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Abstract

Many modern estimation methods in econometrics approximate an objective function,

through simulation or discretization for instance. The resulting “approximate” estimator

is often biased; and it always incurs an efficiency loss. We here propose three methods to

improve the properties of such approximate estimators at a low computational cost. The

first two methods correct the objective function so as to remove the leading term of the

bias due to the approximation. One variant provides an analytical bias adjustment, but

it only works for estimators based on stochastic approximators, such as simulation-based

estimators. Our second bias correction is based on ideas from the resampling literature;

it eliminates the leading bias term for non-stochastic as well as stochastic approximators.

Finally, we propose an iterative procedure where we use Newton-Raphson (NR) iterations

based on a much finer degree of approximation. The NR step removes some or all of

the additional bias and variance of the initial approximate estimator. A Monte Carlo

simulation on the mixed logit model shows that noticeable improvements can be obtained

rather cheaply.
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1 Introduction

The complexity of econometric models has grown steadily over the past two decades. The in-

crease in computer power contributed to this development in various ways, and in particular

by allowing econometricians to estimate more complicated models using methods that rely

on approximations. A leading example is simulation-based inference, where a function of the

observables and the parameters is approximated using simulations. In this case, the function

is an integral such as a moment, as in the simulated method of moments (McFadden (1989),

Pakes and Pollard (1989), Duffie and Singleton (1993)) and in simulated pseudo-maximum

likelihood (Laroque and Salanié (1989, 1993, 1994)). It may also be an integrated density/cdf,

as in simulated maximum likelihood (Lee (1992, 1995)) and in some testing procedures (Cor-

radi and Swanson (2007)).1 Then the approximation technique often amounts to Monte Carlo

integration. Other numerical integration techniques may be preferred for low-dimensional in-

tegrals, e.g. Gaussian quadrature, or both techniques can be mixed (see for example Lee

(2001)). Within the class of simulation-based methods, some nonparametric alternatives rely

on kernel sums instead of integration (e.g. Fermanian and Salanié (2004); Altissimo and Mele

(2009); Creel and Kristensen (2009); Kristensen and Shin (2008)). Other estimation methods

do not use simulations, but still involve numerical approximations, such as discretization of

continuous processes, using a finite grid in the state space for dynamic programming models,

and so on. Then the numerical approximation is essentially non-stochastic, unlike the case

of simulation-based inference—this difference will play an important role in our paper.

In all of these cases, we call the “approximator” the numerical approximation that replaces

the component of the objective function that we cannot evaluate exactly. Then the “exact

estimator” is the infeasible estimator that reduces the approximation error to zero. E.g. in

simulation-based inference, the exact estimator would be obtained with an infinite number

of simulations; in dynamic programming models it would rely on an infinitely fine grid. We

call “approximate estimator” the estimator that relies on a finite approximation.

The use of approximations usually deteriorates the properties of the approximate esti-

mator relative to those of the corresponding exact estimator: it is in general less efficient

and may suffer from additional biases. When the approximation error is unbiased and the

objective function is linear in the approximation error, then using approximations does not

create additional bias, although it deteriorates efficiency: a case in point is the simulated

method of moments (SMM). In all other cases, approximation creates both a bias and a loss

of efficiency. These can usually be controlled by choosing a sufficiently fine approximation;

but this comes at the cost of increased computation time. In many applications this may be

a seriously limiting factor; increased computer power helps, but it also motivates researchers

1Simulation-based inference is surveyed in Gouriéroux and Monfort (1996), van Dijk, Monfort and Brown
(1995) and Mariano, Schuerman and Weeks (2001) among others.
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to work on more complex models.

The contribution of this paper is twofold: First, we analyze the properties of the ap-

proximate estimator relative to the exact one in a very general setting that includes both

M-estimators and GMM estimators. Our findings encompass most known results in the lit-

erature on simulation-based estimators such as Lee (1995, 1999), Gouriéroux and Monfort

(1996) and Laroque and Salanié (1989).

Second, we propose three methods to improve on the precision of approximate estimators.

Each of these methods only carries a small additional computation burden. The first method

is targeted at a class of estimators that includes most stochastic approximators, such as

simulation-based estimators. These approximators are usually unbiased (at least for a large

number of simulations); but they have a variance that enters a nonlinear objective function.

As a consequence, the variance component of the simulated approximator in general leads to

an additional bias component in the approximate estimator relative to the exact one2. This

point is well-known; our contribution is mainly to derive a general formula for the additional

bias and variance of the approximate estimator, and to build upon our asymptotic expansions

in order to correct the objective function and eliminate the leading term of the additional

bias. Take for instance simulated maximum-likelihood on n observations, computed using S

simulations. The resulting approximate estimator has a bias of order 1/S, which dominates

its efficiency loss in finite samples. Our corrected estimator only has a bias of order 1/S3/2

at most, which can be a considerable improvement (applications typically use S = 50 to 500

or even more simulations, so that the bias should be reduced by a factor of ten at least.)

As we will show, our first method does not improve the properties of approximate estima-

tors that rely on non-stochastic approximators. As noted above, our correction reduces the

detrimental effect of the variance of the approximator on the approximate estimator. There-

fore it works best when the approximator uses random draws to simulate an expectation, as

then the bias of the approximator is zero. In contrast, if the approximator is non-stochastic

then by definition it has zero variance, and our first method is of no help. Laffont et al.

(1995) and Lee (1995) proposed a similar idea for SNLS estimators and SMLE of discrete

choice models respectively. Our general method includes theirs as special cases.

The second method is a more general bias correction procedure. We show that the leading

term of the additional bias in an approximate estimator based an an approximator of quality

S (say, S simulations) can also be removed by subtracting from the objective function an

average of similar objective functions computed with smaller values of S. This is in the

spirit of the parametric bootstrap and the jackknife. It applies equally well to stochastic and

non-stochastic approximators, although the terms to be subtracted differ.

Finally, our third proposed improvement is a two-step method which applies quite gen-

erally. In the first step, we compute the approximate estimator, using an approximator that

2As explained above, the simulated method of moments is exempt from this additional bias.
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may be coarser than what is usually done; and in the second step we run one or several

Newton-Raphson iterations based on the same objective function, but with a much finer

degree of approximation. The second step removes some or all of the additional bias and

variance of the initial approximate estimator.3

With simulation-based estimators or other stochastic approximation techniques, both

approaches can be combined: the approximate objective function can be corrected so as to

obtain an approximate estimator with a smaller bias, and this can be used in the first step

of the Newton-Raphson method.

We should stress that as our first and second method aim at reducing the bias that

approximation imparts on estimators, they are not meant to be useful for SMM estimators.

On the other hand, our third method can be used to improve efficiency as well as to reduce

bias, and so it is applicable to SMM estimation.

Our theoretical analysis is based on the insight that simulation-based estimators can

be considered as a special case of a standard semiparametric estimation problem where the

parameter of interest is computed using an infinite-dimensional nuisance parameter estimator,

e.g. an expectation or a density. We use some of the tools that are applied in that setting;

see for example Andrews (1994) and Chen et al. (2003). Our analysis also shares some

similarities with the recent literature on bias correction in the incidental parameters problem;

see for example Newey and Hahn (2004) and Arellano and Hahn (2007) for results in panel

models with fixed effects.

Our results are also somewhat related to higher-order expansions of nonlinear fully para-

metric and semiparametric estimators as derived in, amongst others, Bao and Ullah (2007),

Linton (1996) and Rilstone et al. (1996). However, in contrast to these papers, we carry out

the expansion around the exact estimator, as opposed to doing it around the true parameter

value. Thus, we only quantify biases and variances due to the approximation, and we set

aside the sampling errors in the exact estimation problem.

In all of the paper, we take the objective function as given; and we only discuss how the

presence of additional biases and variances due to the approximation of some component in

the function can be dealt with. For results on higher-order improvements through alternative

specifications of the objective function that defines the estimator, we refer the reader to e.g.

Newey and Smith (2004) and Newey et al. (2005).

The paper is organised as follows: Section 2 presents our framework and informally in-

troduces the methods we propose to improve the properties of approximate estimators. In

Section 3, we derive a bias and variance expansion of the approximate estimator relative to

the exact one. This expansion allows us to identify the leading terms; then in Section 4 we

propose a bias adjustment that removes the leading bias term due to stochastic approxima-

3Hajivassiliou (2000) considered a somewhat similar idea, where Newton-Raphson step based on the exact
likelihood function were used to improve the efficiency of a first-step simulated method of moments estimator.
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tions. The properties of the Newton-Raphson method are derived in Section 5. Section 6

discusses our third approach, based on the resampling literature. Finally, section 7 presents

the results of a Monte Carlo simulation study, using the mixed logit model as an example.

Several examples and proofs have been relegated to appendices A and B.

2 Framework

At the most general level, our framework can be described as follows. Given a sample

Zn = {z1, ..., zn} of n observations, the econometrician proposes to estimate a parameter θ0

using some extremum estimator,

θ̂n = arg min
θ∈Θ

Qn(θ, γ0), (1)

for some objective function

Qn(θ, γ) = Qn(Zn, θ, γ0(·, θ)).

The objective function depends on data, a finite dimensional parameter θ and a (usually)

infinite-dimensional one, some function γ0(z, θ).

Our paper focuses on the common case when the true function γ is not known on closed

form to the econometrician, and instead it has to be approximated numerically. In this case,

a feasible estimator is obtained by minimizing the analog approximate objective function

θ̂n,S = arg min
θ∈Θ

Qn(θ, γ̂S), (2)

where γ̂S depends on some approximation scheme of order S (e.g. S simulations, or a

discretization on a grid of size S). We will refer to γ̂S as an “approximator”of γ0. We now

present a few examples.

2.1 Examples of Approximate Estimators

Example 1: Simulated method of moments (SMM). The econometrician may just

want to base estimation on a set of moment conditions

E [g(z, θ0)] = 0. (3)

Given a weighting matrix Wn, the GMM estimator would minimize

Qn(θ) = Gn(θ)′WnGn(θ),
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where

Gn(θ) =
1

n

n∑
i=1

g(zi, θ).

Here, γ0 is simply the function g, which may be hard to evaluate, as in the multinomial

probit example of McFadden (1989). If for instance the problematic component of g is itself

an expectation, then it can easily be approximated as an average of simulated variables. In

McFadden’s example, g is the difference between choice dummy variables and their proba-

bilities. Let yi = k if individual i choose the kth alternative conditional on observables x;

then

gk(z, θ) = Z (x) [I {y = k} − Pr(y = k|x; θ)] ,

where I {·} denotes the indicator function, and Z (x) are a set of instruments. The probability

that an individual chooses k, γ0,k(z, θ) = Pr(y = k|x; θ), can be approximated by drawing

S choice errors for i and counting the proportion of draws for which choice k brings highest

utility,

γ̂k,S(z, θ) = S−1
S∑
s=1

I {ys (x, θ) = k}

where the ys (x, θ) are simulated choices (conditional on x).

In dynamic models, the above method is also applicable; but the simulations must be

computed recursively from the time series model in question. Suppose for example that the

observations come from a Markov model, zt = r (zt−1, εt; θ0), and we wish to estimate θ0

through the moment restriction g(zt, zt−1, θ0) = 0, with

g(zt, zt−1, θ) = w (zt, zt−1)− Eθ [w (zt, zt−1)]

for some function w. Duffie and Singleton (1993) then propose to simulate a “long” trajec-

tory from the model, zs (θ) = r (zs−1 (θ) , εs; θ), s = 1, ...S, and then approximate γ0 (θ) =

Eθ [w (zt, zt−1)] by

γ̂S (θ) =
1

S

S∑
s=1

w (zs (θ) , zs−1 (θ)) .

In certain situations, estimation based on conditional moment restrictions may be more

attractive. These can in general still be estimated by simple sample averages in a cross-

sectional setting, while this is normally not the case for dynamic latent variable models.

Suppose for example that zt = (yt, xt), where only xt has been observed, and we wish to

compute γ0(x, θ) = Eθ [φ (yt) |xt−1 = x]. Creel and Kristensen (2009) propose to approximate

this conditional expectation by simulating a long string from the time series model as before
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and then using kernel regression techniques,

γ̂S (x; θ) =

∑S
s=1 φ (ys (θ))Kh (x− xs−1(θ))∑S

s=1Kh (x− xs−1(θ))
,

where Kh (z) = K (z/h) /hd, K : Rd 7→ R is a kernel, h > 0 is a bandwidth, and d = dim (xt).

In contrast to the other approximators in this example, this approximator carries a bias due

to the kernel smoothing.

Example 2: Parametric simulated M-estimators. Laroque and Salanié (1989) intro-

duced a family of simulated pseudo-maximum likelihood (SPML) estimators. The simplest

one is the simulated nonlinear least squares (SNLS) estimator. Suppose we want to estimate

a nonlinear regression model,

y = m (x; θ) + u,

where, for some function w and some unobserved error ε,

m (x; θ) = E [w (x, ε; θ) |x] .

Defining γ0 (x; θ) = m (x; θ), our exact objective function takes the form

Qn(θ, γ0) =
1

n

n∑
i=1

(yi − γ0 (xi; θ))
2 .

If the conditional expectation that defines γ cannot be evaluated analytically, we may use

simulations instead. Draw i.i.d. random variables εs, s = 1, ..., S, and define γ̂S (x; θ) =

S−1
∑S

s=1w (x, εs; θ). Then an SNLS estimator is obtained by minimizing

Qn(θ, γ̂S) =
1

n

n∑
i=1

(yi − γ̂S (xi; θ))
2 .

It may be that in addition to the conditional mean, the econometrician wants to use

the information in the conditional variance implied by the model. Now γ0 = (m, v) where

m (x; θ) is the conditional mean and v (x; θ) is the conditional variance. Then we can define

a pseudo-maximum likelihood estimator (PMLE) as the minimizer of:

Qn(θ, γ) =
1

n

n∑
i=1

{
log (v (xi; θ)) +

[yi −m (xi; θ)]
2

v (xi; θ)

}
.

Again, in many situations γ0 (x; θ) cannot be written in closed form; but the conditional mean

can be simulated as in the first part of this example, and obviously the conditional variance

can be evaluated in the same way. The estimator based on the resulting approximate objective
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function is called an SPML estimator (of order 2).

Example 3: Simulated maximum likelihood. Simulated maximum-likelihood estima-

tion (SML) is another leading example of simulation-based M-estimation. As in Example 1,

it comes in a parametric and a nonparametric variant.

The parametric version is well-known. Suppose we want to estimate a (conditional)

distribution characterised by a parameter θ, p (y|x; θ). The natural choice is the maximum-

likelihood estimator,

Qn(θ, γ0) = − 1

n

n∑
i=1

log (γ0 (yi, xi; θ)) ,

where γ0 (y, x; θ) := p (y|x; θ). Sometimes the density γ0 cannot be written in closed form.

For example, in models with unobserved heterogeneity,

γ0 (z; θ) =

∫
w (y|x, ε; θ) f (ε) dε,

for some densities w and f . In this example, we can draw εi,s, s = 1, ..., S, from the distri-

bution of f and define γ̂S (z; θ) = S−1
∑S

s=1w (y|x, εs; θ).
More recently, Fermanian and Salanié (2004) proposed using a kernel estimator as an ap-

proximator. The idea is simple, and it applies quite generally. Suppose that data (yi, xi), i =

1, ..., n, has been generated by y = r(x, ε; θ0), with implied conditional density γ0 (y, x; θ) =

p(y|x, θ0). Then simulate the reduced form to generate samples ys(x, θ) = r(x, εs; θ) for

s = 1, . . . , S, and approximate the density fy|x with a kernel density estimator based on the

ys’s:

γ̂S (y, x; θ) =
1

S

S∑
s=1

Kh (y − ys(x, θ)) .

Maximizing the approximate likelihood in which γ̂S replaces γ defines the nonparametric

simulated maximum likelihood estimator (NPSML). It has different properties than other

simulation based M-estimators, as the nonparametric approximator is biased for finite S.

For a similar approach in time series models, see Altissimo and Mele (2009), Brownless,

Kristensen and Shin (2019) and Kristensen and Shin (2008).

We now turn to three examples that involve non-stochastic approximation.

Example 4: Dynamic programming models. Dynamic programming models often have

a multi-dimensional state space that forces analysts to resort to a finite grid and interpolation.

