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INTRODUCTION

The aggregate production function is a fundamental neoclassical construct. At the
theoretical level, it is used in virtually every branch of economic analysis. At the
empirical level, it is used to analyze the determinants of technical change and capacity
utilization, and almost half a century after Solow’s celebrated 1957 article, it remains
the method of accounting for the determinants of growth. Yet the theoretical founda-
tions of this construct are shaky, because it cannot be grounded in any plausible
micro-foundations [Samuelson, 1962; 1966; 1979; Garegnani, 1970; Fisher 1971a, b;
1987; 1993; Harcourt, 1972; 1976; 1994; Solow, 1987, 25; McCombie, 2000-2001, 268;
Felipe and Holz, 1999; Felipe and Adams, 2005]. It is curious that a tradition so insis-
tent on the necessity of micro-foundations should rely so heavily on a construction
that cannot be derived from micro-foundations.

Defenders claim that aggregate production functions are worth retaining because
they possess important virtues, and because they appear to work at an empirical
level. Paul Douglas [1976, 914, cited in McCombie and Dixon, 1991, 24] expresses this
sentiment most openly: “A considerable body of independent work tends to corrobo-
rate the original Cobb-Douglas formula, but, more important, the approximate coinci-
dence of the estimated coefficients with the actual shares received also strengthens
the competitive theory of distribution and disproves the Marxian.”

Robert Solow, by far the most important contributor to this tradition, takes a
more nuanced position, but comes to the same conclusion: “The current state of play
with respect to the estimation and use of aggregate production functions is best described
as Determined Ambivalence. We all do it and we all do it with a bad conscience…One
or more aggregate production functions is an essential part of every complete macro-
econometric model…It seems inevitable…There seems no practical alternative… [Yet,
n]obody thinks there is such a thing as a ‘true’ aggregate production function. Using
an estimate of a relation that does not exist is bound to make one uncomfortable”
[Solow, 1987, 15].

Despite these misgivings, Solow contends that aggregate production functions
continue to be used because they appear to work: they provide “a practical way of
representing the relation between the availability of inputs and the capacity to pro-
duce output” [Solow 1987, 16], while also providing a way “to reproduce the distributional
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facts”  in a manner that “reinforce[s] the marginal productivity theory … of distribution”
[Solow 1987, 16-17].

It is worth emphasizing that a “good” fit1 between aggregate output and variables
such as capital, labor, and time can arise from a wide variety of function forms, rang-
ing from ones with fixed input-output coefficients to those with smoothly variable
ones. But even smoothly variable coefficients are not sufficient, since they might not
be neoclassical in character. For any such good empirical fit to be read as supportive of
neoclassical theory, therefore, something more is required. Two further conditions
are critical. First, the smoothly varying coefficients must be part of a functional form
representing a “well-behaved” neoclassical production function (Cobb-Douglas, CES,
Translog, etc.). Second, the function must have estimated output elasticities match-
ing observed wage and profit (factor) shares, thus providing support for the marginal
productivity theory of distribution. As Solow once remarked, “had Douglas found labor’s
share to be 25 per cent and capital’s 75 per cent, we should not now be talking about
aggregate production functions” [McCombie 2000-2001, 269, footnote 1, quoting a remark
by Solow to Fisher, cited in Fisher 1971b].

This leads us to the central issues in the debate about neoclassical aggregate
production functions. Do aggregate production functions really “work” in the preced-
ing sense? When they do appear to work, can this be taken as evidence supporting the
neoclassical theory of production and distribution? And finally, can they provide reli-
able measures of technical change and a decomposition of the sources of growth?

To address these issues, we use two different data sets. The first set is derived
from Goodwin’s model of Marx’s theory of persistent unemployment. The fact that it
has fixed coefficient technology means that marginal products cannot even be defined,
while the fact that it exhibits Harrod-Neutral technical change means that not even
Samuelsonian “surrogate” marginal products can be constructed [Shaikh, 1987]. And
its Marxian provenance is particularly apposite in the light of Douglas’ previously
cited claim that his empirically fitted function “disproves the Marxian [theory of distri-
bution].” The second set is actual data for the U.S. Thus we have a control group
whose generating process is transparent and strictly non-neoclassical, and a data set
whose generating process is the object of dispute. The two data sets look very similar.
In both cases, the wage shares are roughly stable, so that the Cobb-Douglas is the
appropriate neoclassical production function to test. In both cases, standard fitted
functions do not work well.

The next section explains the fundamental difficulty of distinguishing between a
hypothesized neoclassical aggregate production function and a national accounting
identity. Section 3 introduces our two data sets and Section 4 investigates their econo-
metric properties. Section 5 derives “Perfect Fit” procedures that make it possible to
transform a fitted production function that does not work well into one that appears to
work perfectly. Section 6 provides a summary and conclusions.

THE SIGNIFICANCE OF THE ACCOUNTING IDENTITY

If we define Yt, Lt, Kt, and wt as real output, labor, capital, and the real wage,
respectively, then the observed profit rate rt = profits/capital = (Yt – wt⋅Lt)/Kt. This
yields an accounting identity that is linear in Y, K, L, and that always “adds up”.
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(1) Yt = wt⋅Lt + rt⋅Kt .

