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9 An Exploration into
the Determinants of
Research Intensity
Ariel Pakes and Mark Schankerman

This paper explores the economic factors that determine the distribution
of research effort across firms. Our main objectives are to provide a
general framework for analyzing the demand for research by private firms
and to document empirically certain stylized facts about R&D intensity
and its determinants at different levels of aggregation.

Three competing explanations of the distribution of research are in the
literature, each emphasizing a different aspect of the problem. Schmook
ler (1966) and Griliches and Schmookler (1963) emphasize the impor
tance of expected market size as an inducement to research effort. They
recognize that the cost of reproducing the knowledge generated by
research is low relative to the original cost of producing it, and therefore,
that the private return to research varies directly with the number of units
of output embodying the knowledge or with the size of the market.
Differences across industries in the cost of producing knowledge are
downplayed, based on the argument that scientific knowledge is suf
ficiently well developed to make the supply of new industrial knowledge
highly elastic at the same level of costs for all industries. Rosenberg
(1963,1969,1974) and Scherer (1965), while granting the importance of
market size, argue that the body of scientific and engineering knowledge
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grows at different rates in different areas and suggest that these differ
ences in the cost of producing industrial knowledge, or technological
opportunity, are a major determinant of the observed distribution of
research effort. Schumpeter (1950), on the other hand, argues that
research effort generates temporary monopoly power for the innovating
firm and that the private benefits from the production of knowledge must
be a result of quasi-rents appropriated by the producer of the innovation.
Schumpeter therefore emphasizes the determinants of the degree of
appropriability, such as entrepreneurial ability, industrial market struc
ture, and the general institutional framework (including patent rights) in
which the firm operates.

We develop a simple model consistent with the theoretical argument
that the output of research activities (industrial knowledge) possesses
unique economic characteristics. Our model implies that research in
tensity depends on three factors: appropriability, technological opportu
nities, and expected market size or demand inducement. This is a richer
set of determinants than those underlying the demand for traditional
inputs and is therefore consistent with the empirical observation that the
coefficient of variation of research intensity is an order of magnitude
larger than those of traditional inputs. We specify an explicit set of
stochastic disturbances in a set of factor demand equations and estimate
the model both at the intraindustry and interindustry levels of aggrega
tion. The empirical results of the intraindustry analysis imply that, though
part of the variance in R&D intensity is attributable to measurement
and decision errors, the bulk of the variance in observed research inten
sity is structural in the sense that it is consistent across factor demand
equations. Growth rates of output account for very little of this structural
variance. We then explicitly aggregate the micro relations to the interin
dustry level of observation, and the empirical results at this level of
aggregation are strikingly different. In particular, differences in industry
growth rates account for well over 50 percent of the interindustry
variance in research intensity. We explain how these differences can arise
and demonstrate their empirical importance.

Section 9.1 specifies the production relationships in the model. In
section 9.2 a model of the private returns to R&D is presented. Section
9.3 specifies the stochastic structure and discusses identification. Section
9.4 applies the model to the intraindustry variance in research intensity.
In section 9.5 we explicitly aggregate and estimate the model at the
industry level of observation. Brief concluding remarks follow in section
9.6.

9.1 Production Relationships

This paper is based on an extended Cobb-Douglas production function
in which research resources enter the production process by raising the
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productivity of traditional factors of production in a disembodied man
ner. Problems involved in the construction of R&D variables have
made this specification the most widely used framework in the empirical
analysis of the role of research resources in production (see Griliches
1973, 1980). Our specification differs from the conventional one in two
respects: (1) we decompose R&D resources into research capital and
research labor, and (2) we explicitly incorporate an R&D gestation lag
and a rate of obsolescence of produced knowledge, both of which in
fluence the optimal R&D intensity of the firm.

We begin with the traditional production function

(1)

where Q is output (value added), "10 is a constant (which may be both firm
and time specific), K is the stock of accumulated and still productive
knowledge produced by the firm, Nand H are traditional labor and
capital services, and all firm and time subscripts have been omitted for
convenience. Since K is not observable, its units are arbitrary, and we
normalize it so that a 1 percent increase in K raises output by 1 percent.

The generation of knowledge is summarized by its production function

(2) kC; == AIL~- eC~- e,

where kC; is the gross increment in produced knowledge in period t, Al is
a constant (which may be both firm and time specific), L t - e and Ct - e are
research labor and research capital services in t - e, and eis the mean lag
between the time research is undertaken and its embodiment in the
traditional production processes of the firm. 1 The parameters a and bare
the elasticities of research labor and research capital in the production of
increments to K, and they will be assumed not to differ among firms in a
given industry (though differences among industries are permitted).
These parameters are indices of the technological opportunities of the
industry, that is, they reflect the ease with which the underlying scientific
and engineering knowledge permits firms in a given industry to transfer
their research inputs into cost-reducing innovations (see Scherer 1965
and Rosenberg 1969).

Assuming geometric decay of knowledge at the rate of 51 and taking
the growth rates of research capital and research labor to be constant
both during and prior to the period of analysis (as required by our data),
the net increment to knowledge k';l is

1. Since our data cannot sustain an investigation of the distributed lag between the
expenditure of research resources and the resultant increases in a firm's productivity, we use
the simplification of a mean lag which applies to all units of research resources equally. Note
also that research capital refers to an aggregate of all research resources other than research
labor, and that the constant term A 1 captures both the effects of "learning by doing" and of
other firms' research as inputs in the production process of the firm in question.
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(5)

(6)

where A = A 1LoCoe-(aL+bc)e, and a caret denotes a rate of growth.
Solving this differential equation and assuming that lim Kt = 0, the
stock of productive knowledge becomes: t~-oo

(4) K = AIL~-8CL8
t A A •

81 + aL + bC

This concludes the specification of the production relationships.
However, we will require expressions for the reduction in unit costs
attributable to an increase in research labor and research capital. Assum
ing that the firm is a cost minimizer facing fixed input prices, the unit cost
function associated with (1) can be expressed as

