing the unknown p1's with appropriate known constants and in this case o is

estimable.

D. Truncated Dependent Variables

in many economic relationships the dependent variable is necessarily non-
negative. Thus we might write the model as

W='X1+u ifRHS>O

=0 otherwise.

Alternatively we might conceive of an unconstrained latent variable Y1 and

reformulate the model as
= L3'X + u,

W1Y1 ifL,
=L, if Y1<L1

where the threshold of C) has been replaced by a more general variable threshold

and only X,, W1 and L are observed. For independent normal u's the likelihood

function is given by

L(l3alW,X,L)= fl jj
W=L1 CT W>LCT IT

where Z(x) is the standard normal density function (1/ñ) exp (--x2J2).
Examples of problems to which this model might be applied include con-

sumer expenditure on some class of goods, which is constrained to be non

negative, and interest rates paid by commercial banks on savings deposits, which

are constrained by regulation 0 not to exceed a certain rate fixed by the Federal

Reserve. Note that for purposes of estimation alone the particular value assigned

to W, for limit observations is not used while the threshold value is. On the other

hand for non limit observations the threshold value need not be known. Thus the

model may under certain circumstances be utilized to estimate separately the two

equations of the folidwing disequilibrium market model:

D=13X+Ui
S=/3X2+u2
Q=Min(S,D)
a1 and U2 independent.

The observed variables are 0, X1 and X2 and we assume that X1 and X2 are

independent of u1 and a2. For estimation of the demand equation D is the latent

5mese models were investigated by
Tobin [91 and have come to be called "Tobit" models-
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variable and S the threshold with the roles reversed for estimation of the supplyequation. We must, for the truncated model to apply, know which Observations ina given sample correspnd to demand (i.e. excess supply) and which correspond tosupply. Furthermore inforniation on this samplescparatiuji must he CxogenoOSuppose that in the simple truncated dependent variable model the thresholdis an unknown constant to be estimated with limit observations on w SoniChowdistinguishable, though not equal to the threshold. Then direct maximization ofthe likelihood fuCtio with respect to /3, r and (the threshold) would lead to artestimate for /.L of infinity, But this would be iflCOflSiSte0t with the model whichspecifies that the constant threshold must necessarily be less than or equal to theminimum observed value of W, over the set of non-limit ohservjtjons Thus themaximum likelihood estimate of s would be this minimum value of W, and theother estimates would be obtained by maximizing the likelihood with respect tothe other parameters holding s fixed.

E. Doubly Truncated Dependent Variables
Some dependent variables of interest may he truncated both at high and atlow values. The model7 becomes

= f3',; + u,

W=L1, if Y<L11
= V1 ifL11 "L,,
=L71 ifL21<y,

and the likelihood function is given by

L (/3, o W, X, L) = j P(!ii").
11 ±z(!uiiI!)

(1

1-I
W1L-. \

In some problems the intermediate or non-lij observations may also beUnobserved. Provided the sample may still be separated into the three subsets ofobservations and the thresholds are known constants or observable variables, allparameters of the model are still estimable The middle term iii the likelihoodfunction is replaced in this case by

I jL2j'g JL-f3'x
and the model is seen to be a specific case of the ordered discrete variable modelwith known scale.

6Sc Maddaja and NeIo f2J fora detailed diScusSion of disequiljhrju111 market ,mel estimationunder these and other assumptions
See Rosefl and Nelson [6} for a detailed treatment of this class of models.
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An example of a problem to which this model has been applied is the demand
for health insurance by people on medicare. A certain mum coverage (the
lower threshold) is provided to all j)articipants. They may purchase supplemental
IISLIranCC OnlY up to some maxmuim which falls SiloEt of full coverage,

F. Models of Friction
Rosett [5] considered a model in which the dependent variable rest onds only

to numerically large values of the eogeiious variables. I lis nindel may he written
as:

Y = /3'X' + U1

W, = Y, - a if Y a
=0 ifa1< :(I2

= 'Yja2 if OH

Denote the sample separation intO the three subsets by three sets of integers '1's,
'4'2 and 'I3. The likelihood function is given by

L(a1, , , o W, X) =fl' -'-z( +a1 /3'X 11'IH p(az 13'xi) ,(ai _f'x1)
U- ' (T /

The model provides for a different intercept in the two sets of continuous
observations. One might assume no difference in the intercepts by setting W =
in both extreme cases and deleting a1 and a2 from the corresponding terms in the
likelihood. Going thc other direction even the slope coefficients might be permit-
ted to change between the two sets by appropriate modification of the model and
the likelihood function.

Examples of problems to which this model might apply are changes in the
holdings of some asset in response to changes in its price or rate of return and
changes in wage offers by a firm in response to changes in market conditions.

Ii. A GENERAl FUNIIONAI M )1WI.

Most of the limited dependent variable models may he specified, perhaps
after reformulation, as

(i) a single regression equation relating a latent, i.e., not directly observable,
endogenous variable to a stochastic function of some vector of exogenous
vnrables, say Y =f(X, , u) and

tii) a discontinuous mapping from the latent variable Y to an observable
dependent variable W, say W, = g( Y, Z)

The role played by the vector of exogenous variables Z will he discussed below.
Observed variables include X, Z1 and W, and parameters to he estimated include
the vector j3 and perhaps parameters of the distribution of u1 and of the function g.
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The functional form of both g and f must he known and Constant over allobservations If the model is to conform to the Various linitted dependent variablemodels and be operationally feasible we will require certain restrictions on theform of these two tunci ions. Consider first the function f. Since the estimationmethod to be used is maximum likelihood the distribution of the stochasticI component must be specified. We will assume that the disturbance term uappears, perhaps after a suitable transformation, additively and follows anindependent normal distribution with zero mean and constant variance.5 Restric-tions on the degree of non-linearity of f may also be desirable. The iterativemaximization algorithms used for obtaining estimates generally require at leastfirst and perhaps second derivatives. Thus if nonlinear specifications forf arc to beallowed implementation will require a computer system with analytic differentia.tion capability, numerical derivatives or user supplied derivatives. RestrictingIto be linear would avoid this problem but we will not irripose that constraint here.The regression equation to be used in the model is thus of the form
(I) =f(X, fi) + u0 a1 1N (0, u2).

In the limited dependent variable models the mapping W, = g( ) is neces-sarilycjiscontjnu5 with the discontinuities appearing at well defined points, to becalled thresholds, in the range of }ç. Assume that there are S - I threshold pointsand partition the range of Y into the S disjoint intervals. Then g(}',Z) may bewritten as
(2) g(,Z)=g1(y) ift.1<, j1,...,s
where r, j = 1,.. . , S - I are the threshold points and t and i, are defined to be- and -+co respectively. The constraint tfl... J 1,.. . , S must hold across allobservations I but the threshold points need not be constant across observations.Any combination of the following specifications for the t,,'s should be permissible:known numeric constants

observable variables (i.e. one of the variables in the vector Z)constant but unknown parameters to be estimated.
The individual g1(Y)'s, j=l,... ,s are of two basic types, to be calledContinuous and mass point as determined by the distribution of the randomvariable W within the relevant interval on V1.9 A mass point g1( V) specifies thatwithin the jth interval of the range of Y1 W, is a constant function of Y (i.e.,independent of the level of Y). Typical specifications for mass point g1's are(i) g1( Y,) = tik (where ik is one of the threshold points of the type (i) or (ii) asgiven above)

The choice of distributions may of course be changed but is an integral part of the analysis andthus must be held fixed for imp!ementation of the model. Note that the normal distribution leads toprobit analysis for the binomial choice model and is the distribution suggested most often forextensions of the limited dependent variable niodels. A choice of the logistic (sech2) distribution wouldlead to logit analysis for the binomial choice model.9The terms mass point and continuous will be loosely applied to the subfunctions g,. to thecorresponding interval on } and to the values taken on by What is implied in all cases is that,within some intervals of the range of }', W1 is defined by g1 to be a constant so that its associatedmeasure of probability is probability mass. In other intervals WI is a continuous function of Y withinthat interval so that the appropriate measure of probability is its probability density.
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g1() Z1 (where ZIk is some observable exogenous variable)
g1(V1)c (some known constant).

continuous g1(Y)'s specify continuous and strictly increasing functions of Y
within the corresponding interval on V1. The most cOlflhilOfl spectficatu)il will be

g1(Y Y1.