Take a simple, stationary single-agent decision problem for instance:

V (st; θ) = max
dt
{u(dt, θ) + βE [V (st+1; θ)|st, dt]} .
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Here the function γ0 is the unknown value function V . Often the fixed point on the value

function is computed by backwards induction, e.g. for use in maximum-likelihood estimation.

This is infeasible in many cases, as the state space becomes too large.

The fixed point of the value function may then be computed on a finite subset of S

values of the state st by backwards induction. Let (s1, . . . , sS) be such a “grid”, and assume

that VS,t+1(., θ) has been evaluated on this grid. Then the backward recursion evaluates for

k = 1, . . . , S,

VS,t(sk, θ) = max
dt

{
u(dt, θ) + βÊS [VS,t+1(st+1, θ)|st = sk, dt]

}
.

In this formula, the symbol ÊS is meant to represent a numerical approximation of the

conditional expectation of VS,t+1(st+1, θ) based on its values at the points (s1, . . . , sS). Then

the approximate estimator will match the policy function implied by the value function

VS,t(·, θ) to the observed policy function. See Norets (2009) for an example of a specific

approximation method for discrete choice models.

Example 5: Nested fixed-point algorithms. Fixed-point algorithms have found many

applications in the estimation of structural IO models after Berry, Levinsohn and Pakes

(1995). Here market shares are modelled as functions of unobserved and observed character-

istics, share = s (ξ, z; θ) for some function s where ξ and z respectively denote unobserved

and observed characteristics. The BLP procedure requires that the econometrician compute

the unobserved product characteristics given observed market shares; this involves inverting

the market share function in its first argument, ξ (share, z; θ) = s−1 (share, z; θ). Since s−1 is

normally not available on closed form, this is usually performed using a numerical fixed-point

algorithm. It leads to an approximate solution, ξS (share, z; θ), where S captures the number

of iterations and/or the tolerance level used in the algorithm4.

Example 6: Linearized models. Many models used in macroeconomics, for instance,

have a very complex likelihood function, so that a limited information estimation method is

used. But a large subclass cannot even be solved in a closed form. Then estimation is based

on an approximate model, often by linearizing equations close to a steady state. For our

purposes, this is quite similar to example 4 above: in both cases, the true model is replaced

with one that is easier to work with. The quality of the approximation can be improved at a

larger computational cost by using a finer grid in example 4, or in example 5 by using more

iterations of perturbations or projection methods for instance as advocated by Judd, Kubler

and Schmedders (2003). Note one additional difficulty: approximation errors get magnified

as the horizon is more remote, as shown by Fernández-Villaverde, Rubio-Ramirez and Santos

4Some more recent implementations use mathematical programming under equilibrium constraints, as
advocated by Judd and Su (2007).

9



(2006).

2.2 A Summary of our Proposed Improvements

In all of the examples above, using approximation reduces the quality of the estimator. Start

with our first three examples, which minimize objective functions where a mathematical

expectation is replaced by a function of simulated draws. The mean of course is an unbiased

estimator of the expectation; but in many simulation-based estimation methods the objective

function depends nonlinearly on the simulated mean, so that the approximate estimator based

on S simulations has an additional bias, along with a loss of efficiency. In many cases both

are of order 1/S; this holds for example when the approximator simulates an expectation

through a simple average. The efficiency loss may not be a concern in large samples; but the

additional bias persists asymptotically.

On the other hand, the simulated method of moments (Example 1) has nicer properties

when the moment condition is linear in the simulated mean. Then the sampling errors from

the simulations are averaged over observations, and the additional bias vanishes in large

samples. The asymptotic efficiency loss still is of order 1/S.

Similarly, non-stochastic approximations lead to deteriorations of the properties of the

resulting estimators. Take the problem of computing the density p (y|x; θ) in Example 3

for instance. If the dimensionality of the integration variable (ε) is small, then instead of

simulations the numerical integration may be done by an S point Gaussian quadrature, as in

Lee (2001). As demonstrated in the next section, the resulting approximate estimator will

suffer from additional biases relative to the exact one.

Thus in general the approximate estimator θ̂n,S can only be consistent if S goes to infinity

as n goes to infinity; and
√
n-consistency requires that S go to infinity fast enough, in which

case the asymptotic variance is the same as that of the exact estimator. In other words

(Section 3 will give more precise statements and regularity conditions),

||θ̂n,S − θ̂n|| = oP
(
1/
√
n
)

as n → ∞ for some sequence S = S (n) → ∞, and there is no first-order difference between

the exact and the approximate estimator. However, in practice S may need to be quite large

before this result can apply; and the resulting computations may become prohibitively costly.

Our proposed methods yield estimators that may be just as efficient as large-S approximate

estimators, and yet are computationally much less burdensome.

We take as starting point the approximate estimator defined in eq. (2) where S is “small”

in the (admittedly loose) sense that the econometrician would dearly like to have enough

computational power to increase S. In general the properties of θ̂n,S may not be very good.

Our first two methods correct the objective function so as to obtain an estimator with better
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bias properties. Instead of selecting θ̂n,S to minimize Qn(θ, γ̂n,S), we select

θ̂
b

n,S = arg min
θ∈Θ
{Qn(θ, γ̂S)−∆n,S (θ)} , (4)

where ∆n,S (θ) corrects for at least the leading term of the approximation bias. Sections 4

and 5 present two approaches to computing this ∆ term.

This first approach is an analytical bias adjustment that works for all known simulation-

based estimators. In the context of SNLS, it boils down to the adjustment proposed in Laffont

et al. (1995) (also see Laroque and Salanié (1989, 1993); Bierings and Sneek (1989)); and for

SML of discrete choice models, it yields the adjustment in Lee (1995). These papers derived

an unbiased and consistent estimator of the leading bias component due to simulations. We

extend their result to general simulation-based estimators and show how to compute ∆n,S (θ).

We note that SNLS is a quite special and favorable case, as the objective function is only

quadratic in the simulated mean such that ∆n,S (θ) adjusts for all biases due to simulations. In

general using ∆n,S (θ) will only correct for the leading term of the bias when using stochastic

approximation. This is for example the case in SML.

Our second proposal is an alternative to the analytic bias adjustment and works for

both stochastic and non-stochastic approximators. The corrected estimator is defined as in

equation (4), but the adjustment term ∆n,S(θ) is constructed in a different manner, more

closely related to the jackknife bias adjustment. To illustrate, suppose that

E [Qn(θ, γ̂S)−Qn(θ, γ)] =
B(θ)

S
+ o

(
S−1

)
.

Now take two independent approximators γ̂
[1]
S/2 and γ̂

[2]
S/2 of order S/2. For each approxima-

tor m = 1, 2, we can define a corresponding objective function based on data and on the

approximator, Qn(θ, γ̂
[m]
S/2). We then define the adjustment as

∆n,S(θ) =
1

4

[
Qn(θ, γ̂

[1]
S/2) +Qn(θ, γ̂

[2]
S/2)

]
.

Then the adjusted objective function satisfies

E [{Qn(θ, γ̂S)−∆n,S(θ)} −Qn(θ, γ)] =
B(θ)

S
− 1

4

[
2B(θ)

S
+

2B(θ)

S

]
+ o

(
S−1

)
= o

(
S−1

)
,

so that the leading term cancels out. We provide details in section 5. Note that the above

argument does not require the approximators to be independent. However, for the variance

of the bias corrected estimator not to increase too much, it is desirable to choose γ̂
[m]
Sm

to be

independent.

Our third proposed method works with non-stochastic approximations as well as with
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stochastic approximations; it extends the well-known idea that a consistent estimator can

be made asymptotically efficient by applying one Newton-Raphson (NR) step of the log-

likelihood function to it. E.g. if θ̂n is a consistent estimator of θ0 in a model with log-likelihood

Ln(θ), then θ̂
NR

n = θ̂n −
[
∂2L(θ̂n)/∂θ∂θ′

]−1
∂Ln(θ̂n)/∂θ is consistent and asymptotically

efficient.

We apply this to our setting by starting from either the approximate estimator θ̂n,S

obtained in (2), or the bias-corrected version θ̂
b

n,S of (4). We already know that both are

consistent when both S and n go to infinity, and that when stochastic approximations are

used, the finite-S bias of θ̂
b

n,S is smaller than that of θ̂n,S . For notational simplicity, denote

either of these two starting points as θ̄n,S . We then define the corrected estimator through

one or possibly several Newton-Raphson iterations of an approximate objective function that

uses a much finer approximation, S∗ � S. Denote

Gn (θ, γ) =
∂Qn
∂θ

(θ, γ) and Hn (θ, γ) =
∂2Qn
∂θ∂θ′

(θ, γ) ;

and define

θ̂
(k+1)

n,S = θ̂
(k)

n,S −H−1
n (θ̂

(k)

n,S , γ̂S∗)Gn(θ̂
(k)

n,S , γ̂S∗), k = 1, 2, 3, ... (5)

where θ̂
(1)

n,S = θ̄n,S and we use the S∗th order approximator, γ̂S∗ , in the iterations.

Note that the cost of computing this new estimator from the first one is (very) roughly

S∗/S times the cost of one iteration in the minimization of Qn(θ, γ̂S∗). Since the minimization

easily can require a hundred iterations or so, we can therefore take S∗ ten or twenty times

larger than S without significantly adding to the cost of the estimation procedure.5 Also,

one iteration is enough if S∗ goes to infinity at least as fast as S. We discuss this method in

more detail in Section 6.

3 Properties of Approximate Estimators

Before we come to our proposed bias adjustments, we first derive an asymptotic expansion

of the bias and variance of the unadjusted approximate estimator relative to the infeasible,

exact estimator. This will enable us to identify the leading bias and viarance terms that

we wish to adjust for, and evaluate the improvements from these adjustments. In order to

establish the establish the expansion formally, we need to make assumptions both on the

estimating equation and on the approximators.

5In many cases, a large part of the dimensionality of θ only comes into play within some linear indexes
θ′x; then the trade off is even more favourable since the computation of the second derivative Hn is much
simplified.
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3.1 The Estimating Equation

We restrict our attention to estimators θ̂n that (asymptotically) satisfy a first order condition

of the form

Gn(θ̂n, γ0) = oP
(
1/
√
n
)
,

while the approximate estimator, θ̃n = θ̂n,S , satisfies

Gn(θ̂n,S , γ̂S) = oP
(
1/
√
n
)
.

Furthermore, we assume that Gn (θ, γ) takes the form of a sample average,

Gn (θ, γ) =
1

n

n∑
i=1

g (zi; θ, γ) . (6)

Our setup allows for two-step GMM estimators where the weight matrix has been estimated.

In the following we shall assume that Gn (θ, γ) is a smooth function in θ and γ which rules out

estimators minimizing non-differentiable objective functions. We conjecture that our results

could be generalized to this class of estimators by combining our approach with the results

of, for example, Newey and McFadden (1994, Section 7) and Pollard (1985).

The above framework includes all of the examples described in Section 2. When the

estimator is defined by (1) we may choose

Gn (θ, γ) =
∂Qn
∂θ

(θ, γ) .

For example, with Qn (θ, γ) = n−1
∑n

i=1 q (zi; θ, γ), we have g (zi; θ, γ) = ∂q (zi; θ, γ) / (∂θ).

In the case of GMM estimators where Qn (θ, γ) = Mn(θ, γ)WnMn(θ, γ) with Wn →P W

and Mn(θ, γ) = 1
n

∑n
i=1m (zi; θ, γ), we may choose g (zi; θ, γ) = Wm (zi; θ, γ) since this is

(asymptotically) equivalent to gn (zi; θ, γ) = Wnm (zi; θ, γ).

Our estimation problem is very similar to two-step semiparametric estimation where in

the first step a (possibly infinite-dimensional) nuisance parameter (γ0) is replaced by its

estimator (the approximator γS), which in turn is used to obtain an estimator θ̂S of θ0; see,

for example, Andrews (1994) and Chen et al (2003).

We assume that the function of interest γ0 : Z × Θ 7→ Rp belongs to a function space

Γ equipped with a norm ‖·‖. In most cases, the norm will be the Lq-norm induced by the

probability measure associated with our observations, ‖γ‖ = E [‖γ (z)‖q]1/q for some q ≥ 1.

We also assume that the objective functions are smooth functionals of θ and γ, and introduce
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the first-order derivative of Gn (θ, γ) w.r.t. θ,

Hn (θ, γ) =
1

n

n∑
i=1

h (zi; θ, γ) , with h (zi; θ, γ) =
∂g

∂θ
(zi; θ, γ) ,

and their corresponding population versions,

G (θ, γ) = E [g (zi; θ, γ)] , H (θ, γ) = E

[
∂g (zi; θ, γ)

∂θ

]
.

We first impose conditions to ensure that the exact, but infeasible estimator and its approx-

imate version are both well-behaved:

A.1 {zi} is stationary and geometrically α-mixing.

A.2 The parameter space Θ is compact and θ0 is in its interior.

A.3 (i) The function g (z; θ, γ) is continuous in θ ∈ Θ, E [supθ∈Θ ‖g (zi; θ, γ0)‖] <∞
and (ii) G (θ, γ0) = 0 if and only if θ = θ0.

A.4 For all (θ, γ) in a neighbourhood of (θ0, γ0):

(a) g (z; θ, γ) is continuously differentiable w.r.t. θ, and its derivative, h (z; θ, γ), is

continuous in θ ∈ Θ,

(b) For some δ > 0,

E

[
sup

‖θ−θ0‖<δ
‖h (zi; θ, γ0)‖

]
<∞

(c) H0 := H (θ0, γ0) is positive definite,

(d) for some δ, λ, H̄ > 0,

E

[
sup

‖θ−θ0‖<δ
‖h (zi; θ, γ)− h (zi; θ, γ0)‖

]
≤ H̄ ‖γ − γ0‖

λ .

Assumption A.1 rules out strongly persistent data, and allows us to obtain standard

rates of convergence for the resulting estimators. The geometric mixing condition could be

weakened, but this would lead to more complicated results; we refer the reader to Kristensen

and Shin (2008) for results on strongly persistent and/or non-stationary data (and thereby

estimators with non-standard rates.)

The second assumption, A.2, is standard in the asymptotic analysis of extremum esti-

mators, while A.3 ensures that a uniform law of large numbers hold for Gn (θ, γ) and that

θ0 is identified. Primitive conditions for the uniform moment condition in A.3 to hold in a

cross-sectional setting can be found in Newey and McFadden (1994).
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Finally, A.4 imposes additional smoothness conditions on g (z; θ, γ) for γ 6= γ0. In partic-

ular, when γ depends on θ (as is the case for all of our examples), it requires the approximator

to be a smooth function of θ. Therefore A.4 rules out discontinuous and non-differentiable

approximators such as the simulated method of moment estimators for discrete choice models

proposed in McFadden (1989) and Pakes and Pollard (1989), as the approximate moment

conditions for these models involve indicator functions.6 The Lipschitz condition imposed on

h (z; θ, γ′) is used to ensure that Hn (θ, γ̂S)→P H (θ, γ) uniformly in θ as γ̂S →P γ.

Under the additional assumption that E
[
‖g (zi; θ0, γ0)‖2

]
<∞, conditions A.1-A.4 imply

that θ̂n has standard “sandwich” asymptotics,

√
n(θ̂n − θ0)→d N

(
0, H−1

0 ΩH−1
0

)
.

Our higher-order results will rely on a functional expansion of Gn (θ, γ) w.r.t. γ. To take

a finite-dimensional analogy, we would like to be able to use a Taylor expansion,

Gn(θ, γ̂S) = Gn(θ, γ0)+
∂Gn(θ, γ0)

∂γ′
(γ̂S−γ)+

1

2
(γ̂S−γ)′

∂2Gn(θ, γ0)

∂γ∂γ′
(γ̂S−γ)+oP

(
‖γ̂S − γ‖

2
)
.

Then we can use our knowledge of the properties of the approximators γ̂S to bound the

difference between approximate and exact estimating equation, and finally to characterize

the difference between approximate and exact estimators. For such an expansion to be well-

defined and for the individual terms in the expansion to be well-behaved, we need to impose

some further regularity conditions on g (zi; θ0, γ) as a functional of γ; and since our γ’s are

not vectors but functions, the notation will be somewhat more involved.

In all of the following, ∆γ ∈ Γ denotes a small change around γ0.

