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PART O. INTRODUCTION

Several purposes are served by this paper. First, it describes the technical
underpinnings of a comprehensive system of single- and multiequation eCOno­
metric estimators--including the general k-c1ass, three stage least squares (3SLS),
instrumental variables (IV), limited and full information efficient instrumental
variabies(LIVE)and (FIVE), and as a byproduct of the latter,linearfull-information
maximum likelihood (FIML). t Design specifications for such estimators are,
ofcourse, not new; but the presentation given here is comprehensive and consistent,
and introduces computational techniques of numerical analysis that will indeed
be new and interesting to many econometricians.

• The aulhor wishes to express gratitude to the following people for their aid, comments, dis­
cussion, and thoughts: Gregory Chow, John Dennis, Mark Eisner, Gene Golub, Jerry Hausman,
Paul Holland. Dale Jorgenson, Edwin Kuh. Virginia Klema. Akxander Sarris. This research was
supported under NSF Grant GJ-1154X3 to the NBER.

11be k-class and IV estimators are given in both linear and nonlinear forms. This paper only
presents linear eslimation for 3SLS and FIML See Jorgenson and Laffont (elsewhere in this issue)
on nonlinear 3SLS. The basis for the nonlinear FIML facility will be Gregory Chow's worlc (1972, 1973).
Hausman (elsewhere in this iss'le) shows the relationship of iterated FIVE to linear FIML.
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The estimation techniques described here are currently being implemented
as a software system called GREMLIN (Generalized Research Environment and
Modeling Language for the Integrated Network); this work is being done at the
NBER Computer Research Center for Economics and Management Science.
Hence, a second purpose of this paper is to give users of GREMLIN more detailed
computational specifications than can be provided by the usual softwue docu­
mentation. In this regard it should be emphasized that the system is still being
programmed and may differ in some details from the specifications given here;
but this paper describes the basic design of the final product.

Third, this paper may introduce to econometricians several useful com­
putational techniques of modern numerical analysis-in particular, the QR
decomposition of a matrix (effected stably and efficiently by the Householder
transformation) and the singular value decomposition of a matrix. These concepts
and their properties, which are discussed in some detail here, will hardly be new
to those familiar v..ith the literature of numerical analysis; but they will be new to
most econometricians, who until recentiy have not taken advantage of much
relevant work done in that field. Both of these matrix decompositions produce
efficient and stable computational schemes-efficient in the sense that the operation
counts of many large econometric calculations can be reduced; and stable in the
sense that the calculations are significantly less sensitive to the ill-conditioned
(nearly singular) data matrices that are frequently encountered in econometric
practice. In the work that follows, both the QR decomposition and the singular
value decomposition are employed in widely differing situations, attesting to
their power in practical wmputationaJ contexts. It is also to be conjectured
that the simplification of complex matrix expressions that frequently accompanies
the application of these decompositions will show them to be powerful analytic
tools.

0.1. SCOPE OF THIS PAPER

In Section 0.2, motivation will be offered for the development of the system
described here. Then Part 1 treats the theory and calculations of the general
k-c1ass estimator. This discussion begins with preliminary lemmas on the QR
decomposition and its application to ordinary least squares computations. This
decomposition (effected by the Householder transformation) not only simplifies
calculations but also yields expressions devoid of rr.oment matrices and the need
for matrix inverses-both major sources of computational problems to be avoided
where possible. 2 The decomposition is then applied to the linear k-c1as5 estimator,
which is in turn adapted for nonlinear (in the parameters) estimation.

Part 2 treats another important matrix decomposition, the singular value
decomposition. This concept and its relation to pseudoinverses are developed
and applied in the context of a general discussion of multicollinearity. Indeed,
the singular value decomposition presents a means of calculation that remains
stable even in the presence ofperfect multicollinearity, and it also offers a promising

2 It is advantageous to retain normal equations in moment-malrix form ror the Ii -class estimator,
~It.hough the QR decomposilion still plays a central role. A linear form is possible, but ror k > I.
It Inv?lves th~ need for storing matrices of complex numbers and is not readily adaptable for the
Iterative nonlinear estimation techniques of Section 1.5 and Appendix A.
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means of detecting multicollinearity and determining if any estimates can be
salvaged in spite of it.