We will in fact require that all continuous g1's be of this form, delaying for the
moment a discussion of the advantages and disadvantages of such a restriction.

Derivation of the likelihood function for the functional model is straightfor-
ward. We need first to derive the distribution of W. For mass point intervals we
have

Pr ( W' = V1)) = Pr t11)

= Pr (t_ - f(X1, /3) u < Ig, f(X1, 13))

which under the Normality assumption on u1 becomes

Pr(W, =gj(yj))=p(tIJf(;13)) (
r_ f(X1, /3))

where P(x) is the standard normal cumulative density function. A general
derivation of the density function for W1 over continuous intervalsrequires strong

assumptions about the specification of continuous g1(Y)'s. If these functions are

strictly increasing (decreasing) over the relevant interval on V1 then the inverse

function Y=g'(W)
exists and is differentiable so that the p.d.f. of continuous W1, say h(W1), is given

by
h(wç)=Jj±Z(J(f)I /3))

where 11
is the Jacobian of the transformation, .J,=-(ag/aW,I, and Z is the

standard normal density function. Construction of the likelihood requires know-

ledge of the sample separation. That is for each observation on W', we must be able

to determine the interval in which the corresponding unobserved value for V1

lies.'0 For notational convenience define the subsets W1 of integers 1,.. . , n,

where n is the sample size, as

iE4'1 ift11_1Y<t, i=l....,n,
The likelihood function is given by

(3) L(OIW,X,Z) II A, fl A-2
i'l'i iE12

'°Detenniiiation of the sample separation is made by comparing, for each observation, VI, with

each g,( Y). For mass point g1's a matching of W1 and g1( Y1) for some j determines that the observation

coiiesponds to a value of Y in the jth interval. This leaves only the Continuous observations to be

classified but, as will be pointed out later, so long as we restrict continuous gd's to be of the form

g1( Y,) = Y1 the knowledge that an
observation on W, is a continuousone is all that is required; we need

not know to which continuous interval it belongs.
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where 0 isa vector of all parameters to he estimated and the A9's are defined as
/3)) p(t9 f(X.fl))

1ff Corresponds to a mass point interval on V and

if / Corresponds to a Continuous interval of .

It should now be clear why the restrictive specification g1 ) V, forcontinuous intervals was imposed. Such a restriction makes it easy to distinguishmass point from Continuous intervals and permits all COnhI5 observations tobe grouped into a single subset, for purposes of estimation since they all enter thelikelihood in exactly the same form (J = I and g, '(W.) = W, for every COfltIflUOLJSintervalf.) Thus we can avoid a good deal of perhaps messy computer coding andadditional user supplied information. Note too that this restriction creates diffi-culty with only OflC of the liniited dependent variable models reviewed in sectionI, the friction model. But even this problem is easily surmounted by judicious useof dummy variables.
The friction model, with intercepts which differ in the two continuousintervals, is repeated here.