Z = hew, PH)
K '

where Z represents unit costs, and wand PH denote the (fixed) wage and
rental rates for traditional labor and capital services, respectively. Substi
tuting (4) into (5) and differentiating the cost function at time t + ewith
respect to research labor and research capital services at time t, we obtain

_ aZt + 8 = aZt + 8, and _ aZt+8 = bZt+8.
aLt L t aCt Ct

9.2 Optimal Factor Intensities for Research Inputs

If private firms are motivated by potential profits, the level of their
research effort will be determined by the expected net income generated
by investment in research resources. The large observed variance across
firms in research intensity should be attributable to the variance in the
expected private returns to research. The objective factors that could
cause differences in the expected net income generated by the use of
research resources are: (1) variation in the costs of research inputs; (2)
differences in the productivity of research resources in generating usable
industrial knowledge; and (3) differences in the ability to derive mone
tary benefits from a given unit of produced knowledge. Variation in costs
of research inputs will be incorporated into the model and discussed in
section 9.3. In connection with the productivity of research resources, the
basic model assumes that all firms in a given industry produce a single
homogeneous output subject to the same production conditions (as spe
cified in section 9.1), and the model is tested separately for each industry
in our data set. Consequently, differences in the expected returns from
research beyond those caused by differences in the cost of research inputs
will be associated with differences in the ability to derive mone-
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tary benefits from a given unit of produced knowledge. However, the
industries in the data set are defined quite broadly, so there could be
some intraindustry differences in the output elasticity of research re
sources. At this stage, we do not separate these supply-side differences
from those differences in ability to capture the monetary benefits from
knowledge. We return to this problem later in this paper.

The difficulty in specifying a mechanism that determines the stream of
private benefits accruing to new industrial knowledge is a result of the fact
(stressed by Arrow 1962) that knowledge has no, or a very small, cost of
reproduction. Since any economic agent aware of the information em
bodied in the innovation can exploit it, the private benefits from the
production of industrial knowledge must be a result of quasi-rents or
temporary monopolies accruing to the producer of the innovation
(Arrow 1962; Machlup 1962; Nordhaus 1969a, 1969b). The strength of
these monopolies, that is, the abilities of firms to appropriate the benefits
from the knowledge which they have developed, will determine the
private return to research resources and therefore the research intensity
of firms. The private return to the development of a new cost-reducing
technique will depend on the number of units of output embodying this
new knowledge and the fraction of the cost reduction attributable to the
innovation apropriated by the innovating firm.

We begin by reviewing the "maximum appropriability environment,"
first described by Arrow (1962) and later adapted to determine the rate of
return to research resources by Nordhaus (1969b). Consider a constant
cost industry in competitive equilibrium and an innovation which reduces
the cost of production for the firms in the industry and only for such firms.
The maximum appropriability environment is based on the assumption
that the innovator patents the innovation costlessly and leases the cost
reducing technique to all firms in the industry (including itself), subject to
the condition that the final product must sell at a uniform price to
consuming units. The lease can be defined in terms of a royalty per unit of
output produced with the innovation, Po. The lessor acts as a monopolist
and sets the initial royalty to maximize profits subject to the constraint
that the royalty plus the new cost of production (Po + Zl) is less than or
equal to the preinnovation cost of production (Zo = Po). In virtually all
cases the profit-maximizing royalty at the date of introduction will be
Po = Zo - Zl = dZ. 2 The revenue collected in the first year of the

2. If PI is the profit-maximizing price for a monopolist with constant unit cost ZI, the
Arrow royalty described in the text will yield maximum profits if and only if PI > Po. If the
industry demand is price inelastic over the relevant range, the Arrow royalty will be optimal
regardless of the magnitude of the cost reduction from the innovation. If the industry
demand is price elastic, the condition PI > Po can be written ~Z/Zo < 1'Y')(pl )-ll, where 'Y')
denotes the price elasticity of industry demand. It is apparent from this inequality that the
Arrow royalty will be optimal for all but the most major innovations and will certainly be
optimal for the cost reduction resulting from the employment of the marginal research
resource.
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innovation in that appropriability environment is PoQ6 == flZQ6, where
Q6 denotes the industry output in the year the innovation is introduced.
We now extend the analysis to firm-specific, nonmaximal appropriability
environments and to the calculation of the entire revenue stream accruing
to the innovation. Let kiT be the fraction of industry output from which
firm i receives royalties on its innovation of age 'T, PiT the royalty per unit
of output, and BiT the total revenues accruing to the innovation in year 'T.

Then the discounted value of the stream of revenues generated by the
innovation is

(7) n f X)B -r1'd fX) k Q/ -r1'd== 0 iT e 'T == OPiT iT e 'T,

(8)

where r is the discount rate.
The specification of the appropriability environment is based on the

following two assumptions:
1. It is easier, or less costly, for a firm to capture the benefits of the

knowledge it produces through embodiment in its own output (internal
appropriation) than through embodiment in the output of other firms.
Internal appropriation is less costly because of the difficulties involved in
establishing an effective market for information (for more discussion see
Arrow 1962).

2. The revenues accruing to an innovation decline with the age of the
innovation. This occurs because new techniques are developed by the
firm and its competitors which substitute for the original innovation and
because the use of the information in any productive way reveals and
spreads it. This tends to erode both the unit royalty that can be charged
and the part of industry output from which royalties accrue.

To maintain a specification that is both as general as possible and
consistent with the preceding two assumptions, we let

k+kiQ. k+ki-'fnQ.
k - ( - 81') iT - AZ iT

PiT iT - PiOe e -/ - u e -/ '
Q. Q.

where ~7= 1 k i == 0 by construction (n is the number of firms in the
industry), and QiT denotes the expected output of firm i at time 'T.

Revenues in period 'T become

k+k·
(9) BiT == PiTkiTQ; == (flZe- 81')e i QiT.

