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ABSTRACT

This paper demonstrates that an asset pricing model with least-squares
learning can lead to bubbles and crashes as endogenous responses to the fun-
damentals driving asset prices. When agents are risk-averse they need to make
forecasts of the conditional variance of a stock’s return. Recursive updating
of both the conditional variance and the expected return implies several
mechanisms through which learning impacts stock prices. Extended periods of
excess volatility, bubbles and crashes arise with a frequency that depends on
the extent to which past data is discounted. A central role is played by
changes over time in agents’ estimates of risk.

JEL Classifications: G12, G14, D82, D83.
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Thus, this vast increase in the market value of asset claims is in part the indirect result of
investors accepting lower compensation for risk. Such an increase in market value is too often viewed
by market participants as structural and permanent... Any onset of increased investor caution
elevates risk premiums and, as a consequence, lowers asset values and promotes the
liquidation of the debt that supported higher asset prices. This is the reason that history has not
dealt kindly with the aftermath of protracted periods of low risk premiums.
Alan Greenspan (2005).
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1 Introduction

In his classic study of financial crises, Kindleberger (1977) provides an accounting of
historical episodes of manias and panics. Kindleberger’s conjecture for why bubbles —
and, their subsequent crashes — arise places primary emphasis on abrupt and unantic-
ipated changes in expectations, in part a response to a sudden economic event. This
explanation is in line with the view of many financial market observers that during
the mid to late 1990’s U.S. stock prices were excessively high — a “bubble”. The exis-
tence and detection of bubbles in asset prices has long been of interest to economists
and, recently, monetary policymakers (Bernanke (2002)). Despite popular agreement
that asset prices are susceptible to large run-ups in prices above the value warranted
by observed fundamentals, in the economics literature there is no such consensus.
In this paper, we consider the issue of recurrent bubbles and crashes and demon-

strate that a model, based on econometric learning, can generate bubbles and crashes
as endogenous responses to fundamental shocks. We replace rational expectations
(RE) in a simple linear asset pricing model with a perceived law of motion that has
a reduced form consistent with RE and the parameters of which are estimated and
updated using recursive least squares. We extend the conventional model to include
a motive for agents to estimate risk — measured as the conditional variance of net
stock returns. We show that the dynamic properties of the economy are altered in
surprising and interesting ways once agents must account for, and adaptively learn,
the riskiness of stocks.
Figure 1 previews our results by plotting stock prices generated from our simple

asset pricing model in which rational expectations are replaced by an econometric
forecasting rule. In a fundamentals based rational expectations equilibrium the mean
stock price is parameterized to be about 8.7, and along an equilibrium path price
is simply a constant plus white noise, with a standard deviation of 0.701. Under
learning, the dynamics can undergo an abrupt change leading to the recurrent bubbles
and crashes illustrated in Figure 1.

Figure 1 about here

To establish our results, we consider a simple asset pricing model in which the
stock price today depends on expected cum dividend price next period and negatively
on share supply, meant to proxy asset float. Share supply and dividends are both
assumed to follow exogenous iid processes. We assume agents are risk-averse so that
they seek to forecast both the expected net return tomorrow and the conditional
variance of excess returns. It turns out that by requiring agents to also estimate
the conditional variance, the global learning dynamics of our model are dramatically
different.
The analysis in this paper identifies several channels through which agents’ adap-

tive learning about risk and return affects stock prices. Occasional shocks to fun-
damentals can lead agents to adjust their estimates for risk and expected return;

2



combined, these two forces cause stock prices to deviate from their fundamental val-
ues. For example a sustained period of small shocks to prices can lead to a downward
revision in risk estimates that raises stock prices. More generally, various specific
sequences of shocks, reinforced by the feedback from adaptive beliefs, introduce ser-
ial correlation that would not otherwise exist, and can lead agents’ forecasting rule
to track this serial correlation via a random walk forecasting model. Random walk
beliefs can be approximately self-fulfilling and various scenarios for stock prices are
possible, including bubbles and crashes. Changing estimates of risk are also useful in
explaining how explosive bubbles can crash suddenly. If stock prices follow a bubble
path, estimates of risk will increase along a bubble path. Eventually, the increased
risk estimates can lead to decreased demand for the risky asset and falls in the stock
price, at which point demand collapses and price crashes well below its fundamental
value.
This paper proceeds as follows. Section 2 presents the model. Section 3 states the

basic stability results and Section 4 studies global dynamics. Section 5 presents the
numerical results illustrating the recurrent bubbles and crashes. Section 6 discusses
our results in the context of the literature, and Section 7 concludes.

2 Model

We employ a simple mean-variance linear asset pricing model, similar to DeLong,
Shleifer, Summers, and Waldmann (1990).1 There is one risky asset that yields a
dividend stream {yt} and trades at the price pt, net of dividends. There is also a
risk-free asset that pays the rate of return R = β−1 > 1, where β is the discount
factor. In this environment, demand for the risky asset is

zdt =
E∗t (pt+1 + yt+1)− β−1pt

aσ2t
,

where E∗t (pt+1 + yt+1) denotes the conditional expectation of pt+1 + yt+1 based on
the agent’s subjective probability distribution and σ2t denotes the agents conditional
variance of excess returns pt+1 + yt+1 − Rpt. The equilibrium price pt is given by
zdt = zst, where zst is the (random) supply of the risky asset at time t.
It follows that

pt = βE∗t (pt+1 + yt+1)− βaσ2t zst (1)

For a = 0, equation (1) reduces to the standard risk-neutral asset-pricing formula,
which can also be derived from the Lucas asset pricing model with risk-neutrality.
The Lucas model is an endowment economy in which consumers choose sequences of
consumption, equity and bond holdings, to maximize the expected present value of

1See the Appendix for details of the set-up.
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lifetime utility. Provided agents are risk-neutral and financial markets are complete
one has βR = 1, where β is the discount rate.2

The second term in (1) captures two key features to our analysis: the outside
supply of shares of the risky asset follows a stochastic process zst; the presence of
risk-averse agents (a > 0) implies that asset price also depends on agents’ percep-
tions of the conditional variance of excess returns σ2t = Var∗t (pt+1 + yt+1 −Rpt) =
Var∗t (pt+1 + yt+1). Having price depend explicitly on zst implies that price depends
on agents’ perceived risk. A stochastic process for share supply is meant to proxy for
asset float and I.P.O. lock-up expiration. In the presence of short sales constraints
variations in the outside share supply can affect stock price, an issue of increasing
empirical importance in the financial economics literature (see Ofek and Richard-
son (2003), Cochrane (2005), and Branch and Evans (2009)). Here we motivate the
presence of asset share supply by appealing to this literature and emphasizing that
incompleteness in markets can give rise to an important role to supply variation in
asset pricing. Equation (1) makes it clear that with risk-neutral agents share supply
does not have an effect on price. This is in line with DeLong et al. (1990) who
note that risk-averse traders may not take aggressive short positions in a risky-asset,
thereby preventing full arbitrage of profitable trading opportunities.
When a > 0, equation (1) can be derived from an overlapping generations model

along the lines of DeLong et al. (1990). As we note in the Appendix, this leads to
mean-variance preferences when agents have constant absolute risk aversion (CARA)
utility and believe that returns are normally distributed. Mean-variance preferences
are a frequently employed approach to tractably modeling limited risk tolerance
(downward sloping asset demand) and gives rise to a mean-variance maximizing set-
ting in which agents optimize their portfolio by maximizing risk-adjusted expected
wealth. See, for example, Bohm and Chiarella (2005) and Lewellen and Shanken
(2002). The novelty of our approach is that we assume agents estimate the value
of this risk. Risk-aversion implies that agents’ welfare declines with the conditional
variance of returns, σ2t . Agents’ concern with risk makes σ

2
t an equilibrium object

of the model and this is a key ingredient to our finding of recurrent bubbles and
crashes. In the learning section below, time-varying estimates of σ2t will sometimes
arrest explosive bubbles and can lead to crashes.
We assume the exogenous process for dividends is as follows

yt − y0 = ρ (yt−1 − y0) + ut

We assume that share supply follows a multiplicative process of the form

zst = {min(s0,Φpt)} · Vt
where ut, Vt are uncorrelated white noise shocks, EVt = 1, y0, s0 > 0, 0 ≤ ρ < 1.
Here Φ = s0/p̄ξ, where p̄ is the mean stock price in a fundamentals based REE and

2Of course, below we motivate the model as not being a complete markets model and so we might
expect βR 6= 1. Our analysis does not hinge on this restriction.
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0 < ξ < 1 is a fairly small proportion. In our numerical illustrations we set ξ = 0.1,
which implies that share supply is exogenous except when price falls below 10% of
its fundamentals value. The endogeneity of share supply at low prices is meant to
capture asset float drying up in financial markets that perform poorly. This ensures
that price remains non-negative, thereby providing a price floor in the event of a crash
in stock prices. In the analysis below, we also assume for simplicity that ρ = 0. This
has the advantage that all of the asset price dynamics are reflective of the learning
process.
It is well-known that in asset pricing models of this form there are (broadly)

two classes of rational expectations solutions: the “fundamentals” solution and a
“bubbles” class of solutions. A rational expectations equilibrium (REE) is a stochastic
process {pt} that solves (1) with Ê = E. The fundamentals-based REE pft can be
found by assuming σ2t = σ2 and iterating (1) forward to give pt =

P∞
j=1 β

jEtyt+j −
β
P∞

j=0 β
jaσ2Etzst+j. There is additionally a class of bubbles REE, which are given

by adding to the fundamentals solution a “rational bubble” term β−tηt, where ηt is an
arbitrary martingale, i.e. Etηt+1 = ηt. For 0 < β < 1 the bubbles REE is explosive.
To generate empirically plausible time-series it is often assumed that ηt follows a
Markov process that periodically collapses the bubble (Blanchard (1979), Blanchard
and Watson (1982), Evans (1991)).
Our aim in this paper is to provide a model that yields the periodic bursts and

collapses of bubbles as was the goal in Blanchard and Watson (1982). However, we
assume that agents attempt to learn, in real-time, about the underlying stochastic
process followed by the stock price, in particular about the conditional mean and
variance of the excess rate of return. Because the model is self-referential, agents’
learning can produce, as endogenous reactions to the intrinsic fundamental shocks,
periodic bubbles and crashes.

