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INTRODUCTION

Banks typically operate by extending long-term assets (loans) that are funded 
primarily by short-term liabilities (deposits), thereby exposing themselves to inter-
est-rate risk. In a period of rising market interest rates, for example, such maturity 
mismatching implies a decline in income and/or net worth because liabilities reprice 
faster than assets (or interest-rate risk). A recent study [Sierra and Yeager, 2004] 
shows, however, that banks in general are only moderately liability sensitive, thereby 
suggesting that the degree of mismatching may be limited. This fi nding is consistent 
with the fact that interest-rate risk control measures are in place at banks in order 
to limit adverse impacts of interest-rate risk [Houpt and Embersit, 1991]. Also, it 
is consistent with the risk-averse behavior of banks [Niehans and Hewson, 1976; 
Niehans, 1978].

The primary objective of this paper is to fi nd out empirically banks’ risk pref-
erences (whether or not, and to what extent, banks are risk-averse) that underlie 
duration1/maturity matching or mismatching. This study serves three purposes. First, 
there is only scant empirical evidence for banks’ risk preferences (for example, Ratti 
[1980] and Angelini [2000]).2 Second, the Federal Reserve System developed a dura-
tion-based economic value model that estimates the sensitivity of market-value equity 
to changes in interest rates for each U.S. commercial bank [Houpt and Embersit, 1991; 
Wright and Houpt, 1996; Sierra and Yeager, 2004]. The model, a surveillance tool for 
bank examiners/supervisors, was operationalized in the fi rst quarter of 1998 [Sierra 
and Yeager, 2004]. At a more fundamental level, however, it is likely to be informative 
for bank examiners/supervisors to know banks’ risk preferences that underlie these 
sensitivity estimates. Lastly, and most importantly, the paper is closely related to the 
issue of deposit rate rigidity examined by Neumark and Sharpe [1992] who provide 
empirical evidence that both the rate on a time deposit (the six-month certifi cate of 
deposit or CD) and the rate on a non-time deposit (money market deposit account 
or MMDA) move sluggishly relative to open market yields. They fi nd that banks in 
more concentrated markets are slower to adjust these deposit rates upward, but are 
faster to adjust them downward. Hence, “banks with market power skim off surplus 
on movements in both directions” [Neumark and Sharpe, 1992, 657]. In addition, the 
MMDA rate is found to be more sluggish than the CD rate due to their contractual 
differences.3 It is this last fi nding of Neumark and Sharpe [1992] on which this paper 
throws new light beyond simply contractual differences.
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 To see the relation between this paper and Neumark and Sharpe [1992], consider 
a typical bank with mismatched durations, dA – dL > 04 (a positive duration gap) where 
dA = weighted-average duration (or maturity) of assets and dL = weighted-average 
duration (or maturity) of liabilities. In an environment of rising market interest rates, 
the bank may lengthen the duration of liabilities (deposits) by increasing its relative 
holdings of longer-term deposits – if it is risk-averse. This strategy requires the bank 
to raise interest rates on longer-term deposits (for which six-month CDs are used in 
this paper) above those on short-term deposits (for which MMDAs are used in this 
paper), thereby increasing the interest rate spread between the two maturities (CDs 
over MMDAs) while narrowing the duration gap (i.e., duration matching). Given that 
market interest rates are known to be procyclical [Stock and Watson, 1999], an alterna-
tive interpretation of this strategy is that interest rates on longer-term deposits (CDs) 
are procyclically more fl exible than interest rates on short-term deposits (MMDAs) 
– if the bank is risk-averse – hence providing a new insight beyond contractual dif-
ferences noted by Neumark and Sharpe [1992]. (The case of falling market interest 
rates can be symmetrically explained. See Rose [2002]). 

This paper extends Neumark and Sharpe [1992] by advancing two factors to ex-
plain why the MMDA rate is more sluggish than the CD rate while the paper’s main 
question (whether or not banks are risk-averse) is also jointly answered. The fi rst 
factor is duration matching and banks’ risk aversion (as explained above). The second 
factor is the term structure of CD rates (or the yield spread between longer-term CDs 
and short-term CDs), the details of which are explained below.5 The main conclusion 
in this paper based on regressions of selected individual banks is that the average of 
relative risk aversion (RRA) coeffi cient estimates falls between 0 and 1 (most likely 
around 0.2) and hence banks are risk-averse. However, the estimates are very close 
to zero, suggesting that banks may be nearly risk-neutral.

Figure 1 shows the data used in this paper. It extends the sample period (1983-87) 
of Neumark and Sharpe [1992], showing the federal funds rate, the rate on MMDAs 
and the rate on six-month consumer CDs during the 1986-97 period for six cities. (The 
data of interest rates and the choice of these six cities are explained in Appendix A.) 
It is clear that the sluggishness of deposit rates (more so in the case of the MMDA 
rate) relative to market interest rates (the federal funds rate in this paper; the six-
month Treasury bill rate in Neumark and Sharpe [1992]) during the sample period 
of Neumark and Sharpe [1992] has not changed in later years. 

The paper proceeds as follows. I develop an intertemporal bank model in the next 
section and derive two factors that explain the greater fl exibility of the CD rate than 
the MMDA rate. Then, the paper focuses exclusively on the fi rst factor (duration 
matching and risk aversion) in order to uncover a presumed positive relationship 
between the degree of risk aversion and the correspondingly desired degree of the 
CD-MMDA rate spread. Next, the empirical specifi cation that includes both factors 
is derived, followed by a brief data description, and the estimation results. The fi nal 
section gives a summary. 
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 FIGURE 1
 The Federal Funds Rate, the MMDA Rate and the 6-Month Consumer CD Rate
 
 ——— Federal Funds Rate
 - - - - -  6-Month Consumer CD Rate
 – – – – MMDA Rate
 Note: Numbers on the vertical axis are in percent.
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WHY ARE CD RATES MORE FLEXIBLE THAN MMDA RATES? − TWO 
FACTORS

The bank model in this paper is an intertemporal version of the well-known 
Monti-Klein model [Klein, 1971; Monti, 1972] where a representative bank behaves 
monopolistically, setting both its loan and deposit rates. The bank’s asset and liability 
position at the end of period t is as follows. 

Assets: 

L2,t-1 = two-period loans, booked at t-1, interest paid at t, and repaid with
  interest at t+1 
L1,t = one-period loans, booked at t, and repaid with interest at t+1
L2,t  = two-period loans, booked at t, interest paid at t+1, and repaid with  

 interest at t+2 
FSt  = federal funds sold
Bt  = government securities
Rt  = rDt (total required reserves) where r denotes the reserve requirement
  ratio (Dt is explained below). 

Liabilities and equity capital:

Dt = non-interest-bearing transaction deposits, given exogenously
Dm,t  = interest-bearing transaction deposits, represented by MMDAs 
Dc1,t  = one-period CDs, issued at t, and mature with interest at t+1
Dc2,t-1 = two-period CDs, issued at t-1, interest paid at t, and mature with 
  interest at t+1
Dc2,t  = two-period CDs, issued at t, interest paid at t+1, and mature with 
  interest at t+2
FPt  = federal funds purchased
Kt  = equity capital, given exogenously.