=f3 'X, +

if}'.<a
()

a2 ifa2<
Reformulate the regression equation as

+u1where
= - I when Y,. lies in the lower Con tlflUs interval
= Ootherwise
= I when lies in the upper Continuous interval

t) otherjs
The threshold structure is then written as

LLy
ifa1 Y1

=1 if,<y
Note that the two COfltifltiO intervals on }' are not properly defined in thisformulation but recall that for continuous intervals the threshold points do notappear in the correspn(Ii iig terms in the likelihood function Thus with regard toestimation the is only transparent. The inconsistency could in fact be
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removed by redefining the two intervals as Y1 <0 and U Y,. But this would make
the model more difficult to implement since then, without specifically accounting
for the specification Of f(X1, 13) the intervals ()fl WOuld appear to either overlap
or fail to exhaust the entire range of Y. Several other points are worth noting, in
this model 13'X1 should not include an intercept term or identification problems
among 13, a and a2 will arise. The friction model is unique in that threshold
parameters and parameters of the function f overlap. Finally, similar use of
dummy variables can provide for slope coefficients which differ in the two
continUous intervals while if all intercept and slope coefficients are the same the
restriction on the specification of the continuous g1's is satisfied without a
reformulation using dummy variables.

III. FEATURES OF A COMPUTATIONAL ALGORITHM

In this section we will discuss the specific details involved in a suitable
computer program for the functional model. First the model is restated.

The functional model is defined as

Y,=f(X1,f3)-Iu1

VY=g1(Y) ift_1 Y<i,i= I.....S

u1 = In (0, 2)

Y1 is a latent variable and W', the vector X1 and perhaps some vector Z1 are the
observed variables. Parameters to be estimated include 13 and perhaps u and/or
some of the ta's. The threshold points t and t are defined as - and +
respectively for all i = 1, . . ., n where n is the sample size. The remaining
threshold points t, . ., may be any of the following:

known numeric constants
observable exogenous variables (one of the Z1k's)
constant hut unknown parameters to be estimated

The g1(Y)'s define W', to be either a mass point observation or a continuous
observation when the unobserved Y falls in the corresponding jth interval.
Continuous g,( Y)'s must be of the form

g1(Y1)= Y

while mass point g,(Y1)'s may he either
known constants, i.e., g1( Y) C

or
observable exogenous variables, i.e., g1( Y) = Z1,

Furthermore the mass point g,( Y)'s must be such that a comparison of W' for

each observation with each mass point g1 will determine uniquely a sample

separation defined by the following subsets of the integers I, .. . , n

if W=g1(Y1)
itT 14g(Y)

for mass point interval j
for any mass point interval j.

Note that "1's will be empty for any continuous interval 1.

The components of the likelihood function were presented in Section II.

Estimation involves maximization of the logarithm of the likelihood function. The
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normal equations obtained by setting the derivatives of log L with respect to eachestimable parameter equal to zero will he nonlinear SO that some iterativemaximization algorithm is rcquircd. Expericnce has shown that the Newton...
Raphson algorithm0 works quite well on these models with fairly rapid Con-vergence when starting from reasonable initial estimates. This algorithm doesrequire both first and second derivatives which, though messy, are fairly easy toderive. Table 1 presents the components of the likelihood function correspondingto each type of interval on Y1 and the associated terms in the first and secendderivatives of the log likelihood function. Several points should be noted. First theparameters to be estimated are denoted by the vector 0 with elements 0.Secondly, the derivatives presented there make the following use of the chainrule: The terms in the log likelihood function involve the functions P(A) andZ(B), where A and B are representative arguments, and have the followingderivatives:

3P(A) Z(A)
and Z(B). B30, P(A) 30 30,

We have carried the differentiation only this far, since the arguments A and Binvolve the unspecified functionf(X1, f3), and assume that the derivatives of thesearguments can be readily obtained by some combination of user suppliedderivatives, restrictions on the functional form of f and internal differentiationcapability.'2 Finally, note that lower and upper mass point intervals have been
distinguished in that table from interior mass point intervals since recognition oftheir simpler structure generally will achieve significant economies in computertime.

