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Estimation of Risk-Neutral Density Surfaces*

A. M. Monteirof R. H. Tiitiincit L. N. Vicente$

Abstract

Option price data is often used to infer risk-neutral densities for
future prices of an underlying asset. Given the prices of a set of options
on the same underlying asset with different strikes and maturities, we
propose a nonparametric approach for estimating risk-neutral densities
associated with several maturities. Our method uses bicubic splines in
order to achieve the desired smoothness for the estimation and an
optimization model to choose the spline functions that best fit the
price data. Semidefinite programming is employed to guarantee the
nonnegativity of the densities. We illustrate the process using synthetic
option price data generated using log-normal and absolute diffusion
processes as well as actual price data for options on the S&P500 index.

We also used the risk-neutral densities that we computed to price
exotic options and observed that this approach generates prices that
closely approximate the market prices of these options.

1 Introduction

After the appearance of the Black-Scholes (BS) model in 1973, the option
pricing theory has undergone a strong and sustained development. Given
option market prices one can invert the BS formula in order to obtain the
option implied volatility of underlying securities, that is, the BS formula
can be used as an implied volatility calculator. While this approach is still
commonly used in practice, due to the discrepancies observed between the
constant volatility assumption of the BS model and the implied volatility
observed from the market prices, namely the smile or skew effect, or the
existence of a volatility term structure, there has been a constant stream
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of generalized models that try to better explain options prices. Continuous
or jump diffusion models as well as stochastic volatility models have been
developed to incorporate new evidence from the markets and gave rise to
significant advances in the option pricing theory.

The estimation of the risk-neutral density or the implied volatility from
option prices has its principal use in the pricing and hedging of other op-
tions, and as such it is mainly an interpolation tool. Several approaches
have been presented in the literature to estimate risk-neutral densities. The
existing approaches can be classified as parametric or non-parametric de-
pending on the degrees of freedom and number of parameters needed to
define the models (see the surveys [5, 8, 27]).

Market information such as the series of daily prices is commonly used to
infer the set of parameters of an option pricing model. One strategy often
used is to choose parameters that best fit the market prices. A common
measure for the fitting is the least-squares distance between the market price
and the theoretical price predicted by the model, given by 3=, (Ci(y)—C;)?,
where C;(y) is the option price computed by the model which depends on
the parameters y, and C; is the market price for option ¢. The parameters
of the model can be determined by minimizing the measure used for the
fitting, leading to a parameter estimation or inverse problem. The objective
function of such optimization problems, as a function of the parameters
y, is usually nonconvex (see, e.g., Hamida and Cont [22]) which can pose
difficulties to optimization solvers.

Several authors proposed regularization methods in order to enforce well-
posedness and overcome numerical difficulties, using smooth functions to
minimize the distance between market prices and theoretical prices. Avel-
laneda et al. [4] recovered the implied volatility surface extending the one-
period entropy minimization, presented by Butchen and Kelly [11] and
Stutzer [34], to a multi-period model. Crépey [15] considered a minimiza-
tion problem with a regularization parameter based on smoothness norms
for volatility functions. This approach was also followed by Lagnado and Os-
her [29], and also by Jackson, Suli, and Howison [26] who used splines for the
regularization effect. Coleman, Verma, and Li [12] considered a minimiza-
tion procedure based on bicubic splines to ensure the desired smoothness of
the implied volatility surface.

The method we propose here is closest to the approach outlined by Cole-
man, Verma, and Li [12]. Instead of trying to model the implied volatility
surface we propose to directly invert the risk-neutral density surface. As
in [12], we employ bicubic splines to obtain the desired density smooth-
ness, and consider a least-squares objective function where the optimization
variables are the parameters defining the bicubic splines used to describe



the risk-neutral density surface. Our optimization problem has a convex
objective function and convex constraints.

A major difficulty in implied volatility or risk-neutral density estimation
problems is the enforcement of the non-negativity of the estimated volatil-
ities or densities. We explore two approaches. In the first case, we impose
the nonnegativity of the recovered density functions only at the spline knots.
This results in a problem with linear constraints, leading to a quadratic pro-
gramming (QP) approach. In the second model, following an argument sug-
gested for the single maturity case [33], we propose a semidefinite program-
ming (SDP) approach, where, due to appropriate semidefinite and second
order cone type constraints, one can rigorously ensure the nonnegativity of
the recovered risk-neutral densities everywhere.