A hypothesized production relation of the general form

(2) Yt = F(Lt, Kt)

may represent many different underlying conditions, however. It may be a fixed-coefficient
technology with a single technique dominating all others in wage-profit (factor-price)
space, as is implicit in Harrod, Goodwin, and many others [Shaikh 1987]. It may rep-
resent a jumpy input-output relation along a wage-profit frontier with kinks at switch
points from one technique to another [Michl, 1999, 196]. Or it may represent a set of
smoothly varying coefficients, either because the wage-profit frontier corresponds to
an infinite spectrum of fixed-coefficient methods of production [Garegani, 1970] or
because it represents the aggregation of micro-level production functions [Fisher,
1971b; 1987; 1993]. In none of these cases is the functional form Y = f (K, L) necessar-
ily “well-behaved” in the traditional neoclassical sense. On the contrary, even when
the coefficients are smoothly varying, one can get aggregate relations that appear to
be horrendously ill-behaved [Garegnani, 1970, 430]. As Fisher [1993] has emphasized,
it does not even help to begin by assuming well-behaved microeconomic production
functions, because the conditions needed to produce a satisfactory aggregate relation
are impossibly stringent.

But suppose that we simply posit the existence of an (approximate) aggregate
production function in which factor prices equal corresponding marginal products, and
in which constant returns to scale obtain (so that the factor-price-weighted sum of
inputs “add up” to total output). These additional assumptions then superimpose on
Equation (2) the further conditions

(3) ∂Yt/∂Lt ≡ MPLt = wt

(4) ∂Yt/∂Kt ≡ MPKt = rt

(5) Yt = MPLt⋅Lt + MPKt ⋅Kt

(from the assumption of constant returns to scale).

Equations (2)-(5) embody the standard neoclassical assumptions about aggregate
production. Together, they imply that

(6) Yt = wt⋅Lt + rt⋅Kt .

The trouble is that this relation already holds in the form of the accounting iden-
tity (Equation (1)), quite independently of any specification of production or distribu-
tion relations. It follows that imposing standard neoclassical assumptions about aggre-
gate production makes it impossible to distinguish the neoclassical argument from a
mere tautology. As Solow [1974, 121] notes, the only real function of these assump-
tions is to interpret the accounting identity.

But to leave it at that would imply that the most fundamental construct of neo-
classical macroeconomics is a mere article of faith [Ferguson, 1971]. Solow, therefore,
goes on to specify what he considers to be an adequate test of the standard neoclassi-
cal hypotheses: “When someone claims that aggregate production functions work, he
means a) that they give a good fit to input-output data without the intervention of data
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deriving from factor shares; b) that the function so fitted has partial derivatives that
closely mimic observed factor prices…[and c) since] technical change is always repre-
sented by a smooth function of time (or something else)…part of the test is whether
the residuals are well-behaved” [Solow, 1974, 121 and footnote 1].

As already noted, the first two are required by aggregate production function
theory, but the third is merely standard econometric practice, since nothing in the
theory requires technical change to be a smooth function of time [Shaikh, 1980, 86-87;
Felipe and Adams, 2005, 435; McCombie, 1998; McCombie, 2000-2001, 281-82]. For
instance, if the pace of neutral technical change varied with the rate of growth, then
the rate of technical change itself would be pro-cyclical and possibly highly variable.
With that in mind, we consider whether aggregate production functions do indeed
“work” in Solow’s sense. But first, we need to address the issue of the data.

TWO AGGREGATE DATA SETS: ACTUAL AND CONTROL

Solow tells us that aggregate production functions “work” when they fit the data
well, when their coefficients yield marginal products that mimic factor shares, and
when the implied pattern of technical change appears plausible. What we need to
know is whether these conditions are sufficient to distinguish between neoclassical
and non-neoclassical production relations. In other words, we need a control group to
which we can also apply our tests.

Data set A is the control data generated from a simulation run of a slightly modi-
fied version of the Goodwin [1967] model. The original Goodwin model is, as Solow
[1990, 35-36] observes, a “beautiful paper” that “does its business clearly and force-
fully.” Its dynamics turn on the interactions between the wage share, the rate of
growth, and the employment ratio. Two changes are made here. The model is extended
by allowing for a savings rate less than one (Goodwin originally assumed that all
profits are saved); and Goodwin’s original real-wage Phillips curve is modified by allow-
ing for an “employer resistance” drag on real wage growth as the wage share rises (the
rate of profit falls). This latter modification is made in order to produce a version of
the model that is stable in the presence of stochastic shocks.2

There are two parts to the logic of the Goodwin model. The first has to do with the
nature of the technology and its change over time. Like Harrod, Goodwin assumes
that the economy is moving along its warranted path, so that output is equal to capac-
ity. At any moment of time, a single linear fixed-coefficients technology dominates the
wage rate-profit rate (factor-price) frontier, whose intercepts can be characterized by
the productivity of labor and by the capacity-capital ratio. Over time, technical change
is embodied in new technologies with higher capital-labor ratios that yield higher
labor productivity, both of which rise at the same rate so that the capacity-capital ratio
remains unchanged (this is Harrod-Neutral technical change). The assumption that
coefficients are fixed at any moment of time means that marginal products cannot
even be defined for any given technology. And the assumption of Harrod-Neutral
technical change means that the choice of technique is invariant to the distribution of
income, so that an incremental change in (say) the wage rate cannot even be associ-
ated with some corresponding change in labor productivity or in the capital-labor
ratio. This excludes not only smooth “surrogate” correlations between real wages and
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the incremental productivity of labor [Samuelson, 1962; 1966] but also any lumpy ones
[Michl 1999, 200-201]. The assumed technological structure thus excludes both actual
and surrogate marginal productivity conditions. It follows that the technological struc-
ture of this control group model is entirely distinct from that of neoclassical aggregate
production function theory and associated marginal productivity rules.

