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1 Introduction

The racetrack provides a natural laboratory for economists interested in understanding decision-

making under uncertainty. The most discussed empirical regularity in racetrack gambling markets

is the favorite-longshot bias: equilibrium market prices (betting odds) provide biased estimates

of the probability of a horse winning. Specifically, bettors value longshots more than expected

given how rarely they win, and they value favorites too little given how often they win. Figure

1 illustrates, showing that the rate of return to betting on horses with odds of 100/1 or greater is

about −61%, betting randomly yields average returns of −23%, while betting the favorite in every

race yields losses of only 5.5%.

Figure 1: The rate of return on win bets declines as risk increases.
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Since the favorite-longshot bias was first noted by Griffith in 1949, it has been found in race-

track betting data around the world, with very few exceptions. The literature documenting this bias
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is voluminous, and covers both bookmaker- and pari-mutuel markets.1

Two broad sets of theories have been proposed to explain the favorite-longshot bias. First,

neoclassical theory suggests that the prices bettors are willing to pay for various gambles can

be used to recover their utility function. While betting at any odds is actuarially unfair, this is

particularly acute for longshots—which are also the riskiest investments. Thus, the neoclassical

approach can reconcile both gambling and the longshot bias only by positing (at least locally)

risk-loving utility functions, as in Friedman and Savage (1948).

Alternatively, behavioral theories suggest that cognitive errors and misperceptions of probabil-

ities play a role in market mis-pricing. These theories incorporate laboratory studies by cognitive

psychologists that show people are systematically poor at discerning between small and tiny prob-

abilities, and hence price both similarly. Further, people exhibit a strong preference for certainty

over extremely likely outcomes, leading highly probable gambles to be under-priced. These results

form an important foundation of Prospect Theory (Kahneman and Tversky, 1979).

Our aim in this paper is to test whether the risk-love class of models or the misperceptions class

of models simultaneously fits data from multiple betting pools. While there exist many specific

models of the favorite-longshot bias, we show in Section 3 that each yields implications for the

pricing of gambles equivalent to stark models of either a risk-loving representative agent, or a

representative agent who bases her decisions on biased perceptions of true probabilities. That is,

the favorite-longshot bias can be fully rationalized by a standard rational-expectations expected-

utility model, or by appealing to an expected wealth maximizing agent who overweights small

probabilities and underweights large probabilities.2 Thus, without parametric assumptions, which

we are unwilling to make, the two theories are observationally equivalent in win bet data.

We combine new data with a novel econometric identification strategy to discriminate between

1Thaler and Ziemba (1988), Sauer (1998) and Snowberg and Wolfers (2007) survey the literature. The exceptions
are Busche and Hall (1988), which finds that the favorite-longshot bias is not evident in data on 2,653 Hong Kong
races, and Busche (1994), which confirms this finding in an additional 2,690 races in Hong Kong, and 1,738 races in
Japan.

2Or adopting a behavioral versus neoclassical distinction, we follow Gabriel and Marsden (1990) in asking: “are
we observing an inefficient market or simply one in which the tastes and preferences of the market participations lead
to the observed results?”
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these two classes of theories. Our data include all 6.4 million horse race starts in the United

States from 1992 to 2001. These data are an order of magnitude larger than any dataset previously

examined, and allow us to be extremely precise in establishing the relevant stylized facts.

Our econometric innovation is to distinguish between these theories by deriving testable pre-

dictions about the pricing of compound lotteries (also called exotic bets at the racetrack). For

example, an exacta is a bet on both which horse will come first and which will come second. Es-

sentially, we ask whether the preferences and perceptions that rationalize the favorite-longshot bias

(in win bet data) can also explain the pricing of exactas, quinellas—a bet on two horses to come

first and second in either order—and trifectas—a bet on which horse will come in first, which

second and which third. By expanding the choice set under consideration (to correspond with the

bettor’s actual choice set!), we use each theory to derive unique testable predictions. We find that

the misperceptions class more accurately predicts the prices of exotic bets, and also their relative

prices.

To demonstrate the application of this idea to our data, note that betting on horses with odds

between 4/1 and 9/1 has an approximately constant rate of return (at −18%, see Figure 1). Thus,

the misperceptions class infers bettors are equally well calibrated over this range, and hence betting

on combinations of outcomes among such horses will yield similar rates of return. That is, betting

on an exacta with a 4/1 horse to win and a 9/1 horse to come second will yield similar expected

returns to betting on the exacta with the reverse ordering (although the odds of the two exactas will

differ). In contrast, under the risk-love model, bettors are willing to pay a larger risk penalty for

the riskier bet—such as the exacta in which the 9/1 horse wins, and the 4/1 horse runs second—

decreasing its rate of return relative to the reverse ordering.

Our research question is most similar to Jullien and Salanié (2000) and Gandhi (2007) who

attempt to differentiate between preference- and perception-based explanations of the favorite-

longshot bias using only data on the price of win bets. The results of the former study favor

perception-based explanations and the results of the latter favor preference-based explanations.

Rosett (1965) conducts a related analysis in that he considers both win bets and combinations of
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win bets as present in the bettors’ choice set. Ali (1979), Asch and Quandt (1987) and Dolbear

(1993) test the efficiency of compound lottery markets. We believe that we are the first to use com-

pound lottery prices to distinguish between competing theories of possible market (in)efficiency.

Of course the idea is much older: Friedman and Savage (1948) notes that a hallmark of expected

utility theory is “that the reaction of persons to complicated gambles can be inferred from their

reaction to simple gambles.”