Exotic options are derivative contracts that offer nonstandard payoffs
and allow a wider range of market strategies. Binary (or digital) options are
an example of exotic options with discontinuous payoffs and are notoriously
difficult to hedge. Cash-or-nothing calls, in particular, pay a fixed amount
if the asset price, at maturity, is at or above the strike price, and nothing
otherwise. We apply our estimation method for the risk-neutral density to
price exotic options recently traded at the CBOE. The numerical results
show that the prices of exotic options recovered from our risk-neutral esti-
mation closely approximate the market prices of these securities and differ
significantly from those obtained using the Black-Scholes model and implied
volatilities.

The rest of the paper is organized as follows. Section 2 describes the for-
mulation of the estimation problem (the objective function, the constraints,
and the QP and SDP approaches). In Section 3 we report our numerical
experiments for the estimation of risk-neutral densities. Then, in Section 4,
we use our risk-neutral estimation to price binary options. Some concluding
remarks are made in Section 5.

2 Problem formulation using bicubic splines

2.1 Basic formulation of the problem

We start by presenting a basic optimization model to determine the risk-
neutral density surface of an underlying asset from the known prices of
options on this asset. Our goal is to compute a twice continuously differ-
entiable bicubic spline function p(w, u) representing the risk-neutral density
function at state w and time u. The inputs to the problem are a set of option
exercise dates 7, for which one knows the sets of corresponding option prices
(Cr and Pp, T € T, for calls and puts respectively) and the corresponding



sets of strike prices Kp, T € 7. We are given also interest rates related
to the period from the initial time to the exercise date, which might vary
across maturities. Based on the values for the strikes and on the range of
terminal values for the underlying asset, we choose an interval [a, b] which
should contain all such values. We also select an interval [c,d] containing
the maturities. The set [a, b] X [c, d] forms the domain of the function p(w, u)
we are trying to determine.

The decision variables in our optimization model are the coefficients of
the spline functions used to describe p(w,u). To properly formulate the
optimization problem we first need to specify a “super-structure” for the
spline functions, namely, the number and location of the bicubic spline knots.
We consider ng + 1 asset knots in [a,b], ¢ = w1 < we < -+ < Wp,41 =
b, and n; + 1 temporal knots in [¢,d], ¢ = u; < ug < -+ < Up,41 =
d. Asset knots are dependent on strikes or underlying asset prices but do
not need to coincide with them. Similarly, temporal knots do not need to
coincide with maturities. Thus, we partition the domain [a, b] X [c,d] into a
ns X ng grid. For each rectangular region R¥, s = 1,...,ns, t =1,...,n¢
(defined by these two partitions), the corresponding bicubic spline element
has 16 parameters. Therefore, the total number of spline parameters is
equal to 16nsn;. These parameters, denoted by y € IR'6"™ amount to all
optimization variables in the basic formulation. Let p,(w, ) represent the
twice continuously differentiable bicubic spline. One must impose a number
of constraints to represent all spline requirements (continuity up to second
derivatives at the boundaries of R*!, s =1,...,ns,t =1,...,n; and natural
spline conditions). These constraints are linear in y and can be represented
as follows:

)Ty = v k=1,...,n,, (1)

for appropriate vectors a® € IR™s™ and scalars b*, k = 1,...,n.. The
number 7., the total number of spline constraints, equals (42ns — 18)n; +
2Ing —ny — 17.
Since py(w,u) approximates a probability density function, it must sat-
isfy
py(w,u) > 0, Y(w,u) € [a,b] x [c,d]

and

b
/py(w,u)dw =1, Yu € [e,d].

These requirements can be imposed at the temporal knots by setting, re-
spectively,
py(w,u) > 0, Vw € [a,b], t=1,...,n4+1 (2)



and
b
/ py(w,up)dw = 1, t=1,...,np + 1. (3)
a

The constraints (3) are linear in the variables of the problem. As in [33],
where the authors studied the single maturity case, we will consider in the
next two subsections two approaches to deal with the nonnegativity con-
straints (2).