Figure 1 illustrates this aspect of the model, as taken from Shaikh [1987]. Here,
the vertical axis represents the real wage and the horizontal axis the profit rate. Each
technology is characterized by a linear trade-off between the wage rate and the profit
rate, with limits arising from the fact that a given productivity of labor (y) is the
maximum real wage, and that a given capacity-capital ratio (R) is the maximum rate
of profit. The slope of each such line is the capital-labor ratio corresponding to that
particular technology. The productivity of labor rises over time, but the capacity-
capital ratio is constant. Thus at given real wage rates (w, w') below the existing
maximum, the latest technology is dominant. Changing the real wage from w to w',
for instance, will not change the chosen technology and hence will not affect labor
productivity or the capital-labor ratio.

FIGURE 1
Fixed-Coefficient Technology with Harrod Neutral Technical Change
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The second part of the model has to do with the dynamic interaction between the
wage share and the employment ratio. Movements of the wage share u = w/y are
influenced by two factors: the constant rate of growth of labor productivity (α), and the
rate of growth of real wages, which depends positively on the employment ratio (v)
and negatively on the (squared) level of the wage share. Movements of the employ-
ment ratio, in turn, depend on three factors: the constant rate of growth of the labor
force (β); the rate of growth of labor productivity (α); and the rate of growth of real
output. The employment ratio and the wage rate are then linked by the fact that the
wage share influences the profit rate, which influences the rate of growth of capital
and hence the growth rate of real output.3  Since the model is stable, in the absence of
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shocks the growth rate of output converges to the natural growth rate (α + β), the
wage share converges to some constant level u*, and the employment share to some
constant level v* that is less than one (signifying a persistent rate of unemployment).
This modified Goodwin model is summarized in Appendix A.

The other data series used in this paper (data set B) is actual data from the U.S.
Bureau of Economic Analysis (BEA) National Income and Product Accounts (NIPA),

FIGURE 2
Output (Y) and Capital (K)
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FIGURE 3
Real Wages (w) and Labor Productivity (y)
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and from corresponding wealth stocks. This gives us two data sets, the Marx-Goodwin
simulation data set (A) and the actual U.S. data set (B), both of which satisfy the
accounting identity of Equation (1). Figure 2 displays paths of output (Y) and capital
(K), Figure 3 real wages (w) and productivity (y), Figure 4 the profit rate (r), and
Figure 5 the wage share (u) and the employment ratio (v).

FIGURE 4
Profit Rate (r)
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FIGURE 5
Wage Share (u) and Employment Ratio (v)
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DO AGGREGATE PRODUCTION FUNCTIONS “WORK” AT AN EMPIRICAL
LEVEL?

Figure 5 shows that the wage shares in data sets A and B are roughly stable, with
means of ua ≈ 0.84 and ub ≈ 0.81, respectively. This means that a Cobb-Douglas func-
tion is an appropriate starting point to test neoclassical aggregate production function
theory (although it is theoretically inappropriate for data set A). We work with the
standard form in which technical change is assumed to be neutral (Yt = At⋅Lt

b⋅Kt
c ),

coefficients b and c represent the putative factor shares, and their sum represents the
degree of returns to scale. If we wish to impose the further restriction of constant
returns to scale (b + c = 1), we can divide by labor to get the per employee form (yt =
At⋅kt

c ), in which the coefficient c once again represents the profit share implied by the
marginal productivity theory of distribution.

For the purpose of empirical estimation, we express the regression forms in both
levels and growth rates. As is standard, the technical change parameter is expressed
as a log-linear function of time, since quadratic and cubic time terms did not change
the basic results of the regressions. This gives us four regressions altogether and two
data sets for each. All regressions are OLS, as is customary in this literature, and the
error term is represented by ε. Of particular interest are the relations between esti-
mated coefficients and the corresponding actual labor and capital shares. Table 1 reports
the results of runs of each equation on both data sets.

(7) logYt = a0 + a1⋅t + b⋅logLt + c⋅logKt + ε

(8) ∆logYt = a0 + a1⋅t + b⋅∆logLt + c⋅∆logKt  + ε

(9) logyt = a0 + a1⋅t + c⋅logkt + ε

(10) ∆logyt = a0 + a1⋅t + c⋅∆logkt + ε

The first pair of regression forms do not assume constant returns to scale, so the
sum of the labor and capital coefficients are not restricted in advance. When run in
levels, the overall fit is excellent, and the labor coefficient is significant and large for
both data sets. In set A the time trend and capital coefficients are not significant but
the overall D.W. statistic is quite good (2.117), while in set B the time trend and
capital coefficients are significant but the D.W. is not good (0.219). In neither set are
the implied shares close to the actual, and constant returns to scale never obtains.
When run in rates of growth, the overall fits are quite good for both sets of data, the
time trends are significant, the labor coefficients are close to one and highly signifi-
cant, and the D.W.’s are good.  But in both cases the capital coefficient is negative, so
that implied shares are very different from actual ones.

The second pair of regressions restricts the coefficients to sum to one (that is,
they assume constant returns to scale), so the relevant variables are output and capi-
tal per employee. In levels, the overall fit is once again excellent, and the constants
and time trend are highly significant. In set A, however, the coefficient of the capital-
labor ratio is small and not statistically significant, while the overall D.W. is quite
good; in set B, the coefficient of the capital-labor ratio is relatively large but the D.W.
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quite low. Once again, the estimated capital coefficient is not even close to the actual
profit share in either set. Finally, when run in growth rates, only the constant is
significant, implying significant positive rates of neutral technical change, while all
other results are generally quite bad. On the whole, despite the fact that the wage
shares are roughly stationary in both data sets, none of the fitted forms of the Cobb-
Douglas aggregate production function work well on either the simulated data (set A)
or the actual data (set B).