The demand function for both one-period and two-period loans (hence omitting the 
subscripts 1 and 2) is Lt(ιt;Yt) where ιt denotes the interest rate on loans; Yt denotes 
the level of economic activity, given exogenously; ∂Lt/∂ιt < 0 and ∂Lt/∂Yt > 0. For each 
of MMDAs and CDs, I assume a simple constant-elasticity deposit supply function of 
the following form (omitting the subscripts): D = aie where D and i denote the supply 
of deposits and the interest rate, respectively; a is a constant (a > 0); and e denotes the 
constant elasticity (e > 0). To simplify, it is assumed that the bank holds government 
securities only to manage liquidity, justifying Bt = B (constant). 

The balance sheet constraint is expressed by: FSt − FPt = (1−r)Dt + Dm,t + Dc2,t-1 + 
Dc1,t + Dc2,t + Kt − L2,t-1 − L1,t − L2,t −B where FSt − FPt > 0 (< 0) indicates the bank’s net 
excess reserves (net reserves shortages) that are lent (borrowed) in the federal funds 
market. The bank’s profi t during period t is expressed as
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πt = ι2,t-2L2,t-2 + ι1,t-1L1,t-1 + ι2,t-1L2,t-1 + if,t(FSt − FPt) + ib,tB 
 − im,tDm,t − ic2,t-2Dc2,t-2 − ic1,t-1Dc1,t-1 − ic2,t-1Dc2,t-1 − C(TLt,TDt) − FC

where 
ιn,t-j = interest rate on n-period loans that are booked at t-j (n = 1, 2; j = 1, 2)
im,t = interest rate on MMDAs
icn,t-j = interest rate on n-period CDs that are issued at t-j (n = 1, 2; j = 1, 2)
if,t  = federal funds rate, given exogenously
ib,t  = yield on government securities, given exogenously
C(TLt,TDt) = noninterest cost function with Cl = ∂C/∂TLt > 0, TL ≡ L2,t-1 + L1,t 
 + L2,t, Cd = ∂C/∂TDt > 0, and TDt ≡ Dt + Dm,t + Dc1,t+ Dc2,t-1+ Dc2,t

FC  = fi xed cost.

The federal funds rate is the source of uncertainty for the bank in the model. The 
marginal costs (MC) of deposits and loans, Cd and Cl  , are assumed to be constant. 

Subject to the balance sheet constraint, the bank maximizes the expected value 
of the time-separable utility function u(πt), E u

t

s t

ss t
β π−

=

∞∑ ( ) , with respect to time-t 
loan and deposit rates where πs denotes period-s profi t and β denotes the subjective 
discount factor. The relevant fi rst order conditions are (* denotes the optimal rate):

(1)  im,t
* = (1 + em

-1)-1(if,t − Cd)

(2)  ic1,t
* = (1 + ec1

-1)-1Et(Mt+1)
-1(if,t − Cd)

(3) ic2,t
* = (1 + ec2

-1)-1Et(Mt+1)
-1(if,t − Cd)Vt

where 
 em , ec1 , ec2 = elasticity of deposit supply (MMDA, one-period CD, 
   two-period CD, respectively)
 Cd = constant MC (noninterest marginal cost) 
 Mt+1 = intertemporal marginal rate of substitution (IMRS) of present 
   (time t) for future (time t+1) profi t, Mt+1 = βu′(πt+1)/ u′(πt), and 
   similarly Mt+2 = βu′(πt+2)/ u′(πt+1) 
 Vt = {1 + [Et[Mt+1 (if,t+1 − Cd)] / (if,t − Cd)]} / {1 + [Et(Mt+1Mt+2) / Et(Mt+1)]}.

It is assumed that if,t > Cd.

The paper’s main objective is to estimate the spread, log(ic2,t
*) − log(im,t

*), which is 
related to two factors discussed in the introduction as follows (here assuming em = ec1 
= ec2 for simplicity):

(4)  log(ic2,t
*) − log(im,t

*) = [log(ic1,t
*) − log(im,t

*)]     +     [log(ic2,t
*) − log(ic1,t

*)].
 ↓ ↓
 First factor = − logEt(Mt+1) Second factor = logVt
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Both the fi rst factor and the second factor account for time variations in the 
spread. The next section explains how the fi rst factor is related to risk aversion and 
duration matching. The second factor is related to the economy-wide term structure of 
interest rates. To see this relationship clearly, assume Mt+j = 1 (j = 1, 2) which arises 
under, for example, β = 1 and risk-neutrality (i.e., a linear utility function). Then, 
using equations (2) and (3), ic2,t

* can be rewritten as

 ic2,t
* = (1 + ec2

-1)-1{ [ (if,t + Et(if,t+1)) / 2] − Cd}
  = (1 + ec1

-1)(1 + ec2
-1)-1 [ (ic1,t

* + Et(ic1,t+1
*)) / 2].

A change in expected future monetary policy, Et(if,t+1),
6 that affects the economy-

wide term structure of interest rates (the fi rst line above) also affects the term structure 
of bank CD rates (the second line above). In general, however, expectations of future 
monetary policy and IMRSs are intertwined in the Vt term.

In order to avoid notational clutter, a subscript “c” is used throughout below 
instead of “c1” and “c2.” The next section uses “c” for “c1” and the rest of the paper 
uses “c” for “c2.”

RISK AVERSION—THE FIRST FACTOR
 
As noted above, this subsection limits the model to one-period CDs and one-period 

loans: assume "c" = "c1" in this section. Therefore the notation used here is as follows: 
all ic , ec and Dc refer to one-period CDs, and all ι and L refer to one-period loans. 

Following previous papers [Mehra and Prescott, 1985; Hansen and Jagannathan, 
1991; Campbell, 1999; Feldstein and Ranguelova, 2001; and others], I assume that 
the utility function is isoelastic:

 u(πt) = (πt
1-γ − 1)/(1−γ)

where γ = coeffi cient of relative risk aversion (RRA).
If Jensen’s inequality7 is ignored for expositional simplicity, i.e., assuming 

logEt(Mt+1) = Etlog(Mt+1) = Etlog(βu′(πt+1)/ u′(πt)), then logEt(Mt+1) = logβ − γ Etlog(πt+1/πt) 
and the fi rst term on the right-hand side of equation (4) is expressed as

(5) log(ic,t
*) – log(im,t

*) = − αc + αm – logEt(Mt+1)
  = − αc + αm – logβ + γ Etlog(πt+1/πt),

where αc = log(1 + ec
-1) = constant

 αm = log(1 + em
-1) = constant.

πt > 0 and πt+1 > 0 are assumed. (In practice, πt < 0 occurs on rare occasions. See foot-
note 20.)