Considering py(w, u) as the risk-neutral density, the discounted expected
value for future prices for an option corresponding to maturity 7" € 7 and
strike K € Kr is given, respectively for calls and puts, by

b
Crucly) = T ["p, (0. T)(w— K)*do,

b
Prc(y) = T ["pyw, T)(K — w)tdo,

Thus,
[Crx — Crx(y)]? and [Prx — Pri(y)]®

are the squared distances between the market and recovered prices. Sum-
ming up for all maturities and strikes, we obtain the following least-squares
residual objective function

Ey) =Y { > 0rklCrx — CrxW*+ D wrxlPrx — PT,K(Z/)]Q} :

TeT \ KeCr KePr
(4)

The weights 07 i, p k may serve the purpose of balancing the relevance of
each contribution under the presence of market information such as trans-
action volumes.

Leaving aside the nonnegativity constraints (2) momentarily, our ba-
sic formulation consists of the following quadratic programming problem
(quadratic objective function and linear constraints):

myin E(y) s.t. (1), (3). (5)
We have pointed out before that all spline constraints (1) are linear. It is
also easy to see that each term in the objective function is quadratic. In
fact, let us look, for instance, at the formula for Cr i (y) for given T' € T
and K € Cr. Assuming that wy < K < wy41, we get

e T O i (y)

_ /abpy(w,T)(w — K)*dw



Ns

Ws+1
_ Z/ py(w, T)(w — K)*dw
s=0 " Ws
Wet1 s W1
= /K py(w, T)(w — K)dw + Z / py(w, T)(w — K)dw.
s=0+1"%s

Since py(w,T) is a piecewise cubic polynomial whose coefficients are the
variables y, one can clearly see that this expression is linear with respect
to these variables. Once the integrals are calculated, one can see that these
terms involve powers of the type w® which will generate large values and
thus introduce ill-conditioning in the Hessian matrix of the objective func-
tion E(y). We will address this issue by scaling the variables as discussed
in Section 3.

The nonnegativity constraint (2) for the density surface can either be
imposed heuristically (without guarantees) or rigorously. These two alter-
natives lead to two different optimization problems that we explore in the
next two subsections.

2.2 Quadratic programming approach

Our first approach to enforce nonnegativity of the estimated risk-neutral
densities consists of imposing nonnegativity at all spline knots:

py(ws,ug) >0, s=1,...,ng+1, t=1,...,n + 1. (6)
This gives rise to a new QP formulation:

min E(y) st. (1), (3), (6), (7)

The objective function is the same and the new constraints are linear in-
equalities in the optimization variables y. So, we are still in the presence of
a convex QP, a relatively simple problem to solve. The disadvantage of the
QP formulation is the possibility that a cubic polynomial function can be
nonnegative at the end-points of an interval but negative at some of the in-
ner points; this would not be appropriate for the density function we intend
to estimate. Although many of our experiments with this formulation have
resulted in nonnegative densities, we have observed in some instances that
the densities recovered exhibited small negative values between the knots.

2.3 Semidefinite programming approach

Since our objective is to obtain nonnegative estimated risk-neutral densities,
we suggest another approach based on semidefinite programming. The non-
negativity of the densities is based on a characterization of nonnegativity



for polynomials in real intervals, given by Bertsimas and Popescu [6]. To
apply this characterization at the lines defined by the spatial and temporal
knots, respectively, ws, s = 1,...,ns+ 1, and u, t = 1,...,ny + 1, we in-

troduce new variables X* = [z¢, 3,€ =1,...,n=2ngns +ns+n¢. In

i iz
what follows the symbol X > 0 dléiloofes: that the matrix X is symmetric and
positive semidefinite. According to the abovementioned characterization of
nonnegativity for polynomials (see also [33]), the piecewise bicubic polyno-
mial p,(w,u) is nonnegative in [a, b] x {u;}, for all ug, t =1,...,n; 4+ 1, and
in {ws} X [c,d], for all ws, s =1,...,ns+ 1, if and only if

HieX' =0,k=1,23¢=1,...7,
() Ty+H e X5t =0, k=4,...,7, {=1,...7, (8)
Xt-0,0=1,...7,

for appropriately chosen vectors gi, k = 4,...,7, and matrices Hﬁ, k =
1,...,7, for £ =1,...n, where the symbol e denotes the trace matrix inner
product.