3 Stability under Learning

In this section we turn to an examination of the stability of the fundamentals and
bubbles REE under adaptive learning. First, we follow the section above and take
σ2 as given and study the stability under learning of the parameters in the agents’
forecasting model. We then show how σ2 is pinned down in equilibrium, specify a
recursive algorithm for estimating the conditional variance in real-time, and study
the stability properties of the REE with endogenous σ2.

3.1 Expectational stability

As explained above we now set ρ = 0. In this case, provided the support of the
supply zst is not too large, the model will have REE in which share supply is always
exogenous. Letting Vt = 1 + vt/s0, i.e. s0Vt = s0 + vt, where vt is an iid mean-zero
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disturbance, and restricting attention to solutions with σ2t = σ2, the model becomes

pt = βE∗t pt+1 + β(y0 − aσ2s0)− βaσ2vt. (2)

The fundamentals solution takes the form

pt = β(1− β)−1(y0 − aσ2s0)− βaσ2vt,

and it can be shown that the bubbles solutions have the alternative representation

pt = aσ2s0 − y0 + β−1pt−1 − aσ2vt−1 + ξt

where ξt is an arbitrary martingale difference sequence, i.e. Etξt+1 = 0.
To address expectational stability we follow Evans and Honkapohja (2001) and

study a perceived law of motion, i.e. a forecasting rule to be followed by agents, that
allows for both the fundamentals and bubbles REE:

pt = k + cpt−1 + εt. (3)

With this perceived law of motion, subjective conditional expectations are3

E∗t pt+1 = k(1 + c) + c2pt−1

To ensure stock prices remain non-negative, we also impose that k(1+c) ≥ −y0. Plug-
ging these beliefs into (1), using again s0Vt = s0 + vt and allowing for the possibility
of endogenous share supply, yields the actual law(s) of motion

pt = β(y0 + k(1 + c)− aσ2s0) + βc2pt−1 − βaσ2vt, if s0 ≤ Φpt (4)

pt =
β (k(1 + c) + y0)

1 + βaσ2Φ(1 + vt)
+

βc2

1 + βaσ2Φ(1 + vt)
pt−1, if s0 > Φpt (5)

If beliefs are sufficiently close to an REE, and provided pt−1 is not too low, then
asset share supply will be exogenous and the actual law of motion can be re-written
as

pt = T (k, c)(1, pt−1)0 − βaσ2vt,where (6)

T (k, c) =
¡
β(y0 + k(1 + c)− aσ2s0), βc

2
¢

(7)

defines a map from the perceived to the actual law of motion. There are two fixed
points of the T-map (7), (β(y0 − aσ2s0)/(1− β), 0) and (aσ2s0− y0, β

−1), which cor-
respond to the fundamentals and bubbles REE. When analyzing the global dynamics
below we allow for endogenous supply.

3For convenience we adopt the timing assumption that no contemporaneous variables, including
zst, are observable at t. The instability of the bubbles solutions under learning does not hinge on
this assumption.
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We follow Evans and Honkapohja (2001) and examine the stability of the funda-
mentals and bubbles REE under a natural learning rule. The E-stability principle
states that locally stable rest points of the ordinary differential equation

d(k, c)0

dτ
= (T (k, c)− (k, c))0

will be obtainable under least squares and closely related learning algorithms. Evans
and Honkapohja (2001) show, in a closely related model,4 that with 0 < β < 1 (i)
the fundamentals REE (β(y0 − aσ2s0)/(1 − β), 0) is E-stable, and (ii) the bubbles
REE (aσ2s0 − y0, β

−1) is not E-stable. That the bubbles REE is not E-stable has
been another cited objection to rational bubbles. Since a slight deviation from the
bubbles path would lead the process under learning to diverge from the bubbles REE,
observing such equilibria seems unlikely.

3.2 Stability with learning about risk

In the previous section the stability under learning was examined, while taking as
given the agents perception of risk σ2. In an REE σ2 is an equilibrium object, and
it is also natural, and we would argue crucial, to extend the analysis of learning to
include learning about the degree of risk.
Recalling that σ2 = V art(pt+1 + yt+1 − β−1pt), it follows that in an REE

σ2 = Et (pt+1 −Etpt+1 + yt+1 −Etyt+1)
2

In the case of the fundamentals REE,

σ2 = Et

¡−aβσ2vt+1 + ut+1
¢2

(8)

The right-hand side of this equation can be viewed as giving, for any specified per-
ceived value of σ2, the implied actual value of σ2, and solutions to (8) deliver the
REE values for the fundamentals REE:

σ2 =
1±

p
1− 4a2β2σ2vσ2u
2a2β2σ2v

There are two positive solutions, but we will see that it is the smaller root σ2L that is
stable under learning. For the bubbles REE straightforward calculations show that
σ2 = σ2u + σ2ξ. We remark that in the fundamentals REE, pt is affected directly by
the supply shock, but not the dividend shock. However the variances of both shocks
affect the distribution of pt via σ2.
We turn now to a specification of the learning algorithm. Agents are assumed to

use recursive least squares to form parameter estimates of (k, c), and to use a similar

4For the case with fixed and known σ2, the formal structure of the model under learning is also
similar to the hyperinflation model of Marcet and Sargent (1989b).
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stochastic recursive algorithm, given below, to estimate σ2. Define θt = (kt, ct)0 to be
the time t estimates of (k, c) and let σ2t be the time t estimate of σ

2. Assuming that
at time t agents use parameters estimated using data through time t − 1, and that
they condition on variables dated t− 1 or earlier, real-time expectations are given by

E∗t pt+1 = kt−1(1 + ct−1) + c2t−1pt−1.

Under learning, the price process is

pt = β (y0 + kt−1(1 + ct−1)) + βc2t−1pt−1 − βaσ2t−1zst, (9)

where zst = s0 + vt if supply is exogenous. Allowing for endogenous supply (9) can
be rewritten as (4)-(5) with k, c, σ2 replaced by kt−1, ct−1, σ2t−1.
Letting Xt = (1, pt)

0, the real-time learning algorithm can be written as

θt = θt−1 + γ1,tR
−1
t Xt−1

¡
pt − θ0t−1Xt−1

¢
(10)

Rt = Rt−1 + γ1,t
¡
Xt−1X 0

t−1 −Rt−1
¢

(11)

σ2t = σ2t−1 + γ2,t

³¡
pt − θ0t−1Xt−1 + ut

¢2 − σ2t−1
´
. (12)

The first two equations in (10)-(12) are the updating equations for recursive least
squares. HereRt is an estimate ofEXtX

0
t, the secondmoment matrix of the regressors,

which is needed for least-squares updating. Equation (12) is a recursive algorithm for
estimating the conditional variance of net returns.
For the stability results in this section we assume the “gains” γ1,t, γ2,t are set to

γ1,t = γ2,t = t−1 as in standard least squares. For the results on mean dynamics, given
in the next section, and for the numerical simulations, we instead assume constant
gains and allow γ1,t = γ1 6= γ2 = γ2,t. With constant-gain learning, the recursive
algorithm becomes a form of discounted least squares. Decreasing gains allow for
the possibility of full convergence to REE, and are thus convenient for studying local
stability questions. Constant gains are appropriate if agents want to allow for the
possibility of structural change of an unknown form, and also have the advantage
that the system is time-invariant with an ergodic distribution that can be studied.
Under decreasing gains equation (12) in effect estimates the conditional variance by
the sample mean of squared excess returns, as would be appropriate in the funda-
mentals REE, while with a constant gain 0 < γ2 < 1 the algorithm can track drifting
volatilities of an unspecified form. More general formulations could be considered in
which the conditional variance was assumed by agents to depend on observables, in
which case the algorithm for learning about second moments would look more like
the algorithm for learning about first moments.
The first, and most basic, stability question is whether the E-stability results for

the fundamentals and bubbles REE, given in the preceding section, carry over to
the current setting in which estimates of risk, as well as the coefficients of the price
process, are updated in real time. Evans and Honkapohja (2001) provide conditions
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that ensure convergence of recursive systems like (10)-(12). These conditions draw on
convergence theorems for stochastic recursive algorithms. For now, we assume that
initial beliefs lie in the region in which share supply is exogenous, in which case the
price process under learning is

pt = β (y0 − as0 + kt−1(1 + ct−1)) + βc2t−1pt−1 − βaσ2t−1vt. (13)

Later we illustrate how weak convergence results are impacted by (possibly) endoge-
nous supply.
To study the stability under learning of an REE, for the case of decreasing gain,

the approach is to use a continuous time approximation to (10)-(13), the fit of which
improves as time gets large. To make the system explicitly recursive in the parameters
we write St−1 = Rt. Defining φt = (θt, vec(St), σ

2
t )
0, one can write (10)-(12) as

φt = φt−1 + t−1H(t, φt−1, X̄t)

where X̄ 0
t = (1, pt, pt−1, ut, vt)0. Results from stochastic approximation theory show

that asymptotically the dynamics of (10)-(13) are governed by the associated ODE
(ordinary differential equation)

dφ

dτ
= h(φ), where (14)

h(φ) = lim
t→∞

EH(t, φ, X̄t(φ)).