If MMDAs are competed for locally while CDs are competed for on a broader 
geographic basis [Berger and Hannan, 1989; Hannan and Liang, 1993], then the 
elasticity of deposit supply of CDs is likely to be greater than the elasticity of deposit 
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supply of MMDAs [Hannan and Liang, 1993], i.e., ec > em, leading to − αc + αm > 0 
and therefore log(ic,t

*) – log(im,t
*) > 0. This positive and constant spread, however, is 

not capable of explaining observed time variations in the spread shown in Figure 1. 
Notice that the spread varies substantially over time and procyclically, suggesting 
that a satisfactory explanation for these procyclical variations in the spread comes 
from the last term in equation (5) which differentiates time deposits (CDs) from non-
time deposits (MMDAs). 

In order to illustrate the main point (that the spread, or the fi rst factor, is related 
to banks’ risk aversion) unambiguously, assume the following: πt = πt+1 = constant > 0 
(initially), β = 1, ec = em, the identical deposit supply function for Dm,t and Dc,t, FSt = FPt 
and FSt+1 = FPt+1. Furthermore, Yt+1 and if,t+1 are assumed constant in order to isolate 
effects of the procyclical rise in Yt and if,t. Now, suppose a procyclical deterministic 
rise in Yt and if,t

8 (ΔYt > 0 and Δif,t > 0), thereby causing an increase in loan demand, 
ΔLt > 0. To fund this increased loan demand, the bank increases the MMDA rate in 
order to obtain ΔDm,t > 0 and/or increase the CD rate in order to obtain ΔDc,t > 0, as-
suming that ΔLt = ΔDc,t + ΔDm,t > 0. Then, it can be shown that the fi rst-order Taylor 
approximation of equation (5) gives (omitting * for notational simplicity)9

(6) γ = (πt/ic,t)(Δic,t − Δim,t) / [ (ιt + Cl + Cd)ΔLt + LtΔιt − Dm,t(1 + em)(Δic,t − Δim,t) ], 

where ΔLt = (∂Lt/∂Yt) ΔYt + (∂Lt/∂ιt)Διt = ΔDc,t + ΔDm,t, ΔDc,t = (dDc,t/dic,t)Δic,t, and 
 ΔDm,t = (dDm,t/dim,t)Δim,t. 

 
Equation (6) shows that for a given procyclical increase in loan demand ΔLt > 0, γ 

and Δic,t − Δim,t are positively related. If a bank is risk-neutral (γ = 0), then Δic,t = Δim,t. 
In this case, it is optimal for the bank to raise the CD rate and the MMDA rate by 
the same amount. For a risk-averse bank with γ > 0, however, it is optimal to raise 
more funds through new CDs (than through new MMDAs) by raising the CD rate 
higher than the MMDA rate (i.e., Δic,t − Δim,t > 0). Clearly, the greater the degree 
of risk aversion, the greater the difference Δic,t − Δim,t. It implies that the duration 
gap, defi ned by dloan − [(ΔDm,t/ΔLt) dm + (ΔDc,t/ΔLt) dc] = 1 − (ΔDc,t/ΔLt), narrows (i.e., 
duration matching) because ΔDc,t/ΔLt is larger. (dloan, dm, and dc are the durations of 
loans, MMDAs, and CDs, respectively. Since loans and time deposits in this section 
have simple one-period maturity, their durations and maturities are identical, that 
is, dloan = 1 and dc = 1. dm = 0 because MMDAs are non-time deposits.) Alternatively, 
it implies that the CD rate is procyclically more fl exible than the MMDA rate – if the 
bank is risk-averse.

A side issue in the above explanation is whether MMDAs and CDs are competed 
for on a local basis (em < ∞, ec < ∞) or nationally (em ≈ ∞, ec ≈ ∞). It is easily verifi ed by 
rewriting equation (6) for Δic,t − Δim,t that, even if γ > 0, Δic,t = Δim,t arises if em = ec = ∞. 
In this case, both the MMDA and CD rates move in tandem with the federal funds 
rate regardless of the bank’s risk preference. Hence, for the explanation above to be 
persuasive, em < ∞ and ec < ∞ need to be empirically supported. (The estimation of em 
and ec is explained below in ESTIMATION RESULTS.)
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EMPIRICAL SPECIFICATION AND A PAPER’S LIMITATION10 

For the rest of the paper, the interest rate on two-period CDs is used: assume 
“c” = “c2” for the rest of the paper. The two-period CD rate in the theoretical model 
represents the six-month CD rate in the estimation.

For the second factor in equation (4), I assume the following approximation:

(7) logVt ≈ μ + εt,

where μ = constant (and presumably μ > 0)
 εt = a stationary stochastic error.

Equation (7), or an approximation of the CD yield spread, is based on (a) an em-
pirical regularity that the Treasury yield curve usually slopes upward [Mishkin, 2001] 
and (b) Treasury bill spreads are stationary due to cointegration between yields [Stock 
and Watson, 1988; Hall, Anderson, and Granger, 1992]. They suggest that log(Vt) 
may be described by the spread’s equilibrium value (μ above which is likely positive 
according to (a)) plus a stationary stochastic error (εt above according to (b)). 

Using equation (7), the empirical specifi cation of equation (4) is expressed as

(8) log(ic,t
*) – log(im,t

*) = − αc + αm − logEt(Mt+1) + logVt

  = − (αc − μ) + αm − ξt

where
 

(9) ξt ≡ logEt(Mt+1) − εt

  = logβ + logEt[(πt+1/πt)
-γ] − εt  (assuming the isoelastic utility function)

  = logβ + Etlog[(πt+1/πt)
-γ] + (k + ζt+1) − εt  (assuming conditional lognormality)

  = constant − γ Etlog(πt+1/πt) + error  (constant = logβ + k, error = ζt+1 − εt). 

 
The Jensen’s inequality adjustment term on the third line of equation (9), k + ζt+1, 

arises as follows. Assume that (πt+1/πt)
-γ is conditionally lognormal, then logEt[(πt+1/πt)

-γ] 
= Etlog[(πt+1/πt)

-γ] + (1/2)vart[log(πt+1/πt)
-γ]. Following Attanasio and Low [2000], as-

sume (1/2)vart[log(πt+1/πt)
-γ] ≈ k + ζt+1 where k is a constant and ζt+1 denotes a random 

component.
The paper’s main objective is to estimate equations (8) and (9), or the CD-MMDA 

rate spread that ties the more fl exible CD rate to the greater degree of risk aversion 
γ (the fi rst factor) and the CD yield spread μ + εt (the second factor). It is done in two 
steps: fi rst, estimate the time series of the unobserved variable ξt in equation (8) (“each 
city’s CD – MMDA rate spread” below in ESTIMATION RESULTS) by the Kalman 
fi lter11 and, second, estimate equation (9), or ξ̂t = constant − γ Etlog(πt+1/πt) + error 
where ξ̂t is the Kalman fi lter estimate of ξt (“individual banks’ IMRS equations” below 
in ESTIMATION RESULTS). 