We interpret the parameters in the following manner: 0 is the rate of
decay in the unit royalty, exp (k + k i) is the proportion of firm i's share of
industry output from which the firm receives this royalty, and exp (k) is
the (geometric) mean of this proportion over all firms in the industry.
However, it is impossible to distinguish empirically between a rate of
decay in the proportion exp (k + k i ) and 0, or between a firm-specific
component in the rate of decay and exp(ki ). Since appropriable revenues
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alone suffice to determine the private benefits from an innovation, it is
immaterial whether the firm-specific component applies to the royalty
(the price side of revenues) or to the number of units from which the firm
receives these royalties (the quantity side of revenues). Hence, these
relationships may be interpreted as saying that the revenues generated by
a given innovation of age T depend on: (1) the importance of the innova
tion, ~Z; (2) the age of the innovation, T (through the rate of obsoles
cence of the private returns from knowledge, 8); (3) a firm-specific
structural parameter, exp (ki ) , which determines the extent to which the
firm can monopolize the information produced by its research resources;
and (4) the expected output of the innovating firm, QiT' because of the
relative ease of internal appropriation.

To obtain the present value of revenues generated by the employment
of the marginal unit of research labor (Ile), substitute (6) and (8) into (7).
Setting the price of output equal to one (as it implicitly is in our data) and
recalling that the cost reduction does not occur until a years after the
employment of the unit of research labor, we have

k + k· - T'T - o(T - e) g ~T
Ile == fYJLao e 1 QOie 1 dT,

e 0

where g1 is the expected rate of growth of output of firm i. Equating Ile to
the wage rate for research labor (wr ), taking a first-order expansion of
log(8 + r - g*) around logeS + r), and rearranging terms, we can
express the optimal research labor intensity (and following an analogous
procedure, the optimal research capital intensity) as: 3

(10) 10g(wrLIQ) ==-log ~o + ag* + ki ,

10g(PcCIQ) == 10g~1 + ag* + k i ,

where log ~o == log [al (r + 8)] - ra + k, log ~1 == log [bl (r + 8)] - ra +
k, Pc is the price of research capital services, and a == (r + 8) -1 + a.

Several features of equation (10) are worth noting. First, since the
returns from both research labor and research capital are derived from
the returns to industrial knowledge, any factor that affects the returns to
knowledge will influence the optimal intensities of both research vari
ables. This fact permits econometric identification of the relative impor
tance of the unobserved structural parameter (ki ) in determining the
research intensities of firms. Also noted that the indices of technological
opportunity at the industry level and the average degree of appropriabil
ity (a, b, and k) affect the research intensities of firms since they appear in

3. Since only the moment matrix of the variables was available, we were limited to linear
combinations of the original variables and forced to use Taylor approximations. The
approximation error evaluated at the means is about 2 percent, and if g is distributed
symmetrically this will not affect the estimate of Ct.
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the constant terms in (10). These parameters are assumed not to vary
within a given industry, but they may vary across industries and, in fact,
could be endogenously determined in a more complete model. Second,
equation (10) indicates that the firm's employment of research resources
will vary directly with its expected market size (its appropriability base)
and inversely with the rate of obsolescence and the rate of discount. The
importance of expected market size in determining the optimal level of
research resources follows directly from the fact that knowledge has a low
cost of reproduction. 4 For a given value of initial revenues accruing to an
innovation, the higher rate of obsolescence, the smaller the total value of
private benefits from the innovation, and therefore, the less intense the
research effort will be. Moreover, since research produces a stock
(knowledge) whose benefits accrue over the future, the optimal research
intensity will vary inversely with the rate of discount (see Lucas 1967 for
an empirical test on aggregate data). Finally, the longer the gestation lag,
the larger the influence of the future is in determining the returns to
R&D, and hence, the more important the effect of expected growth on
the optimal R&D intensity. 5

The model presented here posits a set of firms that produce knowledge
from research resources and produce output by combining this knowl
edge with traditional factors of production. The price of output is deter
mined by the cost of traditional factors plus quasi-rents generated by
temporary monopoly power over the information produced by the re
search resources. It is important to realize that there will be no private
benefits from the employment of research resources without some degree
of monopoly power. The unique characteristics of knowledge as a com
modity imply that the private rate of return to research resources must be
determined jointly by the parameters of the production function for
knowledge and the ability of the firm to internalize the benefits from the
knowledge it produces.

We would like to clarify the relationship between our model and
Schmookler's (1966) celebrated work on demand inducement. Schmook
ler argued that the level of inventive activity is directly related to the
absolute size of the market for the output of such activity. By focusing on
the determination of research intensity, our model normalizes by the
current level of output, and further differences in expected market size
are associated with the expected rate of growth in demand. Of course,
one would not expect that equations relating research intensity to ex-

4. This should be distinguished from the role of market size in models of the demand for
traditional capital. The level of investment in traditional capital is related to the expected
growth of output (accelerator models), whereas in our model the level of investment in the
stock of R&D depends on the expected level of output.

5. This does not mean, however, that an increase in e raises the optimal R&D
intensity, since e affects both ~o and ~1'
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pected growth would fit as well as those relating the level of research to
the current level of output. Nevertheless, we will show that the explana
tory power of growth rates remains substantial, at least at higher levels of
aggregation.

9.3 Stochastic Specification and Identification of the Model

The equations for the optimal intensities of research capital and re
search labor (10), together with that for traditional labor, form the basis
of the model to be estimated. In this section we add appropriate disturb
ance terms and consider the identification of the model's parameters.
Letting asterisks denote the optimal levels of each variable, we have

(11) 10g(wrL*/Q*) = log~o + ag* + ki ,

10g(PcC*/Q*) = log~l + ag* + k i ,

10g(wN*/Q*) = log)'l'

The variable denoted by Q* is expected output, that is, the value of
output on which input decisions are made. We follow Mundlak and Hoch
(1965) in assuming "partial transmission" of the error in output to the
input decision-making process. Letting the superscript 0 denote the
observed value of a variable, TJq represent disturbances and firm-specific
characteristics known before input decisions are made, and vq reflect
transitory disturbances realized after inputs are chosen, we have6

"Y "Y2 TJq+Vq
(12) QO = )'oKN lH e , and Q* = E(QoITJq ) ,

V q 2
so that QO = Q*e ,and we define ITq = E(v~).