TABLE 1
Cobb-Douglas Production Functions Fitted to Actual and

Simulated Aggregate Data (OLS)
(1948-2000 for Levels and 1949-2000 for First Differences)

Dependent logYt ∆logYt logyt ∆logyt

Variable Data A Data B Data A Data B Data A Data B Data A Data B

Constant –4.628* –0.279 0.109* 0.035* –3.453* –2.109* 0.019* 0.022*
(1.722) (1.900) (0.026) (0.009) (0.358) (0.462) (0.005) (0.004)

Time 0.0134 0.0133* 0.00013 –0.00025 0.020* 0.009* 3.80E-05 –0.0002
(0.009) (0.005) (0.00013) (0.00013) (0.002) (0.002) (0.00014) (0.0001)

logLt 0.989* 0.471* — — — — — —
(0.103) (0.191)

logKt 0.170 0.341* — — — — — —
(0.240) (0.145)

∆logLt — — 0.998* 0.972* — — — —
(0.096) (0.096)

∆logKt — — –2.315* –0.351 — — — —
(0.659) (0.251)

Logkt — — — — 0.019 0.395* — —
(0.102) (0.135)

∆logkt — — — — — — –0.024 0.043
(0.106) (0.098)

Adj. R2 0.9997 0.9952 0.6916 0.6912 0.9988 0.9760 –0.0382 0.0276
D.W. 2.103 0.219 2.344 2.076 2.026 0.185 2.943 2.041
Implied Wage

Share 0.989 0.471 0.998 0.972 0.981 0.605 1.0024 0.957
Actual Wage

Share 0.840 0.810 0.840 0.810 0.840 0.810 0.840 0.810
Implied Profit

Share 0.176 0.341 –2.315 –0.351 0.019 0.395 –0.0024 0.043
Actual Profit

Share 0.160 0.190 0.160 0.190 0.160 0.190 0.160 0.190
Implied Returns

to Scale 1.165 0.812 –1.317 0.621 — — — —

Notes: Standard errors statistics are listed below estimated coefficients. Starred coefficients imply
significance at 5 percent or better.

Are these results typical? Douglas seemed to think not [1976, 914]. Samuelson
[1979, 924] points out, however, that Douglas’ own regressions did not include a term
for technical change, and Felipe and Adams [2005, 429-30] show that when a term for
neutral technical change is introduced, Douglas’ original data set yields a “coefficient
of the index of capital which is negative and insignificant.”
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Solow initially emphasized the importance of the similarity between Douglas’ esti-
mated parameters and actual factor shares [Fisher, 1971b, in McCombie, 2000-2001,
269]. He repeated this sentiment in his first response to Shaikh [1974]. Having found
that the OLS regression of log y on log k in Shaikh’s constructed data yields a result in
which the “point estimate of log k is negative” and not statistically significant, Solow
says that if “this were the typical outcome with real data, we would not now be having
this discussion” [1974, 121]. And yet it turns out that the very same test on his own
data would have given similar results. McCombie [2000-2001, 281-283] revisits Solow’s
original data and comments that “it is surprising that Solow did not seek to [similarly]
‘test’ the Cobb-Douglas function using his own data.” For if he had, then he would
have found that when run in levels “the coefficient of capital term is not statistically
[different] from zero,”4 and when run in ratios “the coefficient of the capital-labor term
is negative, but statistically insignificant.” McCombie goes on to remark that we “can
only speculate whether Solow’s [1957] paper would have had such a dramatic impact if
these regressions had also been reported.”

It turns out that such results are indeed quite typical down to the finding of nega-
tive capital coefficients [Sylos-Labini, 1995; Felipe and Adams, 2005, 429-30]. None-
theless, aggregate production functions do appear to work on occasion. Can we then
say that, at least in these cases, a good fit provides some evidence on the underlying
production structure and on the marginal productivity theory of distribution?

HOW TO MAKE AGGREGATE PRODUCTION FUNCTIONS ALWAYS
“WORK PERFECTLY” (EVEN WHEN COMPLETELY INAPPROPRIATE)

The purpose of this section is to show that one can always construct an infinite
number of empirically fitted aggregate productions that work “perfectly.” The secret
lies in the specification of the function of time representing technical change. In the
present case we are concerned with data with roughly stable wage shares, to which we
fit Cobb-Douglas type regressions in either growth rates or in log levels. We illustrate
the procedure with regressions involving rates of change (for example, the second and
fourth types in Table 1), with some general function of time F(t) in place of the previ-
ously assumed time variable (t).

(11) ∆logYt = a0 + a1⋅F(t) + b⋅∆logLt + c⋅∆log Kt + ε

(12) ∆logyt = a0 + a1⋅F(t) + c⋅∆logkt + ε

 The forms of regression Equations (11) and (12) derive from the assumption that
Y, K, and L are bound together by a hypothesized Cobb-Douglas production function
with neutral technical change. These very same variables are also bound together by
the actual accounting identity Y = w⋅L + r⋅K and its per employee form y = w + r⋅k.
Differencing these identities and leaving out cross-products of first differences, we
derive the two rate-of-change forms,5 in which the Solow Residual SR(t) is the share-
weighted average rates of change of the real wage and profit rate.