Part 3 dt:als with the calcubtions of linear 3SLS;3 here again, the QR de­
composition sllnplihes the calculations. Part 4 examines estimation subject to
linear constraints and presents a method employing the QR decomposition that
may be appiied directly to the moment matrices. This means of dealing with
linear restrictions, which differs from the usual Lagrange technique or the method
of substitution, is employed to allow efficient iteration for nonlinear estimation.
Part 5 develops the computational procedures for several instrumental variables
estimators. A method employing the QR decomposition is presented for the
standard IV estimator, and its computational advantage is assessed. Further,
several devices for constructing instruments through the use of principal com­
ponents <lndior preliminary regressions are developed (this draws heavily on
the work of Klock and Mennes (1960)). Finally, the resulting IV estimator is
iltilized to implement the Brundy-Jorgenson (1971) estimators LIVE and FIVE 4

GRFMLI N will also include a general procedure for nonlinear full-information
maximum likelihood estimates. The basis for the calculations to be employed
are those developed by Gregory Chow (1972, 1973).

0.2. BACKGROUND AND PERSPECTIVE

The last two decades have witnessed extraordinary growth not only in the
theory of econometrics but also in its practice and its recognition as an essential
part of virt ually every phase of economics. This growth has not ceased, yet as in
most rapidly growing fields, as many questions have been created as answered.
The onslaught of econometric creativity has left pockets of "rubble" that must be
tidied up and put into their proper place. A principal portion of this rubble in
econometric theory is ignorance of the small-sample properties of the single­
and multiequation estimators that have been <lccepted to varying degrees over
the years, based primarily upon large-sample considerations or other assumed
properties that have little to do with the reality from which economic data derive.
Similarly, in the area of econometric practice, such examples of rubble are easily
given; indeed, in considering the degree to which economic theory lacks hard
empirical verification, one readily realizes that rubble is more the rule than the
exc~ption.

While there are many important reasons for our ignorance of small-sample
properties and our incomplete empirical knowledge of economic systems, there is
one ingredient, so far ab:sent, that would help advance the profession in both
areas---namely, a widely available estimation system that includes all important
econometric estimators and is consistent, flexible, and efficient. The need for such
a system motivates this work.

J A procedure for nonlinear 33LS is given by Jorgenson and Lalron! elsewhere in this issue.
• Jerry Hausman, elsewhere in this issue, shows the relation of iterated FIVE to linear fuIl­

information maximum likelihood.
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Small-Sample ProperI ies

The most direct source of ignorance of the small-sample properties of many
econometric estimators is, of course, the intractable quality of the mathematil:s
describing them- a difficulty that often disappears as sample sizes become indefi­
nitely large. In order to gain the needed small-sample information, work has been
in two general directions: exact, or nearly exact, results are sought in those few
cases that admit such analysis; and Monte Carlo studies.

Recent theoretical results show that some exact or nearly exact answers
may be possible. Light on exact small-sample properties has been shed in papers
by Basmann (1961,1963), Richardson (1968), Sawa (1969), Marino and Sawa (1971),
and Kadane (1971); but these results deal with special cases and do not admit of
obvious generalization to more complex and more realistic cases. Additional
information has been obtained on nearly exact properties of small-sample esti­
mators by using approximate results that take second- and even higher-order
terms into al:count in "returning" from the asymptotic to the finite world. This
promising research is exemplified by Anderson (1972), Anderson and Sawa (1970,
1973a, 1973b), and Nagar (1959).

In contrast to the theoretical work just mentioned, much effort also has
been devoted to the small-sample properties and comparative efficiencies of the
various estimators through Monte Carlo studies. This computation-intensive
approach is well exemplified in studies by Summers (1965), Cragg (1966, 1967),
Griliches and Rao (1969), Quandt (I962, 1965), Nagar (1960) and Wagner (1958);
and the basic results are well summarized in Johnston (1972).

There is strong agreement in the general conclusion so far derived from bo.h
the theoretical and the Monte Carlo studies: nam~ly, it all depends-just abellt
anything can happen depending upon the circumstances.

Such an agnostic conclusion sounds, perhaps, more pessimistic than it is in
fact; for in it there is at least the indication that in any given set of circumstances
(at some specified point in the parameter and the data space), it may indeed be
possible to derive meaningful small-sample conclusions for, and comparisons
among, the various estimators. Since in the real world, not all circumstances
are possible, and since informed limitations can be put on both the parameter and
data space, theoretical analysis of important select regions of the parameter and
data space may result in a less sterile conclusion than '"anything can happen".
This optimistic hope applies both to additional theoretical conclusions and to
additional Mont~ Carlo results, for both tools seem most meaningfully applied
when the model specification is narrowed and particularized.