A.5(m) Assume that for some 0 < δ, λ, Ḡ0 <∞, the following hold:

(i)

E

[
sup
‖∆γ‖≤δ

sup
θ∈Θ
‖g (z; θ, γ0 + ∆γ)− g (z; θ, γ0)‖

]
≤ Ḡ0 ‖∆γ‖λ . (7)

(ii) There exist functionals ∇kg (z; θ) [dγ1, ..., dγk], k = 1, ...,m, which are linear in each

component dγk ∈ Γ such that for some K0 <∞:

E

[
sup

‖θ−θ0‖≤δ

∥∥∥∥∥g (z; θ, γ0 + ∆γ)− g (z; θ, γ0)−
m∑
k=1

1

k!
∇kg (z; θ) [∆γ, ...,∆γ]

∥∥∥∥∥
]
≤ Ḡ0 ‖∆γ‖m+1 , .

(8)

6These cases can be handled by introducing a smoothed version of the approximators in the spirit of
Fermanian and Salanié (2004).
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Furthermore, for k = 2, ...,m,

E

[
sup

‖θ−θ0‖≤δ
‖∇g (z; θ) [∆γ]‖2

]
≤ Ḡ1 ‖∆γ‖2 , (9)

E

[
sup

‖θ−θ0‖≤δ

∥∥∥∇kg (z; θ) [∆γ1, ...,∆γk]
∥∥∥2+δ

]
≤ Ḡ2 (‖∆γ1‖ · · · ‖∆γk‖)

(2+δ) . (10)

Assumption A.5 restricts g (z; θ, γ) to be m times pathwise differentiable w.r.t. γ with

differentials ∇kg (z; θ) [dγ1, ..., dγk], k = 1, ...,m. These differentials are required to be Lip-

chitz in dγ1, ..., dγk. For a given choice of m, this allows us to use an mth order expansion

of Gn (θ, γ) w.r.t. γ to evaluate the impact of γ̂S . In particular, the difference between the

approximate and exact objective function can be written as

Gn(θ, γ̂S)−Gn(θ, γ0) =
m∑
k=1

1

k!
5k Gn(θ)[γ̂S − γ, ..., γ̂S − γ] +Rn,S , (11)

where Rn,S = OP (‖γ̂S − γ0‖
m+1) is the remainder term, and

5kGn(θ) [dγ1, ..., dγm] =
1

n

n∑
i=1

∇kg (zi; θ0) [dγ1, ..., dγk] .

To evaluate the higher-order errors due to the approximation, we will derive (the order of)

the mean and variance of each of the terms in the sum on the right hand side of Eq. (11).

3.2 The Approximators

We now impose regularity conditions on the approximation method. Let us first introduce

two alternative ways of implementing the approximation: Either one common approximator

is used across all observations, or a new approximator is used for each observation. In the

first case, the approximate sample moment takes the form

Gn (θ, γ̂S) =
1

n

n∑
i=1

g (zi; θ, γ̂S) , (12)

while in the second case,

Gn (θ, γ̂S) =
1

n

n∑
i=1

g
(
zi; θ, γ̂i,S

)
. (13)

We will refer to the approximate estimator based on eq. (12) as an estimator based on common

approximators (ECA) and to (13) as an estimator based on individual approximators (EIA).

Thus ECAs use one and the same approximator across all data points. In simulation-
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based estimation, this scheme was proposed by Lee (1992) for cross-sectional discrete choice

models, and for Markov models in Kristensen and Shin (2008). The scheme has also been

used in stationary time series models where one long trajectory of the model is simulated and

used to compute simulated moments (see Example 1) or densities (see Altissimo and Mele,

2009; Fermanian and Salanié, 2004). When the number of approximators remains fixed, the

resulting approximate estimator is similar to semiparametric two-step estimators where in

the first step a function is nonparametrically estimated, see e.g. Andrews (1994) and Chen

et al (2003).

In contrast, EIAs employ n approximators—one for each observation. Thus, the dimen-

sion of γ̂S (x; θ) =
(
γ̂1,S (x; θ) , ..., γ̂n,S (x; θ)

)
increases with sample size. For simulation-based

estimators, this approach was taken in, amongst others, Laroque and Salanié (1989), McFad-

den (1989), and Fermanian and Salanié (2004), where the n approximations were chosen to be

mutually independent. We note that EIAs, where the dimension of γ̂S increases with sample

size, give rise to an incidental parameters problem. Some of our results for this situation

are similar to those found in the literature on higher-order properties and bias-correction of

estimators in an incidental parameters setting, see e.g. Arellano and Hahn (2007) and Hahn

and Newey (2004).

Finally, we impose conditions on the approximators. In order to give conditions that

apply to both of the approximation schemes discussed above (ECA and EIA), we state our

assumptions for J independent approximators: J = 1 for the ECA in (12), while J = n for

the EIA in (13). In what follows, it is crucial to separate assumptions on the bias of the

approximator

bS (z; θ) := E[γ̂j,S (z; θ) |x]− γ (z; θ)

from assumptions on its stochastic component

ψj,S (z; θ) := γ̂j,S (z; θ)− E
[
γ̂j,S (z; θ) |z

]
.

A.6(p) The approximator has the following properties:

(i) γ̂1,S (z; θ) , ...., γ̂J,S (z; θ) are mutually independent and are all independent of Zn.

(ii) The bias bS is of order β > 0:

‖bS (·; θ)‖ = S−β b̄ (θ) + o(S−β).

(iii) The stochastic component of the approximator satisfies

E
[∥∥ψj,S (·; θ)

∥∥p] = S−αpvp (θ) + o(S−αp),

for some constant αp > 0 and some p ≥ 1.
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Assumption A.6 is sufficiently general to cover all of the examples in Section 2. A.6.i

clearly has no bite when non-stochastic approximators are used, or in an ECA setting. For

most simulation-based estimators in a dynamic setting for instance, only one approximator

is used for all observations7; and so A.6.i is automatically satisfied in these cases.

For stochastic approximators in an ECA, A.6.i will be satisfied by drawing J independent

batches of size S, and then using one batch per approximation. This does not rule out

dependence between the simulated values within each batch, as will for example be the case

when drawing recursively from a time series models.

There is one situation where J = n → ∞ and the independence assumption is violated:

sequential approximation schemes used in dynamic latent variable models such as particle

filters, see e.g. Brownlees, Kristensen and Shin (2009) and Olsson and Rydén (2008). In this

case, we have a sequence of approximators where the approximator of the conditional density

of the current observation depends on the one used for the previous observation, thereby not

satisfying A.6.i.

For parametric approximators in simulation-based inference, the bias bS is typically zero

and so A.6.ii holds with β =∞. We discuss this and other cases in more detail below.

A.6.iii requires that the approximator have p moments and that each of these be suitably

bounded as a function of S. Note that, by Jensen’s inequality, the individual rates are

ordered, αp/p ≤ αq/q for 1 ≤ p ≤ q.8 We will choose p ≥ 1 in conjunction with the order

of the expansion m ≥ 1 of Eq. (11), since we wish to evaluate the mean and variance

of each of the higher-order terms. For example, in order to ensure that the variance of

∇kGn (θ0) [γ̂S , ..., γ̂S ] exists and to evaluate its rate of convergence, we will require A.6.iii to

hold with p = 2k.

One particular class of stochastic approximators that we consider in more detail is the

following:

A.6’(p) Assume that γ̂j,S (z; θ) takes the form

γ̂j,S (z; θ) =
1

S

S∑
s=1

wS (z, εj,s; θ) . (14)

For each j = 1, ..., J , {εjs}Ss=1 is stationary and geometrically β-mixing; {εjs}Ss=1 and

{εks}Ss=1 are independent for j 6= k, and they are all independent of the sample; the

7See e.g. Duffie and Singleton (1994), Creel and Kristensen (2009) and Kristensen and Shin (2008).
8We have E

[∥∥ψj,S (·; θ)
∥∥p] = cpS

−αp for any p ≥ 1. Then by Jensen’s inequality, since q/p ≥ 1,

cq/pp S−αpq/p = E
[∥∥ψj,S (·; θ)

∥∥p]q/p ≤ E
[∥∥ψj,S (·; θ)

∥∥q] = cqS
−αq .

This inequality can only hold for all S ≥ 1 if αpq/p ≥ αq.
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function wS (z, εjs; θ) satisfies

w̄S (z; θ) := E [wS (z, εjs; θ) |x] = γ (z; θ) + S−β b̄ (z; θ) ,

while

ψj,S (z; θ) =
1

S

S∑
s=1

eS (z, εjs; θ) , eS (z, εjs; θ) = wS (z, εjs; θ)− w̄S (z; θ) ,

satisfies the conditions in A.6(p).iii.

To our knowledge, the above class of approximators includes all simulation-based approx-

imators proposed in the literature. The requirement that {εjs}Ss=1 be geometrically β-mixing

is only needed in the proof of Theorem 2 and could be weakened to strongly mixing elsewhere,

but we maintain the assumption of β-mixing throughout to streamline the assumptions. The

bias and variance of approximators on the form given in eq. (14) follow directly result from

those of the simulators wS . Suppose that we work with the L2-norm; then assumption

A.6(p).iii holds in great generality if E [||wS (x, ε; θ) ||p|x] = O
(
Sp/2−µ

)
for some µ > 0; this

is proved in Lemma 5 in the Appendix.

In most cases, the simulating function wS ≡ w is actually independent of the num-

ber of simulations, and the approximator has no bias: bS ≡ 0 and so β = ∞. Moreover,

E [||w (x, ε; θ) ||p|x] then is constant and A.6(p).iii typically holds with αp = p/2.

Approximators of the form (14) also include simulation-based estimators that rely on

kernel sums to approximate a density or a conditional mean, as in the NPSML method

of Fermanian and Salanié (2004) and the NPSMM of Creel and Kristensen (2009). As an

example, consider the NPSML estimator: In this case, wS (y, x, εs; θ) = Kh (ys (x, θ)− y)

where the bandwidth h = h (S)→ 0 as S →∞. Let d = dim (y) and suppose that we use a

kernel of order r. The bias component satisfies

w̄S (y, x; θ) = f (y|x; θ) + hr
∂rf (y|x; θ)

∂yr
+ o (hr) ,

Furthermore, it is easily checked that E [|Kh (ys (x, θ)− x) |p|x] = O
(
1/
(
hd(p−1)

))
for all

p ≥ 2 under suitable regularity conditions. Thus, with a bandwidth of order h ∝ S−δ for

some δ > 0, A.6(p) holds with β = rδ and αp = p/2− δd (p− 1), p ≥ 2.

As is well-known, the asymptotic mean integrated squared error is smallest when the

bias and variance component are balanced. This occurs when δ∗ = 1/ (2r + d), leading to

β = α1/2 = r/ (2r + d). We recover of course the standard nonparametric rate of S−2r/(2r+d)

for AMISE; for example in the textbook case with r = 2 and d = 1, we obtain AMISE =

O
(
S−4/5

)
.

We should stress at this point that while the standard nonparametric rate is optimal
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for the approximation of the individual densities that make up the the likelihood, this does

not imply in any way that this rate yields the best NPSML estimators. In fact, we will

see later that the bandwidth derived above is not necessarily optimal when the goal is to

minimize the MSE of θ̂n,S . This is akin to results for semiparametric two-step estimators

where undersmoothing of the first-step nonparametric estmator is normally required for the

parametric estimator to be
√
n-consistent. For example, we show that the optimal rate for

NPSML estimation turns out to be δ∗∗ = 1/(r + d+ 2), see Section 3.2. Interestingly, in the

case where standard second-order kernels are employed (r = 2), the optimal rate minimizing

the MSE of the kernel estimator is also optimal w.r.t. the MSE of θ̂n,S , δ∗ = δ∗∗ = 1/(4 + d).

Now consider an approximation that does not involve any randomness, as with numerical

integration, discretization, or numerical solution of differential equations. Then by construc-

tion the conditional variance of the approximator is zero, so that αp = +∞, p ≥ 2, but

approximation imparts a bias, which in leading cases obeys assumption A.6 for some β > 0.

We will see later that the analytical bias adjustment technique based on correcting the objec-

tive function has no bite in this situation. On the other hand, the proposed Jackknife-type

bias adjustment and Newton-Raphson procedure work for both stochastic and non-stochastic

approximations.

3.3 The Effect of Approximators

The following theorem states the rate at which the approximate objective function converges

towards the exact one; and shows how it translates directly into a bound on the difference be-

tween the approximate estimator and the exact estimator. To state the asymptotic expansion

in a compact manner, we introduce some moments which will make up the bias terms:

B1 = H−1
0 E [5Gn(θ0)[bS ]] , BS,2(θ) =

1

2
H−1

0 E
[
52Gn(θ0)[ψS , ψS ]

]
, (15)

BS,3(θ) =
1

2
H−1

0 E
[
52Gn(θ0)[bS , bS ]

]
.

Theorem 1 Assume that A.1-A.4, A.5(2) and A.6(4) hold. Then for both the ECA and EIA

the approximate objective function satisfies:

E [5Gn(θ0)[ψS ]] = 0, BS,1 = O
(
S−β

)
, BS,2 = O

(
S−α2

)
, BS,3 = O

(
S−2β

)
, (16)

Var (5Gn(θ0)[bS ]) = O
(
n−1S−β

)
, Var

(
52Gn(θ0)[bS , bS ]

)
= O

(
n−1S−2β

)
(17)

and the remainder term in equation (11) satisfies:

Rn,S(θ) = O
(
S−3β

)
+O

(
S−α3

)
.
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Furthermore:

(ECA) The approximate objective function based on eq. (12) satisfies:

Var (5Gn(θ0)[ψS ]) = Var (5ḡ (ψS ; θ0)) +O
(
n−1S−α2

)
, (18)

Var
(
52Gn(θ0)[ψS , ψS ]

)
= O

(
S−α2

)
+O

(
n−1S−α4

)
, (19)

where 5ḡ (dγ; θ0) := E [5g (z; θ0) [dγ]] satisfies Var (5ḡ (ψS ; θ0)) = O (S−α2).

As a consequence, the ECA satisfies:

||θ̂n,S− θ̂n|| = BS,1 +BS,2 +
∥∥H−1

0 5 ḡ (ψS ; θ0)
∥∥+OP

(
n−1/2S−α2/2

)
+OP

(
n−1/2S−β

)
.

(EIA) The approximate objective function based on eq. (13) satisfies

Var (5Gn(θ0)[ψS ]) = O
(
n−1S−α2

)
(20)

Var
(
52Gn(θ0)[ψS , ψS ]

)
= O

(
n−1S−α4

)
, (21)

As a consequence, the EIA satisfies:

||θ̂n,S − θ̂n|| = BS,1 +BS,2 +OP

(
n−1/2S−α2/2

)
+OP

(
n−1/2S−β

)
.

Under our assumptions, the term 5ḡ (ψS ; θ) that appears in the expansion of the ECA is

at least of order OP
(
S−α2/2

)
; but in some important cases this rate is not sharp. For example,

when γ̂S is a kernel estimator, we can show that Var (5ḡ (ψS ; θ0)) = O
(
S−1

)
which is faster

than O (S−α2) = O(1/
(
Shd

)
), c.f. Example 3.2 below.

We have seen that for a large class of simulation-based estimators, the bias and the

stochastic component of the approximator are of order αp = p/2 and β =∞, c.f. Assumption

A.6(p) and the subsequent discussion. With weakly dependent data, the above corollary states

that for the EIA’s, the leading term of ||θ̂n,S− θ̂n|| is OP (1/S) which is due to the conditional

variance of each simulator. This is a well-known result for specific simulation-based ECA’s

in a cross-sectional setting, see e.g. Laffont et al. (1993) and Lee (1992). Our theorem shows

that this result holds more generally under weak regularity conditions. In the case of ECA’s,

the leading term is OP (1/
√
S); again, this is consistent with the findings of, for example,

Duffie and Singleton (1993) and Corradi and Swanson (2007).

Comparing the results for the two approximate estimators, we see that the only differ-

ence appears in the variances of 52Gn(θ0)[ψS ] and 52Gn(θ0)[ψS , ψS ], which both have an

additional term when common approximators are employed. This is due to the additional

correlations across observation, which vanish when independent approximators are employed.
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This is why ECA’s are of order OP (1/
√
S) while EIA’s are OP (1/S). This does not imply

that the EIA is preferable to the ECA: Note that we generate nS draws in total to compute

the EIA, but only S draws for the ECA. Thus, for a fair comparison, one should replace S

with nS in the case of ECA, in which case the ECA is in fact more precise for a given number

of draws.