2 Stylized Facts

Our data contains all 6,403,712 horse starts run in the United States between 1992 and 2001. These

are official jockey club data; the most precise available. Data of this nature are extremely expen-

sive, which presumably explains why previous studies have used substantially smaller samples.

The appendix provides more detail about the data.

We summarize our data in Figure 1. We calculate the rate of return to betting on every horse at

each odds, and use Lowess smoothing to take advantage of information from horses with similar

odds. Data are graphed on a log-odds scale so as to better show their relevant range. The vastly

better returns to betting on favorites rather than longshots is the favorite-longshot bias. Figure

1 also shows the same pattern for the 206,808 races (with 1,485,112 horse starts) for which the

jockey club recorded payoffs to exacta, quinella or trifecta bets. Given that much of our analysis

will focus on this smaller sample, it is reassuring to see a similar pattern of returns.

Figure 2 shows the same rate of return calculations for several other datasets. We present new

data from 2,725,000 starts in Australia from the South Coast Database, and 380,000 starts in Great

Britain from flatstats.co.uk. The favorite-longshot bias appears equally evident in these countries,

despite the fact that odds are determined by pari-mutuel markets in the United States, bookmakers

in the United Kingdom, and bookmakers competing with a state-run pari-mutuel market in Aus-

tralia. Figure 2 also includes historical estimates of the favorite-longshot bias, showing it has been

stable since first noted in Griffith (1949).
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Figure 2: The favorite longshot bias has persisted for over 50 years.
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The Favorite−Longshot Bias

The literature suggests two other empirical regularities to explore. First, Thaler and Ziemba

(1988) suggest that there are positive rates of return to betting extreme favorites, perhaps suggesting

limits to arbitrage. This is not true in any of our datasets, providing a similar finding to Levitt

(2004): despite significant anomalies in the pricing of bets, there are no profit opportunities from

simple betting strategies.

Second, McGlothlin (1956), Ali (1977) and Asch, Malkiel, and Quandt (1982) argue that the

rate of return to betting moderate longshots falls in the last race of the day. These studies have

come to be widely cited despite being based on small samples. Kahneman and Tversky (1979)

and Thaler and Ziemba (1988) interpret these results as consistent with loss aversion: most bettors

are losing at the end of the day, and the last race provides them with a chance to recoup their

losses. Thus, bettors underbet the favorite even more than usual, and overbet horses at odds that

would eliminate their losses. The dashed line in Figure 1 separates out data from the last race;

while the point estimates differ slightly, these differences are not statistically significantly. If there

was evidence of loss aversion in earlier data, it is no longer evident in recent data, even as the
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favorite-longshot bias has persisted.

In the next section we argue that these facts cannot separate risk-love from misperception-

based theories. We propose new tests based on the requirement that a theory developed to explain

equilibrium odds of horses winning should also be able to explain the equilibrium odds in the

exacta, quinella and trifecta markets separately, as well as the equilibrium odds in exacta and

quinella markets jointly.

3 Two Models of the Favorite-Longshot Bias

We start with two extremely stark models, each of which has the merit of simplicity. Both are

models where all agents have the same preferences and perceptions, but as we suggest below, can

be expanded to incorporate heterogeneity. Equilibrium price data cannot separately identify more

complex models from these representative agent models.

3.1 The Risk-Love Class

Following Weitzman (1965), we postulate expected utility maximizers with unbiased beliefs and

utility U(·): R→ R. In equilibrium, bettors must be indifferent between betting on the favorite

horse A with probability of winning pA and odds of OA/1, and betting on a longshot B with proba-

bility of winning pB and odds of OB/1:

pAU(OA) = pBU(OB) (normalizing utility to zero, if the bet is lost).3 (1)

The odds (OA, OB) and the probabilities (pA, pB) of horses winning, which we observe, identify

the representative bettor’s utility function up to a scaling factor.4 To fix the scale we normalize

utility to zero if the bet loses, and to one if the bettor chooses not to bet. Thus, if the bettor is

indifferent between accepting or rejecting a gamble offering odds of O/1 that wins with probability

3We also assume that, consistent with the literature, each bettor chooses to bet on only one horse in a race.
4See Weitzman (1965), Ali (1977), Quandt (1986) and Jullien and Salanié (2000) for prior examples.
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Figure 3: The win data is completely rationalized by both classes.
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p, then U(O) =
1
p

. The left panel of Figure 3 performs precisely this analysis, backing out the

utility function required to explain all of the variation in Figure 1.

As can be seen from Figure 3, a risk-loving utility function is required to rationalize the bettor

accepting lower average returns on longshots, even as they are riskier bets. The figure also shows

that a CARA utility function fits the data reasonably well.

Several other theories of the favorite-longshot bias yield implications that are observation-

ally equivalent to this risk-loving representative agent model. Some of these theories are clearly

equivalent—such as that of Golec and Tamarkin (1998), which argues that bettors prefer skew

rather than risk—as they are theories about the shape of the utility function. It can easily be shown

that richer theories—such as that of Thaler and Ziemba (1988) where “bragging rights” accrue

from winning a bet at long odds, or that of Conlisk (1993) in which the mere purchase of a bet on
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a longshot may confer some utility—are also equivalent.5

3.2 The Misperceptions Class

Alternatively, the misperceptions class postulates risk-neutral subjective expected utility maximiz-

ers, whose subjective beliefs are given by the probability weighting function π(p): [0,1]→ [0,1].