The observed level of each factor of production differs from its optimal
level by an eTror which has two components: a decision component
resulting from an inoptimal choice of factor levels and a pure measure
ment component. Letting Ej be the sum of the two errors for factor j, we
have

EC Ee En

(13) Co = C*e ,LO = L *e ,and N° = N*e ,

where E(Ej) ='0 and V(Ej) = ITJfor j = c, f, n.
To complete the model two further assumptions need to be made, one

on the structure of the covariance matrix of the error components (vq and
Ej for j = e, c, n) and one providing an empirical measure of the expected
growth rate (g*). For expositional clarity we first describe the identifica
tion scheme under the assumption that all the error components are

6. Familiar special cases of partial transmission are full transmission (vq = 0; Marschak
and Andrews 1944) and zero transmission (ll q = 0; Zellner, Kmenta, and Dreze 1966).
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mutually uncorrelated. The model actually estimated allows for free
covariances between the Ej(j == e, C, n) and a test of whether it is
reasonable to assume that vq is uncorrelated with them. The extensions
required to estimate the more general model are briefly summarized at
the end of this section. Finally, the empirical results in sections 9.4 and
9.5 are based on the assumption that a firm's expected growth rate equals
its average past growth rate plus a component reflecting common expec
tational changes in the trend of industry demand, that is,

(14) g~ == ~g + gi for i == 1, . . . , n,

where gi is the average past growth rate of firm i, and ~g is the commonly
held, expected difference between the average past and the expected
future growth rates. In section 9.5, where we use more flexible data seta
than the ones used in section 9.4, we try alternative empirical specifica
tions of g*, but these alternatives do not change our basic conclusions.

For the remainder of this section it will prove convenient to redefine all
variables as deviations from their sample means. With this understand
ing, substitution of (12), (13), and (14) into (11) yields the following
system of factor share equations:

(lSa)

(lSb)

(lSc)

10g(wrLO/QO) == ag + k i + Ec - vq ,

log (Pcco/QO) == ag + ki + Ee - vq ,

10g(wN°/QO) == En - V q .

Assuming that the structural parameter, ki , is uncorrelated with the
various error components and with g (see below), maximum likelihood
estimation provides consistent and asymptotically efficient estimates of a
and of the variance-covariance matrix of disturbance fl, where

(16) fl==

The identification of the various components from (16) is straightfor
ward. Any factor which affects the returns to the production of knowl
edge will affect the optimal intensities of both research resources. Conse
quently, the covariance between the disturbances in the two research
intensity equations will capture (T~. However, this covariance also picks
up any measurement or expectational error in output, (T~. Since the
traditional labor intensity equation will also contain the error in output,
(T~ can be identified by the covariance between the research intensity and
the traditional labor demand equations. Finally, the variances of the
errors in the research resource variables are calculated as the residual
portion of the research intensity equations.
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The parameters from (15) and (16) permit a decomposition of the
variance in research intensity into three components: (1) variance caused
by differences in the expected growth rate of the internal appropriability
base of the firm (a2a~), or demand inducement; (2) variance caused by
differences in the structural parameter (al), which determines the pri
vate benefits accruing to a cost-reducing innovation, given the internal
appropriability base of the firm; and (3) variance caused by measurement
and decision errors in research resources and in expected output.

We would like to explore briefly the economic interpretation of this
decomposition and indicate caveats concerning the distinction between
technological opportunity, appropriability, and demand inducement as
determinants of R&D intensity. Put simply, the optimal R&D inten
sity depends on the supply of new knowledge and the effective demand
for that knowledge. Given factor prices, differences across firms or
industries in the supply curve for new knowledge reflect differences in the
parameters of the underlying knowledge production function. This is the
precise meaning we have given to technological opportunity in the earlier
discussion. The effective demand for new knowledge depends on the
current level (by which we normalize) and the expected rate of growth in
the demand for products that embody the new knowledge (demand
inducement) and on the ability of the firm to capture the benefits from the
market (appropriability). If a measure of the expected shift in the product
demand curve were available, it would serve to identify empirically the
role of demand inducement separately from the joint contribution of
technological opportunity and appropriability. However, the available
measures are based on realized growth rates of output reflecting shifts in
both the product supply and demand curves for the firm. Therefore, these
growth rates will be positively correlated with the other structural deter
minants of R&D intensity in our model, namely, technological oppor
tunity and appropriability. We have developed a model which endoge
nizes the firm's expected growth in output, and it generates structural
equations similar to those in this paper. The main difference is the
positive correlations referred to above, in particular, k may be correlated
with g. As a result, our empirical estimates in section 9.4 represent the
reduced form association between growth rates of output and R&D
intensity and overstate the importance of pure demand inducement. 7 In
section 9.5 we explore some aspects of the association among the struc
tural determinants and demonstrate their empirical importance.

Our main focus is on total research intensity and we now derive an

7. If E( kg) =1= 0, the estimates of a derived from the models relying on zero correlation
should differ from estimates based on other techniques. An assortment of exogenous
information on the components of a (described in section 9.4) yields estimates of a similar to
those obtained from our models, at least in the intraindustry regressions, and this may be
interpreted as an indirect test of the assumption E(kg) = 0. At the interindustry level this
problem has more empirical content, and we explore it in greater depth in section 9.5.
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equation for that variable. The observed research expenditures of a firm
are calculated as the sum of the firm's expenditures on research labor and
research capital. That is,

(17)

Since we define research capital to include all R&D expenditures other
than payments to scientists and engineers, (17) is an identity. Analo
gously, we define the optimal level of research expenditures, R*, as

(18)

It follows from (lSa), (lSb), (17), and (18) that

(19)

where Er = \flEe + (1 - \fl)Ec , and \fl = a/(a + b). Since equations (lSa),
(lSb), and (19) are definitionally related, only two of these equations
contain independent information. The form of the data made it simpler to
estimate (lSa) and (19) together with (lSc).