Since the second factor (μ + εt) is subsumed into a constant and an error in equa-
tions (8) and (9), it is not treated explicitly as an explanatory variable. This clearly 
limits the paper’s investigation into the second factor. The error, εt, may possibly be 
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autocorrelated and/or heteroskedastic, which will be taken into account in the esti-
mation below.

DATA

For estimation, I use six cities’ bank rates (MMDA rates and six-month con-
sumer CD rates) that come from Bankrate.com (Bank Rate Monitor, Inc.). The 
sample period (monthly) is April 1986 (1986:4) through January 1997 (1997:1). 
The six cities are: 1 = New York, 2 = Chicago, 3 = San Francisco, 4 = Philadelphia, 
5 = Detroit, 6 = Boston. Appendix A describes the data in more detail. Each city’s 
MC (noninterest marginal cost of deposits or Cd) is estimated. Appendix B describes 
the details of the MC estimation.

ESTIMATION RESULTS

The following three sets of equations are estimated.

A. City j – city 1 MMDA rate differential (j = 2, 3, .., 6).
B. Each city’s CD – MMDA rate spread or equation (8).
C. Individual banks’ IMRS equations or equation (9).

The fi rst set of equations (A) examines the side issue mentioned above, because 
whether banking markets and/or products are still local or not has been a much debated 
subject (see, for example, Rhoades [1992]; Radecki [1998]; Heitfi eld [1999]; Amel and 
Starr-McCluer [2002]; Heitfi eld and Prager [2002]). Also, as mentioned above, implied 
elasticity estimates are derived from the estimation results in order to support the 
explanation (the fi rst factor) given above. The other two sets of equations (B and C) 
are explained above in connection with equations (8) and (9). 

One complication that must be taken into account in the estimation of the three 
sets of equations is the rigidity of deposit rates found by Neumark and Sharpe [1992]. 
Following Neumark and Sharpe [1992], I assume the following partial adjustment 
model for both the CD and MMDA rates where the subscripts m and c are dropped 
for notational simplicity:

(10) Δlog(it) = (λ + δDUMt) [log(it
*) − log(it-1)] + ut,

where Δlog(it) = log(it) – log(it-1)
 DUMt = 1 if it – it-1 ≥ 0 and 0 otherwise
 λ = downward adjustment speed (λ > 0)
 λ + δ = upward adjustment speed (presumably δ < 0).

Analogous to Neumark and Sharpe [1992], a random error ut is added to the 
model. λ represents the degree of interest rate rigidity: the lower its value, the more 
rigid the interest rate is, refl ecting banks’ greater reluctance to adjust their interest 
rates. In addition, equation (10) takes account of asymmetric rigidity: if the rate is 
adjusted more slowly upward than downward, then δ < 0.12
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A. City j - City 1 MMDA Rate Differential (j = 2, 3, … , 6)

(11) Δlog(ij,t) − Δlog(i1,t) = 
 (λj + δjDUMj,t)[log(ij,t

*) − log(ij,t-1)] − (λ1+ δ1 DUM1,t)[log(i1,t
*) − log(i1,t-1)] + error

where ij,t , ij,t
* = city j’s MMDA rate (j = 1, 2, 3, .., 6), omitting the subscript m

 log(ij,t
*) = − αj + log(if,t − Cd,j) (j = 1, 2, 3, .., 6)

 αj = log(1 + ej
-1) (j = 1, 2, 3, .., 6)

 ej = city j’s MMDA supply elasticity 
 Cd,j = city j’s MC (noninterest marginal cost) (j = 1, 2, …, 6)
 error = uj,t − u1,t (j = 2, 3, .., 6).

If MMDAs are local products, then the differential (the left-hand side of equation 
(11)) is characterized not by random variations but by local factors such as signifi cant 
λj, δj, λ1 and δ1 (the right-hand side). The implied elasticity ej is derived from the αj 
estimate. A system of fi ve equations (j = 2, 3,…, 6), nonlinear in the parameters and 
with cross-equation restrictions (α1, λ1 and δ1 are the same across equations), is esti-
mated by the method of SUR (seemingly unrelated regression).

The nonlinear SUR estimation results are shown in Table 1. (The details of the 
estimation procedure are available from the author upon request.) First, all param-
eter estimates are signifi cant at the 0.1 percent level (except for one case where the 
estimate is signifi cant at the 1 percent level) with the expected signs. Second, the 
statistical signifi cance of all dummy variables bears out the fi nding of Neumark and 
Sharpe [1992] about the faster downward speed of adjustment.13 Third, since changes 
in MMDA rate differentials between cities depend signifi cantly on local factors (αj’s 
and λj’s) and, also, the implied MMDA rate elasticity estimates range from 0.42 (Phila-
delphia) to 1.16 (Chicago), MMDAs are clearly not competed for at the national level, 
consistent with Berger and Hannan [1989] and Hannan and Liang [1993].

B. Each City’s CD - MMDA Rate Spread or Equation (8) (Modifi ed Based on 
Equation (10))

(12) Δlog(ic,t) − Δlog(im,t) = (λc + δc DUMc,t)[log(ic,t
*) − log(ic,t-1)] − (λm+ δm DUMm,t)[log(im,t

*) − log(im,t-1)] 

where DUMc,t = 1 if ic,t – ic,t-1 ≥ 0 and 0 otherwise, similarly for DUMm,t

 log(im,t
*) = − αm + log(if,t − Cd)

 log(ic,t
*) = − (αc − μ) − ξt + log(if,t − Cd)

 ξt = logEt(Mt+1) − εt.

The error term ut in equation (10) is assumed to be the same for both the CD and 
MMDA equations for the same city and therefore drops out of the above equation. For 
the unobserved variable ξt in equation (12), the following is assumed.14

(13) ξt = Fξt-1 + vt
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where F = constant
 vt = mean-zero Gaussian white noise with E(vtvτ) > 0 if t = τ and 0 otherwise. 

 TABLE 1
 City j – City 1 MMDA Rate Differential (j = 2, 3, …, 6),
  Nonlinear SUR Estimates, Monthly Sample 1986:5-1997:1

Equation (11): Δlog(ij,t) – Δlog(i1,t) = (λj + δjDUMj,t)[log(ij,t*) – log(ij,t-1)] 
 – (λ1+ δ1DUM1,t)[log(i1,t*) – log(i1,t-1)] + error,

where Δlog(ij,t) = log(ij,t) – log(ij,t-1) , ij,t = city j’s MMDA rate
 Δlog(i1,t) = log(i1,t) – log(i1,t-1) , i1,t = New York City MMDA rate
 DUMj,t = 1 if ij,t – ij,t-1≥ 0 and 0 otherwise (j = 1,2,…,6)
 log(ij,t*) = -αj + log(if,t – Cd,j) (j = 1,2,…,6)
 αj = log(1 + ej

-1) (j = 1,2,…,6)
 ej = city j’s MMDA supply elasticity 
 Cd,j = city j’s noninterest marginal cost (j = 1, 2, …, 6)
 (Each city’s Cd,j estimate is given in Appendix B.)
 if,t = federal funds rate.