Here φ = (θ, vec(S), σ2)0 and τ is “notional” time. The explicit computation of h(φ)
is given in the Appendix, and details of the technique are described in Marcet and
Sargent (1989) and Evans and Honkapohja (2001). Local stability of this ODE governs
the local stability of the REE under (10)-(13). In the Appendix we show:

Proposition 1 Consider the model with exogenous share supply. Under the adaptive
learning algorithm (10)-(13) with gains γ1,t = γ2,t = t−1:

1. The fundamentals REE with σ2 = σ2L is locally stable under learning.

2. The bubbles REE is unstable under learning.

There are various interpretations in this setting for the phrase “locally stable un-
der learning,” as discussed at length in Evans and Honkapohja (1998). For example,
Marcet and Sargent (1989a) point out that probability one convergence obtains pro-
vided the stochastic recursive algorithm is augmented with a“projection facility” that
restricts parameter estimates to a suitable compact set around the equilibrium of in-
terest. The use of projection facilities has been criticized by Grandmont (1998) and
clearly its use rules out some potentially interesting global dynamics. As we will now
see, with constant-gain learning, bubble-like global dynamics can periodically emerge
as temporary large deviations from the fundamentals REE. Furthermore the increases
in perceived risk along these bubble paths eventually acts to return the price process
to a neighborhood of the fundamentals REE.
We now turn to the analysis of the global learning dynamics in our model.
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4 Global Properties

The results above demonstrate that the fundamentals REE is locally stable under
learning, while the bubbles REE are not. Thus, the onset of recurring bubbles and
crashes will arise from the global dynamic properties of the model under learning.
The ODE (14) also provides insight on global dynamics under both decreasing and
constant gain learning.
Figure 2 illustrates one key part of the intuition that can be understood in terms of

the E-stability results of Section 3.1. Consider either REE, set k, σ2, and R = S at the
REE values and look at the c component hc of the ODE (14). The Appendix shows
that this is identical to the c component of the T -map used to analyze E-stability in
Section 3.1. Figure 2 plots the Tc = βc2 component of T (θ;σ2). There are clearly
two REE, the fundamentals at c = 0 and the bubbles at c = 1/β. The arrows in
the figure show the direction of adaptation under the E-stability dynamics and hence
under the ODE hc, when the other components of φ are held at REE values. For
initial values c > 1/β the ensuing estimated values of c will explode without limit.
For initial c < 1/β there is convergence to the fundamentals REE with c = 0.

Figure 2 about here

Although trajectories originating in [0, 1/β) will eventually settle down at the
fundamentals REE, the global dynamics along a convergent path could still be in-
teresting. In particular, away from the fundamentals REE, the dynamics introduce
serial correlation into pt. This serial correlation may be self-reinforcing leading agents
to (temporarily) believe that c > 0, and in some cases paths will arise in which the
agents believe that the price is close to random walk behavior. We will later see that
such paths are associated with bubbles and crashes.
Additional insight can be obtained by studying the global dynamics of the ODE

(14), the solutions to which can be shown to provide the “mean dynamics” to real-
time learning under both decreasing and constant gain. Anticipating the real-time
simulations of Section 5, we use constant gains γ1,t = γ1 and γ2,t = γ2, allowing also
for γ1 6= γ2. As noted above, constant gains are better able to track the stochastic
process generating the data when there is structural change taking an unknown form.
Constant gain learning has been widely used in the learning literature as discussed
further in the Section 6. One implication is that instead of converging asymptotically
to an REE, estimates can converge to a stationary process around a stable REE.
We begin with formal results, for the case of exogenous supply, on the ODE

approximation for the case of small constant gains. Details of the case where share
supply may become endogenous are in the Appendix. Fixing the ratio γ2/γ1 at some
value, we use φγt to denote the value of φt = (θt, vec(Rt+1), σ

2
t )
0 under the process

(10)-(12) when γ1 is set at some (small) value γ1 = γ. In order to make a comparison
between solutions to the continuous time ODE and to the discrete time recursive
algorithm, we need to define a corresponding continuous time sequence for φγt , which
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we denote as φγ(t). To construct φγ(τ), we set τγt = tγ, and define φγ(τ) = φγt
if τγt ≤ τ < τ γt+1. The following proposition establishes the mean dynamics result
in a neighborhood of the fundamentals REE, and also provides information on the
stochastic distribution.

Proposition 2 Consider the model with exogenous share supply and the adaptive
learning algorithm (10)-(13) with constant gains. For any φ0 within a suitable neigh-
borhood of the fundamentals REE, define φ̃(τ , φ0) as the solution to the ODE dφ/dτ =
h(φ), with initial condition φ0. Consider the random variable, indexed by the constant

gain γ, Uγ(τ) = γ−1/2
³
φγ(τ)− φ̃(τ , φ0)

´
. As γ → 0, Uγ(τ), 0 ≤ τ ≤ T , converges

weakly to a zero mean random variable.

The proof is contained in an Appendix. We remark that the “neighborhood”
of validity of this proposition need not be small and, as shown in the Appendix,
can include a wide range of values for φ. (The neighborhood must also include the
trajectory φ̃(τ , φ0) for 0 ≤ τ ≤ T ).5 This result establishes that, over finite periods
of time, the constant-gain learning dynamics will converge weakly to the solution of
the ODE dφ/dτ = h(φ), where τ ≈ γt. Thus the “mean dynamics” approximate
the expected path, under real-time learning with a small constant gain, from given
initial conditions. It is important to emphasize that this convergence result is across
sequences of φt, for alternative gains γ → 0, and not along a particular realization.6

Section 4.1 demonstrates that, if beliefs are displaced away from the REE, the
transitional path may include agents temporarily believing stock prices follow a ran-
dom walk. Section 4.2 further shows that such random-walk beliefs are almost self-
fulfilling. One way to try to understand how beliefs of this form might arise is the
approach of Cho, Williams and Sargent (2003) (CWS), who use the notion of “escape
dynamics” as a way of characterizing the “most likely unlikely” shock process that
will lead a model away from a rational expectations equilibrium. CWS show that
an ODE, similar to the mean dynamics ODE, governs the path for beliefs that move
away from a neighborhood of the REE. This ODE takes the form dφ/dτ = h(φ) + v̇
where v̇ = v(φ). CWS interpret v̇ as arising from a continuous time approximation
to the constant gain learning algorithm under a “most likely unlikely” distribution
for the shock process. The intuition behind their analysis is to look for a sequence
of shocks that moves the system out of a neighborhood of the REE via the shortest,
or least costly, route. To give insight into the types of escape dynamics possible in
this model, in Section 4.3 we simulate the model under various “unlikely” sequences
of shocks.

5Similar results can be expected to hold in the case where share supply may become endogenous,
but verification of the technical conditions in this case are difficult. Instead, we use an approximation
and then present numerical results.

6See Williams (2004) and McGough (2006) for further discussion.
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4.1 Mean dynamics

Constant gain learning allows estimates to be more alert to structural change, but
it also makes agents’ beliefs more responsive to shocks. Consequently random divi-
dend and supply shocks continue to displace the system from the fundamentals RE
solution. The resulting displacements trigger mean dynamics that can sometimes
temporarily move further away from the fundamentals REE. Section 4.3 studies what
types of shocks might provide the trigger to move beliefs far away from their REE
values. How responsive agents’ beliefs are to these shocks depends on the constant-
gain parameters. For sufficiently small gains the economy will, with high probability,
remain in a neighborhood of the REE, as indicated by Proposition 2. However, for
larger gains interesting global dynamics are more likely to arise.
To illustrate this reasoning Figure 3 plots the 95% and 50% confidence ellipses for

(k, c) around the fundamentals REE assuming relative constant gains γ2/γ1 = 2, for
reasons which will become apparent below. To compute this figure we follow Evans
and Honkapohja (2001, Chp.7) who show that asymptotically, under constant-gain
learning, the parameter estimates are approximately normally distributed around the
REE value, with variance proportional to the gain.7 This figure was generated by
assuming the following baseline parameterization: β = 0.95, a = 0.75, σ2u = 0.9, σ

2
ν =

0.5, y0 = 1.5, s0 = 1. Figure 3 illustrates that the confidence ellipses around the
fundamentals REE have a decreasing principal axis, suggesting that one can expect
many trajectories moving in the direction of this axis. Notice that the ellipses are
pointed in the direction of a random walk without drift, with larger c associated with
smaller k along the principal axis. The relative size of these ellipses depends on the
sizes of the constant gain. Figure 3 is our first indication that, under constant-gain
learning, estimates of agents will occasionally evolve toward random-walk beliefs, with
a frequency that is higher for larger gains.