We have proceeded on the assumption that the various error compo
nents are mutually uncorrelated. As indicated earlier, we actually esti
mate a more complicated six-equation model which allows for free cor
relation among the Ej (j = c, e, n) and a test of whether vq is correlated
with them. Details of this model and its identification scheme are con
tained in Pakes (1978) and Schankerman (1979). Briefly, the six-equation
model is constructed by adding the factor demand equations for research
expenditures, research labor, and traditional labor in year (t - 1) to
those same equations for year t. Each error component is assumed to be
generated by an arbitrary, stationary stochastic process. The model
allows for a X~o test of the stationarity assumptions (T1), a X~ test of the
assumption of no correlation between vq and the factor errors (T2), and a
X~ test of the intertemporal stability of the coefficient of g (T3)· T1 , T2 ,

and T3 test for consistency between the data and the assumptions used to
identify the model. There are also nonnegativity restrictions on all the
estimated error variances. Since these restrictions are equivalent to a
ranking of the elements of the covariance matrix and as such are not
guaranteed by our estimating procedure, the nonnegativity conditions
constitute an informal test of the model.

The six-equation model also allows us to investigate two aspects of the
intertemporal stability of the unobservable structural parameter, k. First,
we provide a test of whether the interfirm variance in k is constant over
time. Second, we can estimate the correlation coefficient between the
values of the structural parameter for a given firm between two adjacent
years, which we denote by A.
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9.4 Empirical Results at the Intraindustry Level

The data were gathered jointly by the National Science Foundation
and the Bureau of the Census (for a more complete description see
Griliches 1980). They contain company information on R&D expendi
tures, the number of scientists and engineers, total employment, value
added, and a variety of other company economic indicators. The data
include observations on one level year value and a corresponding growth
rate for most variables. The sample used here consists of 433 large firms
which account for 48 percent of all R&D performed in American
industry in 1963, and 78 percent of all R&D excluding aircraft and
missiles. 8 The firms are broken down into four broad industry groups
chemicals and petroleum, electrical and communications equipment,
fabricated metals products and machinery, and motor vehicles and other
transport equipment-and the analysis is performed on each of these
industries separately.

The six-equation version of equations (15a), (15c), and (19) is the
model which we estimate. 9 Before presenting the empirical results,
however, exogenous information is used to derive a plausible range for a.
Recall that a == [l/(r +8)] + e, where r,8, and eare the discount rate, the
decay rate in appropriable revenues accruing to the innovation, and the
mean lag between the outlay of research resources and the beginning of
the associated revenue stream, respectively. A comparison of exogenous
information on the value of a with the direct estimates here will provide
an informal test of the assumptions of the model. The estimates of 8 and e
(taken from Pakes and Schankerman, chap. 4 in this volume) range
between 0.18-0.36 and 1.2-2.5 (years). Based on a discount rate of 0.15,
these estimates provide an approximate range of 3 < a < 5.

The model was estimated using a full information maximum likelihood
technique developed by J6reskog (1973). A summary of the empirical
results is presented in table 9.1. The computed values (pooled across
industries) for the test statistics T1 (X~o), T2 (X~), and T3 (X~) are 29.80,

8. The original sample consists of 883 firms. We discarded the data for the "aircraft and
missiles" and the "all others" industries. The first was dropped because of inconsistencies in
the data and because it is dominated by government-financed R&D (74 percent versus 20
percent in the other industries). Our market-inducement model has limited applicability for
government-financed R&D unless it were known that privately financed and government
financed R&D are close substitutes and that the supply of the latter is very elastic. The "all
others" category was discarded on the grounds that it contains both intraindustry and
interindustry variance in R&D intensity, a critical distinction as we show in section 9.5.

9. Two points should be noted. First, the data include both the average past growth rate
in sales and in value added for each firm. To allow each variable to contain measurement
error, we use both variables and identify ai from the covariance between the two (see Pakes
and Schankerman 1977 for details). Second, the parameter t\J = a/ (a + b) is measured as the
share of scientists and engineers in total R&D expenditures, constructed for each industry
from information in National Science Foundation (1963).
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Table 9.1 Summary of Results of the Six-Equation Model

Industry

Electrical Motor
Metal and Vehicles

Chemicals Products Communi- and
and and cations Transport

Parameter Petroleum Machinery Equipment Equipment

1. 0. 4.10 2.62 5.13 3.49

2. Standard error of 0. 2.26 1.30 2.40 3.40

3. a; 0.33 0.20 0.37 0.58

4. a;/a~ogRO 0.12 0.07 0.08 0.09

5. (a;+ a~)/a~OgROIQO 0.23 0.28 0.21 0.40

6. 0.2 a ;/afogR*IQ*a 0.04 0.04 0.06 0.03

7. a~/arogR*IQ* b 0.96 0.96 0.94 0.97

8. 'A 1.00 0.99 0.99 0.99

9. n 110 187 102 34

aa; = COV(gl g2), where gl and g2 are the measured average past growth rates of sales and
value added, respectively.
b 2 _ 2 2 2
alogR*IQ* - alogROIQO - a r - a q .

0.32, and 1.32, respectively. None of these values is surprising under the
null hypothesis that the constraints are indeed satisfied. It is noteworthy
that the value of T2 indicates strong acceptance of the assumption of a
zero covariance between the transitory error in output and the factor
errors in this sample. The difference between the sum of squared re
siduals in the model using all three test constraints and in the totally
unconstrained model can be used to produce a X~2 test of the validity of
the model as a whole. The computed value of the X~2 statistics is 32.76,
which is about equal to the expected value ofaX~2 deviate under the null
hypothesis. As noted above, there is an additional test of whether the
interfirm variance in k is stable over time. The observed value of the X~

deviate (combined over the four industries) for this test is 6.64. While this
indicates acceptance of the hypothesis at the 5 percent level, a sample
with more than two time periods would be required to determine more
conclusively whether the variance in the structural parameter is in fact
constant over time. We also note that of the twenty-four error variances
estimated in the model (a} for j == f, C, r, n, q, k in each industry), only
two violated the nonnegativity restriction (see Pakes and Schankerman
1977 for details).