In some cases, the rate of the approximate estimator obtained in Theorem 1 is not sharp.

By imposing more structure on the problem, better rates can be obtained for the remainder

term Rn,S of equation (11). Strengthening A.6(p) to A.6’(p) and combining it with the

assumption that g (z; θ, γ) is three (instead of two) times differentiable w.r.t. γ, we can obtain

slightly sharper rates for the estimator. Lemma 9 in the appendix delivers this refinement of

Theorem 1. The sharper rate stated there can in turn be used to establish better rates for

the bias adjusted estimators considered in the next section.

3.4 Applications to Standard Approximate Estimators

To illustrate the use of our results, we return to Examples 2-3 of Section 2. We will throughout

only consider the first two functional derivatives; the third order term is easily derived but

we leave it out to save space. In the following, the notation ḟ(x, θ) stands for ∂f
∂θ (x, θ).

Example 2.1 (SNLS). In this example,

gi(θ,m) =
∂qi(θ,m)

∂θ
= 2 (yi −m (xi; θ)) ṁ (xi; θ) ,

where mi (θ) = m (xi; θ) and ṁi (θ) = ∂m (xi; θ) / (∂θ). The approximator is of the form (14)

where wS (x, ε; θ) = w (x, ε; θ) satisfies E [w (x, ε; θ)] = m (x; θ) = Eθ [y|x].

Denote ξi (θ) := yi −mi (θ); then the functional differentials are

5g(zi; θ) [dm] = 2ṁi (θ) dγ (xi; θ) + 2ξi (θ) dγ̇ (xi; θ) ,

52g(zi; θ) [dm, dm] = 4dṁ (xi; θ) dm (xi; θ) ,

so that (using a single approximation for all observations)

5Gn(θ,m) [dm] = − 2

n

n∑
i=1

{ṁi (θ) dm (xi; θ) + ξi (θ) dṁ (xi; θ)} ,

52Gn(θ,m) [dm, dm] =
4

n

n∑
i=1

dṁ (xi; θ) dm (xi; θ) .

Since 53g(z; θ) [dm, dm, dm] = 0, (8) holds with Ḡ0 = 0 and the remainder term RS,n in eq.

(11) is zero.
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Assuming that E
[
y2
]
<∞, E

[
supθ∈Θ ‖mi (θ)‖2

]
<∞ and E

[
supθ∈Θ ‖ṁi (θ)‖2

]
<∞ it

is easily seen that Eqs. (9)-(10) also hold when using an appropriate L2-norm. Depending on

how the simulated estimator has been implemented, different norms should be used. If two

independent batches have been used for the conditional mean and its derivative respectively,

we use ‖γ‖2 = E
[
‖γ (xi; θ)‖2

]
. If on the other hand the same simulations have been used

for both, we need to use ‖γ‖2 = E
[
‖γ (xi; θ)‖2

]
+ E

[
‖γ̇ (xi; θ)‖2

]
.

Example 2.2 (SPML). Since the derivations for this estimator follows along the same lines

as the SNLS, we have relegated them to Appendix A.

Example 3.1 (SML in discrete choice models). Consider a discrete choice model where

P (y = dl|x) = Pl (x; θ) for l = 1, ..., L, so that given observations (dl,i), the log-likelihood is

given by:

log pi (θ) =

L∑
l=1

dl,i logPl,i (θ) .

Let unbiased simulations be used to approximate P (x; θ) = (P1 (x; θ) , ..., PL (x; θ)). Then

gi(θ) =
∂ log pi (θ)

∂θ
=

L∑
l=1

dl,i
Ṗl,i (θ)

Pl,i (θ)

and

5gi(θ) [dP ] =
L∑
l=1

dl,i

[
1

Pl,i (θ)
dṖl,i (θ)−

Ṗl,i (θ)

P 2
l (xi; θ)

dPl,i (θ)

]
,

52gi(θ) [dP, dP ] =
L∑
l=1

dl,i

[
− 2

P 2
l,i (θ)

dṖl,i (θ) dPl,i (θ) +
2Ṗl,i (θ)

P 3
l (xi; θ)

dP 2
l,i (θ)

]
,

53gi(θ) [dP, dP ] =

L∑
l=1

dl,i

[
4

P 3
l,i (θ)

dṖl,i (θ) dP 2
l,i (θ)−

6Ṗl,i (θ)

P 4 (xi; θ)
dP 3

l,i (θ)

]

Comparing with the expansion of the SMLE in Lee (1995, Theorem 1), we recognize his first

and second order terms, Ln and Qn in his notation, as the first and second order differentials

respectively: Ln = 5Gn(θ0)[P̂S − P ] and Qn = 52Gn(θ0)[P̂S − P, P̂S − P ]. By standard

arguments, we see that eq. (8) holds with m = 2 if

Ḡ0 :=
L∑
l=1

E

6
∥∥∥Ṗl,i (θ)

∥∥∥
P 3
l,i (θ0)

+
4

P 2
l,i (θ0)


 <∞.

Thus Ḡ0 cannot be finite unless EP−2−k
l (x; θ) < ∞ for k = 1, 2. This will typically not

hold when covariates have unbounded support. We could impose that the density of the
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covariates be bounded away from zero as in Lee (1995), but this is a very strong requirement.

To circumvent such assumptions, one can instead use trimming techniques (see Fermanian

and Salanié, 2004; Kristensen and Shin, 2008). This imparts an additional bias component to

the approximator, but the bias in general is of smaller order than the simulation component

however, and then it can be ignored.

Example 3.2 (NPSML). Here,

gi (θ, p) = − ṗi (θ)

pi (θ)
,

so that

5gi(θ) [dp] =
ṗi (θ)

p2
i (θ)

dpi (θ)− 1

pi (θ)
dṗi (θ) ,

52gi(θ) [dp, dp] =
2

p2
i (θ)

dṗi (θ) dpi (θ)− 2ṗi (θ)

p3
i (θ)

dpi (θ)2 .

It is easily seen that Eq. (8) holds for m = 2 with

Ḡ0 := E

[
sup
θ∈Θ

{
6 ‖ṗi (θ0)‖
p3
i (θ0)

+
2

p2
i (θ0)

}]
.

The discussion of Ḡ0 < ∞ in Example 3.1 applies here too: we either have to assume that

the density of covariates is bounded away from zero, or to resort to trimming.

Since kernel estimators are used in the approximation, the first order bias and stochastic

components for the approximator have non-standard rates. Assume for simplicity that the

density is bounded away from zero. Then the bias component of the first order term is

5gi(θ) [bS ] = hr
{
ṗ (yi|xi; θ)
p2 (yi|xi; θ)

∂rp (yi|xi; θ)
∂yri

− 1

p (yi|xi; θ)
∂rṗ (yi|xi; θ)

∂yri

}
+ o (hr) .

This holds irrespectively of whether a single simulation batch (ECA) or n (EIA) simulation

batches are used.

Next, we derive the rate of the variance component of the first order term. First, consider

the EIA: By Lemma 6, we obtain that Var(5Gn(θ)[ψS ]) = O
(
1/
(
nShd+2

))
. Note that

the (d + 2) term comes from the fact that we need to approximate the derivative of the

loglikelihood as well as the function itself. Next consider the ECA: we show in Appendix A

that

5Gn(θ)[ψS ] =
1

S

S∑
s=1

5ḡ(θ)[es] +OP

(
1√

nShd+2

)
= OP

(
1√
S

)
+OP

(
1√

nShd+2

)
.
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As a consequence, for EIA’s we have

||θ̂n,S − θ̂n|| = B × hr + V1 ×
1

Shd+2
+ V2 ×

1√
nShd+2

+oP (hr) + oP

(
1

Shd+2

)
+ oP

(
1√

nShd+2

)
,

while for ECA’s an additional OP

(
1/
√
S
)

appears.

3.5 Asymptotic First-Order Equivalence and Variance Estimation

Our results allow us to state precisely when the approximate estimator is asymptotically

equivalent to the exact estimator; that is, which sequences {Sn} guarantee that ||θ̂n,Sn−θ̂n|| =
oP
(
n−1/2

)
.

In general, asymptotic equivalence for ECA’s are obtained if S
min(α2,2β)
n goes to infinity

faster than n; for EIA’s we have a weaker condition, replacing α2 with 2α2.

For parametric simulation-based estimators (β = 0, α2 = 1), this gives the standard result

that n/Sn should go to zero for ECA’s (Duffie and Singleton, 1993; Lee, 1995, Theorem 1),

while
√
n/Sn should go to zero for EIA’s (Laroque and Salanié, 1989; Lee, 1995, Theorem 4).

When nonparametric kernel methods are used, we have to choose both S and h. Assume

that y is d-dimensional, and we use an r-order kernel. Given the calculations made in the

previous section for both EIA and ECA, we need
√
nhr → 0 and

√
n/
(
Shd+2

)
→ 0 for the

NPSMLE to be equivalent to the MLE. As usual, the optimal bandwidth makes these two

terms go to zero at the same rate; this yields h∗ = O
(
S1/(r+d+2)

)
. In general, this is a

non-standard bandwidth rate which is due to the fact that we here try to balance the bias

and variance of the kernel estimator, while in standard problems one tries to balance the

squared bias and variance in order to minimize the MSE. Yet with kernels of order r = 2 the

rate becomes standard, a somewhat surprising result

Even when the approximate estimator is asymptotically equivalent to the exact estimator,

in finite samples it may be useful to adjust computed standard errors to account for the

additional variance due to the approximation. This turns out to be quite straightforward in

some cases. The exact estimator has variance H−1
0 ΩnH

−1
0 where Ωn = Var (Gn (θ0, γ)). For

the approximate estimator,

Var(θ̂n,S) ≈ H−1
0 Σn,SH

−1
0 , Σn,S = Var (Gn (θ0, γ) +5Gn(θ0)[ψS ]) .

To approximate Σn,S , suppose for simplicity that the observations, zi, i = 1, ..., n, are inde-
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pendent (otherwise HAC-type estimators should be employed). Then, we compute

Σ̂n,S =
1

n

n∑
i=1

ŝiŝ
′
i, ŝi := g(zi, θ̂n,S) + δ̂i,

where δ̂i is an estimator of 5g(zi, θ̂n,S)[ψi,S ] and thereby accounting for the additional vari-

ance due to the simulations. In the leading example where γ̂i,S satisfies A.6’,

5g(zi, θ̂n,S)[ψi,S ] =
1

S

s∑
s=1

5g(zi, θ̂n,S)[wi,S − w̄i,S ],

and so a natural choice for the estimator δ̂i is

δ̂i =
1

S

s∑
s=1

5g(zi, θ̂n,S)[wi,S − γ̂S ].

This estimator is similar to the one proposed in Newey (1994) for semiparametric two-step

estimators.

4 Analytical Bias Adjustment

We here propose an analytical bias adjustment of the objective function Gn (θ, γ̂S) which

removes the leading term of the bias incurred by using γ̂S if the stochastic component of

the approximator is of a larger order than its bias component: α2 < β. This is clearly the

case for the parametric simulation-based estimation methods, as α2 = 1 and β =∞. In the

previous section, we derived the order of the bias and variance of the second order expansion

of Gn (θ, γ̂S) in terms of γ̂S , and translated these into an error bound for the approximate

estimator as stated in Theorem 1. The two leading bias terms are BS,1 and BS,2 as defined

in eq. (15). We discuss in turn how these can be adjusted for.

Start with BS,2 = H−1
0 E

[
52Gn(θ0, γ)[ψS , ψS ]

]
/2. To adjust for the bias in θ̂n,S due to

BS,2, we propose an estimator of E
[
52Gn(θ0, γ)[ψS , ψS ]

]
/2 which we then include in the

objective function. When the approximator belongs to the class defined in A.6’, we can write

the bias component in terms of e defined in A.6’,

eS(z, εs; θ) = wS (z, εs; θ)− w̄S (z; θ) ,

which represents the deviation of simulation s from its expected value for a given observation

z.

In the following, we suppress the dependence of the functions w and e on S. We first note
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that

E
[
52Gn(θ0, γ)[ψS , ψS ]

]
= lim

n→∞

1

nS2

n∑
i=1

S∑
s=1

52gi(θ0)[ei,s, ei,s],

where 52gi(θ)[ei,s, ei,s] = 52g(zi; θ)[ei,s, ei,s], and ei,s = e (z, εi,s; θ), i = 1, ..., n. Note that

in the case of ECA’s, the same simulations are used across all observations such that ei,s =

es = e (z, εs; θ) for i = 1, ..., n.

We wish to obtain an estimator of this term and use it to remove the bias. Ideally, we

would like to compute e = w − w̄, but since in general w̄ is unknown, this is not feasible.

On the other hand, we can compute γ̂S which is an unbiased and consistent estimator of w̄.

Thus, a natural estimator of E
[
52Gn(θ0, γ)[ψS , ψS ]

]
/2 is:

∆̇n,S (θ) =
1

2S (S − 1)

n∑
i=1

S∑
s=1

52gi(θ)[wis − γ̂i, wis − γ̂i], (22)

Under regularity conditions, ||H−1
0 ∆̇n,S (θ0) − BS,2|| →P 0 as n → ∞. This motivates our

definition of an analytically bias-adjusted estimator θ̂
AB

n,S as the solution to:

oP

(
n−1/2

)
= Gn(θ̂

AB

n,S , γ̂S)− ∆̇n,S(θ̂
AB

n,S). (23)

When using an extremum estimator, θ̂n,S = arg maxθQn(θ, γ̂S) whereQn(θ, γ) =
∑n

i=1 q(zi; θ, γ)/n,

the above adjustment corresponds to

θ̂
AB

n,S = arg min
θ∈Θ
{Qn(θ, γ̂S)−∆n,S (θ)} , (24)

where

∆n,S (θ) =
1

2S (S − 1)

n∑
i=1

S∑
s=1

52q(zi; θ)[wis − γ̂i, wis − γ̂i].

After such an adjustment, the bias component BS,2 drops out of the expansion of the

resulting adjusted estimator, which improves on the rate of convergence. To state the theo-

retical result, we introduce the moment

MS,p (zi) := sup
s<t

E
[∥∥52g(zi)[eis, eit]

∥∥p+ε |zi]p/(p+ε) , for some ε > 0. (25)

Theorem 2 Assume that A.1-A.4, A.5(2) and A.6’(4) hold. Then with θ̂
AB

n,S defined in (23)

with ∆̇n,S (θ) given in (22), the following holds:
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1. The bias adjusted version of the ECA in eq. (12) satisfies:

||θ̂AB

n,S − θ̂n|| = ‖5g1 (ψS ; θ)‖+OP

(
S−(1+α2)

)
+OP

(
S−β

)
+OP

(
S−α3

)
+OP

(
n−1/2S−1

√
E [MS,4 (zi)]

)
+OP

(
n−1/2S−(1+α4/2)

)
+OP

(
n−1/2S−β

)
.

2. The bias adjusted version of the EIA in eq. (13) satisfies:

||θ̂AB

n,S − θ̂n|| = OP

(
S−(1+α2)

)
+OP

(
S−β

)
+OP

(
S−α3

)
+OP

(
n−1/2S−1

√
E [MS,4 (zi)]

)
+OP

(
n−1/2S−(1+α4/2)

)
+OP

(
n−1/2S−β

)
.

Remark 3 In the proof, we employ moment bounds for U -statistics with mixing variables

(Yoshihara, 1976). In the case where {eis : s = 1, ..., S} are i.i.d., we can instead employ

results for i.i.d. variables (Ferger, 1996) and exchange MS,4 (zi) for MS,2 (zi) in the theorem.

The rate of the moment E [MS,p (zi)], with p = 2 or 4, can be derived in most applications.

For example, if
∥∥52g(zi)[eis, eit]

∥∥ ≤ b (zi) ‖eis (zi)‖ ‖eis (zi)‖, which holds in all our examples,

then with dependent simulations,

E [MS,4 (zi)] ≤ E

[
b4 (zi) sup

s<t
E
[
‖eis (zi)‖4+ε ‖eit (zi)‖4+ε |zi

]4/(4+ε)
]

≤ E

[
b4 (zi)E

[
‖eis (zi)‖8+2ε |zi

]4/(4+ε)
]

while with independent simulations,

E [MS,2 (zi)] ≤ E
[
b2 (zi)E

[
‖eis (zi)‖4+ε |zi

]2/(4+ε)
]
.

Thus, with standard simulators,
√
E [MS,p (zi)] = O (1).