(13) ∆(logYt) ≡ SR(t) + ut–1⋅∆(logLt) + (1 – ut–1 )⋅∆(logKt)
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(14) ∆(logyt) ≡ SR(t) + (1 – ut–1 )⋅∆(logkt)

(15) SR(t) ≡ ut–1⋅∆logw + (1 – ut–1)⋅∆logr

Now, if the wage share (u) is stable, so that u(t) ≅ u ≅ constant, we can create an
infinite number of time functions F(t) that will always make fitted production func-
tions work “perfectly” in the sense of Solow: that is, make them yield perfect econo-
metric fits with partial derivatives that closely approximate observed factor prices.

Note that with u ≅ constant, the accounting identities in Equations (13) and (14)
look just like Cobb-Douglas production functions with a rate of neutral technical change
SR(t). Therefore, if we were to define the rate of technical change as F(t) = SR(t), the
regression Equations (11) and (12) will always “pick up” the corresponding identity
Equations (13) and (14). In other words, this particular specification of technical change
in the regression equations will always produce a perfect neoclassical fit—regardless
of the underlying data generation process [McCombie and Dixon 1991, 27]. Comparing
the two sets of equations makes it clear that we will find a0 = 0 and a1 = 1.

This technique embodies Solow’s own original measure of technical change, which
itself fluctuates substantially over time [Solow, 1957; McCombie, 2000-2001, 281-282].
As noted earlier, nothing in neoclassical theory precludes complex paths for technical
change. If it is desired that technical change be represented by some smooth measure,
however, this is easily accommodated. Once we recognize that setting F(t) = SR(t) will
always give a perfect fit, then it is evident that making F(t) into a one-to-one function
of SR(t) will also work just as well, since in both cases the two variables are perfectly
correlated. One simple way to accomplish this is to define F(t) as an affine transform
of SR(t) with a damping coefficient (h). Let σ = mean of SR(t). Then for any parameters
α > 0, 0 < h < 1,

(16) F(t) ≡ α + h⋅(SR(t) – σ) .

Since SR(t) is generally stationary, F(t) will be stationary also. The two series will
generally have different means unless α = σ. Given that F(t) represents the rate of
technical change in Equations (11) and (12), its summation will represent the index of
the level of technology at any moment of time. This technology index will be smoother
the smaller the damping coefficient h, and will be steeper the higher the parameter α.
When h = 1, the resulting technical level function will not generally be smooth. But by
reducing h sufficiently, one can make the technology index as smooth as desired. This
Perfect Fit Theorem is proven in Appendix B.

One consequence of this theorem is that there are as many perfect fits as there
are values of α and h, each of which will give a different picture of technical change.
And yet, each will be perfectly correct. For each data set Figure 6 illustrates three
such specifications of the rate of technical change, F(t), which is normalized to equal
the initial value of  logy – (1 – u)⋅logk. In all cases, h = 0.2, and for each data set the
middle curve is for α = σ, while the higher and lower curves are derived from α = σ +
0.01 and α = σ – 0.01, respectively. Figure 7 depicts the corresponding indexes of the
level of technology derived through the summation of each F(t). Table 2 illustrates the
“perfect” regressions arising from h = 0.6, 0.2 for each data set and α = σ in all cases.
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FIGURE 6
Perfect Fit Technical Change Functions F(t)
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FIGURE 7
Technical Level Functions (log scales)
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TABLE 2
Cobb-Douglas Production Function “Perfect Fits”

for Simulated and Actual Data in Rates-of-Change Regressions (OLS), 1949-2000

Dependent ∆logYt ∆logyt

Variable Data A Data B Data A Data B

h = 0.6 h = 0.2 h = 0.6 h = 0.2 h = 0.6 h = 0.2 h = 0.6 h = 0.2

Constant –0.0134 –0.070 –0.008 –0.052 –0.012 –0.068 –0.009 –0.053
(0.0005) (0.006) (0.0001) (0.0002) (9.17E–05) (0.0002) (5.20E–05) (0.0001)

F(t) 1.692 5.075 1.663 4.989 1.685 5.056 1.664 4.992
(0.004) (0.012) (0.003) (0.008) (0.004) (0.012) (0.003) (0.009)

∆logLt 0.841 0.841 0.807 0.807 — — — —
(0.002) (0.002) (0.001) (0.001)

∆logKt 0.202 0.202 0.187 0.188 — — — —
(0.012) (0.012) (0.003) (0.003)

∆logkt — — — — 0.158 0.158 0.193 0.193
(0.002) (0.002) (0.001) (0.001)

Adj. R2 0.9999 0.9999 0.9999 0.9999 0.9997 0.9997 0.9998 0.9998
D.W. 2.432 2.432 1.550 1.550 1.915 1.915 1.509 1.509
Implied Wage

Share 0.841 0.841 0.807 0.807 0.842 0.842 0.807 0.807
Actual Wage

Share 0.840 0.840 0.810 0.810 0.840 0.840 0.810 0.810
Implied Profit

Share 0.202 0.202 0.188 0.188 0.158 0.158 0.193 0.193
Actual Profit

Share 0.160 0.160 0.190 0.190 0.160 0.160 0.190 0.190

Note: h = 0.2, 0.6, α = σ throughout. For data A, σ = 0.167, and for data B, σ = 0.131. In each regression,
the theoretically predicted coefficients are: constant = (σ – α/h), coefficient of F(t) = 1/h, coefficient of
∆logLt = the wage share (u), and coefficients of ∆logKt and ∆logkt = the profit share (1 – u).