All of the estimated ex coefficients are of the right sign, and three are
statistically significant. Moreover, all of the four point estimates of ex are
within or very near the interval predicted by the prior information
summarized earlier. To derive a summary measure of ex, we tested the
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null hypothesis that the differences between the various estimates of a
are simply a result of random differences in the estimators. The hypoth
esis is accepted. The value of a for the combined sample is 3.37 with a
standard error of 0.95. On the whole, the data and the exogenous
information provide mutually consistent information on the magnitude of
the parameters determining a.

We now turn to the basic decomposition of the intraindustry variance
in researcb intensity. Line 5 in table 9.1 indicates that an average of 28
percent of the variance in observed research intensity is attributable to
errors (of measurement and decision), and hence, 72 percent of the
variance is accounted for by the structural determinants in the model. Of
special interest is the effect of the firm's past growth rate. Though this
variable is neither statistically nor economically insignificant in determin
ing the firm's R&D intensity, 10 line 6 indicates that differences in growth
rates account for only a minor portion (3-6 percent) of the structural
intraindustry variance in R&D intensity. Morevoer, this finding is
robust to different specifications of the expected growth rate variable (see
discussion in section 9.5). It is evident that a pure demand inducement
mechanism does not do well in explaining the intraindustry variance in
R&D intensity. As noted earlier, this finding does not contradict
Schmookler's argument for demand inducement, which is cast in terms of
the level of R&D and the absolute size of the market.

As indicated in line 7, over 95 percent of the structural variance in
R&D intensity is picked up by differences in the firm-specific structural
parameter, k, which we have interpreted as reflecting appropriability
conditions facing the firm (but which may also include intraindustry
differences in technological opportunity). It is also noteworthy that the
value of the structural parameter associated with a given firm seems to be
stable, at least over short periods of time, since the correlation coefficient
(~) between the values of k t and k t - 1 is essentially unity in all industries.

Finally, line 4 provides the fraction of the variance in measured R&D
expenditures attributable to errors in research resources. The average
value is quite large, 9 percent. Unfortunately, it is not possible at this
stage to determine what fraction of this error variance is caused by pure
measurement error, as opposed to other factors that cause inoptimal
choices of R&D intensity in the context of our model.

9.5 Aggregation Effects and the Interindustry Variance
in R&D Intensity

In the previous sections we presented a model of R&D intensity at
the micro level and explored the empirical determinants of the intrain-

10. The elasticity of R&D intensity with respect to past growth rates, evaluated at the
sample mean of the growth rate, is about 0.25.
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dustry variance in research intensity. We now explicitly aggregate the
micro equation and empirically examine the determinants of the interin
dustry variance in research intensity (i.e., the variance in the average
R&D intensities of different industries). Based on the NSF industrial
classification (which is roughly at the two-digit SIC level), the total
variance in R&D intensity is about equally divided between intraindus
try and interindustry variance.

The Griliches-Census data (GD) used in section 9.4 do not contain
sufficient industrial detail to investigate the interindustry variance in
research intensity. The main data set used here is constructed from
information contained in Business Week (see Pakes 1979 for details).
These data (BWD) contain the ratio of company-financed R&D to
sales, five-year average past growth rates of sales, and a fairly detailed
industrial classification for 536 firms, which account for the vast majority
of company-financed R&D in the United States in 1976. The BWD do
not contain the full set of variables required to estimate the entire model
in section 9.3. However, the main points we wish to emphasize in this
section can be demonstrated by focusing on the R&D intensity
equation. 11

To analyze these data we let the index (i, j) refer to firm i in industry j (i
= 1, ... , N j and j = 1, . .. ,J), and for simplicity we define Yij =

10g(Rij/Qij). Then the R&D intensity equation of the model (see eq.
[19]) can be written

(20)

where J.Lij = kij + Er,ij - Vq,ij' and by assumption, E(J.Lij) = E(J.Lijgij) = 0,
d E( ) 2'f . ·f d· ·f d h· 12an J.LijJ.Li' ,j' = IT J-l' 1 I = I an ] = ] ,an zero ot erWlse.
Recall that the micro (intraindustry) coefficient on the expected

growth rate is o.j = l/(rj + 8j ) + 8j , and that the GD used in section 9.4
indicated acceptance of !ti: o.j = a for available j. Seventeen NSF indus
tries are available in the BWD, and the computer Xi6 test statistic for !ti
on the BWD is 14.71, also indicating acceptance of !ti. Hence, in the
remainder of the discussion we maintain !ti. The parameter o.Oj depends
on the determinants of o.j and, in addition, on the indices of the techno
logical opportunities and the average degree of appropriation (aj' bj , and
kj ) in the industry. Testing ltd=o.Oj = 0.0 for j = 1, ... ,J on the BWD

11. In previous work we estimated the entire three-equation model on aggregate data
(industry means) on a data set we constructed by combining information from the annual
reports of the NSF and the Census of Manufactures (see Pakes and Schankerman 1977).
There are no essential differences between those estimates and the ones reported in this
section.

12. We are assuming that (J"~ does not vary across industries even though CiOj and Cij may.
This simplifies the presentation without affecting our major results. In general we keep the
discussion of technical details in this section very brief since they can be found in Pakes
(1978, 1983) and the literature cited there.
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yields an F(16,512) test statistic of 24.20. The 5 percent critical value is
1.67, so I-fJz is clearly rejected. We conclude that, though there are no
perceptible interindustry differences in the micro growth rate coefficient,
there are clear interindustry differences in the constant terms.

Since we accept Hi and reject I-ti, equation (20) is formally identical to
econometric models that allow for group effects. Under the assumption
that the average past growth rate provides a reasonable approximation to
the expected growth rate relevant to R&D decisions (which we discuss
below), the presence of a group effect indicates that there is a determi
nant of R&D intensity which is common to all firms in an industry but
differs across industries. Since we show later that this group effect is an
important determinant of the interindustry variance in R&D intensity,
we now explore its characteristics in more detail. To do so we note that
one can always define ao and <f> such that

(21) aOj = ao + <f>g.j + ~j,

N·
where g'j = Nj-

1 Ii!: 1 gij, and the mean and the sample covariances of ~j

with gij and g'j are all zero by construction. We assume that ~j are random
draws from a common population that satisfy the mean and the covar
iance restrictions stated above and define (f~ = E['~. Equation (21)
partitions the group effect into a part correlated with the past industry
growth rate (<f>2(f~.) and into a part not correlated ((f~). The parameter <f>
may be interpreted as the reduced form response of R&D intensity of a
firm to a unit increase in its industry growth rate, holding constant its own
growth rate.