Comparing with Theorem 1 on the unadjusted estimators shows that the bias term BS,2 =

OP (S−α2) has been replaced by a term of order OP
(
S−(1+α2)

)
. This is due to the fact that

|∆̇n,S (θ) −52Gn(θ, γ0)[ψS , ψS ]/2| = OP
(
S−(1+α2)

)
. In the leading case where β = ∞ and

αp = p/2, OP
(
S−(1+α2)

)
is of smaller order than the next term, which is OP (S−α3). For

other approximators, e.g. NPSML, the relationship may be reversed; but in either case, the

adjusted estimator is (asymptotically) superior to the unadjusted one since the bias term of

order OP (S−α2) has been removed.

With unbiased simulators, we have α2 = 1 and β = ∞, and the leading bias term

of the approximation error of the unadjusted estimator is of order OP
(
S−1

)
. The above

theorem shows that for the adjusted estimator the leading term is of order OP
(
S−3/2

)
. The
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improvement is by a factor
√
S and so may be very significant.

If we strengthen A.5(2) and A.6’(4) to A.5(3) and A.6’(6), then we know from Lemma 9

that the leading terms after adjustment are OP (S−α4) and O
(
S−(1+α3)

)
; this follows by the

same arguments we used to prove Lemma 9. With unbiased simulators α4 = 2, so that the

proposed adjustment in fact takes the bias from S−1 down to S−2.

More generally, the proposed adjustment will remove the largest bias component as

long as α2 < β. Otherwise the bias term OP
(
S−β

)
is of a larger order than OP (S−α2)

and the proposed bias adjustment does not remove the leading term anymore. In par-

ticular, when non-stochastic approximations are employed the above adjustment does not

help. With non-stochastic approximations the leading term of the approximation error is not

52Qn(θ)[ψS , ψS ], which the ∆n,S(θ) correction is aimed at: in fact this term is identically

zero as we saw earlier. To phrase things differently, with non-stochastic approximations, for

every p, αp =∞ and so αp > β.

We now return to the examples introduced in Section 2, and derive the bias adjustments

for the cases where stochastic approximators are employed.

Example 2.1 (SNLS). We saw in the previous section that

52Gn(θ, γ) [dm, dm] =
4

n

n∑
i=1

dṁi (θ) dmi (θ) .

Let ris(θ) = wS (xi, εis; θ) − m̂i,S (xi; θ) denote the difference of a given simulator from the

mean simulation for the same observation. Then the adjustment term becomes

∆n,S (θ) =
1

nS (S − 1)

n∑
i=1

S∑
s=1

r2
is(θ).

This is exactly the correction proposed in Laffont et al. (1995). Take for instance the

binomial choice model discussed earlier, y = I {y∗ > 0} and y∗ = m (x, ε; θ). For this model,

the adjustment term is:

∆n,S (θ) =
1

nS (S − 1)

n∑
i=1

S∑
s=1

(
F

(
mis (θ)

h

)
− 1

S

S∑
t=1

F

(
mit (θ)

h

))2

,

where we have replaced the indicator function I {y > 0} by a symmetric cdf, F (y/h) as

proposed in Fermanian and Salanié (2004). As h → 0, F (y/h) = I {y > 0} + o
(
h2
)
, and so

we only pay a small price in terms of bias to obtain a smooth criterion function.
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Example 3.1 (Discrete choice). Here, qi(θ, P ) = −
∑L

l=1 dl,i logPl,i (θ) and so

52qi(θ) [dP, dP ] =
L∑
l=1

dl,i
dP 2

l,i (θ)

P 2
l,i (θ)

.

Thus, the adjustment term becomes

∆n,S (θ) =
1

2nS (S − 1)

n∑
i=1

L∑
l=1

dl,i

S∑
s=1

[
wl (xi, εis; θ)− P̂l (xi; θ)

P̂l (xi; θ)

]2

.

In contrast to the previous example, 53qi(θ) [dP, dP, dP ] 6= 0 and so the bias adjustment

does not ensure consistency for fixed S.

Example 3.2 (NPSML). Here, Qn(θ, p) = 1
n

∑n
i=1 log p (zi; θ) and so

52Qn(θ) [dp] =
1

n

n∑
i=1

dp2 (zi; θ)

p2 (zi; θ)
.

Thus, the adjustment term becomes

∆n,S (θ) =
1

2nS (S − 1)

n∑
i=1

S∑
s=1

[
wS (zi, εis; θ)− γ̂ (zi; θ)

p̂ (zi; θ)

]2

.

When n batches of simulations are used as in EIA, the bias corrected estimator satisfies:

||θ̂bn,S − θ̂n|| = OP

(
S−δr

)
+OP

(
S−(2−δd)

)
+OP

(
n−1/2S−(1−δd)/2

)
+OP

(
n−1/2S−δr

)
,

A similar result can be derived for the adjusted ECA estimator.

Instead of adjusting the objective function(“preventive bias adjustment”), we could first

compute the unadjusted estimator, θ̂n,S , and then directly correct its bias (“corrective bias

adjustment”): Taking a first-order expansion in θ around θ̂n,S in eq. (23), we obtain

θ̂
AB

n,S = θ̂n,S −Hn(θ̂n,S , γ̂n,S)−1∆̇n,S(θ̂n,S),

where Hn (θ, γ) = ∂Gn (θ, γ) / (∂θ). Such a two-step procedure was proposed in Lee (1995)

for the special case of SMLE and SNLS in limited dependent variable models.

As an illustration, in the SNLS example, the adjustment term takes the following form:

∆̇n,S (θ) =
2

nS2

n∑
i=1

m∑
k=1

(ẇ (xi, εis; θ)− ̂̇γS (xi; θ)) (ẇ (xi, εis; θ)− γ̂S (xi; θ)) ,
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where as, before, ḟ denotes the derivative of f w.r.t. θ. For the SML example it is

∆̇n,S (θ) = − 1

nS2

n∑
i=1

m∑
k=1

(ẇ (zi, εis; θ)− ̂̇γS (zi; θ)) (ẇ (zi, εis; θ)− γ̂S (zi; θ))

γ̂2
S (zi; θ)

.

One complication of this corrective procedure relative to the preventive one is that we here

need to be able to compute the derivatives of the simulators. We refer to Arellano and Hahn

(2007) for a further discussion of corrective and preventive bias correction in a panel data

setting.

Can we find a simple adjustment for the bias term, bS which in turn leads to the bias term

E [5Gn(θ)[bS ]] = O
(
S−β

)
? If we were able to obtain (an estimator of) bS , the associated

adjustment term could straightforwardly be estimated by ∆̇
(B)
n,S (θ) = 5Gn(θ)[bS ]. However,

in most cases, only approximate expressions of bS are available, and these expressions involve

unknown components that need to be estimated; so this estimator is not easily computed.

Instead of trying to estimate5Gn(θ)[bS ], one may try to improve the order of Gn(θ)[bS ] by

adjusting the estimator γ̂S itself. Lee (2001) demonstrates how combining numerical approx-

imations and simulations can improve the order of the estimator. When kernel-based estima-

tors are used, so-called higher-order kernels can also be used to decrease the bias component.

Suppose for example that γ (z; θ) = p (y|x; θ) and γ̂S (y|x; θ) = S−1
∑S

s=1Kh(Ys (θ, x) − y),

whereK is a r-order kernel function. Then the bias takes the form bS (z; θ) = hr∂rp (y|x; θ) /∂yr+

o (hr), and for large r the bias is of small order. Removing the leading bias component requires

knowledge of ∂rp (y|x; θ) /∂yr which is not easily estimated.

An alternative way to reduce this bias component for kernel-based approximators is to

use so-called twicing kernels, as advocated by Newey et al. (2004) in a different context:

For a given kernel function K, define the associated twicing kernel K̄ by K̄ (z) = 2K (z) −∫
K (z − w)K (w) dw. Suppose now that the first order pathwise derivative takes the form

5g(z; θ, γ) [dγ] = δ (z; θ) dγ (z; θ) for some function δ as is the case in all of our examples.

The order of the variance is then the same whether twicing kernels or standard kernels are

used. On the other hand, with regard to the bias component the use of a standard kernel

function yields E
[
5Gn(θ, γ)

[
bKS
]]

= O (hr), while the use of a twicing kernel estimator yields

E
[
5Gn(θ, γ)[bK̄S ]

]
= O

(
h2r
)
, cf. Newey et al. (2004, Theorem 1). Again, the improvement

obtained here is not through an adjustment term added to the objective function since the

adjustment takes place in the construction of γ̂S (y|x; θ) itself.
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5 Bias Adjustment by Resampling

As an alternative to analytical bias corrections, resampling methods for bias correction can

be used9. They will in general handle the biases due to both the stochastic and the non-

stochastic component of the approximator; and the researcher is not required to derive an

expression of the bias. On the other hand, they are computationally more demanding than

the analytical bias correction proposed in the previous section.

To motivate the bias adjustment, we first note that, according to Lemmas 7-8,

E [5Gn(θ0, γ) [γ̂S − γ]] = H0B1S
−β + o

(
S−β

)
,

1

2
E [5Gn(θ0, γ) [γ̂S − γ, γ̂S − γ]] = H0B2S

−α2 + o
(
S−α2

)
,

where B1 = E
[
5g(z; θ0)

[
b̄
]]

and B2 = limS→∞ S
α2E [5g(z; θ0) [ψS , ψS ]]. Thus, the leading

biases due to the approximation can be written as:

E [Gn(θ0, γ̂S)−Gn(θ0, γ)] = H0B1S
−β +H0B2S

−α2 + o
(
S−β

)
+ o

(
S−α2

)
.

From the proof of Theorem 1 it therefore follows

E
[
θ̂n,S − θ̂n

]
' B1S

−β +B2S
−α2 + o

(
S−β

)
+ o

(
S−α2

)
.

We then wish to obtain an estimator of (parts of) the bias B1S
−β + B2S

−α2 , and use this

for bias correction. We here propose to do this by resampling methods: First, compute two

approximators of order S∗ which we denote γ̂
[1]
S∗ and γ̂

[2]
S∗ . Let θ̂

[m]

n,S∗ be the estimator based

on the same data sample Zn but using the mth approximator γ̂
[m]
S∗ , m = 1, 2. This has the

following bias:

E
[
θ̂

[m]

n,S∗ − θ̂n
]
' B1 (S∗)−β +B2 (S∗)−α2 + o

(
S−β

)
+ o

(
S−α2

)
.

We then propose the following jackknife (JK) type estimator:

θ̂
JK

n,S := 2θ̂n,S −
1

2

(
θ̂

[1]

n,S∗ + θ̂
[2]

n,S∗

)
, (26)

9See Hahn and Newey (2004), Dhaene and Jochmans (2010), Gouriéroux, Phillips and Yu (2007) for bias
correction using Jackknife in the context of panel models, while we refer to Phillips and Yu (2005) for a time
series application.
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and we easily see that

E
[
θ̂

JK

n,S − θ̂n
]

= 2E
[
θ̂n,S − θ̂n

]
− 1

2

(
E
[
θ̂

[1]

n,S∗ − θ̂n
]

+ E
[
θ̂

[2]

n,S∗ − θ̂n
])

' B1

[
2S−β − (S∗)−β

]
+B2

[
2S−α − (S∗)−α2

]
,

where higher-order terms have been ignored. We would now ideally choose S∗ such that

both of the above bias terms cancel out. However, we can only remove either of the two: By

choosing either

S∗ =
S

21/β
or S∗ =

S

21/α2
, (27)

we will remove the first or the second term respectively. Obviously, S∗ should be chosen so

as to remove the bias component that dominates in the expansion.

One can generalize the above and compute M approximators, γ̂
[m]
Sm

, m = 1, ...,M , of order

Sm < S, and for each of those the corresponding approximate estimator, θ̂
[m]

n,Sm . For a given

set of weights pm, m = 1, ...,M , we then define the adjusted estimator as

θ̂
JK

n,S = 2θ̂n,S −
1

2

M∑
m=1

pmθ̂
[m]

n,Sm . (28)

However, if the main objective is to remove the first-order bias term, Dhaene and Jochmans

(2010, Section 3.1) demonstrate in a panel data context that the optimal procedure in terms

of minimum bias is M = 2, pm = 1/2 and Sm = S/2. We expect that this result carries over

to our setting as well. On the other hand, the generalized adjustment as given in eq. (28)

can be used to remove further higher-order bias components by appropriate choice of weights

and appproximation orders, c.f. Dhaene and Jochmans (2010, Section 3.2). While we do not

pursue this here, we conjecture that the generalized adjustment would enable us to remove

both B1 and B2.

The implementation of the above Jackknife procedure can be computationally time-

consuming. In particular, one has to carry out additional two minimization routines. This

can be bypassed by using a Newton-Raphson procedure, leading to a Jackknife version of the

k-step bootstrap of Andrews (2002a): For each m = 1, 2, compute

θ̂
[m,k+1]

n,S∗ = θ̂
[m,k]

n,S∗ −

∂Gn(θ̂
[m,k]

n,S∗ , γ̂
[m]
S∗ )

∂θ

−1

G(θ̂
[m,k]

n,S∗ , γ̂
[m]
S∗ ), k = 1, 2, 3, ... (29)

with starting value θ̂
[m,1]

n,S∗ = θ̂n,S , and compute θ̂
JK

n,S with θ̂
[m,k+1]

n,S∗ replacing θ̂
[m]

n,S∗ .

An alternative way to reduce the computational cost is to jackknife the objective function
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directly: Define

G∗n(θ, γ̂S) = 2Gn(θ, γ̂S)− 1

2

[
Gn(θ, γ̂

[1]
S∗) +Gn(θ, γ̂

[2]
S∗)
]
,

By the same computations as before,

E [G∗n(θ, γ̂S)−Gn(θ, γ)] ' H0B1

[
2S−β − (S∗)−β

]
+H0B2

[
2S−α2 − (S∗)−α2

]
By choosing S∗ as in eq. (27), we remove either of the two dominating bias terms. Thus, the

estimator defined by

G∗n(θ̃
JK
n,S , γ̂S) = 0 (30)

is equivalent to θ̂
JK

n,S given in eq. (26) in terms of bias.

In contrast to the analytical bias correction, the resampling-based correction can remove

the leading term of the bias for both stochastic and non-stochastic approximation schemes.

Another advantage of this alternative bias adjustment method is that we expect it to remove

finite-sample biases. Since we are here focusing on biases due to approximation errors, we

will merely give the intuition. Suppose that the approximate estimator suffers from biases of

order n−ν relative to the true value due to finite samples. That is,

E
[
θ̂n,S − θ0

]
' B1S

−β +B2S
−α2 +B3n

−ν ,

where we have suppressed any higher-order terms. Note that we here consider E
[
θ̂n,S − θ0

]
instead of E

[
θ̂n,S − θ̂n

]
. Then, by the same arguments as before, it is easily seen that θ̂

JK

n,S

also removes the third term, B3n
−ν , for any choice of S∗.

6 Newton-Raphson Adjustment

We here propose an additional adjustment that also works for general approximation-based

estimators. We show that starting from either θ̄n,S = θ̂
AB

n,S , θ̂
JK

n,S or even θ̄n,S = θ̂n,S , one or

more Newton-Raphson iterations based on the approximate objective function with a finer

approximation S∗ >> S produce an estimator that has the presumably higher precision of

θ̂n,S∗ . The resulting estimator based on k iterations, θ̂
(k+1)

n,S , is defined in eq. (5).

To evaluate the performance of θ̂
(k+1)

n,S relative to θ̄n,S∗ , we first note that

||θ̂(k+1)

n,S − θ̂n|| ≤ ||θ̂
(k+1)

n,S − θ̄n,S∗ ||+ ||θ̄n,S − θ̂n||.

34



We then apply Robinson (1988, Theorem 2) to obtain that

||θ̂(k+1)

n,S − θ̄n,S∗ || = OP

(
||θ̄n,S − θ̄n,S∗ ||2

k
)

= OP

(
||θ̄n,S − θ̂n||2

k
)

+OP

(
||θ̄n,S∗ − θ̂n||2

k
)
,

which in turn implies

||θ̂(k+1)

n,S − θ̂n|| = OP

(
||θ̄n,S − θ̂n||2

k
)

+OP

(
||θ̄n,S∗ − θ̂n||

)
. (31)

We then simply choose the number of iterations, k, large enough so that the first term is of

smaller order than the second, and θ̂
(k+1)

n,S is first-order equivalent to θ̄n,S∗ . In order to give

a general result covering the different choices of the initial estimator θ̄n,S , we assume that

Theorem 4 Assume that the initial estimator is computed with S such that ||θ̄n,S − θ̂n|| =

OP (n−r) and the 2nd step NR-iterations are done with S∗ such that ||θ̄n,S∗− θ̂n|| = OP (n−r
∗
)

where 0 < r ≤ r∗. Then with k > [log (r∗/r) / log (2)], the NR-estimator θ̂
(k+1)

n,S defined in eq.