One iikes to think that the efficacy of theoretical studies has been limited by
inadequate mathematical tools in combination with a shortage of genius, and that
someday something will happen to change all that. Unfortunately, such a solution
is outside our control. On the other hand, some of the main limiting factors for
Monte Carlo studies can be controlled, namely, 1) the high cost of conducting
studies of sufficiently varying parameter and sample conditions to gain any real
overall picture;5 2) th~ lack of software estimation systems sufficiently cornpre-

s Th~ initial v~~sion of ?REMLIN may not fully exploit all computer capabilities required for
truly efficIent repehltve experiments; however,later versions will be made express!y with this in mind.
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hensive to allow an individllal investigator to make consistent comparisons of
many different estimators, and 3) the unavailability of such software to the
econometrics profession in general. The estimation facility planned here for the
GREMLIN system will go a long way to relaxing these limitations.

Model Estimatioll

The role of large econometric models in furthering economic research and in
aiding governmental and managerial policy decisions is perhaps best evidenced
by the continuing use of many existing models, each highlighting some important
area of theoretical or practical concern. Notable examples include the models of
Klein--Goldberger (1955), the Brookings Institution (Duesenberry et aI., 1965),
the Wharton Schooi, and MIT-FRB as well as the Michigan Model. The facility for
building, estimating, and manipulating these models, however, is not widely
availab!e for econometric and managerial research. Whereas "regression packages"
are universally available, systems which can exe\;ute all important full-system
estimators upon large numbers of equations are available to but a few.

In order., then, to advance knowledge of the small-sample properties of
econometric estimators and to facilitate applied econometric research in general,
it seems useful to provide a comprehensive, consistent system of the important
single- and multiequation estimators. Such a system should be implemented in
a general research environment that includes facilties for data editing, model
editing, and full-system simulation. The system should be generally available
to the profession, should provide the power and flexibility needed to advance
frontiers in all areas of applied econometric research, and should also provide
the scope and efficiency needed for meaningful experimentation into the small­
sample properties of the estimators.

PART I. DoUBI.E-k CLASS CALCULATION

1.0. INTRODUCTION

This part focuses on the calculations of the double-k class estimators of a
single equation containing both endogenous and exogenous regressors. This
general class of estimators includes such well-known estimators as ordinary least
squares (OLS), two-stage least squares (2SLS) and limited information maximum
likelihood (LIML).

First, in Section 1.0, the basic problem is defined, and notation that will
be employed throughout the paper is developed. Section l.l presents the pre­
liminary theoretical results that underlie the first-stage calculations given in
Section 1.2. The basis of these preliminary results is the QR decomposition of a
matrix, an operation that reduces the solution of the OLS problem to one whose
calculations are devoid of moment matrices and inverses. The simplifications
afforded by this decomposition will be frequently exploited in this paper. An
outline of the final k-c1ass computational procedure is given in Sections 1.3 and 1.4.
Section 1.5 deals with estimation of equations that are nonlinear in the parameters,
and Section 1.6 summarizes the computational steps.
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Consider the multiv<1riate equation

(1.1) .I' = YI' + XIP + /:

where y is T x I, a vector of T observations on the normalized "dependent"'
variable;

Yis T x G, a matrix of Tobservations on G endogenous variables included

as regressors;

X I is T x K I' a matrix of T observations on K I included exogenous
variables;

f. is T xl, a vector of stochastic disturbance terms;
~. is G x 1. a vector of G unknown parameters to be estimated; and
Pis K I xl, a vector of K I unknown parameters to be estimated.