Note that because X* is positive semidefinite, we have that zf, is non-
negative which then means, in the context of our notation, that the bicubic
polynomial defined at the knots (ws, us) is always nonnegative. Thus, this
approach includes the linear inequality constraints (6) imposed for the QP
problem, yielding a stronger guarantee of nonnegativity. We can now pose a
semidefinite program to recover the risk-neutral density surface, in the form:

minB() st (1), (), (9) ©)
The constraints in (8) are linear in the optimization variables, except for the
positive semidefiniteness constraints. Since all these constraints are convex
and the objective function is quadratic the problem (9) is a convex semidef-
inite programming problem.

Semidefinite and conic optimization software typically solves problems
with linear objective functions and thus we must provide a reformulation of
problem (9) to be able to use available software options. It is easy to see
that (9) is equivalent to the following problem:

L omin st 6= B, (). 6), () (10)
Since E(y) is a convex quadratic function of y, the constraint ¢ > E(y)
can be reformulated as a second order cone constraint (see [31]). The re-
sulting problem is still more complex than the QP but it can be efficiently
solved with the current conic and semidefinite software. In our numerical
experiments, we used the solver SDPT3 [35].



3 Numerical experiments

We now present a number of experiments for the approaches introduced in
this paper to dynamically estimate the risk-neutral densities. To solve the
convex QP problem (7) we used the MATLAB QUADPROG solver. To solve
the SDP problem (9) (reformulated using the second order cone constraints)
we applied the interior-point code SDPT3 [35]. Since the Hessian matrix
is extremely ill-conditioned due to the magnitude of the powers of w, we
had to scale the QP and SDP problems, choosing the average value of the
components of the vector of spatial knots as a scaling factor. We then
solved scaled versions of problems (7) and (10) by scaling first each spline
knot component by the average scaling value wgyg. This led to new scaled
variables related linearly to the original ones. The objective function was
scaled by 1/w?

avg*

3.1 Black-Scholes data

In this first set of tests, we study the ability of our method to recover a
known risk-neutral density based on the prices of options that are computed
using this density. For this purpose, we generated option prices using the
Black-Scholes model which corresponds to the choice of a log-normal risk-
neutral density function. Using the function BLSPRICE, from the Financial
Toolbox of MATLAB, we generated call option prices considering 7 maturities
7 ={4/12,5/12,6/12, 8/12,9/12,11/12,12/12} and, for each maturity, 11
call options whose strikes are equally spaced between 20 and 100. We set
So = 50 as the initial market price for the underlying asset, 0.1 as the risk-
free interest rate, a volatility of 0.2, and considered no dividend rate. The
log-normal risk-neutral density that corresponds to these settings is plotted
for t € (4/12:0.002 : 1) (see the plot at the bottom of Figure 1).

Following [3, 12] we considered a region of the domain centered around
Sy that is appropriate for the choice of the spline knots. Our spline knots
formed a non-uniform rectangular mesh. There were 40 asset knots varying
from 20 to 100. Since the risk-neutral density is more nonlinear (has greater
curvature) around the current prices, we prefer to put more knots around Sy,
to capture this nonlinearity with better precision. Thus, the number of asset
knots near the at-the-money locations was higher and corresponded to half of
the total number of asset knots, to account for the importance of the at-the-
money options. These asset knots were constant in time and did not coincide
with strike prices. The temporal knots set chosen was {4/12,10/12,12/12}.

We solved the scaled formulation for problems (7) and (10) and obtained
the risk-neutral densities (see Figure 1). For this data set, we did not con-
sider any weights 07 ¢ and pr k. Since the Hessian of E(y) is strongly



rank-deficient (and despite the fact that it is theoretically positive semidef-
inite), we observed numerically the presence of small negative eigenvalues.
The MATLAB QP solver encountered some difficulties due to these negative
eigenvalues. The scaling of the Hessian reduced the ill-conditioning of the
matrix, but we still had to perturb the Hessian by adding a term of the form
&1, where £ = |\pin|, which guaranteed a numerically positive semidefinite
Hessian.