In equilibrium, there are no opportunities for subjectively-expected gain, so bettors must believe

that the subjective rates of return to betting on any pair of horses A and B are equal:

π(pA)(OA +1) = π(pB)(OB +1) = 1. (2)

Consequently, data on the odds (OA, OB) and the probabilities (pA, pB) of horses winning reveal

the misperceptions of the representative bettor.6

Note that the misperceptions class allows more flexibility in the way probabilities enter the

representative bettor’s value of a bet, but it is more restrictive than the risk-love class in terms of

how payoffs enter that function. More to the point, without restrictive parametric assumptions,

each class of models is just-identified, so each yields identical predictions for the pricing of win

bets.

The right panel of Figure 3 shows the probability weighting function π(p) implied by the data

in Figure 1. The low rates of return to betting longshots are rationalized by bettors who bet as

though horses with tiny probabilities of winning actually have moderate probabilities of winning.

The specific shape of the declining rates of return identifies the probability weighting function at

5Formally, these theories suggest agents maximize expected utility, where utility is the sum of the felicity of
wealth, y(·): R→ R, and the felicity of bragging rights or the thrill of winning, b(·): R→ R. Hence the expected
utility to a bettor with initial wealth w0 of a gamble at odds O that wins with probability p can be expressed as:
E(U(O)) = p[y(w0 + O)+ b(O)] + [1− p]y(w0− 1). As before, bettors will accept lower returns on riskier wagers
(betting on longshots) if U ′′ > 0. This is possible if either the felicity of wealth is sufficiently convex or bragging
rights are increasing in the payoff at a sufficiently increasing rate. More to the point, revealed preference data do not
allow us to separately identify effects operating through y(·), rather than b(·).

6While we term the divergence between π(p) and p misperceptions, in non-expected utility theories, π(p) can
be interpreted as a preference over types of gambles. Under either interpretation our approach is valid, in that we
test whether gambles are motivated by nonlinear functions of wealth or probability. In (2) we implicitly assume that
π(1) = 1, although we allow limp→1 π(p)≤ 1.
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each point.7 This function shares some of the features of the decision weights in Prospect Theory

(Kahneman and Tversky, 1979), and the figure shows that the one-parameter probability weighting

function in Prelec (1998) fits the data quite closely.

While we have presented a very sparse model, a number of richer theories have been proposed

that yield similar implications.8 For instance, Ottaviani and Sørenson (2009) show that initial infor-

mation asymmetries between bettors may lead to misperceptions of the true probabilities of horses

winning. Moreover, Henery (1985) and Williams and Paton (1997) argue that bettors discount a

constant proportion of the gambles in which they bet on a loser, possibly due to a self-serving bias

in which losers argue that conditions were atypical. Because longshot bets lose more often, this

discounting yields perceptions in which betting on a longshot seems more attractive.

3.3 Implications for Pricing Compound Lotteries

We now show how our two classes of models—while each just-identified based on data from win

bets—yield different implications for the prices of exotic bets. As such, our approach responds to

Sauer (1998, p.2026), which calls for research that provides “equilibrium pricing functions from

well-posed models of the wagering market.”

We discuss the pricing of exactas (picking the first two horses in order) in detail. Prices for these

bets are constructed from: the bettors’ utility function, indifference conditions as in (1) or (2), data

on the perceived likelihood of the pick for first, A, actually winning (pA or π(pA), depending on

the class), and conditional on A winning, the likelihood of the pick for second, B, coming second

(pB|A or π(pB|A)). A bettor will be indifferent between betting on an exacta on horses A then B in

that order, paying odds of EAB/1, and not betting (which yields no change in wealth, and hence a

7 There remains one minor issue: as Figure 1 shows, horses never win as often as suggested by their win odds
because of the track-take. Thus we follow the convention in the literature and adjust the odds-implied probabilities
by a factor of one minus the track take for that specific race, so that they are on average unbiased; our results are
qualitatively similar whether or not we make this adjustment.

8While the assumption of risk-neutrality may be too stark, as long as bettors gamble small proportions of their
wealth the relevant risk premia are second-order. For instance, assuming log utility, if the bettor is indifferent over
betting x% of their wealth on horse A or B, then: π(pA) log(w + wxOA)+ (1−π(pA)) log(w−wx) = π(pB) log(w +
wxOB)+(1−π(pB)) log(w−wx), which under the standard approximation simplifies to: π(pA)(OA +1)≈ π(pB)(OB +
1), as in (2).
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utility of one), if:

Risk-Love Class

(Risk-lover, Unbiased expectations)

pA pB|AU(EAB) = 1

Noting p =
1

U(O)
from (1)

EAB = U -1(U(OA)U(OB|A)
)

(3)

Misperceptions Class

(Biased expectations, Risk-neutral)

π(pA)π(pB|A)(EAB +1) = 1

Noting π(p) =
1

O+1
from (2)

EAB = (OA +1)(OB|A +1)−1 (4)

Thus, under the misperceptions class, the odds of the exacta EAB are a simple function of the

odds of horse A winning, OA, and conditional on this, on the odds of B coming second, OB|A. The

preferences class is more demanding, requiring that we estimate the utility function. The utility

function is estimated from the pricing of win bets (in Figure 3), and can be inverted to compute

unbiased win probabilities from the betting odds.9

Our empirical tests simply determine which of (3) or (4) better fit the actual prices of exacta

bets. We apply an analogous approach to the pricing of quinella and trifecta bets: the intuition is

the same; the mathematical details are described in Appendix B.

Note that both (3) and (4) require OB|A, which is not directly observable. In Section 4 we

infer the conditional probability pB|A (and hence π(pB|A) and OB|A) from win odds by assuming

that bettors believe in conditional independence. That is, we apply the Harville (1973) formula:

π(pB|A) =
π(pB)

1−π(pA)
; replacing π(p) with p in the risk-love class. This assumption is akin to

thinking about the race for second as a “race within the race” (Sauer, 1998). While relying on the

Harville formula is standard in the literature—see for instance Asch and Quandt (1987)—we show

that our results are robust to dropping this assumption and estimating this conditional probability,

pB|A, directly from the data.