In addition to these, define

X 2 to be T x K 2 , a mat rix of T observations on K 2 additional exogenous
variables (the exduded exogenous variables);

and define

The double-k class estimator of}' and f/ is a fum;tion of the data y, Y, X, and
two parameters k I and k2 that are determined in ways to be discussed later on.
The basic form of the double-k class estimator (though not the form in which we
shall calculate it) is

Were it not for the inclusion of the matrices (Y' Y)lX and (r'y)1.\", (1.2) would
simply be a (G + K I) square system of linear equations based on the moment
matrices of )', Y, and XI- (Y' Y)lX, however, depicts the inner product of those
components of Y with themselves insofar as they are orthogonal to the space
spanned by the columns of X. Quite simply, (Y' Y)lX is the matrix of residual
second moments resulting from regressing Y on X, and (Y'Y)lX is analogously
defined.? Thus, in calculating (1.2), the equivalent of a "first-stage" regression of
Yon X is required to determine (Y'y)1.\' and (Y'y)H'

6 The nOlalion (Y'Yla and (Y'y)u, which is explained immedialely below. is Ruble's (1968).
and will prove useful al a laler Siage.

"; In projective terminology. any T veclor Y can be decomposed into ils orthogonal projection
lying in Ihe space spanned by Ihe K columns of X, denoled r llx (Y parallel with Ihe space spanned by Xl,
and ils orlhogonal projector, denoted Ya , 50 Ihal Y = Y,rx + YH . Since Y'"x}~x = O,lhen f'Y =
(Y'Yl ux + (y'Y)u, Ihe slandard decomposilion oflhe second momenl of Yinlo the "explained" and
"unexplained (residua!)" componenls.
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(1.3)

QA = [~J

It is a standard result of regression analysis that, when X is of full rank (i.e.,
p(X) = K),

(l"Yll\ = r'Y - }"X(X'X)-t X'Y, and

(Y'y).!.\, = Y'y - }" X(X'X)- 1X'y.

These calculations will not, however, be directly required. Indeed all of the sub­
matrices in (1.2) may be obtained from a single QR decomposition of an appro­
priately expanded data matrix. This procedure has the following advantages:

1. It reduces significantly the sizes of the matrices for subsequent operations.
2. The Householder transformations that produce the QR decomposition

arc somewhat faster than ordinary regression calculations and are very
stable.l:l

3. The calculation of (Y' Y)u and (Y'Y)L.\' can take place even when X is
singular. 9

4. The relevant matril:es for determining the LIML value of k are given almost
gratis.

We turn now, in Section 1.1, to some preliminary theoretical results that form
the basis of the calculation procedure given in the Section 1.2.

1.1. PRELlMINARY RESULIS

The principal results for the method of calculation given here depend upon
the QR decomposition of a matrix A, namely

Lemma 1.1a

For every m x 11 matrix A (111 ~ n) there exists an m x m orthogonal matrix
Qsuch that

where R is /I X /I and upper triangular and 0 is (111 - /I) X /I.

Lemma I.la may be restated in another form that gives name to the QR

decomposition. Let Q== [~] with Q' n x m. Then since Q'Q A = A = QR, and

conversely (since Q may always be augmented with orthogonal basis for the null
space of A), we have

Lemma l.1b

Every m x /I matrix A (m ~ /I) can be decomposed as

A = QR

8 On the Householder transformation see Golub (1969~ Businger and GohJb (1965), and Hansoll
and Lawson (1969).

9 A true advantage during "first-stage" regressions where statistical tests of hypotheses are not
being made, and hence no major problem arises from multicollinearity.
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where Q is m x II (the same size as A) and Q'Q = In and R is 1/ X II and upper
triangular.

Clearly the rank of R equals that of A, and hence R is a nonsinglliar tri,lnglliar
matrix if A has full rank. This makes inverting R particularly simple.

Such a decomposition may be effected either by a sequence of Householder
transformations or by using classical or modified Gram--Schmidt orthogonaliza­
tion. The modified Gram-Schmidt dominates classical Gram-Schmidt when
A is ill-conditioned (nearly singular), as so frequently occurs in economic problems.
The Householder transformations appear to be a speedy compromise, as shown
in Businger and Golub (1965).

Simple regression is easily accomplished using the QR decomposition. Indeed

Lemma 1.2

In the linear equation y = Xp -r c, the OLS estimator of Pis b = R- 1Q'y,
where X == QR. Further V(b) = alR-1R' -I.

Proof

This foHows from simply substituting for X in

b = (X'X)- I X'y = (R'Q'QRr I R'Q'y

= (R'R)-l R'Q'y

= R"IR'-IR'Q'y = R-1Q'y

where the orthogonality of Q is used. Further, V(b) = al(X' X)- 1 = alR -1R'-I.
Q.E.D.