In both data sets, all values of α and h produce close to “perfect” fits for a Cobb-Douglas
production function satisfying marginal productivity rules and even exhibiting smooth
technical change. And therein lies the rub, for we already know that data set A is
generated from a Goodwin-type model with a fixed-coefficient technology undergoing
Harrod-Neutral technical change. Moreover, the stability of the long-run wage share
in this model derives from the classical feedback among persistent unemployment,
real wages, and the rate of growth. Neither actual nor surrogate marginal products,
nor any theory of wages linked to them, can even be defined within this framework.

The Perfect Fit Theorem demonstrates that there exists a wide range of smooth
technical change functions of the form F(t) = f(SR(t)) that will make standard regres-
sions work perfectly. It follows that the regressions will work almost as well if F(t) is
some good approximation of SR(t), say through the use of a Fourier series [Shaikh,
1980, 86; Felipe and Adams, 2005, 435; McCombie, 1998, 167-168].

In the preceding cases, F(t) is smooth because it is in some sense a good approxi-
mation of  the non-smooth Solow Residual SR(t). But we could produce the same
result by redefining variables in such a way that SR(t) itself becomes smooth. Since
the latter is the share-weighted average of the rates of growth of wage and profit rates
(Equation (15)), any data adjustments that smooth w, r will also end up smoothing
SR(t).
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Such an outcome can arise simply from an attempt to adjust for cyclical fluctua-
tions. Suppose we consider actual output (Y) to be a function of utilized inputs (L*, K*),
that is, “factor services” [McCombie, 1998, 159, 167-168; 2000-2001, 285-288]. One simple
way to do this is to define factor services as L* = zL⋅L, K* = zK⋅K, where the factor
utilization rates (zL, zK) are themselves the ratios of actual factor productivities (y, R)
to trend productivities (y*, R*). In log terms, this gives us

(17) logzL  =  logy – logy*

(18) logzK  = logR – logR*

(19) logL* =  logL + logzL

(20) logK* = logK + logzK

Actual output (Y) continues to be the sum of wages and profits from the account-
ing identity. The factor share will therefore not be affected by any transformation of
variables. But the wage share is u = w/y and the profit share is (1 – u) = r/R, so
replacing actual productivities (y, R) with smooth trend productivities (y*, R*) will
result in new, equally smooth wage and profit rates (w*, r*). This means that the new
Solow Residual SR*(t) will also be smooth. We can even make the Solow Residual into
a simple linear function of time, as is commonly assumed in production function regres-
sions (for example, Equations (7)-(10)).

A simple illustration will suffice. If factor shares are constant, the rates of change
of w*, r* will be exactly those of y*, R*, respectively. Suppose the productivity trends
(logy*, logR*) are estimated as quadratic functions of time with the coefficients shown
below, and we define β0 = [u⋅m1 + (1 – u)⋅n1] and β1 = [u⋅m2 + (1 – u)⋅n2]. Then we have

(21) logyt
* = m0 + m1⋅t + m2⋅t

2

(22) logRt
* = n0 + n1⋅t + n2⋅t

2

(23) SR*(t) ≡ u⋅∆logwt
* + (1 – u)⋅∆logrt

* = β0 + β1⋅t

With SR*(t) reduced to a standard linear time trend, and with factor shares roughly
constant, the accounting identities are indistinguishable from the corresponding stan-
dard production function regressions (for example, Equations (13) and (14) will look
just like Equations (8) and (10)). A perfectly reasonable procedure for adjusting for
cyclical variations can therefore end up leading to a perfect fit—of the pseudo produc-
tion function.6

More formally, we can always replace the term SR(t) in the accounting identity
Equations (13) and (14) with some time trend f(t) and partition out the residual [SR(t) – f(t)]
to labor and/or capital as “utilization” adjustments ∆logzL, ∆logzK, respectively. This
would give new measures of utilized labor and capital (L* = zL⋅L, K* = zK⋅K), a new
accounting identity residual SR*(t) = f(t), and a new accounting identity equation that
is structurally identical to the standard production function regression. Not surpris-
ingly, the standard regressions are then likely to pick up the pseudo-production function.7
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This brings us to a counter-argument advanced by Solow [1987].8 He proposes that
we consider a physical production process in a single factory. Because he knows that
one cannot directly observe the aggregate production process, he also excludes this
possibility at the factory level. Solow then claims that, given recorded inputs and
outputs at the factory level, one should be able to deduce the true microeconomic
production function by econometric means alone. As he puts it, “it is simply not cred-
ible that constancy of relative shares—or anything else—can prevent us from tracing
out the production function” [Solow, 1987, 19-20].

The problem is that we do not know which particular econometric regression cor-
responds to the form of the true production function. If we were allowed to examine
the operations of the factory, then we could directly ascertain the underlying produc-
tion process. But if we cannot do this, we can only test a variety of regression forms
that we have picked on some a priori grounds. This is precisely where theory, and
faith, enters into the story.