                                          MMDA rate                                            
 Downward Upward
 adjustment speed: adjustment speed:
City λj δj λj + δj αj

New York (j = 1) 0.0549*** –0.0348*** 0.0201 0.6545***
 (0.0099) (0.0067)  (0.1271)
Chicago (j = 2) 0.0543*** –0.0244*** 0.0299 0.6233***
 (0.0101) (0.0051)  (0.1246)
San Francisco (j = 3) 0.0467*** –0.0225** 0.0242 0.8021***
 (0.0089) (0.0080)  (0.2016)
Philadelphia (j = 4) 0.0232*** –0.0111*** 0.0121 1.2255***
 (0.0062) (0.0030)  (0.3409)
Detroit (j = 5) 0.0381*** –0.0231*** 0.0150 0.7894***
 (0.0085) (0.0056)  (0.1934)
Boston (j = 6) 0.0490*** –0.0347*** 0.0143 0.6514*** 
 (0.0093) (0.0079)  (0.1539)
Note: Standard errors are in parentheses.
*** Signifi cant at the 0.1 percent level.
** Signifi cant at the 1 percent level.

Equations (12) and (13), together called the state-space model, are estimated by 
maximum likelihood. The parameter estimates of λm, δm, and αm (from the estima-
tion of “city j – city 1 MMDA rate differential”) are imposed. The implied elasticity 
ec is derived from the αc estimate. The time series of the unobserved variable ξt is 
estimated by the Kalman fi lter.

Table 2 shows the maximum likelihood estimates of the state-space model (equa-
tions (12) and (13)). (The details of the estimation procedure and identifi cation are 
available from the author upon request.) The fi ndings are similar to those in Table 1: 
most of the estimates are signifi cant at the 0.1 percent level with the expected signs 
and (except for San Francisco) the signifi cant δc estimates again bear out asymmetric 
adjustment. To be consistent with Neumark and Sharpe [1992], CD rates are much 
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less rigid than MMDA rates (the values of λc and λc + δc are much larger than those 
of MMDA rates).15

 TABLE 2
 Each City’s CD – MMDA Rate Spread (State-Space Model),
 Maximum Likelihood Estimates, Monthly Sample 1986:6-1997:1

Equation (12): Δlog(ic,t) – Δlog(im,t) = (λc + δcDUMc,t)[log(ic,t*) – log(ic,t-1)] 
 –(λm+ δmDUMm,t)[log(im,t*) – log(im,t-1)]

Equation (13): ξt = Fξt-1 + error

where Δlog(ic,t) = log(ic,t) – log(ic,t-1), ic,t = CD rate
 Δlog(im,t) = log(im,t) – log(im,t-1), im,t = MMDA rate
 DUMc,t = 1 if ic,t – ic,t-1 ≥ 0 and 0 otherwise, similarly for DUMm,t

 log(ic,t*) = –(αc – μ) – ξt + log(if,t – Cd)
 log(im,t*) = –αm + log(if,t – Cd)
 ξt ≡ logEt(Mt+1) – εt (See footnote 14.)
 Mt+1 = intertemporal marginal rate of substitution
 if,t = federal funds rate
 Cd = noninterest marginal cost.
  (Each city’s Cd estimate is given in Appendix B.)

Parameters estimated: λc, δc, αc – μ, F.
Time series estimated: ξt. (The resulting Kalman fi lter estimates ξ̂

t
 are used in Table 3.)

Parameter values imposed: λm, δm, αm estimates from Table 1.  

                                          CD rate                                            
 Downward Upward
 adjustment speed: adjustment speed:
City λc δc λc + δc αc–μ F
New York 0.2331*** –0.0489*** 0.1842     0.0723*** 0.3876***
 (0.0243) (0.0081)      (0.0155) (0.1010)
Chicago  0.2014*** –0.0693*** 0.1321     0.0646** 0.5726***
 (0.0256) (0.0113)      (0.0241) (0.0737)
San Francisco  0.2153*** –0.0084   0.2069     0.0694*** 0.3977***
 (0.0142) (0.0071)      (0.0129) (0.0830)
Philadelphia  0.1235*** –0.0151*** 0.1084     0.0265 0.5899***
 (0.0188) (0.0038)      (0.0405) (0.0636)
Detroit  0.1269*** –0.0430*** 0.0839     0.1090** 0.2224*
 (0.0154) (0.0060)      (0.0348) (0.0929)
Boston  0.1193*** –0.0546*** 0.0647     0.0515 0.2781**
 (0.0191) (0.0087)      (0.0478) (0.0830)
Note: Standard errors are in parentheses.
*** Signifi cant at the 0.1 percent level.
** Signifi cant at the 1 percent level.
* Signifi cant at the 5 percent level.

The implied elasticity estimates derived from the αc estimates are much larger 
than those of MMDA rates, consistent with the notion that CDs are competed for 
on a broader geographic basis [Berger and Hannan, 1989; and Hannan and Liang, 
1993]. If μ = 0 is assumed, then the implied CD rate elasticity estimates range from 
8.68 (Detroit) to 18.92 (Boston), except for Philadelphia (37.23). The implied CD rate 
elasticity estimates are likely smaller, however, because μ is presumably positive. 
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Clearly, CDs are not competed for at the national level because these implied elastic-
ity estimates vary widely from city to city, and their values are limited. Hence, the 
elasticity estimates (safely concluding em < ∞ and ec < ∞) indeed provide support for 
the explanation of the fi rst factor given above.

C. Individual Banks’ IMRS Equations or Equation (9)

Equation (9) is estimated for selected individual banks in each city (Appendix B 
explains individual banks). Each city’s time series estimates ξ̂t , which are obtained 
from the estimation of “each city’s CD – MMDA rate spread” above and are interpreted 
as those of the city’s representative bank, are used for ξt in equation (9) for individual 
banks in the same city. For the variable πt, I use each individual bank’s return on 
total assets (commonly denoted by ROA, that is, the ratio of net income to total as-
sets) instead of each bank’s net income because ROA data take into account mergers 
and/or acquisitions and/or divestitures while net income data do not.16 

For unobserved Etlog(πt+1/πt) in equation (9), I assume two different expectation 
schemes. First, since ROA is likely stationary (see, for example, Bassett and Carlson, 
[2002, Table A.1]), one way to model expectations of such a stationary process is to 
assume regressive expectations: Etlog(πt+1/πt) = − φ( logπt − log π) where φ > 0 and log π  
denotes the long-run log(ROA) (for which the sample mean is used below). Second, I 
assume rational expectations: log(πt+1/πt) = Etlog(πt+1/πt) + ωt+1 where ωt+1 denotes an 
expectation error. Then, the empirical specifi cations of equation (9) based on regres-
sive and rational expectations are, respectively, as follows.