(5) satisfies:

||θ̂(k+1)

n,S − θ̂n|| = OP (||θ̄n,S∗ − θ̂n||) = OP (n−r
∗
).

Note here that we only require that the initial estimator converges at some rate r >

0. Thus, we do not require the initial estimator to be
√
n-consistent, merely consistent.

Moreover, if the NR-estimator goes to infinity with n at the same speed as the initial one,

then r = r∗ and the formula shows that one iteration is enough.

The above result holds under very general, but rather high-level assumptions regarding the

first-step estimator and the target estimator, θ̄n,S and θ̄n,S∗ . We can employ Theorems 1 and

2 and the results for the jackknife estimator to verify these high-level conditions for specific

choices of θ̄n,S . For example, let θ̄n,S be the unadjusted simulation-based ECA in Examples

1-3 where unbiased simulators are employed, an. In this case, the initial estimator satisfies

||θ̄n,S−θ̂n|| = OP
(
S−1/2

)
+OP

(
n−1/2S−1

)
, where only the leading terms have been included.

Thus, with S = Cn−a and S∗ = C∗n−a
∗
, we obtain ||θ̄n,S− θ̂n|| = OP

(
n−a/2

)
+OP

(
n−1/2−a)

such that r = min {a/2, 1/2 + a} and r∗ = min {a∗/2, 1/2 + a∗}.
The above iterative estimator requires computation of the Hessian, Hn (θ, γ̂S). If this is

not feasible or computationally burdensome, an approximation can be employed, e.g. numer-

ical derivatives. This however will slow down the convergence rate and the result of Theorem

4 has to be adjusted, cf. Robinson (1988, Theorem 5). In particular, more iterations are

required to obtain a given level of precision.

Finally, we conjecture that the above theoretical result can be extended along the lines

of Andrews (2002b) to demonstrate improvements in terms of convex variational distance,

thereby establishing higher order asymptotic efficiency.
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7 A Simulation Study

To explore the performance of our proposed approaches, we set up a small Monte Carlo study

of a mixed logit model: the econometrician observes i.i.d. draws of (xi, yi) for i = 1, . . . , n,

with xi a centered normal of variance τ2 and

yi = 11(b+ (a+ sui)xi + ei > 0)

where ei is standardized type I extreme value and ui is a centered normal with unit variance,

independent of ei.

The mixed logit, in its multinomial form, has become a workhorse in studies of consumer

demand (see e.g. the book by Train (2009)); it also figures prominently on the demand side

of models of empirical industrial organization. It is usually estimated by simulation-based

methods, or by Monte Carlo Markov Chains techniques. In empirical IO, the simulated

method of moments is more commonly used because of endogeneity concerns; but it is not

a useful benchmark for us as the approximate estimator in SMM inherits no additional bias

from the simulations. We focus here on SML, which is perhaps the most popular method

outside of empirical IO.

We ran experiments for several sets of parameter values; since the results are similar, we

only present here those we obtained when the true model has a = 1, s = 1, b = 0 and the

covariate has a standard error τ = 1 or 2.

In these two specifications, the mean probability of y = 1 is close to 0.5; and the gener-

alized R2 is respectively 0.21 and 0.11. In the corresponding simple logit model (which has

s = 0) the R2 would be 0.39 and 0.17. Thus these two choices of parameters yield models

that have low to fairly high explanatory power.

The mixed logit is still a very simple model; thus we can use Gaussian quadrature to

compute the integral

Pr(y = 1|x) =

∫
φ(u)

1 + exp(−(b+ (a+ su)x)
du. (32)

Since Gaussian quadrature achieves almost correct numerical integration in such a regular,

one-dimensional case, we can rely on it to do (almost) exact maximum likelihood estimation.

By the same token, it is easy to compute the asymptotic variance of the exact ML estimator

θ̂n, and the leading term of the bias of the SML estimator. Simple calculations give the

numbers in Table 1.

The columns labeled
√
nσ̂ give the square roots of the diagonal terms of the inverse of

the Fisher information matrix. As can be seen from the values of
√
nσ̂, it takes a large

number of observations to estimate this model reliably. To take an example, assume that

the econometrician would be happy with a modestly precise 95% confidence interval of half-
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τ
√
nσ̂ S times bias

a s b a s b

1 7.2 17.2 2.4 −9.0 −23.5 −0.0
2 6.7 10.8 2.8 −8.3 −13.5 −0.0

Table 1: Rescaled asymptotic standard errors and simulation biases

diameter 0.2 for the mean slope a. With τ = 1 it would take about (7.2/0.2)2 ' 5, 000

observations; and still about 4, 300 for τ = 2, even though the model has a generalized R2

that is larger by half. With such sample sizes, the estimate of the size of the heterogeneity

s would still be very noisy: the 95% confidence intervals would have half-diameters 0.48 and

0.32, respectively. We also found that the correlation between the estimators of a and of s is

always large and positive—of the order of 0.8. Thus the confidence region for the pair (a, s)

is in fact a rather elongated ellipsoid. On the other hand, the estimates of b are reasonably

precise, which is not very surprising as b shifts the mean probability of y = 1 strongly.

The figures in the columns labeled “S times bias” refer to the expansions of θ̂nS − θ̂ in

our theorems. We will be using SML under the EIA scheme (independent draws). Then

we know that the leading term of the bias due to the simulations is BS,2 and is of order

1/S. The figures give our numerical evaluation of SBS,2, using our formulæ and Gaussian

quadrature again. As appears clearly from Table 1, once again the heterogeneity coefficient

s is the harder to estimate, followed by a, while there is hardly any bias on b. With S = 200

simulations for instance, the biases on s are −0.12 for τ = 1 and −0.07 for τ = 2. For sample

sizes of a couple thousand observations, they are actually much smaller than the dispersion

of the estimates implied by the parametric efficiency bounds; but they become more relevant

in larger samples.

We used various sample sizes n and number of draws S. We ran 1,000 simulations in each

case, starting from initial values of the parameters drawn randomly from uniform distribu-

tions:

a ∼ U [0.5, 1.5], b ∼ U [−0.5, 0.5], s ∼ U [0.5, 1.5].

For each simulated sample, we estimated the model using both analytic bias correction

(ABA), jackknife (JK) and Newton-Raphson. The ABA was done on the objective funtion,

while the JK on the estimator itself.

1. exact ML (using adaptive Gaussian quadrature as in equation 32)

2. SML with S independent draws of ui for each observations

3. SML with S draws + one NR step with S∗ = 10× S draws

4. SML with S draws + ABA.
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5. SML with S draws + ABA + one NR step with S∗ = 10× S draws

6. SML with S draws + JK with S∗ = S/2 draws.

We present below the results for n = 5, 000 and n = 25, 000, using S = 200 simulations.

Given our discussion of the Fisher bounds, there is little point in considering smaller samples

as the dispersion of the MLE would swamp the bias. As for S, we obtained very similar

results for S = 100, with larger biases due to the approximation of course.

We faced very few numerical difficulties. The optimization algorithm sometimes stopped

very close to the bounds we had imposed for the heterogeneity parameter, 0.1 ≤ s ≤ 5. In

even fewer cases it failed to find an optimum. Finally, the second derivative of the simulated

log-likelihood was not invertible in a very small number of samples. Altogether, we had to

discard 7 to 18 of the 1,000 samples, depending on the run. The tables and graphs below only

refer to the remaining samples. We focus on a and s since there is little bias to correct for in

b. We report (Huber) robust means, standard errors and RMSEs; the robustness correction

only matters in a few cells of the table where the Newton correction generates estimates of s

that are unusually large.

Tables 2 and 3 report our results for the smaller and the larger sample size, both when

covariates have little explanatory power (τ = 1) and when they have more power (τ = 2).

All numbers in the last five rows of these tables pertain to the bias due to the approximation;

that is, we compute the “error terms” θ̂n,S− θ̂n, and we average them over the 1,000 samples

(minus the small number that were eliminated due to numerical issues). The standard error

of these averages is about 0.002, so that many of the biases from the corrected estimates are

not only small, but actually insignificant.

The “SML” rows in the tables report the bias of the uncorrected SML estimator. They

are very similar in both tables, as they should be. Building on Table 1, it is easy to see that

the theoretical values of the leading term of the bias are

• for τ = 1: −0.045 for a and −0.117 for s

• for τ = 2: −0.042 for a and −0.068 for s.

Therefore the leading term is a very good approximation to the actual size of the bias

in these simulations; and the two methods that focus on correcting it, our analytical bias

adjustment (ABA in the tables) and the resampling method, should work very well. ABA

in fact does eliminate most of the bias; resampling also works quite well, with the exception

of the s estimator for τ = 1 for which there is still a small bias. The Newton step with

2, 000 simulations reduces the bias, as expected; but it does not do quite as well as ABA and

resampling.

The discussion above only bears on bias, but one may legitimately be concerned about the

possibility that our adjustment procedures introduce more noise into the estimates. Figures 1
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Figure 1: Density of θ̂nS − θ̂n when τ = 1

39



Error terms

D
en

si
ty 0

5

10

15

Errors on a:     5,000 observations

−0.2 −0.1 0.0 0.1 0.2

a:    25,000 observations

−0.2 −0.1 0.0 0.1 0.2

Errors on s:     5,000 observations

0

5

10

15

s:    25,000 observations

SML
SML+Newton
SML+resampling
SML+ABA
SML+ABA+Newton

Figure 2: Density of θ̂nS − θ̂n when τ = 2
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Method τ = 1 τ = 2
a s a s

SML −0.040 −0.121 −0.033 −0.059

SML+Newton 0.003 0.003 0.001 −0.004
SML+resampling −0.004 −0.022 0.002 −0.002

SML+ABA 0.004 −0.007 0.006 0.006
SML+ABA+Newton 0.004 −0.002 0.006 0.004

Table 2: Biases and their corrections, n = 5, 000 observations

Method τ = 1 τ = 2
a s a s

SML −0.038 −0.118 −0.032 −0.063

SML+Newton −0.001 −0.014 0.001 −0.006
SML+resampling −0.003 −0.024 0.003 −0.005

SML+ABA 0.004 −0.009 0.008 0.001
SML+ABA+Newton 0.003 −0.010 0.007 0.001

Table 3: Biases and their corrections, n = 25, 000 observations

and 2 plot the estimated densities of the error terms θ̂n,S − θ̂n when τ = 1 and τ = 2. The

improvements in the biases are obvious. More interesting is the contrasting performance of the

methods when it comes to the dispersion of the errors. While our analytical bias adjustment

hardly changes the dispersion, the Newton procedure reduces it; and the resampling procedure

increases it. Since the Newton adjustment aims at giving the estimator the asymptotic

properties of one with 10 times more simulations, it reduces the efficiency loss relative to the

MLE. On the other hand, resampling corrects the S = 200 estimator by using an average of

estimators with S = 100, and so it introduces more noise.

These trade-offs are reflected in the RMSEs of the error terms, as collected in tables 4

and 5. Two other considerations are worth mentioning:

• Ease of implementation: The resampling method wins on that count; the analytical

bias adjustment is not far behind, since it is usually easy to get a formula for the ∆ term

and to program it. The Newton method may be more troublesome in model with more

than a few parameters, as it requires a reasonably accurate evaluation of the matrix of

second derivatives.

• Computer time: Here, the analytical bias adjustment wins hands down. For SML for

instance, the evaluation of the corrected objective function requires the variance of the

simulated p’s in addition to their mean—-a very small computational cost. Resampling,

as implemented in this study, roughly doubles the cost of the uncorrected estimator;
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and Newton can be more costly still, depending on the structure of the model and the

care needed to estimate the Hessian.

Like all Monte Carlo studies, ours can only be illustrative; yet our results suggest that

the resampling method is dominated by the other two. If the Hessian is easy to compute

with enough accuracy, then the Newton method is probably the best choice; otherwise, the

analytical bias adjustment seems to be a good choice, at least if the bias induced by the

approximations is the main concern.

Method τ = 1 τ = 2
a s a s

SML 0.062 0.173 0.046 0.086

SML+Newton 0.045 0.116 0.031 0.053
SML+resampling 0.073 0.189 0.038 0.092

SML+ABA 0.052 0.129 0.033 0.065
SML+ABA+Newton 0.044 0.109 0.032 0.054

Table 4: Root mean squared errors, n = 5, 000 observations

Method τ = 1 τ = 2
a s a s

SML 0.058 0.159 0.049 0.084

SML+Newton 0.042 0.105 0.032 0.053
SML+resampling 0.047 0.121 0.055 0.064

SML+ABA 0.044 0.109 0.040 0.056
SML+ABA+Newton 0.042 0.105 0.034 0.053

Table 5: Root mean squared errors, n = 25, 000 observations

8 Conclusion

We developed in this paper a unifying framework for the analysis of approximate estimators.

We derived bias and variance rates of the approximate estimator relative to the exact esti-

mator, and used them to propose three methods for reducing the bias and the efficiency loss

that result from the approximation. Simulations on the mixed logit model confirm that the

proposed methods work well in finite samples.

We restricted ourselves to estimators solving a first-order condition given in eq. (6). It

would be of interest to extend our results to a more general setting. Consider the case of non-

smooth objective functions and non-smooth approximators (as functions of θ). In principle,

one could import the arguments of Chen et al (2003) for semiparametric estimators in order
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to handle this complication. Another approach would be to employ a slight generalization of

Robinson (1988, Theorem 1) which in our setting would yield

||θ̂n,S − θ̃n|| = OP

(
sup

‖θ−θ0‖≤δ
‖Gn (θ, γ̂S)−Gn (θ, γ)‖

)
+ oP

(
1/
√
n
)
,

for some δ > 0. If one could then strengthen the pointwise bias and variance results derived

here to hold uniformly over ‖θ − θ0‖ ≤ δ, all our results would remain valid. To extend our

results to hold uniformly, one could rely on standard uniform convergence results as developed

in, e.g. van der Vaart and Wellner (1996).

Also, we require the approximators to be mutually independent, which rules out certain

recursive approximation schemes such as particle filtering. Establishing results for this more

complicated case would be highly useful. One could here try to use the results of Chen and

White (1998, 2002) who analyze random dynamic function systems.

Finally, we only allowed for one source of approximation in γ. More general situations

could have several such terms, possibly with quite different properties. As an example, we

could have evaluate a quantity γ1 using simulations, and another term γ2 by discretizing over

a grid and interpolating. We could still write a Taylor expansion as in section 3.1, and evaluate

the corresponding terms. While we have not formally explored this extension, we feel that we

can venture some conjectures. The Newton method would still work, using here both a larger

number of simulations and a more precise grid in computing the Newton correction. The

analytical bias-adjustment method would only work if all sources of approximations were

“stochastic” (unlike γ2 in our example); and then one would focus on the approximation

whose size goes to zero most slowly. As for the resampling method, we would need to use

different choices of m and S∗ along the various dimensions of approximation.
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A Examples

In this appendix, we give more details for the SPML (Example 2.2) and the NPSMLE (Ex-

ample 3.2).

A.1 Example 2.2 (SPML)

We here derive the first and second order differentials for the SPML estimator, and obtain

an expression of the analytical bias adjustment.

With mi (θ) = m (xi; θ), vi (θ) = v (xi; θ) and ξi (θ) = yi −mi (θ),

gi(θ, γ) =
∂

∂θ

{
log (vi (θ)) +

ξ2
i (θ)

vi (θ)

}
=
v̇i (θ)

vi (θ)
− 2ξi (θ) ṁi (θ)

vi (θ)
− ξ2

i (θ) v̇i (θ)

v2
i (θ)

.