Figure 3 about here

For the key parameters (k, c, σ2), the confidence ellipsoid consists of the (k, c)
ellipse in Figure 3 and a confidence region for the risk aversion parameter σ2, which
is a small interval around the fundamentals REE value.8 One can think of constant-
gain learning dynamics as re-initializing the mean dynamics. Figure 4 illustrates
representative mean dynamics for an initial value of c > 0, with a corresponding k on
the principal axis, and with initial σ2 somewhat below its stable REE value.9 Again
we set γ2/γ1 = 2. Setting σ

2 below and c above their REE values corresponds to a
decrease in perceived risk and to an increase in perceived serial correlation in price,
so that initially mean prices are above the fundamental REE value. The figure plots

7See the Appendix for further details.
8In the asymptotic distribution, σ2 is uncorrelated with k and c.
9The working paper version of this paper contains plots of the mean dynamics for other starting

points.
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the mean price along the learning path, the belief parameters c, k, and the perceived
risk estimate σ2.

Figure 4 about here

The fundamentals REE is seen to be a stable rest point for the mean dynamics, in line
with Proposition 1. However, in addition, the transition path for the mean dynamics,
in particular the behavior of the autoregressive parameter c, is very interesting. At
first the estimate of cmoves toward the fundamentals REE, but then it reverses course
and increases to a value of c = 1, where it remains for a period before eventually
converging to c = 0. This evolution is accompanied by an increase in σ2, including a
sharp spike, before returning to its fundamental value. Note that k ≈ 0 during the
period during which c ≈ 1. Thus the mean dynamics show agents coming to believe
that stock prices approximately follow a random walk. Along the path, the mean
price implied by k, c, σ2 begins well above the fundamentals with c > 0 and σ2 below
its REE value, but then collapses along with the temporary increase in σ2.
Through numerical explorations, we found that greater sensitivity in updating

estimates of σ2 was more likely to trigger random walk beliefs in the mean dynamics.
For this reason, in the real-time dynamics below, we choose values of γ2 > γ1. Is
this choice empirically realistic? We believe so. Merton (1980) argues that under
appropriate assumptions the instantaneous conditional variance of the excess return,
in a continuous time framework, can be estimated much more precisely than can
the conditional mean. However, what is relevant within our model is the conditional
variance over the investment horizon of the representative agent. The strong volatility
clustering observed empirically in excess returns suggests the need for a relatively large
gain γ2 to track the time variations in conditional variance.
Revisions of risk estimates together with random-walk beliefs play a key role in

the learning dynamics. In a perceived low-risk environment traders will act on these
beliefs and asset prices will be driven up. Similarly high risk estimates tend to drive
asset prices down. In either case the resulting price dynamics push estimates of
the price process towards a random walk. In essence, agents come to believe that
recent changes in price are permanent shifts and not mean-reverting fluctuations.
The random-walk beliefs are nearly self-fulfilling, as we will see next. Furthermore,
random-walk beliefs, when combined with variation over time in risk estimates, tend
to generate bubbles and crashes, as we will see in the simulations in Section 5. Besides
generating departures from the fundamentals departures REE, another role played by
risk is to crash bubbles: along an explosive price path, risk estimates can increase and
eventually cause price to collapse. The relative gain γ2/γ1 is important for ensuring
that bubbles will crash.
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4.2 Random-walk beliefs

The mean dynamics illustrated in the preceding section suggests that if agents’ esti-
mates evolve toward random-walk beliefs, they can stay close to these beliefs for an
extended period of time before finally returning to the fundamentals REE values. To
understand this, we follow Sargent (1999, Ch. 6), in adapting an insight from Muth
(1960), and show that if agents hold random walk beliefs then the resulting stochas-
tic process can be almost self-fulfilling in the sense that the deviation from rational
expectations of the random walk approximation may be almost indetectable. The
basic idea is that a random walk model approximates well a model with time-varying
means.
Suppose that agents hold random walk beliefs based on a perceived law of motion

of the form
pt = pt−1 + εt

This arises under the learning model (3) provided c = 1, k = 0. Assuming also
exogenous supply and σ2t = σ2, and plugging these beliefs into the equation for stock
price (2), these beliefs imply the price process

pt = β(y0 − aσ2s0) + βLpt − βaσ2vt (15)

where L is the lag operator. In terms of MA(∞) processes, under random walk beliefs,
pt = (1− L)−1εt (16)

while under these beliefs the actual price process is

pt = μ+ f(L)vt (17)

where μ = (y0−aσ2s0)β/(1−β) and f(L) = −βaσ2/(1−βL). From (15) one can see
that σ2, the one-step ahead conditional variance of returns is given by (8), the same
expression as for the fundamentals solution. Thus, with the same value for σ2, the
mean price pt under random walk beliefs is the same as for the fundamentals solution.
Sargent (1999) emphasizes two features of misspecified random-walk beliefs that

are evident in (16) and (17). First, random walk beliefs introduce serial correlation
into a model that is not serially correlated under rational expectations (in the fun-
damentals solution). The moving average processes (16) and (17) demonstrate that
the perceived serial correlation becomes almost self-fulfilling. Second, random walk
beliefs can track constants well. In (16) there is no constant but in (17) there is. The
random walk uses higher-order moments to track low frequency movements (i.e. the
mean) in the price process.
For the problem at hand a key point is that random-walk beliefs induce a price

process that is almost self-fulfilling. To demonstrate this, we follow Sargent (1999)
in plotting the spectral density for the random walk perceived model and the spec-
tral density for the actual law of motion given these random walk beliefs. The result,
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given in Figure 5, shows that there is indeed a good match between spectral densities.
We conclude that if a sequence of random shocks leads agents to have random-walk
beliefs concerning asset prices, these beliefs may last for a substantial period of time.
Intuitively, because random-walk beliefs are close to self-fulfilling, it is difficult to
detect the misspecification except using long stretches of data. The mean dynamics
do eventually return the system to the fundamentals REE, but transitional dynamics
with random-walk beliefs will be important. Furthermore, with constant-gain learn-
ing, there can be periodic returns to random-walk beliefs and, as we shall see, the
episodes of random-walk beliefs can, for some parameter settings, be dominant.

Figure 5 about here

In addition to being nearly self-fulfilling, random-walk beliefs also lead to a sub-
stantial amount of excess volatility, in the sense that the unconditional variance of pt
is much higher than in the fundamentals solution. This is a result of the strong serial
correlation in prices under (17). For the same innovation standard deviation βaσ2σv,
the unconditional variance of pt under random-walk beliefs, compared to the funda-
mentals solution, is higher by a factor of (1− β2)−1. For the same reason, changes in
the estimate of the conditional variance of returns σ2 will have a magnified effect on
unconditional price volatility. The process (17) remains linked to the fundamentals
solution, but the near-random walk behavior, with much larger volatility around the
mean, implies that under these beliefs the price process is almost “detached” from
the fundamentals solution. For 0 < β < 1 with β near one, random-walk beliefs are
close to the rational bubble beliefs, in which the autoregressive parameter is β−1. The
price process resulting from random walk beliefs might thus be viewed as a bubble
regime of the model.