Due to the upper triangularity of R, an equation system of the form Rb = Q'y
is quickly solved by backsolving, and the need for a formal inversion routine is
avoided. Further, moment matrices of the form X' X are not required and the
additional precision often necessitated by such accumulated sums of squares
can be dispensed with. 1O

Somewhat more generally we have

Lemma 1.3

Let X and Y be two sets of variates of size K and M, respectively (T observa­
tions each). Then, from the QR decomposition of

Z == [Xy] = [QIQl][R~ I :~:J.

10 Unfortunalely, this especially nice property of the QR decomposition in the context of OLS
cannot always be exploited in more complicated estimators. particularly a method fOT linear equations
that can also be used iteratively for solutions of n(lnJinear equations (Section 1.5).
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(a) the moment matrix of residuals of Yregressed on X is

{Y'Y)u = R'22 R22

and (b) the moment matrix of predicted values is

{Y'Y)p· = R'12RI2'

Proof

[
X'X

Z'Z=
Y'X

X'YJ = R'Q'QR = R'R
Y'Y

o J[R 11

R22 0

Now {Y' Y)iX = Y' Y - Y' X{X'Xr 1 X' Y; and by substitution of the appropriate
moments from above

= R'12 R 12 + R22 R22 - R'12 R 12

= R'22 R22'

Thus (a) is shown.
Now (b) follows immediately from the fact that

Y'Y = {Y'Yhx + {Y'Y)l!x,

Hence

{Y'Y)IIX = Y'Y - {Y'Y)u = R"12 R 12 + R22 R22 -- R22 R 22

= R'12 R 12 o

Q.E.D.

Lemma 1.3a

In the event that (Y' Y)II x is required but (Y' Y).LX is not, the QR decomposition
of Lemma 1.3 need progress only through its first K steps (a fact we call Lemma
1.3a) since the sequence of Householder transformations works one row at a time.
and additional changes do not affect the rows above the row being worked on.

[
Ri 1 R I2JAfter K Steps. therefore, R will be of the form 0 S where S is some

rectangular (not upper triangular) matrix. In subsequent steps S will change but
R 12 will not. and hence R 12 is available after the K-th step for calculating (Y' Y)II x
= R'12R I2'

R'12R12 can be calculated even if X is not of full rank. Its meaning will be
correct, i.e., the sum of squares and cross products of the predicted values of
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)' regressed on X, a unique value in spite of the fact that there may be an infinity
of representations of these predicted values in terms of linear combine tions of X.

The results of Lemma I J are readily extended for the case oflineat regression
in

Lemma 1.4

In the least squares block regression of Y (T x Mlon X (T x K), i.~. Y =
Xh + e where b is K x M and I! is T x M. we have

(a) b = R1/R 12 (notation from Lemma U)

(bl e = Q2R22

and in the case where M = I,

(e) V(hl = (J2 R1/R'11 1

2 I . -
(dl s = Y:_KR22'

Proof

Following the notation developed in Lemma U, from the QR decomposition
of Z

X =Q1R I1

Y = QI RI2 + Q2 R22'

Hence

Now

b = (X'X)-IXY = Ri/Q'I Y

= R1,IQ'I(QIR 12 + Q2 Rd

= Ri/R I2 since Q'IQI = J and Q'IQ2 = O.

(b is K x M)

e = Y - Xb = (Q I R12 + Q2Rd - (QIR I1 )(R'/R 12 )

= Q2 R22'

Rather generally e'£, = R'22R22 (result (a) of Lemma 1.3), an M x M matrix,
and for M = I

Hence

2"_ I 2
S - T~R22'

(e) is already shown in Lemma 1.2.
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1.2. THE k-CLASS (DOUBLE-k CLASS) DECOMPOSITION

The preceding results are now applied to the determination of the double-k
class moment matrices in equation (1.2). Returning to the notation of Section 1.0,
form the augmented matrix

Z = [X I X 2 Yr]

a T x (G + K + I) matrix where XI' Y, and J' are from the linear equation (1.1),
and X2 contains T observations on K 2 addition,ll predetermined variables.
If X = [X IX 2] contains all the predetermined variables in a full system of equa­
tions (of which (1.I) is a single equation to be estimated), we are dealing with a
proper k-c1ass estimator. If X C0ntains X I' and if X2 is a subset of the remaining
predetermined variables, we are dealin.p.. with a trUllcated k-c1ass estimator. But,
rather generally, there is no reason X2cannot contain any additional instrumental
variables (asymptotically uncorrelatcd with f:, correlated with X I)'