Thus, with dγi = (dmi, dvi) and dmi = dm (xi) and dvi = dv (xi) denoting mean and variance

directions,

5gi(θ) [dγ] = 5mgi(θ) [dm] +5vgi(θ) [dv]

52gi(θ) [dγ, dγ] = 52
m,mgi(θ) [dm, dm] + 252

g,m gi(θ) [dm, dv] +52
v,vgi(θ) [dv, dv] ,

where, by easy but tedious calculations,

5mgi(θ) [dm] =
2

vi (θ)

{
ṁi (θ) +

ξi (θ) v̇i (θ)

vi (θ)

}
dmi (θ)− 2ξi (θ)

vi (θ)
dṁi (θ) ,

5vgi(θ) [dv] =
1

vi (θ)

{
1− ξ2

i (θ)

vi (θ)

}
dv̇i (θ)+

1

v2
i (θ)

{
2ξi (θ) ṁi (θ) +

2ξ2
i (θ) v̇i (θ)

vi (θ)
− v̇i (θ)

}
dvi (θ)

52
m,mgi(θ) [dm, dm] =

1

vi (θ)

{
4dṁi (θ)− 2v̇i (θ)

vi (θ)
dmi (θ)

}
dmi (θ) ,

52
m,vg(zi; θ) [dm, dv] =

2ξi (θ)

v2
i (θ)

dmi (θ) dv̇i (θ) +
2ξi (θ)

v2
i (θ)

dṁi (θ) dvi (θ)

− 1

v2
i (θ)

{
2ṁi (θ) +

4ξi (θ) v̇i (θ)

vi (θ)

}
dmi (θ) dvi (θ)

52
v,vg(z; θ) [dv, dv] =

2

v2
i (θ)

{
2ξ2
i (θ)

vi (θ)
− 1

}
dvi (θ) dv̇i (θ)

− 2

v3
i (θ)

{
2ξi (θ) ṁi (θ) +

(
3
ξ2
i (θ)

vi(θ)
− 1

)
v̇i (θ)

}
dvi (θ)2

In contrast to Example 2.1, the third order differential is non-zero. It can still easily be
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checked that Eqs. (8)-(10) hold with Ḡk = E [ḡk (zi)], k = 1, 2, 3, where

ḡ0 (zi) := sup
θ∈Θ

∂

∂θ

{
1

v4 (xi; θ)
+

ξ2
i (θ)

v6 (xi; θ)
+

ξ4
i (θ)

v8 (xi; θ)

}
,

ḡ1 (zi) := sup
θ∈Θ

∂

∂θ

{
1

v4 (xi; θ)
+

ξ4
i (θ)

v4 (xi; θ)

}
, ḡ2 (zi) = sup

θ∈Θ

∂

∂θ

{
1

v4 (xi; θ)
+

ξ2
i (θ)

v4 (xi; θ)
+

ξ4
i (θ)

v6 (xi; θ)

}
.

Given the above differentials, we can derive an expression of the analytical bias adjust-

ment. Suppose the simulated versions of the conditional mean and variance are of the form

m̂i (xi; θ) =
1

S

S∑
s=1

w[m] (xi, εis; θ) , v̂i (xi; θ) =
1

S

S∑
s=1

w[v] (xi, εis; θ) .

We then obtain the following expression for the analytical bias adjustment10:

∆n,S (θ) = ∆
(1)
n,S (θ) + ∆

(2)
n,S (θ) + ∆

(3)
n,S (θ) ,

∆
(1)
n,S (θ) =

1

nS2

n∑
i=1

S∑
s=1

r2
is(θ)

v̂ (xi; θ)
,

∆
(2)
n,S (θ) =

1

nS2

n∑
i=1

S∑
s=1

ξ̂i (θ)

v̂2 (xi; θ)
ris(θ)dis(θ),

∆
(3)
n,S (θ) =

1

nS2

n∑
i=1

S∑
s=1

{
ξ̂i (θ)2

v̂ (xi; θ)
− 1

2

}
d2
is(θ)

v̂2 (xi; θ)
,

where ξ̂i (θ) = yi − m̂i (xi; θ) and

ris(θ) = w[m] (xi, εis; θ)− m̂i (xi; θ) , dis(θ) = w[v] (xi, εis; θ)− v̂ (xi; θ) .

In this case, 53Gn(θ, γ) [dγ] 6= 0 and so the bias adjustment does not ensure consistency

for fixed S.

10If two independent batches of simulated draws are used to compute m̂ and v̂, then ∆
(2)
n,S (θ) has mean zero

and can be left out in the computation of ∆n,S (θ).

50



A.2 Example 3.2 (NPSMLE)

We here derive the optimal rate for the bandwidth used in NPSMLE: The bias component

of the first order term is

5gi(θ) [bS ] =
ṗ (yi|xi; θ)
p2 (yi|xi; θ)

bS (yi|xi; θ)−
1

p (yi|xi; θ)
ḃS (yi|xi; θ)

= hr
{
ṗ (yi|xi; θ)
p2 (yi|xi; θ)

∂rp (yi|xi; θ)
∂yri

− 1

p (yi|xi; θ)
∂rṗ (yi|xi; θ)

∂yri

}
+ o (hr) .

This holds irrespectively of whether a single simulation batch (ECA) or n (EIA) simulation

batches are used.

Next, we derive the rate of the variance component of the first order term. First, consider

the EIA: By Lemma 6, we obtain that

Var (5Gn(θ)[ψS ]) ≤ C

n

{
E
[
‖p̂S (y|x; θ)− p (y|x; θ)‖2

]
+ E

[∥∥∥̂̇pS (y|x; θ)− ṗ (y|x; θ)
∥∥∥2
]}

= O

(
1

nShd+2

)
.

Note that the (d + 2) term comes from the fact that we need to approximate the derivative

of the loglikelihood as well as the function itself.

Next consider the ECA: we claim that

5Gn(θ)[ψS ] =
1

S

S∑
s=1

5ḡ(θ)[es] +OP

(
1√

nShd+1

)
= OP

(
1√
S

)
+OP

(
1√

nShd+1

)
.

The first equality follows from Lemma 6, while to show the second one we write 5ḡ(θ)[es] =

5ḡ1(θ)[es] +5ḡ2(θ)[es] where

5ḡ1(θ)[e] = E

[
ṗ (yi|xi; θ)
p2 (yi|xi; θ)

e (yi|xi; θ)
]
, 5 ḡ1(θ)[e] = −E

[
1

p (yi|xi; θ)
ė (yi|xi; θ)

]
and

es (yi|xi; θ) = K

(
y − y (x, εs; θ)

h

)
− E

[
K

(
y − y (x, εs; θ)

h

)]
By standard arguments,

5ḡ1(θ)[eS ] =

∫ ∫
ṗ (y|x; θ0)

p (y|x; θ)
p (x)

[
1

hd
K

(
y − y (x, εs; θ)

h

)
− hr ∂

rp (y|x; θ)

∂yr

]
dydx+ o (hr)

=

∫
ṗ (y (x, εs; θ) |x; θ0)

p (y (x, εs; θ) |x; θ)
p (x) dydx+OP (hr) ,
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where ∫
ṗ (y (x, εs; θ0) |x; θ0)

p (y (x, εs; θ0) |x; θ0)
p (x) p (ε) dydxdε = 0.

Thus, S−1/2
∑S

s=15ḡ1(θ)[es] = OP (1). Similarly, we find that S−1/2
∑S

s=15ḡ2(θ)[es] =

OP (1).

As a consequence, for both ECA and EIA we have

||θ̂n,S − θ̂n|| = OP (hr) +OP

(
1

Shd+2

)
+OP

(
1√

nShd+2

)
.

B Proofs

Proof of Theorem 1. We first note that under (A.1)-(A.2) and (A.3.i),

sup
θ∈Θ
‖Gn (θ, γ0)−G (θ, γ0)‖ →P 0, (33)

as n→∞; see e.g. Kristensen and Rahbek (2005, Proposition 1). This together with (A.3.ii)

implies that θ̂n is consistent, see e.g. Newey and McFadden (1994, Theorem 2.1).

In the case of ECA’s, we will in the following write γ̂i,S := γ̂S , i = 1, ..., n, so we do not

have to treat the two approximation schemes separately. Then, by part (i)-(ii) of (A.6), for

any λ ≤ 2,

1

n

n∑
i=1

E
[∥∥γ̂i,S − γ0

∥∥λ] ≤ 1

n

n∑
i=1

E
[∥∥γ̂i,S − γ0

∥∥2
]λ/2

=
[
O
(
S−2β

)
+O

(
S−α2

)]λ/2
= o (1) ,

as S → ∞. Thus, by (A.1), part (i) of (A.5), and part (i) of (A.6), where without loss of

generality we assume λ ≤ 2,

E

[
sup
θ∈Θ
‖Gn (θ, γ̂S)−Gn (θ, γ0)‖

]
≤ 1

n

n∑
i=1

E

[
sup
θ∈Θ
‖g (zi; θ, γ̂S)− g (zi; θ, γ0)‖

]

≤ Ḡ0
1

n

n∑
i=1

E
[∥∥γ̂i,S − γ0

∥∥λ]
= oP (1) (34)

Combining this result with eq. (33), we obtain supθ∈Θ ‖Gn (θ, γ̂S)−G (θ, γ0)‖ →P 0.

Together with (A.3), this proves that θ̂n,S is consistent as n, S →∞; see Newey and McFadden

(1994, Theorem 2.1).
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To derive more precise rates of the approximate estimator, we first take a Taylor expansion

of Gn(θ, γ̂S) w.r.t. θ:

oP

(
n−1/2

)
= Gn(θ̂n,S , γ̂S) = Gn(θ0, γ̂S) +Hn(θ̄n,S , γ̂S)(θ̂n,S − θ0), (35)

for some θ̄n,S between θ̂n,S and θ0. Since θ̂n,S is consistent, θ̄n,S →P θ0. By the same

arguments used to establish eqs. (33)-(34), Assumption A.4 then ensures that,∥∥Hn

(
θ̄n,S , γ̂S

)
−H0

∥∥ ≤
∥∥Hn

(
θ̄n,S , γ̂S

)
−Hn

(
θ̄n,S , γ0

)∥∥+
∥∥Hn

(
θ̄n,S , γ0

)
−H

(
θ̄n,S , γ0

)∥∥
+
∥∥H (θ̄n,S , γ0

)
−H (θ0, γ0)

∥∥
≤ sup

‖θ−θ0‖≤δ
‖Hn (θ, γ̂S)−Hn (θ, γ0)‖+ sup

‖θ−θ0‖≤δ
‖Hn (θ, γ0)−H (θ, γ0)‖

+
∥∥H (θ̄n,S , γ0

)
−H (θ0, γ0)

∥∥
= oP (1) .

Going back to eq. (35), we have now shown that

θ̂n,S − θ0 = −H−1
0 Gn(θ0, γ̂S) + oP

(
n−1/2

)
,

while

θ̂n − θ0 = −H−1
0 Gn(θ0, γ0) + oP

(
n−1/2

)
.

Subtracting gives

θ̂n,S − θ̂n = −H−1
0 {Gn(θ0, γ̂S)−Gn(θ0, γ0)}+ oP

(
n−1/2

)
.

We now use the expansion given in eq. (11) with m = 2 and θ = θ0, to get∥∥∥θ̂n,S − θ̂n∥∥∥ = OP

(∥∥∥∥5Gn(θ0) [∆γ̂S ] +
1

2
52 Gn(θ0) [∆γ̂S ,∆γ̂S +Rn,S ]

∥∥∥∥)+ oP (n−1/2),

(36)

where ∆γ̂i,S = γ̂i,S − γ0. We first derive the rate of the remainder term Rn,S :

E [‖Rn,S‖] = E

∥∥∥∥Gn(θ0, γ̂S)−Gn(θ0, γ0)−5Gn(θ0) [∆γ̂S ]− 1

2
52 Gn(θ0) [∆γ̂S ,∆γ̂S ]

∥∥∥∥
≤ 1

n

n∑
i=1

E

∥∥∥∥gi(θ0, γ̂i,S)− gi(θ0, γ0)−5gi(θ0)
[
∆γ̂i,S

]
− 1

2
52 gi(θ0)

[
∆γ̂i,S ,∆γ̂i,S

]∥∥∥∥
≤ Ḡ0

n

n∑
i=1

E
∥∥∆γ̂i,S

∥∥3
,

where we have used A.5(2).
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Applying first Minkowski’s inequality and then the inequality

(a+ b)p ≤ 2p−1ap + 2p−1bp

(which holds for all a, b > 0 and p ≥ 1), we obtain—dropping the i index:

E ‖∆γ̂S‖
3 = E

[
‖ψS + (E [γ̂S ]− γ0)‖3

]
≤

(
E
[
‖ψS‖

3
]1/3

+ ‖E [γ̂S ]− γ0‖
)3

≤ 4E
[
‖ψS‖

3
]

+ 4 ‖Eγ̂S − γ0‖
3

= O
(
S−α3

)
+O

(
S−3β

)
,

The rates of the first and second order functional differentials of Gn(θ0, γ) are given in

Lemmas 7 and 8 depending on whether the ECA approximator of (12) or the EIA approxi-

mator of eq. (13) is used. By plugging those into eq. (36) together with the rate of Rn,S , we

obtain the desired result.

Proof of Theorem 2. We only give a proof for the case of EIA’s; the proof for ECA’s follows

along the same lines. One can easily show that supθ∈Θ ||∆̇n,S (θ) || = oP (1) as n, S →∞, and

it now follows by the same arguments as in the proof of Theorem 1 that θ̂
AB

n,S is consistent.

Next, we make a Taylor expansion of eq. (23),

oP

(
n−1/2

)
=
{
Gn(θ0, γ̂S)− ∆̇n,S (θ0)

}
+
{
Hn(θ̄n,S , γ̂S)− ∆̈n,S

(
θ̄n,S

)}
(θ̂

AB

n,S − θ0),

where ∆̈n,S (θ) = ∂∆̇n,S (θ) /∂θ. From the proof of Theorem 1, Hn(θ̄n,S , γ̂S) = H0 + oP (1),

while it is easily shown that ∆̈n,S

(
θ̄n,S

)
= oP (1) as n, S → 0, so that, by the same arguments

as in the proof of Theorem 1,

θ̂
AB

n,S − θ̂n = OP

(∥∥∥Gn(θ0, γ̂S)− ∆̇n,S(θ0)−Gn(θ0, γ)
∥∥∥) .

Suppressing any dependence on θ0, use eq. (11) to write

Gn (γ̂S)− ∆̇n,S −Gn (γ) =

{
1

2
52 Gn[ψn,S , ψn,S ]− ∆̇n,S

}
+5Gn[γ̂S − γ] (37)

+
1

2

{
52Gn[γ̂S − γ, γ̂S − γ]−52Gn[ψn,S , ψn,S ]

}
+Rn,S .

The rates of the second, third and fourth term of eq. (37) are derived in Lemma 8. The
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crucial term is the first term of eq. (37). Now, recall that γ̂i = S−1
∑S

s=1wis, and that

∆n,S =
1

2nS2

n∑
i=1

S∑
s=1

5gi[wis − γ̂i, wis − γ̂i].

Thus, using the bilinearity of (dγ, dγ′) 7→ 52gi [dγ, dγ′], and denoting w̄i = E [wi,s] and

eis = wis − w̄i, the first term of eq. (37) can be rewritten as

1

2
52 Gn[ψn,S , ψn,S ]− ∆̇n,S

=
1

2nS2

n∑
i=1

∑
s 6=t
52gi[eis, eit] +

1

2nS2

n∑
i=1

S∑
s=1

52gi[eis, eis]−
1

2nS2

n∑
i=1

S∑
s=1

5gi[wis − γ̂i, wis − γ̂i]

=
1

2nS2

n∑
i=1

∑
s 6=t
52gi[eis, eit] +

1

2nS2

n∑
i=1

S∑
s=1

{
52gi[eis, eis]−5gi[wis − γ̂i, wis − γ̂i]

}
=

1

2nS2

n∑
i=1

∑
s 6=t
52gi[eis, eit] +

1

2nS2

n∑
i=1

S∑
s=1

{
52gi[γ̂i − w̄i, eis] +52gi[eis, γ̂i − w̄i]

}
=

1

2nS2

n∑
i=1

∑
s 6=t
52gi[eis, eit] +

1

nS

n∑
i=1

52gi[γ̂i − w̄i, γ̂i − w̄i]

where the last equality uses the fact that S−1
∑S

s=1 eis = γ̂i − w̄i.
Start with the first term, and note that E

[
52gi[eis, eit]

]
= 0 when s 6= t. Then apply

Lemma 5 with r = 1 to Wi,S := S−2
∑

s6=t52gi[eis, eit], getting

Var

 1

2nS2

n∑
i=1

∑
s 6=t
52gi[eis, eit]

 ≤ C

n
E
[
‖Wi,S‖2+δ

]2/(2+δ)
.