9Our econometric method imposes continuity on the utility and probability weighting functions; the data mandate
that both be strictly increasing. Together this is sufficient to ensure that π(·) and U(·) are invertible. As in Figure 1,
we do not have sufficient data to estimate the utility of winning bets at odds greater than 200/1. This prohibits us from
pricing bets whose odds are greater than 200/1, which is most limiting for our analysis of trifecta bets.
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3.4 Failure to Reduce Compound Lotteries

As in Prospect Theory, the frame the bettor adopts in trying to assess each gamble is a key issue,

particularly for misperceptions-based models. Specifically, (4) assumes that bettors first attempt

to assess the likelihood of horse A winning, π(pA), and then assess the likelihood of B coming

second given that A is the winner, π(pB|A). An alternative frame might suggest that bettors directly

assesses the likelihood of first-and-second combinations: π(pA pB|A).10

There is a direct analogy to the literature on the assessment of compound lotteries: does the bet-

tor separately assess the likelihood of winning an initial gamble (picking the winning horse) which

yields a subsequent gamble as its prize (picking the second-placed horse), or does she consider the

equivalent simple lottery (as in Samuelson (1952))? Consistent with (4), the accumulated experi-

mental evidence (Camerer and Ho, 1994) is more in line with subjects failing to reduce compound

lotteries into simple lotteries.11

Alternatively, we could choose not to defend either assumption, leaving it as a matter for em-

pirical testing. Interestingly, if gamblers adopt a frame consistent with the reduction of compound

lotteries into their equivalent simple lottery form, this yields a pricing rule for the misperceptions

class equivalent to that of the risk-love class.12 Thus, evidence consistent with what we are calling

the risk-love class accommodates either risk-love by unbiased bettors, or risk-neutral but biased

bettors, whose bias affects their perception of an appropriately reduced compound lottery. By

contrast, the competing misperceptions class implies the failure to reduce compound lotteries and

posits the specific form of this failure, shown in (4).

This discussion implies that results consistent with our risk-love class are also consistent with

a richer set of models emphasizing choices over simple gambles. These include models based on

the utility of gambling, information asymmetry or limits to arbitrage, such as Ali (1977), Shin

10Unless the probability weighting function is a power function (π(p) = pα ), these different frames yield different
implications (Aczél, 1966).

11Additionally, note that (4) satisfies the compound independence axiom of Segal (1990).
12To see this, note that identical data (from Figure 1) is used to construct the utility and decision weight functions

respectively, so each is constructed to rationalize the same set of choices over simple lotteries. This implies each
class also yields the same set of choices over compound lotteries if preferences in both classes obey the reduction of
compound lotteries into equivalent simple lotteries.
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(1992), Hurley and McDonough (1995), Manski (2006). Any theory that prescribes a specific bias

in a market for a simple gamble (win betting) will yield similar implications in a related market for

compound gambles if gamblers assess their equivalent simple gamble form. By implication, reject-

ing the risk-love class substantially narrows the set of plausible theories of the favorite-longshot

bias.

4 Results from Exotic Bets

The first panel of Figure 4 shows the difference between the predictions for exactas of the risk-

love and misperceptions classes, expressed as a percent of the predictions. This demonstrates the

two classes of models yield qualitatively different predictions. Exotic bets have relatively low

probabilities of winning, so under the risk-love class a risk penalty results, yielding lower odds.

By contrast, the misperceptions model is based on the underlying simple lotteries, many of which

suffer smaller perception biases. The risk penalty becomes particularly important as odds get

longer; thus the difference in predictions grows along a line from the bottom right to the top left of

the first panel of Figure 4.

To focus on shorter-odds bets, in Table 1 we convert the predictions into the price of a con-

tingent contract that pays $1 if the chosen exacta wins: Price =
1

Odds+1
. We test the ability of

each economic model to predict this price by examining the mean absolute error of the predictions

of both models from the actual prices of exotic bets (column 1). We further investigate which of

the models produces predictions that are closer, observation-by-observation, to the prices that are

actually observed (column 3). The explanatory power of the misperceptions class is substantially

greater. The misperceptions class is six percentage points closer to the actual prices of exactas

(column 2) an improvement of 6.3/34.3 = 18.4% over the risk-love class.

The second panel of Figure 4 plots the improvement of the misperceptions class according

to the odds of the first and second place horses. When both horses have odds of less than 10/1,

which accounts for 70% of our data, the average improvement of the misperceptions class over the
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Figure 4: Differences between theories: predictions and improvements.
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Table 1: Mean Error Based Tests of Risk-Love versus Misperceptions Model

(1) (2) (3)

Test: Absolute Error: Absolute % Error: Which Prediction is
|Prediction−Actual| |Prediction−Actual|

Actual Closer to Actual? (%)

Panel A: Exacta Bets (n=197,551)

Risk-Love Model 0.0139 34.3% 42.1%

Misperceptions Model 0.0125 28.0% 57.9%

Risk-Love Error − 0.00137 6.3%
Misperceptions Error (.00002) (.1%)

Panel B: Quinella Bets (n=70,169)

Risk-Love Model 0.0274 39.0% 46.0%

Misperceptions Model 0.0258 36.3% 54.0%

Risk-Love Error − 0.00155 2.7%
Misperceptions Error (.00003) (.2%)

Panel C: Trifecta Bets (n=137,756)

Risk-Love Model 0.00796 100% 28.9%

Misperceptions Model 0.00532 57.4% 71.1%

Risk-Love Error − 0.00264 42.9%
Misperceptions Error (.00001) (.2%)

Notes: Standard errors in parenthesis. Predictions and actual outcomes are measured in the price of a contract that
pays $1 if the event occurs, zero otherwise.

risk-love class is 16.8%. At long odds (the top and right of the figure) there are clear patterns in

the data that are not well explained by either class, leaving room for more nuanced theories of the

favorite-longshot bias.