4.3 Escape paths

In section 4.1 we showed first that, even if expectations start at the fundamentals
REE, under constant-gain learning belief parameters will vary randomly around it
according to a distribution that is scaled by the gain parameter, i.e. to the sensitivity
of agents’ beliefs to recent data. Secondly we showed that if belief parameters wander
far enough away from the fundamentals REE, the path back to the REE, governed
by the mean dynamics, may include a period in which stock prices are believed to
follow a random walk. In section 4.2 we further showed that such periods are likely
to be sustained because random walk beliefs are approximately self-confirming.
In the current section we consider more specifically which “escape paths” are most

likely to drive the system large distances away from the fundamentals and to generate
random walk beliefs. The literature on “large deviations” and “escape paths” studies
this question by looking for the “most likely unlikely sequences” of shocks that will
drive the system a given distance away from the equilibrium. The central idea is
that over long stretches of time there will, with high probability, be shock sequences
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that lead to large deviations. One can look for which “unlikely sequences” of shocks
are “most likely” to occur over a given stretch of time, and study the features of the
resulting paths. Given γ2/γ1, in the small gain limit γ1 → 0 there is a dominant
escape path.
To study this question we use a version of the technique employed in Cho, Williams,

and Sargent (2003). We consider different sequences of trinomial shocks for u and
v that take on values in {−σu, 0, σu} and {−σv, 0, σv}, respectively, and then simu-
late the model under learning starting from the fundamentals REE. We identify the
various possible paths that drive stock price away from the REE, and measure the
relative likelihood of the alternative escape paths in terms of the speed with which
the escapes occur. As in the study of the mean dynamics, we proceed numerically,
using the baseline parameterization above with γ1 = .01, γ2 = .02. We initialize
c, k, σ2 and the sample second moment matrix R at the fundamental REE, and then
simulate the model under specified non-random sequences of shocks. Once stock price
rises to 1.5 times its fundamentals price (bubble) or 0.5 times the fundamentals price
(crash) we say that an “escape” has occurred. We use trinomial shocks because, in
our framework in which estimated risk plays a central role, we need zero shocks to
consider the impact of “unlikely” sequences of very small shocks.
We first illustrate how a bubble might arise by looking at a simulation with (u, v)

fixed at their mean value (0, 0) each period. Figure 6 shows the path for pt, the
estimated AR(1) coefficient ct and the perceived risk σ2t . The repeated shocks (u, v) =
(0, 0) induce decreases in σ2t . In line with the lower perceived risk, the demand for the
risky asset increases and so does pt. Under learning with small constant gains, price
increases take place gradually. The bottom panel presents a scatter plot of pt and
pt−1, showing that at the end of period 80 the data will lead the econometric model
to fit a random walk for stock prices, i.e. a zero intercept and a slope coefficient equal
to one. The upward trend in stock prices that leads to the least squares estimate for
ct to increase will, in turn, amplify the increase in pt. Continuing in this manner,
eventually, c > β−1 and pt explodes. The price dynamics from that point forward
depend critically on the perceived risk estimates as Figure 7 illustrates.

Figures 6, 7 about here

Figure 7 considers the sequence of “zero” shocks for two alternative gains on the
risk estimates: γ2 = .0001 and γ2 = .01. We make agents’ estimates (c, k) evolve
slowly by setting γ1 = .005. The left panels plot the simulations with γ2 = .0001. A
positive bubble arises as price increases gradually, leading to increasing estimates for
c, which feeds back into further price increases.10 As above, eventually, c > β−1 and
price explodes along a bubble path. Because the risk estimates adjust very slowly
the explosive trend in price leads c to increase faster than σ2 and there is no limit to

10The bottom panels plot early periods of the simulation in order to keep the scale illustrative of
the emerging trend in price.
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the bubble. The right panels illustrate simulations for the same sequence of shocks
but with the higher gain γ2 = .01. The greater responsiveness of risk accelerates
the upward trend in prices and the feedback through expectations. However, as
c > β−1 and price begins to explode, perceived risk increases sharply and arrests
the explosive trajectory of prices.11 Once prices begin to fall, a self-fulfilling crash
occurs: expected price falls sharply and there are further sharp increases in σ2. This
feedback loop continues until price crashes to the floor. Thus, learning about risk
can play two important roles in a bubble and its eventual crash: it can reinforce the
feedback effect of expected price and, if sufficiently responsive, can eventually arrest
an explosive upward movement in stock prices.
The simulations in Section 5 below show that the first “escape” path away from

the fundamentals REE is often a crash rather than a positive bubble. To see how
a crash might arise starting from the fundamentals REE Figure 8 simulates the
model, starting from an REE, for the “unlikely” sequence of shocks (u, v) = (0, .2).
Intuitively, we expect such an unlikely sequence to trigger a crash because positive
share supply shocks and zero dividends will decrease stock prices. These crashes occur
because of self-fulfilling expectations about stock prices.

Figure 8 about here

Figure 8 plots two separate simulations. The dotted line is for a small gain γ1 =
.002 while the solid lines are for γ1 = .01. In each case (see the third panel), the risk
estimates are assumed to be held fixed at their REE value (by setting γ2 = 0) so as to
focus on the expected price effects. Since we are considering a sequence of repeated
shocks (u, v), this eventually leads agents to expect prices to return not to its original
fundamental value, but rather to a new “steady-state” p̄0 ≈ 4.7. In the case of the
small gain pt moves monotonically to the new steady-state. With the larger gain pt
converges to the new steady-state price but there is over-shooting arising from price
expectations with the price falling to the floor before returning to p̄0. Thus, crashes
arise during this sequence of shocks because of an overshooting in expectations via
learning. When σ2 adjusts in real-time as well, the crash is magnified by increases in
σ2 brought on initially by the sequence of shocks.

Table 1 about here

These illustrate representative cases of the possible routes to bubbles or crashes.
Table 1 presents the results from various “unlikely” sequences of shocks. For each
non-random sequence of trinomial shock, Table 1 gives the type of price dynamics, the
time to reach a point outside of a neighborhood of the fundamental equilibrium, and

11In a sense, real-time estimation of risk σ2 is acting like the “projection facility” sometimes used
in the learning literature in that it prevents estimates of c and k, and hence prices, from exploding.
However, unlike the standard projection facility, the stabilizing role of σ2 arises endogenously and
has a natural economic interpretation.
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the results from a long simulation. In each case, γ1 = .01, γ2 = .02. Cho, Williams,
and Sargent (2003) identify the “most likely unlikely” sequence of shocks as the one
that will move a system to a point away from the equilibrium in the shortest number
of periods. According to Table 1, the “most likely unlikely” sequence of shocks is in
the third row with (u, v) = (−σu, σv) . These shocks are the most likely route away
from the steady-state because they decrease price both directly, through increased
share supply, and indirectly by increasing perceived risk σ2. As we saw above, these
effects on price produce dynamics well approximated by a random walk model and
price eventually crashes to the floor. Table 1 indicates that these lead stock price
away from the fundamentals in the shortest amount of time.12 In most cases listed
in Table 1 the resulting paths include both a crash and a bubble.
The escape path generated by the “most likely unlikely” sequence of shocks is the

one that dominates in the small gain limit, but for finite gains a variety of escape paths
will arise, and larger gains can exhibit a wide variety of escape dynamics. In addition
to bubbles arising from sequences of zero (or near zero) shocks (u, v) = (0, 0), Table
1 shows that bubbles will also arise in response to sequences of negative share supply
shocks, which put prices on a gradual upward trajectory. In summary, depending
on the shock realizations, the model with learning about risk and return is able to
generate a rich set of theoretical possibilities for stock price dynamics.

5 Recurrent Bubbles and Crashes

The results in Sections 3 and 4 have indicated that while the fundamentals REE is
locally stable under real-time learning, displaced estimates of risk and returns, suffi-
ciently away from the fundamentals equilibrium value, can induce learning dynamics
that send beliefs for a sustained period of time into a random-walk region that is
nearly self-fulfilling and that exhibits a much higher level of price volatility. Chang-
ing estimates of risk play key roles in these dynamics by pushing prices away from
the fundamentals equilibrium, leading to bubbles or crashes or bubbles followed by
crashes, and in contributing to price volatility in the random-walk regime.
Under constant-gain real-time learning, in which agents discount past data, we an-

ticipate the possibility of seeing a regime of bubbles and crashes periodically emerge
from the fundamentals solution, before subsiding and returning to the fundamentals
for a period of time before eventually again emerging. We would expect the frequency
with which the regime of bubbles and crashes appears to be controlled by gain pa-
rameters. To study the issue further requires stochastic simulations for the system
(9)-(12), with γ1,t = γ1 and γ2,t = γ2. Figures 9-12 present the numerical results.
We choose the same parameter values as above, and in order to focus on the effects
of the gain for risk estimates, γ2, we fix γ1 = 0.01 and look at the impact of vary-

12However, note that with normally distributed random shocks (u, v) values near (0, 0) are more
likely than values near one standard deviation.
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ing γ2. Larger gains γ2 correspond to greater discounting of past data and hence a
greater sensitivity to recent data. In each figure we report the results from a typical
simulation of length 10,000, which follows a 5,000 length transient period.