Decomposing Z into a QR gi,·v.
-,

R I1 R12 RI3 RI4

(L.4) Z = [X I X2Yy] == QR = (QIQ2Q3Q4]
R22 RB R24

RB R44
0 R44

where the Q's are the same sizes as the corresponding partitions of Z, i.e.,

T X K 1 T X K 2 TxG Tx

Z = [XI X2 Y y]

Q = WI Q2 Q3 Q4]'

and the R's are sized as

KI K 2 G

fR"
R12 R 13 RI41 KI

R22 R23 RHJ
K2

R=
R33 R34 G

0
R.~4L

Each of the diagonal blocks is square and upper triangular.
Write the basic moments of Z in terms of R as follows:

KI K2 G

XiXI XIX! Xi Y XI'" KI

(1.5) Z'Z =
XiX I XiX2 XiY Xi.r K2

Y'X I Y'X 2 Y'Y Y'y G

Lv'X y'X2 y'Y .r'y, I
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= R'Q'QR = R'R

rR'II
l RIl R I2 R13 R'4

..,

0lR"

R~2 R22 R23 R24
--

R~3 R33 R34R'13 Ri3

R'14 RJ4 R~4.
0

R44 JR"4

R~ ,R n R;,R'4 -
R'"R" R'Il R'2

R'U R'l
R;2 R12 R"2R '3 R;2R'4

+ R~2R22 + R.~2R23 + RZ2 R24

R"3 R12
R"3R '3 R'IJR'4

(1.6) R"3R ,! + R~3R22
+ R~3R23 + R~3R24

lR'"R"

+ R3JRB + R~3R34

R"4R'2
R"4R'3 R"4R'4

+ R24R 23 + R24R 24
+ R24R 22 -+ R34R 33 + R34R34

+ R~4R44

Now partition

Z == [X,X 2Yy]

as

[X ,X2IYy] == [XIW],

where

x = [X,X 2], is T x K and W ::: [Yy] is T x (G + 1).

Lemma 1.3 is applied to [XW] to obtain

C
y,y) (Y'y).u]

(1.7) (W'W)l.X = ([Yy],[Yy]hx = .1. X

y' Y)u' (y'yhx
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The relevant submatrices from (1.6) and (Us) are paired with those in (1.5)
and (1.7) to obtain

Raw Moment
Matrix R Decomposition Size

X'I X • R'•• R. 1 K, X K.

Y'X. R'I3R •• M x K.

(Y'Y).LX = R'n R33 MxM

(1.9) }"Y R;3 R I3 + R~3R13 + R;3 R33 MxM

(Y'YL.x R;3R3~ Mx

Y'y R;3 R.4 + R~3R24 + R;3 R34 Mx

X'.y R'•• R. 4 K. x

These can be substituted into (1.2) to give the double-k class estimator only in
terms of the Rij (all of the large Q matrices are unnecessary at this stage):

(LlO) [~klk'J = fR'U R13 + R'23 R23 + (I - k.)R33 R33 R'13 R.IJ-l
Pktk, L R'.IR 13 R'•• R ••

[
R 13 R. 4 + R23 R24 + (l - k2)R33R34J.

R lI R. 4

The system of linear equations (1.10), which is summarized as

(1.11) e == tvr·d or Me = d,

can be solved by a general linear equation-solving routine like MINFIT or by
some similar routine that is more directly suited to dealing with a real symmetric
system of equations. (MINFIT and other such procedures will be discussed more
fully in Section 2.)

It is to be noted that both Rand M require storage only of the upper triangle­
R because it is upper triangular and M because it is symmetric.

I .3. THE VALUES OF k AND Two SPECIAL CASES (2SLS AND LIML)

Calculation of M in (1.11) requires knowledge of k. and k2 . In the k-c1ass
estimator, as distinguished from the double-k class, ki = k2 . Various well-known
estimators result from special values of k. Indeed, in the cases of k = kl = k2 the
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following estimators result :

Value of k
------------
k=O

k=l

k=p

Estimator

Ordinary least squares J
J

Two-stage least squares

Limited information maximum likelihood
(the determination of II will be discussed
beiow)

Nagar'sl2 Unbiased to order T- J
•

In GREMLIN, the value of K is to be specified by the user and he may specify
different values for k J and k2 . It is envisioned, therefore, that the entire k-class
package can be invoked by a single name; or any of the specific values given
above can be invoked by a special name, such as 2SLS, LIML, OBK, whi.:h
automatically causes the appropriate k to be used in the calculations.