Panels B and C of Table 1 repeat this analysis, but this time extending our test to see which

model can better explain the pricing of quinella and trifecta bets. The intuition is similar in all

three cases; Appendix B contains further mathematical detail. Each of these tests across all three

panels shows that the misperceptions model fits the data better than the risk-love model.13

13We have also re-run these tests a number of other ways to test for robustness. Our conclusions are unaltered
by: whether or not we weight observations by the size of the betting pool, whether we drop observations where the
models imply very long odds, whether or not we adjust the models in the manner described in footnote 8; and different
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4.1 Relaxing the Assumption of Conditional Independence

Recall that we observe all of the inputs to both pricing models except OB|A, the odds of horse B

finishing second, conditional on horse A winning. In Section 4 we used the convenient assumption

of conditional independence to assess the likely odds of this bet, but there may be good reason

to doubt this assumption. For example, if a heavily favored horse does not win a race, this may

reflect the fact that it was injured during the race, which would imply that it is very unlikely to

come second. That is, the win odds may provide useful guidance on the probability of winning,

but may be a poor guide to the race for second. In this section we test the assumption of conditional

independence and derive two further tests can distinguish between the risk-love and misperceptions

models even if this assumption fails.14

We test the conditional independence assumption by asking whether we can improve on the

predictions of the Harville (1973) formula using other data. As in Section 3.3, the Harville formula

is: pB|A =
pB

(1− pA)
, where pA and pB reflect the probability that horses A and B, respectively, win

the race. We estimate linear probability model where the dependent variable is an indicator variable

for whether horse B finished second. A probit specification yields similar results.

The first specification of Table 2 shows that the Harville formula is an extremely useful pre-

dictor of the probability of a horse finishing second. As a guide for thinking about the explanatory

power of the Harville formula, note that the R2 of specification 1 is about four-fifths the R2 of the

regression of an indicator for whether a horse won the race on its betting odds. Columns 2 and 3

however, provide compelling evidence that we can do better than the Harville formula. Column

2 adds dummy variables representing the odds of the first place horse and the odds of the second

placed horse (using 100 odds groupings in each case, each grouping containing 1% of the odds

distribution). Column 3 includes a full set of interactions of these fixed effects, estimating the

conditional probability non-parametrically from the odds of the first and second place horses; this

regression is equivalent to estimating a large table showing the proportion of horses at odds of

functional forms for the price of a bet, including the natural log price of a $1 claim, the odds, or log-odds.
14Even if conditional independence fails, it is not immediately obvious that it yields errors that are correlated in

such as way as to drive our main results. Even so, this is an issue for empirical testing.
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Table 2: Predicting the Conditional Probability of a Second Place Finish

Dependent Variable: Indicator for whether a horse came in second
(Conditional on not winning)

Specification: (1) (2) (3)

Prediction from Conditional Independence 0.793 0.908
(Harville Formula) (.0012) (.0077)

Odds of this horse and odds of first horse F=32.3
(100 dummy variables for each) p=0.00

Full set of interactions: (this horse ∗ first horse) F=43.5
(10,000 dummy variables) p=0.00

R2 0.0782 0.0794 0.0813

Notes: Standard errors in parenthesis. Predictions and actual outcomes are measured in the price
of a contract that pays $1 if the event occurs, zero otherwise.

OB/1 who won the race for second, given the winner was at odds of OA/1. In both columns 2 and

3, F-tests show that these fixed effects are jointly statistically significant.

We now use non-parametrically estimated probabilities as a robustness check of our results in

Table 1. That is, rather than inferring pB|A (and hence π(pB|A) and OB|A) from the Harville formula,

we simply apply the empirical probabilities estimated using the Lowess procedure of Cleveland,

Devlin, and Grosse (1988). We implement this exercise in Table 3, calculating the price of exotic

bets under the risk-love and misperception models, but adapting our earlier approach so that pB|A

is derived from the data.15

The results in Table 3 are almost identical to those in Table 1. For exacta, quinella and trifecta

bets, the misperceptions model has greater explanatory power than the risk-love model.

15Because the precision of our estimates of pB|A vary greatly, WLS weighted by the product of the squared standard
error of pB|A and pA might be appropriate. Additionally, we could estimate pB|A directly from column 3 of Table 2.
These approaches produce qualitatively identical results.
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Table 3: Robustness to Relaxing Conditional Independence Assumption

(1) (2) (3)

Test: Absolute Error: Absolute % Error: Which Prediction is
|Prediction−Actual| |Prediction−Actual|

Actual Closer to Actual? (%)

Panel A: Exacta Bets (n=197,551)

Risk-Love Model 0.0117 33.7% 42.9%

Misperceptions Model 0.0109 24.4% 57.1%

Risk-Love Error − 0.00082 9.3%
Misperceptions Error (.00001) (.1%)

Panel B: Quinella Bets (n=70,169)

Risk-Love Model 0.0240 37.7% 48.7%

Misperceptions Model 0.0235 33.8% 51.3%

Risk-Love Error − 0.00046 3.9%
Misperceptions Error (.00002) (.2%)

Panel C: Trifecta Bets (n=137,756)

Risk-Love Model 0.00650 98.0% 30.4%

Misperceptions Model 0.00464 49.0% 69.6%

Risk-Love Error − 0.00186 49.0%
Misperceptions Error (.00001) (.1%)

Notes: Standard errors in parenthesis. Predictions and actual outcomes are measured in the price of a contract that
pays $1 if the event occurs, zero otherwise.