Using H~ and substituting (21) into (20), the micro R&D intensity
equation becomes

(22)

where vij = ~j + JLij, E(Vij) = E(Vijgij) = E(Vijg'j) = E(~jJLij) = 0, and the
covariance matrix of Vij has a standard error components structure.
Summing (22) over i and dividing by Nj , we obtain the corresponding
interindustry R&D intensity equation:

(23) Y'j = ao + (a + <f»g.j + ~j + JL'j,

i = 1, ... ,J.

Clearly, the determinants of the interindustry variance in R&D inten
sity are a mixture of the determinants of the intraindustry variance and
the determinants of the variance in aOj' The growth rate coefficient from
the intraindustry regression (20) (with aj = a for all j) provides an
unbiased estimate of the firm's response in R&D intensity to an increase
in its own growth rate, holding constant the group effect. The interindus
try growth rate coefficient from (23) provides an unbiased estimate of the
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Table 9.2 Aggregation Effects in the BWDa

Intraindustry Weighted
(industry specific Aggregate between Mixedc

constant terms) Industryb Effects
Parameter (1) (2) (3)

Micro growth 1.04 1.04
rate, a (0.31) (0.31)

10.96
(1.88)

Industry growth 9.93
rate, <f> (1.91)
(T2 0.39d n.r. n.r. e

R2 0.02 0.66 n.r.
Degrees of freedom 512 15 527

aNumbers in parentheses are standard errors. The letters n.r. mean "not relevant."

bThe weight for industry j is (at + a~/Nj)- h.

CEstimated by generalized least squares using a~ and az from notes d and e.

da~ = 0.39.

eFirst stage a2 = 0.51. It follows that a~ = 0.51 - a~ = 0.12.

sum of this response plus the response of the group effect to a unit
increase in the industry's past growth rate. The intraindustry and interin
dustry coefficients would be similar only in the special case where the
determinants of the o.Oj are uncorrelated with the past industry growth
rate.

Table 9.2 summarizes the empirical results for the intraindustry regres
sion under Hi (column [1]), the interindustry regression (column [2]) and
the "mixed effects" model in equation (23) (column [3]). Column (1)
indicates that the intraindustry growth rate coefficient is similar to (but
somewhat smaller than) the estimates obtained with the GD in section
9.4. 13 It indicates that growth rates account for very little (about 2 per
cent) of the intraindustry variance in research intensity, which confirms
our earlier results with the GD.

The interindustry regression yields very different results. The estimate
of the aggregate mean response in R&D intensity to a unit increase in
the industry growth rate is about ten times as large as the firm's response
to its own growth rate in the intraindustry regression. As a consequence,
growth rates account for over 65 percent of the interindustry variance in

13. There are several differences between the two data sets which could account for this
difference: the BWD use the ratio of company-financed R&D to sales while the GD use
the ratio of total R&D to sales; the GD are at a slightly higher level of aggregation than the
BWD; the estimating technique on the GD allows for an error iQ the measurement of g (see
note 9 and the discussion below); the g used for the GD is based on a slightly longer average
of past years than the BWD; and the two data sets are for different years.
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research intensity. As the results in the mixed effects model indicate,
however, this is not a result of firms' responses to their own growth rates.
Rather, it reflects the fact that the industry growth rate is highly corre
lated with factors at the industry level which stimulate research activity of
all firms in the same industry (compare ex and <P in column [3]).

The BWD also contain the three-digit industrial classification of the
firm. We use this information to examine whether the three-digit assign
ment of the firm exerts any independent influence (beyond the two-digit
classification) on its choice of R&D intensity and whether the factors
underlying this influence are correlated with the past industry growth rate
at the three-digit level. The procedure we use is a generalization of the
one outlined in equations (20)-(23). We allow the constant term in the
R&D intensity equation to vary across both two-digit and three-digit
industries and partition the constant term into a part correlated with the
past two- and three-digit industry growth rates (with coefficients <p and
<p*, respectively) and a part uncorrelated with those growth rates. The
test of whether there is any variation in the constant terms across three
digit (within two-digit) industries yields a computed F(25 ,484) test statis
tic of 1.98, marginally significant at the 1 percent level of significance.
There is weak evidence of variation in the constant terms across three
digit industries. Estimation of the mixed effects model with both two-and
three-digit industry growth rates yields estimates of <p and ex which are
almost identical to those reported in table 9.2, while the estimate of <p* is
0.02 (standard error 1.31). Hence, there is not much evidence of a group
effect varying among three-digit (within two-digit) industries, and what
ever effect there is does not seem to be related to the past growth rate of
the three-digit industry.

We next ask whether the results in table 9.2 could reflect nothing more
than a misspecification of the expected growth rate relevant to a firm's
R&D decisions, g*. We consider two alternative specifications that may
predict the type of discrepancy between the micro and aggregate growth
rate coefficients which we observe in table 9.2.

In the first we allow the average past growth rate to measure expected
growth with an independently distributed and uncorrelated error, gij ==
g1j + Vij, where Vij has a zero mean and is uncorrelated with g1j . This is the
classical "errors in variable" model (EVM), suggested in the literature as
an alternative explanation of differences in estimated coefficients at
different levels of aggregation (Aigner and Goldfeld 1974; Eisner 1978).
The motivation for the EVM is that under the stated assumptions £~~

]

~'j == 0, so that g.j converges in distribution to gj. In the interindustry
regression the error in g~j averages out so the estimated coefficient does
not contain errors in variable bias, but the intraindustry coefficient is
biased downward.
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We use two approaches to this problem. The first is to use an in
strumental variables estimator with past rates of growth of employment
(gn) as instruments (see Pakes 1979 for details). This approach relies on
the assumption that E(gnv) = O. The second technique uses a three-digit
industrial classification as a grouping device to average out the measure
ment error, and then obtains an estimate of <p from a comparison of the
interindustry regression at the NSF (two-digit) level with the regression
between three-digit (but within two-digit) industries (see Pakes 1983).
This provides an asymptotically unbiased estimate of <p regardless of
errors in variables and a test of the presence of such measurement error.
The results indicate acceptance of the hypothesis that there are no errors
in variables. Both estimation procedures yield estimates of <p which are
nearly identical to the estimate in table 9.2. The instrumental variables
estimate of a is 1.55 (standard error 0.40), which is slightly larger than the
estimate in table 9.2 but does not change our basic conclusions.