For all the maturities considered, both the QP and SDP approaches
performed very well (see the upper plots of Figure 1). Since we know the
log-normal distributions represent the “true” risk-neutral densities for this
experiment, we plotted them against the recovered risk-neutral densities for
the QP and SDP approaches (see the plots at the middle of Figure 1). While
the fit is very good, the recovered density deviates slightly from the true
density for the first maturity. The estimated call prices, computed using the
recovered risk-neutral density, very accurately estimate the “true” Black-
Scholes prices for all seven maturities (see Figure 2). The residual E(y),
obtained for the sum of the seven maturities, and the average errors per
option are similar for QP and SDP approaches:

BS data set ‘ QP ‘ SDP ‘

residual F(y) 3.49 x 1073 | 3.712 x 1073
average abs. error per option | 4.08 x 1073 | 4.42 x 1073

average rel. error per option 0.254 0.245

The dimensions of the QP problem solved are the following: 1248 vari-
ables, 2424 equality constraints, and 120 inequality constraints. The SDP
problem, reformulated using the second order cone (SOC) constraints, had
1248 linear variables, 197 SDP variables, 1249 SOC variables, 2424 linear
constraints, 352 constraints involving only SDP variables, 476 constraints
involving linear and SDP variables, and 1248 constraints involving linear
and SOC variables.

Finally, we point out that the problem is relatively robust with respect
to the number of asset knots; a similar performance is found if we consider
20 or 30 asset knots or vary its locations, or change the temporal knots.

3.2 Absolute diffusion data

To further demonstrate the effectiveness of our approach in recovering a
known risk-neutral density surface for the underlying asset, we generated
another set of option prices, this time assuming that the underlying assets



follow an absolute diffusion process of the following form (see [12]):
ds; = (7” - d)Stdt + 15dWs, t € [0, 7'],7' > 0. (11)

Above, W, is a standard Brownian motion and 7 is a fixed trading horizon.
The choice of the parameters followed [12]: initial value for the asset Sy =
100, risk-free interest rate r = 0.05, and dividend rate d = 0.02. There were
7 maturities 7 = {5/12,7/12,8/12,9/12,10/12,11/12,12/12}, and for each
maturity 15 call prices. The call option prices were computed using the
analytic formula for pricing European call options [14] when the underlying
asset follows an absolute diffusion process.

We considered 30 equally spaced asset spline knots between 50 and 150.
The set of temporal spline knots was {5/12,12/12}. The Hessian perturba-
tion is the same as in the Black-Scholes case. We did not incorporate any
weights HT,K and W K-

As we can see from Figures 3 and 4, the shapes of the theoretical and
recovered surfaces are very similar. There is a good fitting when we plot,
at the maturities, the theoretical densities against the recovered ones. We
only observed a slight discrepancy at the recovered risk-neutral density for
the first maturity. The residual E(y) for the option prices for all maturities
and the errors per option are also good, for both QP and SDP approaches:

abs. diff. data set ‘ QP ‘ SDP ‘
residual E(y) 5.30 x 1073 | 5.28 x 1073
average abs. error per option | 4.84 X 1073 | 4.83 x 1073
average rel. error per option 0.200 0.190

Once again, our methodology appears robust to the selection of the num-
ber and location of the spline knots. For instance, if we change the number
of asset knots to any number belonging to [20,40], we obtain essentially
identical results. Similarly, if we change the location of the temporal knots,
the estimation results remain the same.

In this case, the QP problem solved had 464 variables, 594 equality con-
straints, and 60 inequality constraints. The SDP problem, reformulated
using the second order cone (SOC) constraints, exhibited 464 linear vari-
ables, 88 SDP variables, 465 SOC variables, 594 linear constraints, 264 con-
straints involving only SDP variables, 352 constraints involving linear and
SDP variables, and 464 constraints involving linear and SOC variables.

3.3 Heston data

In order to test the ability of our method to recover densities obtained from
different processes followed by the underlying, we considered a stochastic
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volatility model, namely, the Heston stochastic volatility model.
The sets of option prices were generated assuming that the stock price
S; follows a process of the form [16, 24]:

dSt = /,LStdt + UtStdwtl. (12)

Here y is the drift parameter, w; is a standard Brownian motion and oy is
the time-dependent volatility. Introducing the new variable v; = o7, called
variance, we assume that it follows a mean-reverting process

dvy = k[0 — vg]dt + v/ vidw?. (13)

The factor k[f —v;] ensures mean-reversion of the variance towards the long-
time mean 6 and k is the speed of the adjustment. Also, w? is a standard
Brownian motion and + is the variance noise. The processes w} and w? are
correlated with correlation \. We generated option prices for 7 maturities:
7={0.1,0.2,0.25,0.3,0.4,0.45,0.5}. For each maturity we generated 20 call
option prices. The strikes are equally spaced between 0.8 x Sy and 1.4 x .Sj.
We set Sy = 50 as the initial price for the underlying asset. There are
28 asset spline knots, equally spaced between 0.8 x Sy and 1.4 x Sy. The
temporal knots are {0.1,0.5}. The Hessian perturbation is the same as in
the Black-Scholes case and there are no weights. Figures 5 and 6 show the
results for the pdf estimation.