5 Simultaneous Pricing of Exactas and Quinellas

Our final test of the two classes relies only on the relative pricing of exacta and quinella bets, and

is more stringent as it considers these bets simultaneously. 16 As before, we derive predictions

from each class and test which better explains the observed data.

The exacta AB (which represents A winning and B coming second) occurs with probability

pA ∗ pB|A; the BA exacta occurs with probability pB ∗ pA|B. By definition, the corresponding quinella

16Note that these tests are distinct from the work by authors such as Asch and Quandt (1987) and Dolbear (1993),
who test whether exacta pricing is arbitrage-linked to win pricing. Instead, we ask whether the same model that
explains pricing of win bets can jointly explain the pricing of exacta and quinella bets.
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pays off when the winning exacta is either AB or BA and hence occurs with probability pA ∗ pB|A +

pB ∗ pA|B. Each model yields unique implications for the relative prices of the winning exacta and

quinella bets, and thus unique predictions for
pA pB|A

pA pB|A+pB pA|B
, which is also the probability horse A

wins given that A and B are the top two finishers. Specifically, consider the AB exacta at odds of

EAB/1, and the corresponding quinella at Q/1:

Risk-Love Class

(Risk-lover, Unbiased expectations)

Exacta: pA pB|AU(EAB) = 1

pB|A =
U(OA)
U(EAB)

(5)

Quinella: [pA pB|A+ pB pA|B]U(Q) = 1

pA|B = U(OB)
(

1
U(Q)

− 1
U(EAB)

)
(7)

Hence from (1), (5) and (7):

pA pB|A
pB pA|B+ pA pB|A

=
U(Q)

U(EAB)
(9)

Misperceptions Class

(Biased expectations, Risk-neutral)

Exacta: π(pA)π(pB|A)(EAB +1) = 1

π(pB|A) =
OA +1
EAB +1

⇒ pB|A = π
-1
(

OA +1
EAB +1

)
(6)

Quinella: [π(pA)π(pB|A)+π(pB)π(pA|B)](Q+1) = 1

π(pA|B) = (OB +1)
(

1
Q+1 −

1
EAB+1

)
⇒ pA|B = π -1

(
(OB+1)(EAB−Q)
(EAB+1)(Q+1)

)
(8)

Hence from (2), (6) and (8):

pA pB|A
pA pB|A+ pB pA|B

=
π -1

(
1

OA+1

)
π -1

(
OA+1
EAB+1

)
π -1

(
1

OA+1

)
π -1

(
OA+1
EAB+1

)
+π -1

(
1

OB+1

)
π -1

(
(OB+1)(EAB−Q)
(EAB+1)(Q+1)

) (10)

Equations (9) and (10) show that for any pair of horses at win odds OA/1 and OB/1 with

quinella odds Q/1, each class has different implications for how frequently we expect to observe

the AB exacta winning, relative to the BA exacta. That is, each class gives distinct predictions

about how often a horse with win odds OA/1 will come in first, given that horses with win odds

OA/1 and OB/1 are the top two finishers. As a first test, we regress an indicator for whether the

favorite out of horses A and B actually won, given that horses A and B finished first and second,

on the predictions of each model.17 In this simple specification, the misperceptions class yields a

robust and significant positive correlation with actual outcomes (coefficient = 0.63; standard error

= 0.014, n = 60,288), while the risk-love class is negatively correlated with outcomes (coefficient

=−0.59; standard error = 0.013, n = 60,288).

Where does the perverse negative correlation between the predictions of the risk-love class and

17In the rare event when horses A and B had the same odds we coded the indicator as 0.5.
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actual outcomes come from? To fix ideas, consider the case where the relative favorite, A, has win

odds of 4/1 and the relative longshot, B, has win odds of 9/1. The data give average exacta odds

EAB = 39/1 and EBA = 44/1 and average quinella odds Q = 20/1. These data agree extremely

closely with the predictions of the misperceptions class, so when (10) is applied to data from such

a race, it makes accurate predictions about
pA pB|A

pA pB|A+pB pA|B
.

Now examine the predictions of the risk-love class. Under this class, an exacta bet at odds

EAB = 39/1 is interpreted as having a large risk penalty, as should be clear from Figures 1 and

3. But if, in fact, compound bets are priced according to the misperceptions class—where bets at

odds of 4/1 and 9/1 do not attract much of a risk (or misperceptions) penalty—then by inferring

the existence of such a penalty, the risk-love model implicitly underestimates the probability that

exacta AB will occur. This underestimation is severe enough that the risk-love class predicts a less

than 50% chance that the relatively favored horse A will finish first out of A and B. But given that

A is the favorite of the two horses (OA/1 = 4/1 < 9/1 = OB/1), it is in fact more likely than not to

finish before B.

If, instead, the relative longshot B wins, the exacta EBA = 44/1 is observed. Applying the

logic above, the risk-love class infers that this price incorporates an even larger risk penalty, and

thus assigns a low probability to this exacta. In turn, this means that it yields a low probability

of horse B coming in first, given that A and B are the top two finishers. However, the risk-love

class will make this prediction only when exacta EBA is observed—that is, horse B actually wins

the race—which is exactly wrong. Thus, conditional on A and B being the top two finishers, the

risk-love class predicts the relative favorite, A, will win with probability less than 1
2 whenever A

wins. Similarly, whenever B wins, the risk-love class predicts that the relative longshot B will win

with probability less than 1
2 , and hence predicts that the probability that the relative favorite A wins

is more than 1
2 . These two forces lead to the perverse negative correlation found above.