Now Wi,S is a degenerate U -statistic since

E
[
52g(zi)[eis, eit]|zi, eit

]
= E

[
52g(zi)[eis, eit]|zi, eis

]
= 0.

Given the conditions imposed on {ei,s : 1 ≤ s ≤ S} in (A.6’), we can employ U -statistic results

for absolutely regular sequences: Yoshihara (1976, Lemma 3) states that E
[
‖Wi,S‖4 |zi

]
=

O
(
S−4

)
. By inspection of the proof of Yoshihara (1976, Lemma 3), it is easily checked that

in fact, for some constant C > 0 and with MS,4 (zi) defined in eq. (25), E
[
‖Wi,S‖4 |zi

]
≤

CS−4MS,4 (zi). Thus, with δ = 2, we obtain

E
[
‖Wi,S‖4

]1/2
≤
√
CS−2

√
E [MS,4 (zi)].
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It follows that:

1

2nS2

n∑
i=1

∑
s 6=t
52gi[eis, eit] = OP (n−1/2S−1

√
E [MS,4 (zi)]).

As for the second term, by definition γ̂i − w̄i = ψi,S ; and it follows from Lemma 6 that

E
[
52gi[ψi,S , ψi,S ]

]
= O (S−α2) and

1

n

n∑
i=1

(
52gi[ψi,S , ψi,S ]− E

[
52gi[ψi,S , ψi,S ]

])
= OP

(
n−1/2S−α4/2

)
.

Summing up, we have shown that

1

2
52Gn[ψn,S , ψn,S ]−∆̇n,S = OP

(
S−(1+α2)

)
+OP (n−1/2S−1

√
E [MS,4 (zi)])+OP

(
n−1/2S−(1+α4/2)

)
.

Proof of Theorem 4. We only need to check that conditions A.1-A.3 of Robinson (1988)

hold. First, note that in his notation, our estimators are given by θ̂T = θ̂n,S∗ and θ̃T = θ̂
(k)

n,S .

His Assumption A.1 is satisfied under our assumptions since in the proof of Theorem 1 we

showed that θ̂n,S∗ →P 0 as n and S∗ → ∞. This also shows that Robinson’s Assumption 3

is satisfied. Thus, we can appeal to his Theorem 2, which in conjunction with eq. (31) yields

the desired result.

C Lemmas

To establish the rates for the first and second order differentials, we first establish some useful

auxiliary results:

Lemma 5 Assume that {Wi} is an sequence α-mixing satisfying E [Wi] = 0, E
[
‖Wi‖2r+δ

]
<

∞ for some r ≥ 1 and δ > 0, and with its mixing coefficients αi, i = 1, 2, ..., satisfying

αi ≤ Ai−a for some A > 0, and a > 2r + 4r (r − 1) /δ − 2. Then there exists a constant

C = C (r, a,A) <∞ such that:

E

[∥∥∥∥ 1

n

∑n

i=1
Wi

∥∥∥∥2r
]
≤ CE

[
‖Wi‖2r+δ

]2/(2r+δ)
n−r.

Proof. From Rio (1994), we obtain that

E

[∥∥∥∥ 1

n

∑n

i=1
Wi

∥∥∥∥2r
]
≤ Cr

[
n−rM2r

2,α + n1−2rM2r,α

]
,
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where Mp,α, p ≥ 2, is defined in Rio (1994) and n−r ≥ n1−2r for r ≥ 1. By Nze and Doukhan

(2004, p. 1040),

Mp,α ≤ E
[
‖Wi‖p+δ

]p/(p+δ)
× (p+ δ) (p− 1)

δ

∞∑
n=0

(n+ 1)p−2+p(p−1)/δ αn, p ≥ 1,

where, given the bound imposed on the mixing coefficients,

∞∑
n=0

(n+ 1)p+p(p−1)/δ−2 αn ≤ C (A, a)

∞∑
n=0

(n+ 1)p+p(p−1)/δ−2−a <∞.

Lemma 6 Assume that {zi} satisfies (A.1), and that for ECA or EIA, the γ̂j,S satisfy

(A.6(4)) for j = 1, ..., J . Let m (z; dγ) be a functional satisfying:

E
[
‖m (z; dγ)‖2r+δ

]
≤ M̄ ‖dγ‖

k(2r+δ)

, (38)

for some r, k ≥ 1 and δ > 0.

Then, with bS and ψS given in A.5 and with

MS (ψ) = E [m (z;ψS)] , MS (b) = E [m (z; bS)]

the following hold:

(i) For EIA’s,

E

[∥∥∥∥ 1

n

∑n

i=1
{m (zi; bi,S)−MS (b)}

∥∥∥∥2r
]
≤ C (r,A) M̄E

[
‖bS‖k(2r+δ)

]
n−r,

E

[∥∥∥∥ 1

n

∑n

i=1

{
m
(
zi;ψi,S

)
−MS (ψ)

}∥∥∥∥2r
]
≤ C (r,A) M̄E

[
‖ψS‖

k(2r+δ)
]
n−r.

(ii) For ECA’s, with m̄ (γ) = E [m (z; γ)],

E

[
sup
θ∈Θ

∥∥∥∥ 1

n

∑n

i=1
{m (zi; bS)− m̄ (θ, bS)}

∥∥∥∥2r
]

= C (r,A) M̄E
[
‖ψS‖

k(2r+δ)
]
n−r.

E

[
sup
θ∈Θ

∥∥∥∥ 1

n

∑n

i=1
{m (zi;ψS)− m̄ (θ, ψS)}

∥∥∥∥2r
]
≤ C (r,A) M̄E

[
‖ψS‖

k(2r+δ)
]
n−r,

where

E
[
‖m̄ (ψS)‖2r

]
≤ M̄E

[
‖ψS‖

2kr
]
.
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(iii) The means satisfy:

‖MS (b)‖ ≤ M̄E
[
‖bS‖k

]
, ‖MS (ψ)‖ ≤ M̄E

[
‖ψS‖

k
]
.

Proof. Define Wi,S = m
(
zi;ψi,S

)
−MS . By assumptions (A.1) and (A.5), for any given value

of S ≥ 1, this is a mixing process. Furthermore, eq. (38) implies that E
[
‖Wi,S‖2r+δ

]
< ∞.

We can therefore apply Lemma 5,

E

[∥∥∥∥ 1

n

∑n

i=1

{
m
(
zi;ψi,S

)
−MS (ψ)

}∥∥∥∥2r
]
≤ CE

[∥∥m (z;ψi,S)−MS (ψ)
∥∥2r+δ

]2/(2r+δ)
n−r,

where, by eq. (38),

E
[∥∥m (z;ψi,S)∥∥2r+δ

]
≤ CE

[∥∥ψi,S∥∥k(2r+δ)
]
n−r,

and

‖MS (ψ)‖ ≤ E
[∥∥m (zi;ψi,S)∥∥] ≤ M̄E

[∥∥ψi,S∥∥k] .
It is easily seen that the above arguments still go through when replacing ψi,S with bi,S . This

shows (i) and (iii).

To show the second inequality of (ii), redefine WS,i as WS,i = m (zi;ψS)− m̄ (ψS). Con-

ditional on ψS , it is easily seen that WS,i satisfies the conditions of Lemma 5 such that

E

[∥∥∥∥ 1

n

∑n

i=1
WS,i

∥∥∥∥2r

|ψS

]
≤ CE

[
‖WS,i‖2r+δ |ψS

]
n−r.

Next, observe that

E
[
‖WS,i‖2r+δ

]
≤ CE

[
‖m (z;ψS)‖2r+δ

]
≤ CM̄E

[
‖ψS‖

k(2r+δ)
]
,

and we conclude that

E

[∥∥∥∥ 1

n

∑n

i=1
WS,i

∥∥∥∥2r
]

= E

[
E

[∥∥∥∥ 1

n

∑n

i=1
WS,i

∥∥∥∥2r

|ψS

]]
≤ CE

[
‖ψS‖

k(2r+δ)
]
n−r.

Finally,

E
[
‖m̄ (ψS)‖2r

]
≤ E

[
‖m (z;ψS)‖2r

]
≤ M̄E

[
‖ψS‖

2rk
]
.

The proof of the first inequality of (ii) follows along the same lines.

Lemma 7 Under A.1-A.4, A.5(2) and A.6(4), the first and second order differentials of Gn

for the ECA in (12) satisfy equations (16)-(17) and (18)-(19).
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Proof. In the following we suppress the dependence on θ0 since this is kept fixed. When the

approximation of Gn(γ) is on the form (13), the functional differentials are given by

5Gn [dγ] =
1

n

n∑
i=1

5gi [dγ] , 52 Gn
[
dγ, dγ′

]
=

1

n

n∑
i=1

52gi
[
dγ, dγ′

]
,

and dγ and dγ′ are the same for all observations i = 1, . . . , n.

Given A.6(4), the application of the first-order differential to the bias component can be

rewritten as

5Gn[bS ] = S−β
1

n

n∑
i=1

5gi
[
b̄
]

+
1

n

n∑
i=1

5gi
[
bS − S−β b̄

]
.

Now,

E

[
1

n

n∑
i=1

5gi
[
b̄
]]

= E
[
5gi

[
b̄
]]
, and

E

[
1

n

n∑
i=1

∥∥∥5gi [bS − S−β b̄]∥∥∥] ≤ G1

∥∥∥bS − S−β b̄∥∥∥ = o
(
S−β

)
.

By Lemma 6(i) with m (z; dγ) = 5g (z) [dγ], k = 1 and r = 1,

Var (5Gn[bS ]) ≤ 1

n
C ‖bS‖2 = O

(
S−2β

n

)
.

Since dγ 7→ 5gi [dγ] is linear, the conditional mean of the stochastic component of the

first-order term is

E [5Gn[ψS ]|Zn] =
1

n

n∑
i=1

5gi [E [ψS |zi]] = 0.

Moreover, with 5ḡ (ψS ; θ0) given in Theorem 1,

5Gn[ψS ] = 5ḡ (ψS ; θ0) +
1

n

n∑
i=1

{5gi [ψS ]−5ḡ (ψS ; θ0)} .

Recalling the definition of5ḡ (ψS ; θ0), it follows from Lemma 6(ii) withm (z; dγ) = 5g (z) [dγ, γ]

and k = 2 that the second term is OP (n−1/2S−α2).

Regarding the second order differential, its application to the bias component satisfies

52Gn[bS , bS ] = S−2β 1

n

n∑
i=1

52gi
[
b̄, b̄
]

+ oP

(
S−2β

)
;

moreover,

E

[
1

n

n∑
i=1

52gi
[
b̄, b̄
]]

= E
[
52gi

[
b̄, b̄
]]
,
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and, applying Lemma 6(i) with m (z; dγ) = 52g (z) [dγ, dγ], k = 2 and r = 1,

Var
(
52Gn[bS , bS ]

)
≤ 1

n
C ‖bS‖4 = O

(
n−1S−4β

)
.

To bound the variance component, define

52ḡ [γ, γ] = E
[
52gi [γ, γ]

]
,

and write

52Gn[ψS , ψS ] = 52ḡ [ψS , ψS ] +
1

n

n∑
i=1

(
52gi [ψS , ψS ]−52ḡ [ψS , ψS ]

)
.

Applying Lemma 6(ii) withm (z; dγ) = 52g (z) [dγ, dγ] and k = 2, we obtain that
∥∥52ḡ [ψS , ψS ]

∥∥ =

OP
(
S−2α2

)
and that the second term is OP (n−1/2S−α4).

Finally, ´by the same arguments as before, E
[
52Gn[ψS , bS ]

]
= 0 while Var

(
52Gn[ψS , bS ]

)
=

O(n−1S−α2S−2β), and so we can ignore the cross term since it is of lower order.

Lemma 8 Under A.1-A.4, A.5(2) and A.6(4), the first and second order differentials of

Gn(θ0, γ) for the EIA in (12) satisfy equations (16)-(17) and (20)-(21).

Proof. Again, we suppress dependence on θ0. For the EIA, the first and second order

differentials are

5Gn [dγ] =
1

n

n∑
i=1

5gi [dγi] ,

52Gn)
[
dγ, dγ′

]
=

1

n

n∑
i=1

52gi
[
dγi, dγ

′
i

]
,

for any dγ = (dγ1, ..., dγn) and dγ′ = (dγ′1, ..., dγ
′
n). It is easily seen that the bias components

are the same as those we derived for the ECA in Lemma 7, and so we only consider the

variance components. With Zn = (z1, ..., zn), the mean of the first-order variance component

is zero,

E [5Gn[ψS ]|Zn] =
1

n

n∑
i=1

5gi
[
E
[
ψi,S |zi

]]
= 0,

while its variance satisfies, using Lemma 6(i),

Var (5Gn[ψS ]) ≤ 1

n
CE

[
‖ψS‖

2
]

= O
(
n−1S−α2

)
.
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Applying Lemma 6(i) and (iii) with m (z; dγ) = 52g (z) [dγ, dγ] and k = 2, the mean and

the variance of the second order differential satisfy

E
[
52Gn[ψS , ψS ]

]
= E

[
52gi

[
ψi,S , ψi,S

]]
≤ CE

[∥∥ψi,S∥∥2
]

= O
(
S−α2

)
,

Var
[
52Gn[ψS , ψS ]

]
= O(n−1S−α4).

The cross term satisfies E
[
52Gn[ψS , bS ]

]
= 0 while Var

(
52Gn[ψS , bS ]

)
= O(n−1S−α2S−2β),

and so we can ignore this term since it is of lower order.

Lemma 9 Assume that A.1-A.4, A.5(3) and A.6’(6) hold. Then, the results of Theorem 1

still hold with

BS,1 = S−βH−1
0 E

[
5g(z; θ)[b̄]

]
+ o

(
S−β

)
, BS,3 = S−2βH−1

0 E
[
5g(z; θ)[b̄, b̄]

]
+ o

(
S−2β

)
,

where b̄ is defined in (A.6’), and the rate of the remainder term Rn,S can be sharpened to:

Rn,S = OP

(
S−3β

)
+OP

(
S−α4

)
+O

(
S−(1+a3)

)
+O

(
n−1/2S−α6/2

)
.

Proof. The results for the first and second order derivatives derived in Theorem 1 are still

valid. The bias expressions stated in the theorem follow as a simple consequence of A.5’. The

only difference is that the remainder term in eq. (11) now takes the form

Rn,S =
1

6
53 Gn [∆γ̂S ,∆γ̂S ,∆γ̂S ] + R̄n,S ,

where, by A.4(3) and the same arguments used in the proof of Theorem 1, R̄n,S = OP
(
S−4β

)
+

OP (S−α4). Regarding the third order term, it is easily checked that the bias component is

of order OP
(
S−3β

)
+ OP

(
n−1/2S−3β

)
by the same arguments employed in Lemma 7, so

what remains is the variance component: In the case of EIA, the variance component can be

written as

53Gn [ψS , ψS , ψS ] =
1

n

n∑
i=1

53gi [ψS , ψS , ψS ] .

By Lemma 6, we obtain

53Gn [ψS , ψS , ψS ]− E
[
53Gn [ψS , ψS , ψS ]

]
= O

(
n−1/2S−α6/2

)
,
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while, due to the independence,

∣∣E [53Gn [ψS , ψS , ψS ]
]∣∣ ≤ 1

S3

S∑
s,t,u=1

∣∣E [53gi [ei,s, ei,t, ei,u]
]∣∣

=

∣∣E [53gi [ei,s, ei,s, ei,s]
]∣∣

S2

≤ CE
[∥∥ψi,S∥∥3

]
= O

(
S−α3

)
.

In the case of ECA, define 53ḡ [γ, γ, γ] = E
[
52gi [γ, γ, γ]

]
and write

53Gn[ψS , ψS , ψS ] = 53ḡ [ψS , ψS , ψS ] +
1

n

n∑
i=1

{
53gi [ψS , ψS , ψS ]−53ḡ [ψS , ψS , ψS ]

}
.

Applying Lemma 6(ii) with m (z; dγ) = 53g (z) [dγ, dγ, dγ], the two terms are OP (S−α3) and

OP (n−1/2S−α6/2) respectively.
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