The residual E(y) for the option prices for all maturities and the errors
per option, for QP and SDP approaches, are

’ Heston data ‘ QP ‘ SDP
residual E(y) 1.19x 1071 | 1.21 x 1071
average abs. error per option | 1.76 x 1072 | 1.75 x 102
average rel. error per option 0.194 0.185

In order to stress the validity of our method, we fit the risk-neutral
density surface to a set of option prices related to four maturities, namely
{0.1,0.25,0.4,0.5}. After that, we generate out-of-sample option prices,
based on the estimated risk-neutral density, for another set of four maturities
{0.2,0.3,0.35,0.45}. The strike prices used in the out-of-sample estimation
are different from the ones used in the risk-neutral density estimation. The
fitting of the out-of-sample prices against theoretical prices is good as we can
see from Figure 7. The absolute relative value per option, for out-of-sample
prices, is 0.259 (of the same order as for in-sample prices).
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3.4 S&P500 data

In this next set of experiments, we test the effectiveness of our approach
on recovering risk-neutral densities from traded option price data. The first
data set is the one used in [3, 12] and refers to European call options on the
S&P500 index traded in October 1995. In the original data, there are 10
maturities and 10 strikes for each maturity. We considered only 7 of these 10
maturities, as in [12], for easier comparison of the results. The specifications
of the data are as follows: the spot asset price is 590, the risk-free interest
rate is 0.06, and the dividend rate is 0.0262. The location of the spline knots
was chosen to be around the initial underlying asset price. We considered 28
equally spaced asset knots belonging to [472,826]. The set of temporal knots
is {0.175,2}. The modification of the Hessian of the objective function is
the same as before and we did not consider any weights 07 k and pr k.

As illustrated in Figures 8 and 9, both the QP and SDP approaches gave
similar results and deviated clearly from log-normality. It is interesting to
observe the uncertainty associated with longer maturities. The cumulative
residual E(y) for QP and SDP approaches as well as the errors per option
were:

| S&P 500 (1995) dataset | QP | SDP |
residual E(y) 13.65 13.82
average abs. error per option | 3.00 x 10~ | 3.01 x 10~!
average rel. error per option 0.122 0.449

One can compare the obtained average, absolute and relative errors per
option to the error reported in [12] which seems to be around 0.0076, slightly
better than ours, although it is difficult to establish rigorous comparisons
without knowing exactly how the error in [12] was computed.

The dimensions of the QP problem solved are the following: 432 vari-
ables, 552 equality constraints, and 56 inequality constraints. The SDP
problem, reformulated using the second order cone (SOC) constraints, had
432 linear variables, 54 SDP variables, 433 SOC variables, 552 linear con-
straints, 162 constraints involving only SDP variables, 216 constraints in-
volving linear and SDP variables, and 432 constraints involving linear and
SOC variables.

As we did with simulated prices generated using the Heston model, we
generate out-of-sample estimates of some of the option prices in this SPX set.
First, we estimate the density surface using four maturities. Then, based
on the estimated risk-neutral density we generate out-of-sample prices for
the remaining maturities. The fitting for the out-of-sample prices against
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market prices is acceptable as we can see from Figure 10. The absolute
relative error per option, for out-of-sample prices, is 0.102.

Our second S&P500 data set was collected from CBOE on October 4,
2006 with maturities in October, November, and December (the set of ma-
turities was 7 = {16/360,44/360,72/360}). The strikes differ from one
maturity to the other and are, respectively,

[1320, 1325, 1330, 1335, 1340, 1345, 1350, 1360, 1370, 1375, 1380, 1385],
[1320, 1330, 1335, 1345, 1350, 1360, 1370, 1375, 1380, 1385] ,
[1320, 1325, 1330, 1335, 1340, 1345, 1350, 1360, 1375, 1380, 1385] .