(14) Regressive Expectations: ˆ constant log log errorξ γφ π πt t= + − +( )
(15) Rational Expectations: ˆ constant log / error,ξ γ π πt t t= − ++( )1

where constant = logβ + k  
 error = ζt+1 − εt (equation (14)), and ζt+1 − εt + γ ωt+1 (equation (15)).

 Several clarifi cations are necessary. First, since time series estimates of ξt are 
monthly while bank profi t data are quarterly, simple averaging is used to convert 
monthly into quarterly series. Second, in actual estimation the regressors in equa-
tions (14) and (15) are lagged by one.17 Third, equation (14) is estimated by OLS and 
IV (instrumental variable estimation).18 IV is used because εt (possibly infl uenced 
by time-varying expectations on future monetary policy) may be correlated with the 
regressor (expected profi t growth).19 Equation (15) is estimated by IV because the 
regressor and the expectation error term (ωt+1) are correlated. In addition, the regres-
sor may be correlated with εt. Fourth, as indicated in connection with equations (7), 
(8) and (9), εt may possibly be autocorrelated and/or heteroskedastic. Therefore, the 
heteroskedasticity-autocorrelation consistent covariance matrix estimator [Newey 
and West, 1987] is used for statistical tests

The results are shown in Table 3.20 Clearly, ξt is signifi cantly associated with 
expected profi t growth at the individual bank level (except for San Francisco) when 
regressive expectations are assumed. The results in Panel A (OLS estimates) show a 
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little stronger evidence than those in Panel B (IV estimates). The fi nding is consistent 
with the theoretical interpretation of ξt as IMRS. Under the assumption of regressive 
expectations, the OLS point estimates of φγ in Panel A that are statistically signifi -
cant at least at the 10 percent level (two-tailed tests) range from 0.3208 to 0.0169 
and their sample average is 0.1196. It implies that, for example, if φ = 0.9 (φ = 0.5), 
then the sample-average RRA coeffi cient is γ = 0.1329 (γ = 0.2392). Similarly, the IV 
estimates in Panel B that are statistically signifi cant at least at the 10 percent level 
range from 0.3937 to 0.0333 and their sample average is 0.1862. If φ = 0.9 (φ = 0.5), 
then the sample-average RRA coeffi cient is γ = 0.2069 (γ = 0.3724). 

Under the assumption of rational expectations, the fi nding is still consistent, 
though a little weaker, with the theoretical interpretation of ξt as IMRS. The point 
estimates of the RRA coeffi cient γ that are statistically signifi cant at least at the 10 

 TABLE 3
 Estimation Results of the RRA Coeffi cient ( γ ) of Individual Banks,a 
 Quarterly Sample 1986:III-1997:I

 Equation (14): ˆ constant log log errorξ γφ π π
t t
= + − +( )

[Regressive Expectations,  , are assumed.]E
t t t t
log( / ) log logπ π φ π π

+
= − −( )1

   

 Equation (15): ˆ constant log / error,

l

ξ γ π π
t t t
= − +

+
( )

1

[Rational expectations, oog( / ) log( / ) error,π π π π
t t t t t

E
+ +

= +
1 1

are assumed.]

where ξ̂t
 = Kalman fi lter time-series estimates 

 πt = ROA (return on assets)

 log π = long-run level (the sample mean is used).

Estimation methods: Equation (14) is estimated by OLS and IV (instrumental variable method). Equation 
(15) is estimated by IV. The instruments used for equation (14) (equation (15)) are four lags of the regres-
sor of equation (15) (equation (14)).  The validity of the instruments used is explained in footnote 18. 
  

Note: For the actual estimation, the regressors in equations (14) and (15) are lagged by one (see footnote 17). 

Equation (14)     Estimatesb of φγ 
   (φ > 0, γ ≥ 0, γ = coeffi cient of relative risk aversion)

 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6
 Panel A: OLS

New York 0.0283* 0.0221** –0.0063 0.0336** –0.0007 0.0255*  
 (0.0153) (0.0108) (0.0231) (0.0165) (0.0271) (0.0155)
Chicago 0.3208*** 0.2123*** 0.1665*** 0.2534*** 0.1790***   
  (0.0492) (0.0447) (0.0334) (0.0482) (0.0518)
San Francisco  0.0082 –0.0132 0.0130 –0.0086
 (0.0253) (0.0339) (0.0228) (0.0092)
Philadelphia  0.1521*** 0.1909** 0.2067*** 0.1954** 0.0447**
 (0.0376) (0.0774) (0.0681) (0.0787) (0.0211)
Detroit  0.0890*** 0.0248 0.0788** 0.0341* 0.0462*
 (0.0220) (0.0275) (0.0312) (0.0213) (0.0257)
Boston  0.1586*** 0.0169** 0.0620 0.0563**
 (0.0366) (0.0080) (0.0393) (0.0284)
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percent level (two-tailed tests) range from 0.9655 to 0.0371 (from 0.3733 to 0.0371 if 
Chicago-Bank 2 is excluded) and their sample average is 0.2907 (0.1943 if Chicago-
Bank 2 is excluded). 

Based on the estimates in Table 3, the individual banks’ RRA coeffi cients appear 
to fall between 0 and 1 (most likely around 0.2) and hence banks are risk-averse. How-
ever, the estimates in this paper are very close to zero, suggesting that banks may be 
nearly risk-neutral. The range of the RRA coeffi cient estimates is consistent with 
γ ≈ 1, or γ < 2, or γ < 3, which economists commonly agree on [Arrow, 1965; Ljungqvist 
and Sargent, 2000, 258-260; Feldstein and Ranguelova, 2001]. One implication for 
equation (8) from the fi nding of near risk-neutrality is that, although the fi rst factor 

 TABLE 3 — Continued
 Estimation Results of the RRA Coeffi cient ( γ ) of Individual Banks,a 
 Quarterly Sample 1986:III-1997:I
Equation (14)     Estimatesb of φγ 
   (φ > 0, γ ≥ 0, γ = coeffi cient of relative risk aversion)

 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6
 Panel B: IV (Instrumental variable)

New York 0.0523*** 0.0221 0.0333* 0.2194** –0.0078 0.1072*  
 (0.0116) (0.0153) (0.0207) (0.1029) (0.0355) (0.0603)
Chicago 0.3091*** 0.2718*** 0.1888** 0.2673*** 0.1287**   
  (0.0574) (0.1033) (0.0749) (0.0789) (0.0615)
San Francisco  –0.0440 –0.0878 0.0314 –0.0106
 (0.0918) (0.0883) (0.0322) (0.0115)
Philadelphia  0.1236*** 0.1754 0.3937* 0.2386 0.2700***
 (0.0407) (0.1837) (0.2315) (0.1639) (0.1027)
Detroit  0.1137*** –0.0101 0.0795 –0.0042 0.0137
 (0.0434) (0.0113) (0.0617) (0.0244) (0.0204)
Boston  0.1643*** 0.1505*** –0.0068 0.0271
 (0.0497) (0.0544) (0.0404) (0.0803)