Consider data set A, whose non-neoclassical underlying production process is char-
acterized by fixed-coefficients production and Harrod-Neutral technical change (so
that R is roughly constant). Nothing prevents us from considering the production data
in this model to be a scaled-up version of a “representative” factory. So we have before
us a direct test of Solow’s hypothesis. Since Rt = yt/kt = Yt/Kt, and is roughly constant,
where yt = Yt/Lt and kt = Kt/Lt, the forms of the true production function are

(24) logY = logR + logK

(25) ∆logY = ∆logK

(26) logy = logR + logk

(27) ∆logy = ∆logk

The regressions based on the preceding true forms give absolutely perfect results
in every case. Thus Solow is right to say that we can pick up the true form. But this is
only because we know it in advance. Solow’s econometrician does not have this infor-
mation. Being neoclassical, he or she will therefore turn to the standard regressions
of Equations (7)-(10). Yet the results for data set A in Table 1 show that not one of these
comes close to identifying the true production function. For example, in the true-form
regressions corresponding to Equations (26)-(29), the estimated coefficients for K, ∆K,
k, and ∆k all equal 1, as they should. However, although all the standard-form regres-
sions of Table 1, Data A, have good-to-excellent econometric properties, the corre-
sponding capital coefficients are 0.170, –2.315, 0.019, and –0.024, respectively. Worse
yet, only the second coefficient, which is highly negative, is statistically significant.

Faced with such results, how does one proceed? This is where aggregation comes
in. If we consider a factory, then the answer is clear: go in and see how things work. At
the aggregate level, however, we have no such option, so we turn to the theory. But
once we recognize that the theory does not provide much support for the notion of
aggregate production functions, we either turn away from this concept or turn back to
the data to see if it is possible to improve the results. Here, as we have seen, there
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exist a variety of adjustments that will make matters eventually appear to come out
right. Yet the resulting empirical strength of aggregate production functions and mar-
ginal productivity theory would be an illusion. In each case, the regression would be
actually picking up the pseudo-production function implicit in the accounting identity,
rather than the true production function.

The lesson should be clear. We know that aggregate production functions cannot
be derived from micro-foundations, and we know that they generally do not work well
at an empirical level. But when they do happen to work empirically, it is because the
terms used to proxy the rate of technical change and/or to adjust for fluctuations in
factor utilization happen to approximate the associated accounting identity residual
SR(t).9

SUMMARY AND CONCLUSIONS

Aggregate production functions are still widely used four decades after it was
conceded that they could not be grounded in any plausible micro-foundations. Their
presence is generally justified on the ground that they appear to work empirically, by
which it is meant that they yield a good econometric fit and have partial derivatives
closely approximating factor prices. But fitted aggregate production functions do not
generally work well in this sense, because estimated partial derivatives differ consid-
erably from factor prices, and often even yield negative capital coefficients.

Even so, aggregate production functions do occasionally work. This paper shows
that aggregate production functions can always be made to work on any data that
exhibits roughly constant wage shares, even when the underlying technology is non-
neoclassical. But in so doing, they always pick up the accounting identity that under-
lies the data. This is demonstrated on both actual U.S. data and a control data set
derived from a fixed coefficient model with Harrod-neutral technical change and a
persistent rate of unemployment. In the latter case, there are no marginal products.
Yet one can always fit an aggregate production function that yields an excellent fit,
estimated coefficients equal to factor shares, smooth technical change, and good residu-
als. It is proved, moreover, that one can generate an infinite number of such fits, each
of which gives a different reading of the rate of technical change. It follows that even
when aggregate production functions appear to work at an empirical level, they pro-
vide no support for the neoclassical theory of aggregate production and distribution.
On the contrary, the best of fits can utterly misrepresent the true underlying mecha-
nisms of production, distribution, technical change, and growth.10

APPENDIX A

The modified Goodwin model used in this paper was summarized by the following
nonlinear system of equations. The parameter values used to generate the data are
listed below the equations. Three sets of random shocks, e1 = e2 = 0.001(η), and e3 = 0.03(η),
were incorporated in the model as shown below, where η was generated from (pseudo)
random draws from a normal distribution with zero mean and unit variance (this is
the variable “nrnd” in Eviews 4). To mimic the actual fluctuations in output-capital
ratio, the shock e3 was multiplicatively applied to R itself.
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(28) ut = wt/yt

[u = wage share = real wage/labor productivity]

(29) vt = Yt /(yt⋅Nt)
[v = employment ratio = output/(labor productivity⋅labor force)]

(30) logyt = logyt–1 + α + e1

[constant rate of growth of labor productivity = α ]

(31) logNt = logNt–1 + β
[constant rate of growth of the labor force = β]

(32) logwt = logwt–1 – γ + ρ⋅vt–1 – ρ1⋅(ut–1)
2 + e2

[real wage growth function]

(33) logYt = logYt–1 + s⋅(1 – ut–1 )⋅R⋅(1 + e3 )
[output growth rate = savings rate⋅profit rate]

α = 0.02, β = 0.02, γ = 0.10, ρ = 0.335, ρ1 = 0.28, s = 0.25, R = 1.

APPENDIX B: THE PERFECT FIT THEOREM

With a stable wage share, for any α > 0, and 0 < h < 1, a sufficiently small h will
yield an F(t) such that there will be a “perfect” (or near-perfect) fit for a Cobb-Douglas
production function with smooth technical change and partial derivatives that mimic
factor prices.

Proof:  Solve for SR(t)= (s – α/h) + (1/h)⋅F(t) from Equation (16) and
substitute this into the accounting identity Equations (13) and (14),
and noting that the wage share (u) is constant, we get

(34) ∆(logYt) ≡ (σ – α/h) + (1/h)⋅F(t) + u⋅∆(logLt) + (1 – u)⋅∆(logKt)

(35) ∆(logyt) ≡ (σ – α/h) + (1/h)⋅F(t) + (1 – u)⋅∆(logkt)

Comparing these to the standard regression Equations (11) and (12)
makes it clear that the econometric fit will be more or less perfect,
and that the estimated regression coefficients will be a0 =  (σ – α/h), a1 = 1/h,
b = u, c = 1 – u. The last two parameters are particularly important,
since they imply that the estimated labor and capital coefficients equal
the corresponding factor shares, as hypothesized in marginal produc-
tivity theory. The more stable the wage share, the more “perfect” will
be the fitted Cobb-Douglas function. The smaller the chosen value of
the parameter h, the smoother will be the apparent level of technical
change.
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NOTES

I thank Jesus Felipe and John McCombie for their help. Their many papers on this subject have
proved to be of inestimable value. I also thank three anonymous referees for their insightful
comments and helpful suggestions.