As was suggested by the discussion in Section I, not all parameters in thefunctional model are necessarily estimable. in particular u can be estimated onlyif the observed variable W' contains some information regarding the scale of thelatent variable Y1. in general any one of the following conditions on the model willbe sufficient to permit estimation of o.
At least one continuous interval.
At least one threshold is an observable, varying threshold.
At least two threshold points are known constants.

if none of these conditions are met then estimation may proceed only afternormalization of u-, e.g., o = 1. If the model includes both threshold parameters tobe estimated and an intercept term in the regression equation there will generallybe an identification problen among this set of parametersonly the difference
As was noted earlier the constraint t , t must hold for 1 = I s and all i = 1. n Ifthese thresholds include parameters to be estimated the constraint should be taken into account ifl themaximization algorithm. This is awkward to do however, in the general model since not all problemswill require estimation of threshold parameters. There is no danger that straightforward application ofNewton's method will produce estimates which violate the constraint since this would require takinglogarithms of negative numbers. We therefore

suggest using Newton's method with the provisioa ofallowing some user control in the iterative
process for handling those occasional problems in which theconstraint causes difficulty.

The TROLL system on which the author has implemented the functional model does havethe internal capability of obtaining analyticderivatives. This feature is extremely useful for such simplefunctions as the arguments like A and B in that it renders unnecessary further restrictions off oralternatively, heavy user input. On the other hand it cannot be used to avoid the programming ofderivative calculation to the level presented in Table I without resulting in prohibitive computer time.
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between each pair of parameters in the set can he estimated. Again a normal iza-tion is required on one parameter in this set.The iterative tuaxinlization algorithm will require starting values for theparameters to be estimated. We have not been successful in obtaining astraightforward routine for selecting good starting values for all parameters in thefunctional model. Tohin [9], in the context of the Tohit model, Suggestedapproximating the non-linear terms in the normal equations by some simplefunctions to allow analytic solution of those equationshut this approach becomesquite difficult to implement in the more general functional model, especially if theregression equation is itself non-linear. Similarly some expansion of the normalequations with a low order truncation is also difficult to implement. In lieu of ageneral solution we offer the following suggestions for implementation on a caseby case basis.
If the model includes continuous intervals, least squares regressionof Won X over just the subset of continuous observations vill often providesatisfactory, though biased, starting values for the regression coefficientsand for o-.

For threshold parameters choose starting values such that the spacingbetween adjacent threshold points is proportional to the percentage ofobservations falling in each interval.
In models with no continuous intervals and values for VI, which corres-pond ordinally to Y, try a straightforward least squares regression of Won X1 for starting values for the regression coefficients.for many data sets and if the iterative maximization algorithm is fairlystable, zeroS starting values for many of the parameters will generallysuffice.

Generally parameter estimation is only part of the analysis to be performedon a given model. The remainder of this section discusses various other analyseswhich may often be desired and which are reasonably easy to implement in thefunctional model.
It is often quite informative to examine simple descriptive statistics, such asmean, variance and range, of various variables in the model both over allobservations and over the subsets of observations corresponding to each intervalon Y. Furthermore while such information may be of use by itself it can as wellserve to detect or explain failures in the estimation process. To see this consider asimple binomial choice model with a single regressor variable. The likelihoodfunction is given by

L(r,/3W, X) = jj P(-a 13X1) 1] [1 - P(-a f3X)].w,o w,-i
Suppose that in a given set of data the obser-vations are as pictured in the figure to theright. It is easy in this case to find values for aand 13 such that whenever W1 =0 (a /3X)is positive and when W= 1 (a---pX) isnegative. All observations can thus be per-

Xfectly classified on the basis of the mean
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value (a +f3X) for such a and 13. In fact the likelihood is maximized as a and p
tend to negativeand positive ii)fiflity respectively. This failure in the estimation
process could easily be predicted, in this simple model, by comparing the range of
X within the two sets of observations. The same problem arises in this model with
more than one exogenous variable and all the other models as well, suggesting that
as a prelude to estimation one should always critically examine simple statistics,
especially the range, of the exogenous variables within each subset Of observa-
tions. In addition, even if the individual exogenous variables do overlap, there
may be some combination which provides perfect classification of the observa-
tions. Such a situation is often difficult to detect until after the estimation process
has failed. Performing the same analysis on = f(x, f) where /3 is the vector of
regression coefficient estimates when the iterative maximization procedure began
to diverge may often reveal the source of the problem.