We considered as option prices the average of the bid and ask prices. The
data selection followed [2]. Occasionally, quoted option prices may exhibit
arbitrage opportunities, often as a result of illiquidity in certain strikes and
maturities. Since a risk-neutral density surface consistent with observed
prices can not exist when the prices contain arbitrage opportunities, we use
the following strategy to eliminate arbitrage in the data (see also [33]). Using
put-call parity we translated the put prices into call prices, then checked for
monotonicity and convexity (as a function of the strike price), and then
removed prices that violate these properties from the estimation data.

The temporal spline knots corresponded to the first and last maturities.
The placement of the asset knots was made as before around the initial
underlying asset price. In this case there were 16 equally spaced asset knots
between 1281 and 1675. (If we choose the number of knots too small (less
than 10) the recovered risk-neutral densities exhibit less smoothness than in
the cases where the number of knots exceeds 10.) The Hessian was modified
as for the other data sets. The overall residual E(y) found for the three
maturities and the errors per option were:

| S&P500 (2006) data set | QP [ SDP |

residual E(y) 2.71 | 297
average abs. error per option | 0.725 | 0.756

average rel. error per option | 0.125 | 0.129

Figure 11 depicts the recovered densities using the QP and SDP ap-
proaches for this data set. The fitting for the first maturity is worse than
for the other two, for both QP and SDP approaches.

For this data set, the QP problem solved had 288 variables, 363 equality
constraints, and 32 inequality constraints. The SDP problem, reformulated
using the second order cone (SOC) constraints, had the following dimen-
sions: 288 linear variables, 46 SDP variables, 289 SOC variables, 363 linear
constraints, 158 constraints involving only SDP variables, 184 constraints
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involving linear and SDP variables, and 288 constraints involving linear and
SOC variables.

3.5 Advantages of the SDP formulation and CPU times

We have observed, especially for nearly all market data tested in this paper,
that the QP approach yielded risk-neutral densities exhibiting negative val-
ues. The SDP approach, in turn, always returned positive densities (along
the spatial and temporal lines of the discretization). In our previous paper,
for the static case, the SDP formulation showed multimodality in the recov-
ered densities, a feature not detected by the solution of the QP formulation.

We also point out that guaranteeing nonnegativity of the risk-neutral
densities inside the discretization rectangles (in the dynamic case and by
interpolation) was never an issue once this was the case along the spatial
and temporal lines, a feature guaranteed by the SDP approach.

The SDP approach is computationally more expensive but not as much
as one would think, as reported in the following table (the tests were made
in an Intel(R) Core(TM)2 Duo CPU T7100, 1.8 GHz, 2GB RAM):

’ CPU time (sec.) ‘ QP ‘ SDP ‘
BS data set 53.6 | 161.4
abs. diff. data set 3.2 40.7

S&P500 (1995) data set | 2.9 | 18.8
S&P500 (2006) data set | 1.4 | 4.9

4 Pricing binary options

The CBOE has started to trade binary option contracts on the S&P500 and
the VIX, in July, 2008. These options are of European style. CBOE binary
call options pay out C' = 100USD if the settlement value St, at maturity 7T,
is at or above the strike price K, and pay nothing if the settlement value is
below the strike price.

In this section we apply our method for estimating the risk-neutral den-
sity to price binary options. The price of the above binary options can be
calculated as the discounted value of C' times the risk-neutral probability
that the underlying St is in the money at maturity. Using our risk-neutral
density estimation, the price of a binary call option, with strike price K and
maturity T, is thus given by

—+o00
By (K.T) = e T0¢ [ p, . T)do
K
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Since we chose a range [a, b] for possible terminal values for the underlying
asset we have, instead,

b
By (K.T) = 000 [ p, w0, T)dw. (14)
K

For binary options of this type, it is known that there exists a closed
pricing formula using the Black-Scholes formula (see, e.g., [25]):

B(K,T,0imp) = Ce™" TN (da(0imp)), (15)

where

oy — OBEVE) +(r—d ok, /2)(T ~ 1)

2\O0imp Timp /7T _
and where d is the dividend rate for the S&P500 index and o, is an
approximation for the implied volatility.