Figures 9-12 about here

Figure 9 gives results from a simulation with γ1 = .01 and a very small gain
for risk estimates, γ2 = .001. The top panel plots the stock price pt, while the
bottom panels plot the estimated autoregressive parameter ct and the risk estimate
σ2t , respectively. The belief parameters stay near their fundamentals REE value, and
as a result pt is close to the fundamentals REE, a constant plus a white noise process.
If γ2 is increased to γ2 = .01 the plots (not shown) for pt now exhibit a smooth low
frequency process superimposed on the fundamentals REE, and the estimated value
of σ2t displays more volatility. However, the model still does not exhibit bubbles or
crashes.
In Figure 10 the gain is increased to γ2 = .02. Initially the dynamics look as they

did in the previous figures, but beginning around period 2200 there is a sudden qual-
itative change in the dynamics with three crashes and a bubble. Between the crashes
and bubbles, the dynamics converge back to a neighborhood of the fundamentals
REE. Notice how the beliefs for c, σ2 correspond to the mean dynamics pattern seen
in Figure 4. Figure 11 plots a “zoomed in” portion of a typical simulation, plotting
together the stock price pt and the inverse risk-measure 1/σ2t . The figure shows move-
ments in the risk-estimate preceding large qualitative changes in the stock price. In
particular, before a bubble episode there is a significant decrease in the perceived risk,
while before the crashes the risk estimate increases. This is in line with the analysis
in Section 4.3.
Figures 9-10 indicate that it is joint learning about expected returns and σ2 that

is critical for bubbles and crashes. In Figure 12 we increase γ2 further to γ2 = .04,
which leads to a further qualitative shift. Again, initially the dynamics are not far
from the fundamentals REE, but then around period 1600 there is a dramatic change
in the nature of the price and belief dynamics, starting with jumps in both ct and
σ2t . These induce a crash in the stock price, which is then followed by a series of
bubbles and crashes in the sense of sustained deviations from the fundamentals price.
Note that the price dynamics follow a path somewhat reminiscent of the detrended
log S&P 500 index.
The bottom two panels of Figure 12 illustrate how beliefs generate these recurrent

bubbles and crashes. After the qualitative change in the dynamics around period 1600
there are frequent jumps in σ2, and c spends considerable time near c = 1. For this
parameter setting the random-walk beliefs regime becomes almost permanent. In this
regime, prices remain centered at the fundamentals value, with positive and negative
deviations about equally likely. With the larger gain γ2 = 0.04, the endogenous
shifts in volatility create sustained movements in prices that are well tracked by a
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random walk and largely offset the pressure from the mean dynamics to return to the
fundamentals REE.
In Figures 9-10 and 12 the horizontal line in the middle panel, showing ct, is set

equal to c = β−1, the rational bubble value, which is slightly in excess of c = 1.
In Section 3 we saw that the rational bubble solutions were not locally stable under
learning. However, in Section 4 we saw that, following some plausible random dis-
placements from the fundamentals equilibrium, mean dynamics paths often visited
for substantial periods of time the random-walk beliefs that are prominent in Fig-
ure 12. Because random-walk beliefs are close to rational bubble beliefs, are almost
self-fulfilling, are nearly detached from the fundamentals value, and generate sub-
stantial excess volatility, it is natural to describe this as a bubble regime. In contrast
to the rational bubbles literature, a central role in our model is played by agents’
estimates of risk. Furthermore, in our model estimates of both returns and risk are
driven by fundamental shocks. Revisions in risk are associated with escapes from the
fundamentals solution and with sustaining the regime of bubbles and crashes.
A final issue that warrants comment is the time scale and the frequency of bubbles.

The current parameterization would suggest that bubbles occur about every 100 years
or so, which is clearly not empirically realistic. By choosing values of β closer to 1,
and selecting alternative gain parameters, it is possible to generate bubbles at a
much higher frequency. However, the simulated stock prices become very noisy. Our
parameter values β = .95, γ1 = .01 and γ2 = .02, γ2 = .04 were chosen because
they generated figures that most clearly illustrate the mechanics of the model. A
more carefully calibrated version of the model would require altering several modeling
features as discussed below.

6 Further Discussion and Literature Review

We have developed a simple linear asset-pricing model capable of generating bubbles
and crashes if agents use constant-gain learning to forecast expected returns and
the conditional variance of stock returns. The approach here has been informed
by an influential literature on periodically collapsing rational bubbles. Blanchard
and Watson (1982) propose a theory of rational bubbles in which agents’ (rational)
expectations are influenced in part by extrinsic random variables whose properties
accord to historical bubble episodes. West (1987), Froot and Obstfeld (1991) and
Evans (1991) construct rational bubbles that periodically explode and collapse.13 A
controversial issue for rational bubbles is that the trigger for the bubble collapse is
modelled by an exogenous sunspot process. While our model predicts bubbles and
crashes as self-fulfilling responses to fundamental shocks, they arise from the adaptive

13There is a wide literature that catalogs theoretical objections to bubbles. For instance, Diba
and Grossman (1988) show that, since free disposal implies price can never be negative, if a bubble
collapses to zero then a rational bubble can never again arise.
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learning of agents.
Our approach is also related to other strands of the literature. The learning dy-

namics are similar to the hyperinflation analysis of Marcet and Nicolini (2003) and
Sargent, Williams, and Zha (2009) in that occasional shocks can trigger, via the learn-
ing dynamics, sudden departures from a rational expectations equilibrium. Adam,
Marcet, and Nicolini (2009) adopt a consumption-based asset pricing model and re-
place rational expectations with least squares learning. They find that the model does
a better job at matching several quantitative features of stock price time series data.
Timmermann (1994, 1996) examines learning in a present value model of asset pricing
and Carceles-Poveda and Giannitsarou (2006) study asset pricing with constant-gain
learning in an RBC-type model. Timmermann (1993, 1994, 1996), as in our model,
uses adaptive learning to generate excess volatility in asset returns. Distinctive fea-
tures of our approach include the possibility of escapes, in our self-referential set-up,
from the fundamentals REE to randomwalk beliefs, and the critical role of learning by
agents about asset price volatility in generating bubbles and crashes. Finally, we note
that the possibility that learning can generate large stock returns has been pointed
out by Geweke (2001) and Weitzman (2007) in a Bayesian learning context. These
papers demonstrate that, with CRRA utility, Bayesian learning implies an infinite
stochastic discount factor, a property that is not needed in our framework.
A distinguishing feature of our model is that risk plays a central role. Similar

to our paper, Hong, Scheinkman, and Xiong (2005) assume that traders have mean-
variance preferences and that there is asset float. In their paper, bubbles arise because
insiders (those “floating” asset shares) and outsiders have different information about
the underlying asset. Outsiders overestimate the value, bidding up the price, and then
when the lock-ups expire insiders sell their shares and prices crash. In our paper, asset
float is a necessary component for the environment to provide agents an incentive to
estimate the variance of returns, and it is the real-time estimation of risk by private
agents that is a driving factor of our model.
The onset of bubbles and crashes, as illustrated in Figure 10, is reminiscent of the

escape dynamics identified by Sargent (1999), Cho, Williams, and Sargent (2002),
Williams (2004), and Cho and Kasa (2008). We showed that certain “unlikely” se-
quences of shocks, reinforced by the feedback from adaptive beliefs, introduce serial
correlation that would not otherwise exist, and that for some sequences of shocks,
agents’ forecasting rule begins to track this serial correlation via a random walk
forecasting model. This “escape” from a serially uncorrelated process to a serially
correlated time-series, well approximated by a random walk, arises endogenously, and
this shift in beliefs leads to recurrent bubbles and crashes.
An issue that should be addressed in future research is the choice of the time

interval. There are three separate questions: the length of private agents’ planning
horizon; the frequency with which they update their recursive models; and, the fre-
quency with which they update their information sets. In the present paper, for
theoretical convenience these are all chosen to be the same unit. In work in progress,
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we construct a model with planning horizons that are longer than the estimation and
information gathering windows. This introduces additional complexity to the model
that would be important for a serious empirical exercise.

7 Conclusion

This paper generates bubbles and crashes in a simple linear asset pricing model with
adaptive learning. The existence of recurrent bubbles in a model with adaptive learn-
ing has been an open question in macroeconomics. Our central insight is that in an
environment in which traders are risk averse as well as boundedly rational, in the
sense that they do not know the true law of motion governing prices, changes to their
forecasts of both the conditional mean and the conditional variance of stock returns
play a central role in asset price dynamics. In particular we show that when agents
use constant-gain econometric learning, which to some extent discounts past data,
learning dynamics can generate frequent deviations from the fundamentals solution
taking the form of bubbles and crashes.
We identify several roles for real-time learning of risk. First, occasional shocks can

lead agents to revise their estimates of risk in dramatic fashion. A sudden decrease
or increase in the estimated risk of stocks can propel the system away from the
fundamentals equilibrium and into a bubble or crash. Second, along an explosive
bubble path, increased risk estimates tend to increase and can become high enough
to lead asset demand to collapse and stock prices to crash. Third, under learning,
estimates for stock returns will occasionally escape to random-walk beliefs that can be
viewed as a bubble regime in which stock prices exhibit substantial excess volatility.
In this regime revisions of risk estimates play an important role in generating the
movements of prices that sustain the random-walk beliefs. In summary, risk in an
adaptive learning setting plays a key role in triggering asset price bubbles and crashes.
These intuitive and plausible results provide insights into the mechanisms by which
expectations, learning and bounded rationality generate large swings in asset prices.
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Appendix
Overlapping Generations Framework
We here describe a simple overlapping generations model, based on DeLong et al.,

which delivers the pricing equation (1). Agents live two periods. The number nt of
young agents is an identically and independently distributed random process with an
inverse mean of one. There is a single consumption good. When young, each agent
receives an endowment of ω units of the good. Agents consume only when old, with
CARA utility, as described below. All of the endowment is saved, using one of two
assets. Using a riskless storage technology agents receive R = β−1 > 1 units when
old for every unit saved when young. Alternatively agents can purchase a risky asset,
which is in fixed supply s0. Because nt is random, the per capita supply of the risky
asset zst is random, and we write zst = s0Vt, where Vt = 1/nt. The risky asset pays a
random dividend paid the following period, yt+1 = y0+ ut+1, where ut is white noise.
The price of the risky asset at time t is pt and when old the agent, after receiving the
dividend, sells the asset at price pt+1.
Preferences take the CARA form

U(ct+1) = − exp{−act+1},

where a > 0 is the coefficient of absolute risk aversion, and young agents choose their
portfolio to maximize the conditional expectation of U(ct+1). Agents assume that
pt+1 + yt+1 and hence ct+1 is normally distributed, and thus it is equivalent for them
to maximize

E∗tU(ct+1) = − exp{−aE∗t ct+1 + (a2/2)Var∗t ct+1}.
Here E∗t denotes the conditional expectation and Var

∗
t the conditional variance of

a random variable, based on the subjective probability distribution of the agents.
Letting zdt denote the number of “shares” or units of the risky asset chosen by the
young agents, their budget constraint is given by

ct+1 = (ω − ptzdt)β
−1 + zdt(pt+1 + yt+1).