1. A good fit also requires that the residuals are well-behaved [Solow, 1974, 121, footnote 1].
2. I thank Duncan Foley for suggesting this modification.
3. Beginning from the short run equilibrium condition that investment equals savings (I = S), and

assuming that savings are proportional to profits (P) because workers do not save, we have I = s⋅P.
Dividing by the capital stock yields I/K ≡ K'/K = P/K ≡ r, where K'/K stands for the rate of growth of
capital. But the profit rate r = P/K = (P/Y)⋅(Y/K) can be further decomposed by noting that the profit
share P/Y = (Y – w⋅L)/Y = 1 – w/y = 1 – u, where y = Y/L = labor productivity, and u = w/y = the wage
share. Along the warranted path, output = capacity, and in the presence of Harrod-Neutral
technical change, the capacity-capital ratio R = Y/K = constant. Thus the rate of growth of output
(Y'/Y) = the rate of growth of capacity = the rate of growth of capital (K'/K) = s⋅r = s⋅R⋅(1 – u).

4. McCombie’s [2000-2001, 282] text actually says “not statistically significant from zero,” but the
meaning is clear from the context.

5. We could just as well have derived expressions in levels. Given the definition of the wage share u = w/y,
the per-unit-labor accounting identity y = w + r⋅k implies that the profit share is 1 – u = r⋅k/y. Thus,
logw = logu + logy, and logr = log(1 – u) + logy – logk. Multiplying the first expression by u, and the
second by (1 – u), adding the two, and reordering terms gives us the accounting identity expression
(with time made explicit) logy(t) = b(t) + (1 – u(t))⋅logk(t), where b(t) ≡ –[u(t)⋅logu(t) + (1 – u(t))⋅
log(1 – u(t))] + [u(t)⋅logw(t) + (1 – u(t))⋅logr(t)]. Adding logLt would then give an equivalent
expression in logs of Yt, Lt, Kt. Now, if the wage share happens to be roughly constant (u(t) ≅ u),
then the accounting identity expressions “look” just like constant returns to scale Cobb-Douglas
production functions with a labor coefficient b = u, capital coefficient c = 1 – u, and some (not
necessarily smooth) time function b(t) representing neutral technical change.

6. When the wage share is exactly constant, then smoothing y, R is exactly equivalent to smoothing
w, r, and one could derive the utilization adjustments from either. Since shares fluctuate consid-
erably in both data sets, smoothing w, r directly is much more effective than smoothing SR(t).

7. McCombie [2000-2001, 285-288] follows just such a procedure. He takes the mean of SR(t) as its
smoothed value, assigns the residual to capital as a capacity utilization adjustments, and shows
that this generates an excellent fit for a standard Cobb-Douglas. As he notes, this is because “we
are again merely estimating the identity.”

8. Solow also advances the claim that my accounting identity argument amounts to the discovery
“that any production function can be written as the product of a Cobb-Douglas and something else.
The something else is the production function divided by a Cobb-Douglas" [Solow, 1987]. But it
should be clear from my text that the accounting identity is completely independent from any
assumptions concerning the existence of an aggregate production function, Cobb-Douglas or
otherwise.

9. The basic arguments can be extended to production functions other than the Cobb-Douglas. In
effect, should factor shares be changing over time, the problem becomes one of accommodating
the variations in both the residual SR(t) and also those in the changing wage share. In the end, it
is still the accounting identity that drives it all  [McCombie and Dixon].

10. It should be mentioned that it is not necessary to assume an aggregate production function to
measure technical change. If we were instead to assume fixed-proportion methods for each
commodity, then we could characterize technical change by its effects on the (normal capacity)
rate of profit at any given wage [Sraffa, 1960; Okishio, 1961; Samuelson, 1962]. From the account-
ing identity written in the form rt = (yt – wt)/kt, holding the real wage constant and dropping cross-
products of first differences, we get ∆rt/ rt–1 = ∆yt/(yt–1 – wt–1) – ∆kt/kt–1 = (∆yt/yt–1)⋅(1/(1 – ut–1)) – ∆kt/kt-1 =
(∆yt/yt–1))⋅(ut–1/(1 – ut–1) – (∆Rt /Rt–1), since R = Y/K = y/k implies that ∆kt/kt-1 = ∆yt/yt–1– (∆Rt /Rt–1). Thus
the Leontief-Sraffa-Samuelson-Okishio (LSSO) “choice of technique” measure of aggregate tech-
nical change is t(t) ≡ [∆log(rt)]∆w=0 = ∆log(yt)⋅(1/(1 – ut–1)) – ∆log(kt) = ∆log(yt)⋅(ut–1/(1 – ut–1) – ∆log(Rt).
By contrast, using R = Y/K = y/k, the Solow measure in Equation (15) can be written as
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SR(t) ≡ ∆logyt – (1 – ut–1)⋅∆logkt = ut–1⋅∆logyt + (1 – ut–1)⋅∆logRt. Generally speaking, t(t) is far
smaller than SR(t). This would suggest a different reading of growth accounts.
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