The risk-love class fails here because it insists that the same risk-penalty be priced into all bets

of a given risk, regardless of the pool from which the bets are drawn. Yet exotic bets with middling

risk—relative to the other bets available in a given pool—do not tend to attract large risk-penalties,
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Figure 5: Dropping Conditional Independence
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even if those bets would be very risky relative to bets in the win pool (Asch and Quandt, 1987).

Note that (9) and (10) also yield distinct predictions of the winning exacta even within any set

of apparently similar races (those whose first two finishers are at OA/1 and OB/1 with the quinella

paying Q/1). Thus, we can include a full set of fixed effects for OA, OB, Q and their interactions

in our statistical tests of the predictions of each class.18 The residual after differencing out these

fixed effects is the predicted likelihood that A beats B, relative to the average for all races in which

a horses at odds of OA/1 and OB/1 fill the quinella at odds Q/1. That is, for all races we compute

the predictions of the likelihood that exacta with the relative favorite winning (AB) occurs, and

18Because the odds OA, OB and Q are actually continuous variables, we include fixed effects for each percentile of
the distribution of each variable (and a full set of interactions of these fixed effects).
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subtract the baseline OA ∗OB ∗Q cell mean to yield the predictions for each class of model, relative

to the fixed effects. The results, summarized in Figure 5, are remarkably robust to the inclusion of

these multiple fixed effects (and interactions): the coefficient on the misperceptions class declines

slightly, and insignificantly, while the risk-love class maintains a significant but perversely negative

correlation with outcomes. It should be clear that this test, by focusing only on the relative rankings

of the first two horses, entirely eliminates parametric assumptions about the race for second place.

These tests imply that a model from the risk-love class that accounts for the pricing of win bets

yields inaccurate implications for the relative pricing of exacta and quinella bets. By contrast, the

misperceptions class is consistent with the pricing of exacta, quinella and trifecta bets, and, as this

section shows, also consistent with the relative pricing of exacta and quinella bets. These results

are robust to a range of different approaches to testing the theories.

6 Conclusion

Employing a new dataset which is much larger than those in the existing literature, we document

stylized facts about the rates of return to betting on horses. As with other authors, we note a

substantial favorite-longshot bias. The term bias is somewhat misleading here. That the rate of

return to betting on horses at long odds is much lower than the return to betting on favorites

simply falsifies a model in which bettors maximize a function that is linear in probabilities and

linear in payoffs. Thus, the pricing of win bets can be reconciled by a representative bettor with

either a concave utility function, or a subjective utility function employing non-linear probability

weights that violate the reduction of compound lotteries. For compactness, we referred to the

former as explaining the data with risk-love, while we refer to the latter as explaining the data with

misperceptions. Neither label is particularly accurate as each category includes a wider range of

competing theories.

We show that these classes of models can be separately identified using aggregate data by re-

quiring that they explain both choices over betting on different horses to win and choices over
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compound bets: exactas, quinellas and trifectas. Because the underlying risk or set of beliefs,

depending on the theory, is traded in both the win and compound betting markets, we can derive

unique testable implications from both sets of theories. Our results are more consistent with the

favorite-longshot bias being driven by misperceptions rather than risk-love. Indeed, while each

class is individually quite useful for pricing compound lotteries, the misperceptions class strongly

dominates the risk-love class. This result is robust to a range of alternative approaches to distin-

guishing between the theories.

This bias likely persists in equilibrium because misperceptions are not large enough to generate

profit opportunities for unbiased bettors. That said, the cost of this bias is also very large, and de-

biasing an individual bettor could reduce their cost of gambling substantially.
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Appendix Data
Our dataset consists of all horse races run in North America from 1992 to 2001. The data was gen-
erously provided to us by Axcis Inc., a subsidiary of the jockey club. The data record performance
of every horse in each of its starts, and contains the universe of officially recorded variables having
to do with the horses themselves, the tracks and race conditions.

Our concern is with the pricing of bets. Thus, our primary sample consists of the 6,403,712
observations in 865,934 races for which win odds and finishing positions are recorded. We use
these data, subject to the data cleaning restrictions below, to generate Figures 1–3 and 5. We are
also interested in pricing exacta, quinella and trifectas bets and have data on the winning payoffs
in 314,977, 116,307 and 282,576 races respectively. The prices of non-winning combinations are
not recorded.

Due to the size of our dataset, whenever observations were problematic, we simply dropped
the entire race from our dataset. Specifically, if a race has more than one horse owned by the same
owner, rather than deal with coupled runners, we simply dropped the race. Additionally, if a race
had a dead heat for first, second or third place the exacta, quinella and trifecta payouts may not be
accurately recorded and so we dropped these races. When the odds of any horse were reported as
zero we dropped the race. Further if the odds across all runners implied that the track take was less
than 15% or more than 22%, we dropped the race. After these steps, we are left with 5,606,336
valid observations on win bets from 678,729 races and 1,485,112 observations from 206,808 races
include both valid win odds and payoffs for the winning exotic bets.