The alternative specification we consider assumes that the firm forms a
rational forecast by taking the expectation of its future growth rate
conditional on the information available to it in period t, g* = E8t+1.
This implies gt+ 1 = g* + w, where Etw = 0, so that the actual future
growth rate measures expected growth subject to an error uncorrelated
with all variables known to the firm in period t (including the firm's and
the industry's past growth rates). To obtain asymptotically unbiased
estimators, we substitute the future growth rate for gij in (23), and use gij

and g.j as instruments on the future growth rate. Since the BWD did not
contain future growth rates, additional sources of information were used
and the analysis was conducted at a somewhat different level of aggrega
tion (see Pakes 1979 for details). Nonetheless, this rational expectations
formulation of g* yields the same basic results as those reported in table
9.2.

We conclude that the evidence does not support the hypothesis that the
differences between the intraindustry and interindustry results reported
in table 9.2 are the result of a misspecification in the measure of the
expected growth rate. These experiments may not dispose of the issue
entirely, but they do indicate that misspecifications which average out
over firms (within an industry) and the use of the past industry growth
rate by firms to predict their own growth do not explain the results in table
9.2.

We now summarize the empirical characteristics of the group effect,
which appears to be the dominant determinant of the interindustry
variance in research intensity. First, it is associated with the NSF (roughly
two-digit) industry to which the firm belongs. The three-digit industrial
classification of the firm has little independent influence on the firm's
R&D intensity. Of course, there may be other more detailed classifica
tion schemes that group firms with common industry factors affecting



229 An Exploration into Determinants of Research Intensity

their R&D intensities. Second, the factors in the industry environment
affecting the firms' R&D intensities are highly and positively correlated
with the industry's past growth rates. Various experiments on other data
sets (not reported here) indicate that the industry growth rate coefficient
is larger, the longer the term of the past growth rate used (we ex
perimented with values from four to eight years), and that the values of
the group effect for different industries are fairly stable over time. The
factors affecting the R&D intensities of firms in an industry appear to be
associated with sustained, long-term past growth. Third, the evidence
does not support the hypothesis that the observed group effect is simply a
result of the industry growth rate acting as an indicator of the firm's
expected growth rate. Finally, the group effect provides an explanation
for the basic empirical anomaly that growth rates account for only a
minor portion of the intraindustry variance in R&D intensity but for
about 65 percent of the interindustry variance.

We have established both the importance of and certain empirical
characteristics of the group effect. At this stage, we cannot determine the
underlying mechanisms generating it. Within the context of our model,
the industry constant terms contain indices of technological opportunity
and the average degree of appropriability. This suggests a reduced form,
empirical association between technological opportunity, appropriabil
ity, and a broader concept of demand inducement. As Schmookler (1966,
pp. 176--77) put it:

... science and engineering appear as given, to be used to explain but
not themselves to be explained. In the larger context, however, these
too would require explanation. I believe that their explanation, at least
for modern times, would probably not differ greatly from that ad
vanced here for invention. The rate and direction of scientific and
engineering process are probably greatly affected by demand, subject
to the constraints imposed by man's innate abilities and by nature....
If this view is approximately correct, then even if we choose to regard
the demand for new knowledge for its own sake as a non-economic
phenomenon, the growth of modern science and engineering is still
primarily a part of the economic process.

9.6 Concluding Remarks

In the literature on the determinants of research demand by private
firms one can identify three leading hypotheses: expected market size for
the output of R&D activities, the degree to which firms can appropriate
the benefits from the industrial knowledge they produce, and the tech
nological opportunities facing firms reflecting the set of production possi
bilities for transforming research resources into innovations. The model
we presented provides a first step toward integrating these hypotheses
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into a formal framework capable of investigating the empirical determi
nants of R&D demand. Our framework is only a first step because of its
partial equilibrium character and because it does not model explicitly the
underlying mechanisms determining the degree of appropriability, tech
nological opportunities, and the expected market size of firms. The
model results in equations determining the intensity of use of research
inputs as a function of these three factors and disturbance terms. The
market size relevant to current R&D decisions depends on current
output and the expected growth rate. Since R&D intensity measures
research effort relative to current output, further differences in expected
market size are associated in our model with differences in expected
growth rates. The limitations of the model and of the available data
require us to specify technological opportunity and appropriability as
unobservable factors in a way that permits us to assess their (joint)
empirical contribution to the observed variance in research intensity
within and across industries.

The empirical results indicate that at the intraindustry level of aggrega
tion about three-quarters of the large observed variance in research
intensity is structural, in the sense that it is consistent across diffrent
factor demand equations. However, while the growth rate coefficient is
broadly consistent with the predictions of the micro model, the variance
in growth rates accounts for very little (less than 5 percent) of the
intraindustry structural variance in research intensity. Most of the
variance is attributed to differences in appropriability and technological
opportunities within industries. The results at the interindustry level of
aggregation are strikingly different. Growth rates account for the major
ity of the interindustry variance in research intensity. The evidence
suggests that this finding is not due to differences in firms' responses to
their own growth rates. Rather, it appears to be due to factors in the
industry environment that affect the research intensities of all firms
within the industry and that are highly and positively correlated with past
industry growth.

The theoretical framework and these stylized empirical facts suggest
certain fruitful lines for future research. The first is to model the determi
nants and disentangle the empirical contributions of appropriability and
technological opportunity at the intraindustry level of aggregation.
Second, work is needed to understand the causal nexus underlying the
empirical association between the industry effect on the choice of R&D
intensity and past industry growth.
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