Two special cases of k-2SLS (k = 1) and LJML lk = Jl)--deserve special
attention because they have specific computational implications.

2SLS(k = 1)

This case deserves special attention for two reasons. First, as is clear from
(l.lO), with k = 1 the terms (l - k)R'33R33 and (1 - k)R33 R34 do not appear and
therefore need not be calculated. Second, as is also clear from (I.IO), with k = 1,
the only submatrices of R that are needed are R II , R 13 , R J4 , R Z3 ' and R24--all
from only the first two block rows. Applying Lemma 1.3a , therefore, it is required
that the QR decomposition of Z proceed for only K = K J + K 1 steps to obtain
the needed submatrices. In general K + G steps will be required.

Both points can be exploited to make computation of this special case less
burdensome.

LlML (k = JI)

The LIML estimator is calculated as a k-c1ass estimator with k equal to the
minimum eigenvalue of the eigensystem

(1.12)

where

and

H = Y'Y - Y'X(X'X)- JX'Y = (Y'Y)1X.

1.1 This is an unnecessarily c~mbers.ome means of calculating OlS, bUI it offers a good means of
checkmg the program by companson with the OlS estimator in TROll (Eisner and Pindyck 1973·
National Bureau of Economic Research, 1974). ' ,

12 Where X is T x K, Xl is T X K), Y is T x G.
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(l.l5)

From (1.7) and (1.8) it follows that

(l.lJ) H = (Y'Y)u = WnR33'

and from p.5) and (1.6) it follows that

HI = (Y'¥l.u, = }"Y ~ Y'X 1(X',X 1f IX'I)'

(1.I4) = R'13RI3 + R23 R23 + R33 R33 - R;3 RldR'IIR 1 tl- 1R'II R13

= R23R23 + R33 R33 ·

The determinantal equation (1.12) thus becomes

IR'23 R13 - (f1 - I)R33 RJJi = 0 or

I(R 33 R33 )-1 R23 R23 - (/1 - 1)/1 = O.

The LIML /1, then, can be calculated as either of the following:

(1.16) (a) The minimum eigenvaiue, I1min, of (R 33Rd- ' R'23R23, in which
case JI = amin + I.

(b) The maximum eigenvalue, Uma.. of (R 23 R 23 )- I R33 R33 ,
in which case Jl = I/un", + I.

Depending upon the eigenvalue finder, method (a) would have an advantage,
since RJj is upper triangular and its inverse is more readily found to produce
(R 33 R33)-1 = Rj}R33 1.

RJj is required for the LIML computations, and hence the QR decomposition
of Z must proceed through the first K + G operations. R44 , however, need not
be directly computed·--although, since it is J x I, no substantial saving is
accomplished here. I)

Special facility for determining the minimal or maximal eigenvalue of (1.16)
will therefore be required when the LlML option has been selected by the user,
but no other special considerations arise in this case.

General k-Class

The user should be able to specify any value of k or k l and k2 . Equation (UO)
shows that RJj is required for all k-class estimators except 2SLS (k = I). Hence
it is necessary to effect the QR decomposition of Z through its first G + K steps. It
is never necessary to go through all G + K + I steps.

1.4. THE k-CLASS CALCULAnONS

The preceding calculations result in the square, symmetric linear syst~m (l.II),
repeated here,

(1.17) Mc= d

from which c, the k-class estimator, can be determined.

IlThe calculations for LlML given here have an advantage over those suggested by Den! and
Golub (1973) in that they avoid the need to store the large Qmatrix.
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There should be at least two means of solving this linear system, and the user
shouid have the option of picking the one he wants. The first is a routine like
MINFIT (briefty explained below) that can calculate the singular values of M.
Such a roulim: would be highly useful in analysis of prohlems due ~o multicol­
linearity, albeit at the cost of added computation time.

Second, there should be facility to solve (1.17) using a computationally
efficient and speedy procedure such as the Cholesky decomposition, described
below. The increased speed will be of great value in Monte Carlo studies and
repetitive sampling experiments where the added information afforded by the
singular values is not as important.