Equation (15)     Estimatesb,c of –γ 
   (γ ≥ 0, γ = coeffi cient of relative risk aversion)

 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6
New York  –0.0371* –0.0225 –0.0975 –0.1601** 0.0179 –0.0352
 (0.0214) (0.0164) (0.1974) (0.0757) (0.0222) (0.0861)
Chicago  –0.3733* –0.9655* –0.1124 –0.9801 –0.3503
 (0.1942) (0.5132) (0.1294) (0.7225) (0.3108)
San Francisco  0.0141 0.1093 –0.0016 0.0130
 (0.1097) (0.0851) (0.0245) (0.0128)
Philadelphia  –0.1455** –0.5339 1.3239 –0.3089* –0.2248
 (0.0677) (0.5390) (1.3374) (0.1804) (0.4330)
Detroit  –0.3211 –0.0171 –0.0591 –0.0258 –0.0617
 (0.2631) (0.0347) (0.1221) (0.0290) (0.0779) 
Boston  –0.2190*** –0.1162* –0.0113 –0.1152
 (0.0458) (0.0652) (0.0356) (0.1112)
Note: Standard errors are in parentheses.
*** Signifi cant at the 1 percent level.
** Signifi cant at the 5 percent level.
* Signifi cant at the 10 percent level.
a Appendix B explains individual banks for each city.
b The heteroskedasticity-autocorrelation consistent covariance matrix estimator is used [Newey and West, 1987].
c Instrumental variable estimation.
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(the γEtlog(πt+1/πt) term) indeed explains the observed relative fl exibility of CD rates, 
its quantitative importance to account for the CD-MMDA rate spread may be limited 
because γ ≈ 0.21 This of course does not diminish the importance of the paper’s main 
objective of investigating whether banks are risk-averse or not.

Lastly, it is noted that insignifi cant results in Table 3 are diffi cult to interpret 
because they may arise, even if the theoretical interpretation of ξt as IMRS is true, 
when any of the auxiliary assumptions (such as isoelastic utility and the lognormal 
distribution) is empirically invalid at the individual bank level.

CONCLUSION

I have analyzed an issue which has received little attention in the literature: 
whether or not, and to what extent, banks are risk-averse. Based on an intertemporal 
bank model, I have shown that IMRS (intertemporal marginal rate of substitution), 
or indirectly the RRA (relative risk aversion) coeffi cient, explains a fundamental 
difference between the interest rates on time deposits (CDs) and non-time deposits 
(MMDAs). In particular, the greater degree of procyclical fl exibility in the CD rate 
(than the MMDA rate) is associated with the greater degree of risk aversion. I have 
estimated the hypothesized relationship between IMRS and the RRA coeffi cient at the 
individual bank level, where the unobservable IMRS in the CD-MMDA rate spread is 
estimated using the Kalman fi lter. The individual banks’ RRA coeffi cients appear to 
fall between 0 and 1 (most likely around 0.2), thereby providing evidence that banks 
are risk-averse, though close to being risk-neutral. 

 APPENDIX A

Data

Monthly data for the MMDA rate and the six-month consumer CD rate, April 
1986 (1986:4) through January 1997 (1997:1), come from Bankrate.com (Bank Rate 
Monitor, Inc). which is the same data source used previously by others [Diebold and 
Sharpe, 1990; Radecki, 1998; Heitfi eld, 1999]. Longer and consistent time-series 
data are available for ten major markets. Out of these ten markets, I exclude four 
markets (Los Angeles, Houston, Dallas and the District of Columbia), leaving six 
markets (j = 1, 2, … , 6) to be analyzed in this paper: New York (j = 1), Chicago (j = 
2), San Francisco (j = 3), Philadelphia (j = 4), Detroit (j = 5), and Boston (j = 6). The 
out-of-state bank holding companies’ deposit shares in the District of Columbia and 
Texas were, respectively, 58.70 percent and 53.01 percent in June, 1993 [Savage, 
1993], suggesting that the District of Columbia, Houston and Dallas do not consti-
tute geographically well-defi ned local markets for deposits. A close examination of 
Los Angeles and San Francisco data indicates that these cities’ data are practically 
identical, hence excluding Los Angeles. The sample starts from 1986:4 because the 
data are not available before that for San Francisco and Boston. The sample ends at 
1997:1, covering the period of interstate (and intrastate) banking restrictions that 
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had effectively limited the scope of geographic expansion of banking activities in the 
United States [Savage, 1987; 1993]. I focus on this period in order to maintain the 
analysis free from the nationwide banking era that has started effectively in 1997 
under the Riegle-Neal Interstate Banking and Branching Effi ciency Act of 1994. Each 
city’s deposit rate used in this paper is calculated (by Bankrate.com) as the simple 
average of the city’s ten large institutions’ deposit rates (fi ve large banks and fi ve large 
thrifts) which is interpreted as the deposit rate of a representative (or an average) 
bank in that city. The monthly federal funds rate data come from DRI/McGraw-Hill 
(RMFEDFUNDSNS series).

 APPENDIX B

MC Estimation

Since monthly deposit rate data are averages of ten large institutions’ rates for 
each city, it is reasonable to base each city’s MC estimation on these ten institutions 
which can be identifi ed in Bank Rate Monitor published by Bankrate.com. Because 
of mergers/acquisions over time and/or incomplete data availability for some banks, 
each city ends up with only about fi ve banks that have complete data for estimation. 
The table below shows the names of banks included in the MC estimation and for 
which equations (14) and (15) are estimated.

The procedure to obtain MC estimates is as follows. First, using 1986:III-1997:I 
quarterly data (from the Federal Reserve Bank of Chicago BHC database), I estimate 
the standard translog noninterest cost function with the symmetry and homogeneity 
restrictions, which is based on Gilligan, Smirlock, and Marshall [1984], for individual 
banks that were included in the Bankrate.com survey list (below). Second, MC esti-
mates for 1986:III-1997:I of individual banks are derived from the estimated translog 
cost functions. Third, constant MC for a representative bank for each city is calculated 
as the average of sample means of (each city’s) individual bank’s MCs weighted by 
each bank’s 1994 MSA deposit share. Further details are available from the author 
upon request. The results are: 0.00311 (San Francisco) < 0.00441 (Chicago) < 0.00531 
(New York) < 0.00802 (Detroit) < 0.00919 (Boston) < 0.01153 (Philadelphia). (For San 
Francisco, MC = 0.00311 means that the marginal noninterest operating costs are 
$0.00311 per total deposits dollar.) 