Appendix Pricing of Compound Lotteries using Conditional
Independence

In the text we derived the pricing formulae for exacta bets explicitly; this appendix extends that
analysis to also include the pricing of quinella and trifecta bets. The derivations of these pricing
formulae depend on the following two formulae originally derived in Section 3:

Risk-Love Model

(Risk-lover, Unbiased expectations)

U(O) =
1
p

(11)

Misperceptions Model

(Biased expectations, Risk-neutral)

π(p) =
1

O+1
(12)

As in the text, we derive pricing formulae by imposing that the expected utility of all bets is
equal. Consider a horse race which includes horses A, B and C. An exacta requires the bettor to
correctly specify the first two horses, in order. A quinella is a bet on two horses to finish first and
second, but the bettor need not specify their order. A quinella bet on horses A and B gives odds
QAB. A trifecta is a bet on three horses to finish first, second and third, and the bettor must correctly
specify their order. A trifecta bet on horses A, B and C, in that order, gives odds TABC. Thus the
quinella and trifecta analogues to equations (3) and (4) in the main text are:
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Risk-Love Model

(Risk-lover, Unbiased expectations)

Quinella:

[pA pB|A + pB pA|B]U(QAB) = 1

QAB = U−1
(

U(OA)U(OB|A)U(OB)U(OA|B)
U(OA)U(OB|A)+U(OB)U(OA|B)

)
(3q)

Trifecta:

pA pB|A pC|A,BU(TABC) = 1

TABC = U -1(U(OA)U(OB|A)U(OC|A,B)
)

(3t)

Risk-Love Model

(Risk-lover, Unbiased expectations)

Quinella:

[π(pA)π(pB|A)+π(pB)π(pA|B)](QAB +1) = 1

QAB =
(OA+1)(OB|A)(OB+1)(OA|B)

(OA+1)(OB|A)+(OB+1)(OA|B) (4q)

Trifecta:

π(pA)π(pB|A)π(pC|A,B)(TABC +1) = 1

TABC = (OA +1)(OB|A +1)(OC|A,B +1)−1 (4t)

The odds data, OA, OB and OC are directly observable. The utility U(·) and probability weight-
ing π(·) functions that we use are shown in Figure 3. In order to price these compound bets we
also need the conditional probabilities OB|A, OA|B and OC|A,B.

As noted in Section 3.3, we provide two approaches to recovering these unobservables. First,
we assume conditional independence, as in Harville (1973). Thus, pB|A = pB/(1− pA), pA|B =
pA/(1− pB) and pC|A,B = pC/(1− pA− pB). Our second approach directly estimates pB|A, pA|B, and
pC|A,B using Lowess smoothing as described in Cleveland, Devlin, and Grosse (1988). Under both
the Harville and Lowess approach these probability estimates and (11) and (12) are used to recover
the relevant odds OB|A, OA|B and OC|A,B.

24



References
Aczél, J. 1966. Lectures on Functional Equations and their Applications. New York: Academic

Press.

Ali, Mukhtar M. 1977. “Probability and Utility Estimates for Racetrack Bettors.” The Journal of
Political Economy 85 (4):803–815.

———. 1979. “Some Evidence of the Efficiency of a Speculative Market.” Econometrica
47 (2):387–392.

Asch, Peter, Burton G. Malkiel, and Richard E. Quandt. 1982. “Racetrack Betting and Informed
Behavior.” Journal of Financial Economics 10 (2):187–194.

Asch, Peter and Richard E. Quandt. 1987. “Efficiency and Profitability in Exotic Bets.” Economica
54 (215):289–298.

Busche, Kelly. 1994. ““Efficient Market Results in an Asian Setting”.” In Efficiency of Racetrack
Betting Markets, edited by Donald Hausch, V. Lo, and William T. Ziemba. New York: Academic
Press, 615–616.

Busche, Kelly and Christopher D. Hall. 1988. “An Exception to the Risk Preference Anomaly.”
The Journal of Business 61 (3):337–346.

Camerer, Colin F. and Teck Hua Ho. 1994. “Violations of the betweenness axiom and nonlinearity
in probability.” Journal of Risk and Uncertainty 8 (2):167–196.

Cleveland, William S., Susan J. Devlin, and Eric Grosse. 1988. “Regression by Local Fitting:
Methods, Properties, and Computational Algorithms.” Journal of Econometrics 37 (1):87–114.

Conlisk, John. 1993. “The Utility of Gambling.” Journal of Risk and Uncertainty 6 (3):255–275.

Dolbear, F. Trenery. 1993. “Is Racetrack Betting on Exactas Efficient?” Economica 60 (237):105–
111.

Friedman, Milton and Leonard J. Savage. 1948. “The Utility Analysis of Choices Involving Risk.”
The Journal of Political Economy 56 (4):279–304.

Gabriel, Paul E. and James R. Marsden. 1990. “An Examination of Market Efficiency in British
Racetrack Betting.” The Journal of Political Economy 98 (4):874–885.

Gandhi, Amit. 2007. “Rational Expectations at the Racetrack: Testing Expected Utility Using
Prediction Market Prices.” University of Wisconsin-Madison, mimeo.

Golec, Joseph and Maurry Tamarkin. 1998. “Bettors Love Skewness, Not Risk, at the Horse
Track.” Journal of Political Economy 106 (1):205.

Griffith, R.M. 1949. “Odds Adjustments by American Horse-Race Bettors.” The American Journal
of Psychology 62 (2):290–294.

25



Harville, David A. 1973. “Assigning Probabilities to the Outcomes of Multi-Entry Competitions.”
Journal of the American Statistical Association 68 (342):312–316.

Henery, Robert J. 1985. “On the Average Probability of Losing Bets on Horses with Given Starting
Price Odds.” Journal of the Royal Statistical Society. Series A (General) 148 (4):342–349.

Hurley, William and Lawrence McDonough. 1995. “A Note on the Hayek Hypothesis and the
Favorite-Longshot Bias in Parimutuel Betting.” The American Economic Review 85 (4):949–
955.
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