Estimated classification probabilities (i.e., Pr (We = g,( Y)IX, Z1) or alterna-
tively Pr Y <tIX, Z1)) are often as important to the analysis as estimates
of the parameters themselves. The expressions for obtaining them are given by the
components of the likelihood function for mass point intervals and similar
expressions for Continuous intervals. In addition to their independent use they
serve an important role in an examination of the estimation results analogous to
residual analysis in least squares regression. They provide, for example, one
measure of classification error. Let j be the interval in which an observation falls
and be the interval with largest associated classification probability. An observa-
tion may be viewed as being misclassified if j

A variety of measures of "residuals" may be readily obtained. Using esti-
mated coefficients to compute = f(X1, /3) we can obtain directly ü, = for
continuous observations. For mass point observations the estimated residual may
be "bracketed" by t Y and Y . Another indicator of misclassification is
given by a comparison of j and j where j the interval in which falls and, as
before, j' is the observed interval.

An important part of the analysis for a given problem might be the calculation
of mean values for the observed dependent variables. These might be needed, for
example, for prediction purposes or for the calculation of elasticities.14 The
expected value of W, for given X, (and Z) is

E(W,jX1, Z1)
[ !' f(X, ') g(y) dy

cr

=

fri !_z(Y_)gj(ydy A.1.
j-1 tJ-1

u Whether this is an appropriate measure of misclassification will depend on the model being

exammnej. For example it may be a useful measure for the binomial choice model while in the ordinatly

diserete model, since the frequency of misclassification under this measure is easily altered by
arbitrarily collapsing adjacent intervals, it may not be at all appropriate.

If the prediction or elasticity is for a single individual or observation then the appropriate valUe

for W to be used should be t* = g( p',). On the other hand if we need the mean predicted value or

aggregate elasticity the appropriate 'alue is E(WIX1, Z1) as is given here.
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For mass point intervals g1(y) is a constant so that the correspond ing term in theexpected value of LV, is

Ai;gj(Y).f

For continuous intervals, integration over the relevant range yields'5
A, f(X, 13) -

_r{(iL'.)) -z(J'fl))J.
One could compute similar expressions for the variance of the deserveddependent variable,'6 but it would not be of much practiesl use. it is not useful, forexample, in constructing confidence intervals about individual or mean predictedvalues of lit,. For these, one must return to the regression equation if the modelcontains Continuous intervals, and make probability statements about inter%ra;Saroundf(x, fJ) orf(X fi)+u as would be done in the usual regression model buttaking care to account explicitly for the threshold points. For mass point values,estimated selection probabilities themselves provide concise Probability state-ments about occurrence or nonoccurrence.

Regarding tests of hypotheses about estimated coefficients the use of max-imum likelihood estimation provides straightforw solut1o5. The matrix ofsecond derivatives of the log likelihood with respect to the COefljCients beingestimated, or at least an approximation to it, will generally fall directly out of theiterative maximization algorithm. Minus one times the inverse of this hessianmatrix may be used as an asymptotic approxinat ion to the covariance matrix ofcoefficient estimates. Square roots of diagonal elements provide estimates ofstandard errors and these as well as submatrjces of variances and covai-iances canbe used for a variety of hypothesis tests and confidence intervals.
15

We have

A1=J'
1;.i

f(X,13) j Z() dx +
J xZ) d

L, = (t -fix, $)J/(r and L, = f -fix, 13)J/.

XZ() = -dZ(x)/dx, J Z( d =

'4 =f(x 13) EP(L2) - P(L,)J - u[Z(L2) - ZiL, )}.
16

Such an expression for the "Tobjt' odcl with a tower threshold of zero, for example, wouldhave the variance going to u for large, positive
f(x,, 13) and to zero for large, negative f(x,, $).
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and we obtain
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