Banks surveyed by Bankrate.com (Bank Rate Monitor, July 24, 1996) 

New York
 Chase Manhattan Bank (Bank 1), Bank of New York (Bank 2), Citibank (Bank 3), Emi-

grant Savings (Bank 4), Green Point Bank (Bank 5), Republic National Bank (Bank 6). 
Chicago
 Harris Trust & Savings Bank (Bank 1), Northern Trust Bank (Bank 2), First 

National Bank Chicago (Bank 3), American National B & T (Bank 4), LaSalle 
National Bank (Bank 5).
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San Francisco
 Bank of America (Bank 1), Wells Fargo Bank (Bank 2), Sumitomo Bank of Cali-

fornia (Bank 3), Union Bank (Bank 4).
Philadelphia
 CoreStates Bank (Bank 1), Mellon Bank (Bank 2), Benefi cial Mutual Savings 

Bank (Bank 3), Frankford Bank (Bank 4), Firstrust Savings Bank (Bank 5).
Detroit
 NBD Bank (Bank 1), First of America Bank (Bank 2), Michigan National Bank 

(Bank 3), Huntington Banks of Michigan (Bank 4), Comerica Bank (Bank 5).
Boston
 Fleet Bank of Massachusetts (Bank 1), Cambridge Savings Bank (Bank 2), US 

Trust (Bank 3), PNC Bank New England (Bank 4).

 NOTES

 I would like to thank Ron Britto, Ed Kokkelenberg and Dick Courtney for their comments, Jeff Perloff 
and Bent Sorensen for very helpful suggestions, and Yoon-Seok Jee for data assistance. I am grateful 
to two anonymous referees for their very useful comments and suggestions. Also, I am grateful to Alan 
Price for his help in preparing the fi nal version of this paper. In order to limit the length, some details 
are omitted from (and their omissions are indicated in) this paper. The full version of this paper is 
available from the author upon request. 

1. Duration (denoted by d), due to Macaulay [1938], measures the average maturity of a security’s stream 

of future cash fl ows and is defi ned by d tCF i P
t

t

t

T

≡ +[ ]
=∑ /( ) /1

1
 where CFt denotes the cash fl ow 

in period t, i denotes the discount rate, and P denotes the present value of future cash fl ows of the 
security. Duration gap management is explained in, for example, Rose [2002].

2. Ratti [1980] shows evidence of banks’ risk aversion based on a static stochastic bank model and using 
1976-77 pre-deregulation data (i.e., prior to the elimination of Regulation Q interest-rate ceilings). 
Angelini [2000] also shows evidence of banks’ risk aversion based on the fi nding that Italian banks’ 
intraday interbank operations are more concentrated in early morning hours on settlement days, 
which is consistent with the risk-averse assumption in his theoretical model.

3. “A price change instituted on CDs affects only marginal accounts – new CDs issued or old ones rolled 
over – and represents a contractual commitment. In contrast, for MMDAs, a change in price amounts 
to a repricing of all accounts, and confers no explicit contractual commitment on yields even one week 
into the future” [Neumark and Sharpe, 1992, 677].

4. More precisely, dA – (MVL/MVA)dL > 0 where MVL and MVA are the market value of liabilities and 
the market value of assets, respectively.

5. I thank a referee for pointing out the term structure of interest rates.
6. It is assumed that the federal funds rate is an indicator of monetary policy [Bernanke and Blinder, 1992].
7. log Et(Mt+1) > Et log(Mt+1).
8. The federal funds rate is known to be procyclical [Stock and Watson, 1999].
9. The fi rst order condition with respect to ιt is: ιt

* = (1 − el
-1)-1Et(Mt+1)

-1(if,t + Cl) where el = − (ιt/Lt)(∂Lt /∂ιt). 
Therefore, ιt

* also changes (in addition to changes in ic,t
* and im,t

*) when if,t changes.
10. The full version of this paper, available from the author upon request, addresses two additional possible 

limitations: the absence of the household’s decision in this paper, and the assumption of constant MC.
11. The variable ξt includes unobserved conditional expectations Et(Mt+1). I follow, for example, Fama 

and Gibbons [1982] and Hamilton [1985] who use the Kalman fi lter method [Hamilton, 1994] for 
unobserved conditional expectations.

12. Neumark and Sharpe [1992] primarily focus on deposit rate rigidity measured by the estimate of λ and 
its determinants, whereas this paper’s primary interest (with secondary interest in the λ estimates) 
is in the optimal deposit rate it

* which (together with λ) accounts for the observed sluggishness of the 
actual deposit rate it relative to open market rates (such as if,t).
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13. The full version of this paper discusses differences between the estimates of λ in Neumark and Sharpe 
[1992] and those in this paper.

14. In actual estimation, the state variable is defi ned as (λc + δcDUMc,t)ξt (instead of ξt). After λc, δc and 

the state variable are estimated, ξ̂t
is derived by ξ̂t = (state variable estimate) ˆ ˆ

,
λ δ

c c c t
DUM+( )−1

 
where the hat ^ indicates the estimate.

15. One possible explanation of greater MMDA rate rigidity, not explained in Neumark and Sharpe [1992], 
is that bank customers holding MMDAs may be less attentive to rate fl uctuations than CD holders. 
Hence, banks may change MMDA rates less frequently. This was pointed out by a referee.

16. Quarterly data of individual banks’ net income and total assets come from the Federal Reserve Bank 
of Chicago BHC database.

17. The time series data of ξ̂t
(the regressand) estimated by the Kalman fi lter are one-step ahead con-

ditional forecasts of ξt, that is, ˆ
|ξt t−1 . On the other hand, the regressor is Etlog(πt+1/πt). To match the 

time subscripts (because, by defi nition, ξt ≡ logEt(Mt+1) − εt), the regressor is lagged by one. (The full 
version of this paper explains this in a little more detail).

18. For equation (14) (for equation (15)), four lags of the regressor in the other equation, i.e., equation 
(15) (equation (14)), are used as instruments. For the chosen instruments, I tested the null hypothesis 
of independence of the instruments and the error term using the Sargan’s instrument validity test 
[Cuthbertson, Hall, and Taylor, 1992] at the 5 percent signifi cance level. For equation (14), only 4 
cases out of 29 tests (29 banks) resulted in rejection of the null, suggesting validity of the instruments 
used. For equation (15), there were 7 rejections (out of 29 tests), suggesting a little weaker, neverthe-
less likely support of, validity of the instruments used. The instruments used appeared reasonably 
correlated with the regressor. The average of 58 sample correlations (29 correlations from each of 
equations (14) and (15)) between the regressor and the instruments was about 0.6. Therefore, the 
instruments chosen are considered reasonably valid.

19. I thank a referee for pointing out this correlation. 
20. The sample period is 1986:III-1997:I for most banks; however, it is shorter for some banks (Bank 4 

and Bank 5 of New York; Bank 3 and Bank 5 of Philadelphia) due to only partial availability of net 
income data. Also, each of the following three banks’ samples includes one undefi ned observation for 
the regressor (i.e., logπ is undefi ned) due to a non-positive value of π = ROA: Detroit Bank 3 (1995:
IV); Detroit Bank 5 (1987:IV); and Boston Bank 4 (1993:III). Based on Greene [1993, 273-276], I drop 
this one observation from each bank’s sample. 

21. I thank a referee for mentioning this important point.
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