In order to compare these two different pricing strategies, we considered
a set of European vanilla call option prices on the S&P500 index collected
on July 15, 2008, with 3 maturities: July, August, and September. For each
maturity we have 15 strike prices. We collected also a set of binary call
option prices on July 15, 2008 and considered the market binary call prices
given by (bid price+ask price)/2.

For our computations, we first estimated the risk-neutral density for
the three maturities according to the SDP approach given in Section 2.3.
Then, the numerically estimated risk-neutral density was used in (14) to
compute the corresponding binary call prices. Finally, we calculated the
binary option prices from (15), setting oy, for each binary option, to the
implied volatility computed from the corresponding European vanilla call
option price on the S&P500 index.

Figure 13 depicts the binary call prices using SDP risk-neutral estimation
against the BS implied binary call prices and the market binary prices.
We observe that the difference between BS implied binary prices and SDP
recovered binary prices is significant and that market binary prices are much
closer to those recovered using the SDP formulation. The errors between
the estimated prices and the market data are given below.

| S&P500 (2008) binary data set | (14) using SDP [ (15) |
overall residual 1.27 x 1074 1.31 x 1073
average abs. error per option 1.31 x 1072 6.16 x 10~2
average rel. error per option 1.85 x 1071 4.01 x 1071
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5 Concluding remarks

We have proposed a nonparametric method for estimating the dynamics of
the risk-neutral density. Bicubic splines are used to generate the surface of
densities, ensuring the appropriate smoothness. The optimization problems
formulated (QP and SDP) proved to be effective in recovering the densities
from a variety of data, including data generated from the Black-Scholes
model, an absolute diffusion model, and the Heston stochastic volatility
model, and data collected from S&P500 index. The fitting of the option
prices for the generated models data was extremely good, and the SDP
approach ensured nonnegativity of the risk-neutral densities everywhere.
The fitting for the market data respected, in general, the interval for the
bid-ask spread. While our QP and SDP approaches performed well on the
1995 S&P500 index data, the performance was not so good for the 2006
S&P500 index data, especially in the fitting for the first maturity. We should
stress that the 2006 data set is smaller than the 1995 one, with strikes more
irregularly located.

Finally, we used the proposed approach to price exotic options and ob-
served a departure from the prices computed using the Black-Scholes implied
volatility formula and a better fitting to the market exotic prices.
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Figure 1: Recovered risk-neutral density surface from data generated by
a Black-Scholes model using QP and SDP approaches, plotted against the
log-normal densities at the maturities.
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Figure 2: Recovered expected prices plotted against Black-Scholes prices for
the seven maturities (QP and SDP approaches).
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Figure 3: Recovered risk-neutral density surface from data generated by an
absolute diffusion model using QP and SDP approaches, plotted against the
absolute diffusion densities at the maturities.
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Figure 4: Recovered expected prices plotted against the absolute diffusion
prices for the seven maturities (QP and SDP approaches).
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Figure 5: Recovered risk-neutral density surface from data generated by the
Heston stochastic volatility model using QP and SDP approaches.
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Figure 6: Recovered expected prices plotted against the Heston prices for
the seven maturities (QP and SDP approaches).



Figure 7: Recovered expected out-of-sample prices plotted against Heston
prices for the four out-of-sample maturities (SDP approach).
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Figure 8: Recovered risk-neutral density surface and risk-neutral densities
at the maturities, from S&P500 1995 data, using QP and SDP approaches.
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Figure 9: Recovered expected prices plotted against the S&P500 1995 prices
for the seven maturities (QP and SDP approaches).



p————
1, recarered SOP ot-0%canip & cal prices
Y, —— SAPFDD outofample pices

2 o -

“Hn 550 B0 L] b} ) 80 &0

Figure 10: Recovered expected out-of-sample prices plotted against S&P500
1995 prices for the four out-of-sample maturities (SDP approach).
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Figure 11: Recovered risk-neutral density surface and risk-neutral densities
at the maturities, from S&P500 2006 data, using QP and SDP approaches.
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Figure 12: Recovered expected prices plotted against the S&P500 2006
prices for the three maturities (QP and SDP approaches).
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Figure 13: Recovered binary call prices from S&P500 data using the SDP ap-
proach against Black-Scholes binary prices and S&P500 2008 binary prices.
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