Thus

E∗t ct+1 = (ω − ptzdt)β
−1 + zdtEt(pt+1 + yt+1)

Var∗t ct+1 = z2dtVar
∗
t (pt + yt+1) ≡ σ2t ,

The optimal choice of zdt must satisfy the first-order condition

−ptβ−1 +E∗t (pt+1 + yt+1)− azdtσ
2
t = 0

or

zdt =
E∗t (pt+1 + yt+1)− β−1pt

aσ2t
.
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The equilibrium price pt is determined by zdt = zst. Under the assumptions given
above, per capita supply zst = s0Vt is exogenous, where zst is iid with Ezst = s0.
Under rational expectations, E∗t (pt+1 + yt+1) = Et(pt+1 + yt+1), the true conditional
expectation under the objective probability distribution, and σ2t = Vart(pt+yt+1), the
true conditional variance. For ut and Vt independent normally distributed processes,
the “fundamentals” solution is given in the text, and it can be shown that pt+1+yt+1
is normally distributed with Vart(pt + yt+1) constant over time.
In the version of the model with endogenous supply at low prices, it is assumed

that net supply is reduced when pt falls sufficiently far. This might arise, for example,
if there is another class of agents — e.g. long-lived agents with an alternative use of the
asset that becomes profitable at low prices — with a demand for the asset proportional
to price when pt falls below a specified threshold. This leads to a net supply of assets
available to young agents that takes the form zst = {min(s0,Φpt)} · Vt.
Proof of Proposition 1. To draw on the stochastic approximation results described
in Evans and Honkapohja (1998, 2001) and Marcet and Sargent (1989) requires some
redefinition of variables. Let St−1 = Rt, γ1,t = γ2,t = t−1 and define zt = pt −
θ0t−1Xt−1 + ut =

¡
T (θt−1;σ2t−1)− θt−1

¢
Xt−1 − aβσ2t−1vt + ut. Then (10)-(13), for the

case of exogenous supply, can be re-written as

θt = θt−1 + t−1S−1t−1Xt−1
¡
X 0

t−1(T (θt−1;σ
2
t−1)− θt−1)0 − aβσ2t−1vt

¢
(18)

St = St−1 + t−1
µ

t

t+ 1
(XtX

0
t − St−1)

¶
(19)

σ2t = σ2t−1 + t−1
¡
ztz

0
t − σ2t−1

¢
, (20)

where here we have used (13) to substitute for pt under learning. Defining φt =
(θt, vec(St), σ

2
t )
0, where St−1 = Rt, and then using the framework of Evans and

Honkapohja (2001), it is straightforward to verify that the ODE (ordinary differ-
ential equation) associated with the asymptotic behavior of the learning algorithm is
given (14), i.e.

dφ

dτ
= h(φ).

hθ = S−1M(θ, σ2)(T (θ;σ2)− θ)0 (21)

hS = M(θ, σ2)− S (22)

hσ2 = (T (θ;σ2)− θ)M(θ, σ2)(T (θ;σ2)− θ)0 + σ2u + (aβσ
2)2σ2v − σ2, (23)

and where M(θ, σ2) = EXt(θ, σ
2)Xt(θ, σ

2)0. Locally stable REE under (10)-(13) are
associated with stable rest points of the ODE. The Jacobian matrix of this ODE,
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evaluated at the REE, provides the relevant stability conditions:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β(1 + c)− 1 βk 0 0 0 0 −βas0
0 2βc− 1 0 0 0 0 0
0 0 −1 0 0 0 0

∂M(1,2)
∂k

∂M(1,2)
∂c

0 −1 0 0 0
∂M(1,2)

∂k
∂M(1,2)

∂c
0 0 −1 0 0

∂M(2,2)
∂k

∂M(2,2)
∂c

0 0 0 −1 0
0 0 0 0 0 0 2a2β2σ2vσ

2 − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Local stability requires all eigenvalues to have negative real parts. The Jacobian
matrix has eigenvalues −1 + 2cβ,−1 + β + cβ,−1 + 2a2β2σ2vσ2, and repeated values
of −1. The root −1 + 2a2β2σ2vσ2 corresponds to the derivative of the quadratic
σ2u + σ2v(aβσ

2)2 − σ2 and it is easily verified that this is negative at the lower root
σ2 = σ2L. At the fundamentals solution c = 0, the other nonzero roots are −1 and
−1 + β. Since 0 < β < 1 all roots of the Jacobian matrix are negative, which implies
E-stability (and thus stability under learning). At the RE bubble solution c = β−1,
there is one root equal to one, which implies E-instability.

Proof of Proposition 2 We proceed by first noting that under constant-gain learn-
ing γ1,t = γ1 > 0, γ2,t = γ2 > 0, it is possible to rewrite the real-time learning
algorithms (10)-(12) in the form

φγt = φγt−1 + γH(φγt−1, X̄t)

where X̄ 0
t = (1, pt, pt−1, ut, vt)

0. The components of H are implicitly defined by (10)-
(12), with a fixed multiplicative term γ2/γ1 incorporated into (12). The superscript γ
has been added to the parameter estimates φγ to emphasize their dependence on the
gain γ = γ1. In order to make a comparison between the solutions to the continuous
time ODE and the discrete time recursive algorithm, we need to define a corresponding
continuous time sequence for φγt , denoted φ

γ(τ), given by φγ(τ) = φγt if τ
γ
t ≤ τ < τ γt+1,

where τγt = tγ.
We sketch the proof to this proposition by making use of Proposition 7.8 of Evans

and Honkapohja, itself a re-statement of Benveniste, Metivier, and Priouret (1990,
Theorem 7, Chp. 4.4.3, Part II). The proposition in the text is based on the proposi-
tion stated below. LetD be an open set containing the fundamentals REE parameters
θ∗, S∗, σ2∗. In the case of exogenous share supply, the actual law of motion followed
by price is

pt = T (kt−1, ct−1;σ2t−1)Xt−1 − βaσ2t−1vt.

It is clearly the case that the state dynamics are conditionally linear and can be
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written as

X̄t ≡

⎡⎢⎢⎣
Xt

Xt−1
ut
vt

⎤⎥⎥⎦ =
⎡⎢⎢⎣

A(φt−1) 0 0 0
I 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ X̄t−1 +

⎡⎢⎢⎢⎢⎣
B(φt−1) 0 0
0 0 0
0 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎦Wt

where I, 0 are conformable matrices, and

Xt = A(φt−1)Xt−1 +B(φt−1)Wt

with X 0
t = (1, pt)

0,W 0
t = (1, ut, vt)

0. The validity of the proposition depends on the
following properties as established in Evans and Honkapohja (2001).

P1 Wt is iid with finite absolute moments.

P2 For any compact Q ⊂ D, supφ∈Q |B(φ)| ≤ M and supφ∈Q |A(φ)| ≤ ρ < 1, and
| · | is an appropriately defined matrix norm.

P3 For any compact Q ⊂ D, ∃C, q s.t. ∀φ ∈ Q and for all t |H(φ, x)| ≤ C(1+ |x|q).
P4 For any compact Q ⊂ D, H(φ, x) is twice continuously differentiable with

bounded second derivatives.

P5 h(φ) has continuous first and second derivatives on D.

Here h(φ) is as defined earlier except that the σ2 component of h(φ) is multiplied
by the fixed ratio γ2/γ1. The conditional linearity simplifies verification of these
conditions. Proposition 7.5 of Evans and Honkapohja (2001) shows that conditions
M1-M5 of their Proposition 7.8 are implied by P1-P2. For their assumption A3’ we
also make use of the remark on p. 155, which shows that P4 is sufficient.
For given φ let pt(φ) = T (k, c;σ2)Xt−1−βaσ2vt and let Xt(φ)

0 = (1, pt(φ))0. Then
Xt(φ) is stationary for φ sufficiently close to the fundamentals REE. Therefore, fix
D to be an open set around (θ∗, S∗, σ2∗) such that ∀(θ, S, σ2) ∈ D, we have: (1)
(θ∗, S∗, σ2∗) are such that σ2∗ is the unique solution in D to the quadratic σ2u +
(aβσ2)2 − σ2 = 0, θ∗ is the unique fixed point of T (θ;σ2) on D with σ2 = σ2∗,
S∗ = EXt(φ

∗)Xt(φ
∗)0, (2) for some ε̃ > 0, det(S) ≥ ε̃ > 0, and (3) k(1 + c) ≥ −y0

and −1 < c < c̄ < β−1/2.
Write X̄t = Ā(φt−1)X̄t−1 + B̄(φt−1)Wt, where Ā, B̄ are given above. Clearly the

eigenvalues of Ā consist of zero and the eigenvalues of A. The set D is defined so that
the roots of A(φ) are inside the unit circle implying Ā(φ) will also have roots with
modulus less than one. It is straightforward to verify that assumptions P1-P5 hold.
We use the following result from Evans and Honkapohja (2001):
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Proposition 3 [EH(2001), Proposition 7.8] Assume P1-P5. Consider the normal-
ized random variables Uγ(τ) = γ−1/2

h
φγ(τ)− φ̃(τ , φ0)

i
. As γ → 0, the process

Uγ(τ), 0 ≤ τ ≤ T , converges weakly to the solution U(τ) of the stochastic differential
equation

dU(τ) = Dφh(φ̃(τ , φ0))U(τ)dτ +R1/2(φ̃(τ , φ0))dW (τ)

with initial condition U(0) = 0, where W (τ) is a standard vector Wiener process, and
R is a covariance matrix whose i, jth elements are

Rij(φ) =
∞X

k=−∞
Cov

h
Hi(φ, X̄φ

k ),Hj(φ, X̄φ
0 )
i

Finally Proposition 2 can be established by noting that the solution to the sto-
chastic differential equation U(τ) has the following properties

EU(τ) = 0

dV ar(U(τ))

dτ
= Dφh(φ̃(τ , φ0))Vu(τ) + VuDφh(φ̃(τ , φ0))

0 +R(φ̃(τ , φ0)),

where Vu = V ar(U(τ)).

Details on Approximating the Mean Dynamics With Endogenous Share
Supply. Under learning we continue to have

pt = β (y0 + kt−1(1 + ct−1)) + βc2t−1pt−1 − βaσ2t−1zst,

but when share supply may become endogenous additional care is required to con-
struct the mean dynamics. The condition for exogenous supply, s0 ≤ Φpt, is satisfied
if and only if

s0 ≤ Φ
β (k(1 + c) + y0)

1 + βaσ2Φ(1 + vt)
+ Φ

βc2

1 + βaσ2Φ(1 + vt)
pt−1, or

s0Φ
−1 + s0βaσ

2(1 + vt) ≤ β (k(1 + c) + y0) + βc2pt−1. (24)

Given θ̃ = (k, c;σ2), equations (4), (5) and (24) specify pt = F (pt−1, vt; θ̃). For
computing mean dynamics the complication is that whether (24) is satisfied, and
thus whether (4) or (5) applies, depends on vt.
Mean dynamics are computed by fixing θ̃ and R̃ and computing the ODE, where

the expectation is taken over vt and pt(θ̃), the pt process for fixed θ̃. In general this
must be done using the process given by (4), (5) and (24), and for any given θ̃ one
must take account of the possibility that either regime will occur, depending on vt.
However, at least for “small” vt, a reasonable approximation would be to split the θ̃
space into two regions: in one region the probability is high that (for the given θ̃) the
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pt(θ̃) process will be given by (4), and in the other region the probability is high that
the pt(θ̃) process will be given by (5).
For the (4) region pt(θ̃) converges to a stationary AR(1) with mean

Ept(θ̃) =
β (k(1 + c) + y0 − aσ2s0)

1− βc2
≡ p̄H ,

provided βc2 < 1. If βc2 > 1 the condition s0 ≤ Φpt is satisfied (for limt→∞Ept(θ̃)).
For βc2 < 1 the condition is satisfied, using the above expression for Ept(θ̃) provided

s0Φ
−1 + s0βaσ

2 ≤ β (k(1 + c) + y0) + βc2p̄H .

Here we have set vt = 0, and replaced pt−1 by its mean under (4). The condition can
be rewritten as

σ2 ≤ σ̄2H(c, k), where

σ̄2H(c, k) = (s0βa)
−1 ©β (k(1 + c) + y0)− s0Φ

−1 + βc2p̄H
ª
.

For the (5) region the linear approximation of the pt(θ̃) process is of the form

pt =
β (k(1 + c) + y0)

1 + βaσ2Φ
+

βc2

1 + βaσ2Φ
pt−1 − δvt, (25)

which has mean

Ept = p̄L ≡ β (k(1 + c) + y0)

1− βc2 + βaσ2Φ
.

Here

δ =
β2aσ2Φ (k(1 + c) + y0 + βc2p̄L)

(1 + βaσ2Φ)2

Based on this mean, the condition s0 > Φpt for (5) (with approximation (25)) will be
satisfied when

σ2 > σ̄2L(c, k), where

σ̄2L(c, k) = (s0βa)
−1 ©β (k(1 + c) + y0)− s0Φ

−1 + βc2p̄L
ª
,

where we again set vt = 0 and where we set pt−1 at its mean under (25). Since
p̄L < p̄H we have σ̄2L(c, k) < σ̄2H(c, k). Thus when σ2 > σ̄2H(c, k) and the distribution
of vt has small enough support, it is very likely that the (approximate) dynamics (25)
will be followed.

In the main text we present numerical results for the mean dynamics based on
the above approximation. Thus, for σ2 ≤ σ̄2H(c, k), we assume the mean dynamics
are based on exogenous supply. For σ2 > σ̄2H(c, k) the mean dynamics are instead
assumed to be given by the alternative mean dynamics based on (25). Note for (25)
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the corresponding mapping from perceived law of motion to the actual law of motion
has k, c components

(k, c)→
µ
β (k(1 + c) + y0)

1 + βaσ2Φ
,

βc2

1 + βaσ2Φ

¶
.

and there is a corresponding expression for the σ2 component of the ODE:

hσ2 =
¡
T (θ;σ2)− θ

¢
M(θ, S, σ2)

¡
T (θ;σ2)− θ

¢0
+ σ2u + δ2σ2v

It is worth remarking that this procedure ignores the chance that the process
will have endogenous supply when σ2 ≤ σ̄2H(c, k) and it ignores the chance that
it will have exogenous supply when σ2 > σ̄2H(c, k). Within and near the region
σ̄2L(c, k) < σ2 < σ̄2H(c, k) the approximation will be at its worst, since both regimes
will have a significant chance of arising. But in order to provide intuition for the real
time learning results, this approximation suffices.

Procedure for Computing the Confidence Ellipses. Here we outline the pro-
cedure. Details on the general procedure are given in Evans and Honkapohja (2001,
Chp. 14, p. 348-356). The confidence ellipsoids assume that the parameter estimates
kt, ct will be distributed asymptotically normal. Under similar assumptions to those
for Proposition 2 this property can be established formally.
In Evans and Honkapohja (2001) it is shown that θt ∼ N(θ∗, γV ) for small γ and

large t, where θ0 = (k, c)0 and V solves the matrix Riccati equation

Dθh(φ̄)V + V (Dθh(φ̄))
0 = −Rθ(φ̄)

where R = EH(φ)H(φ)0 is as given in the proof to Proposition 2. Notice that the
way this Riccati equation is expressed omits the DSh(φ̄) and Dσ2h(φ̄) terms. This is
because R is a block diagonal matrix:

R = EH(φ̄)H(φ̄)0 =
⎡⎣ (aβ)2(σ̄2)2σ2vM−1 0 0

0 EvecHRvecH0
R 0

0 0 σ2u + (aβ)
2(σ̄2)2σ2v − σ̄2

⎤⎦
where M = EXt−1X 0

t−1. The text solves V numerically, sets γ2γ1 = 2, and plots the
50% and 95% concentration ellipses.
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Table 1: Results from unlikely sequences

u0 v0 Description Time to pt =

{

1.5p̄

0.5p̄
Long simulation

σu σv crash 716 crash → steady-state
σu −σv bubble 146 bubble → crash →steady-state
−σu σv crash 32 crash →bubble →steady-state
−σu −σv bubble 92 bubble →crash → steady-state
0 0 bubble 132 bubble →crash → steady-state

Figure 1: Simulated stock price dynamics.
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Figure 2: T-map (Tc component).
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Figure 3: Confidence ellipses around fundamentals REE for constant gain
learning version of the model.
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Figure 4: Mean Dynamics, initial values for slope parameter c, k and per-
ceived risk σ2, drawn from the confidence ellipsoid. Large gain on perceived
risk (γ2).
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Figure 5: Spectral densities (in logs) for random walk beliefs and the associ-
ated actual law of motion.
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Figure 6: Path under (u, v) = (0, 0).
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Figure 7: The role of risk in bubbles.
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Figure 8: Crash.
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Figure 9: Constant gain learning with γ1 = .01, γ2 = .001.
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Figure 10: Constant gain learning with γ1 = .01, γ2 = .02.
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Figure 11: Comparison of price and risk dynamics. Constant gain learning
with γ1 = .01, γ2 = .02.
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Figure 12: Constant gain learning with γ1 = .01, γ2 = .04.
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