MINFIT

Both the nature of a matrix's singular values and the routine MINFIT will
be described in Part 2. Here it Ileed only be noted that MINFIT produces a
diagonal matrix 1; of singular values and an orthogonal matrix V such that the
real symmetric matrix M in (1.17) can be decomposed as

(1.18) M = V1:V'.

c is then calculated as M+ d == VI:+ V'd, where ,\<1+ and I:+ are the pseudo­
inverses of M and 1;2 respectively. (Pseudoillverses will also be discussed in
Section 2.)

The residual vector

(1.19)

is best formed by using the c = [hJcalculated above directly with the raw
Pk

data y, Y, and X I as in (1.19).
The estimator of (12, namely

(1.20) e'es2= _
T - K 1 - G'

is to be calculated in exactly this way.
FinalIy, the estimated variance-i:ovariance matrix of:: is simply

(1.21) s2M-1 = s2VI:- 1V'.

be Because m~st applications require only the diagonal elements of (UI) to
dJr?du~ed, It. seems reasonable to calculate only these values in the absence of

a ItIona optIonal specification by the user. If V = (1..) d ~ - d· (
[IJ an '" - lag (11 ...
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lTG+ •.J, i,} = 1... G + K, the k-th diagonal clement of Ar 1 is simply

(1.22)

Cho/esky Decomposition

It is always possible to decompose a real, symmetric, positive-definite matrix, 14

such as M, into

(1.23) M =D'D

where D is upper triangular. With this decomposition, (1.17) is solved as two
backsolves

D1 = d and Dc = j;

stable calculations that avoid matrix inversion.
The calculations for S2, e are as in (1.19) and (1.20), but M - 1 must now be

calculated as

(1.24)

which requires a routine for inverting an upper triangular matrix.
NOle the relation between the Cholesky and QR decompositions relative

to a positive-definite matrix ofthe form X' X. There is an infinity of upper triangular
Cholesky matrices D such that X'X = D'D; but only one of these, namely D = R,
is also associated with an orthogonal Q such that X'X = R'R and X = QR.

1.5. NOl\LINEAR ESTIMATION

The procedure applied here to the estimation of an equation that is non­
linear in its parameters is a generalization of the preceding calculations, since it is
akin to iteration on a linearized version of the given equatioll. 15

Consider a general nonlinear equation

(1.25) -f(Z, J) = <;

where fis a random vector of size T,

-f~ r-f'(Z"Oll

l-P(Zr,b)J
and where Z = [X l' Y);

2, is the t-th row of Z;
X I is a T x K 1 matrix of exogenous variables (identified as such);
Y is a T x G matrix of endogenous variables (identified as such);

14 See. for example, Golub (1969), who also describes s~veral computational procedures for
effecting the decomposition.

IS A more detailed explanation of the notation employed here and the calculations involved is
given in Appendix A.
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X 2 is a T x K2 matrix of additional exogenous variables (identified
as such);

i; = (I) I ... i).\fl" is a vector of M unknown parameters to be estimated:
and

i; is a T x 1 vector of stochastic disturbances.

Linearizing (1.25) by expanding about 15 0 (and submerging the inessential
argument Z) gives

(1.26)

(1.27)

where

r. = t.'f -- r-~:··· f:~fJ
<l - ?t5 -. .'

lfi ... fI~
the Jacobian oft" with respect to 6, and called the matrix of coterms.

In general some of the columns of.1d are functions of the endogenous Y's (as
well, perhaps, as of the X's), and some are functions of the exogenous X's alone.
Group the first set of coterms together in ¢<l' a T x M I matrix of endogenous
colerms; and group the second set together in X<l, a T x M 2 matrix of exogenous
corerms. Hence:

(1.28)

The vector .5 will be commensurately reordered and so partitioned as

J = GJ.
Equation (1.26) can be written in a form analogous to (1.1) as

(1.29)

In a mann~r described in detail in Appendix A, (1.29) leads to a Newton-Raphson
iteration of the form

(1.30) Jr + I = br - [G + fjfJ - k,(fdJ).td- I. [fjI -- k2(.f~fL_Xl]

where X t is a mairix of preliminary regressors and Gis a matrix formed of second­
partials of.r as

(1.31)

where ;T' is the G x G matrix

g, k = I ... G,

and

j' = Wtf= Xt(XiXtr-1Xif
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The elements ggJ; can also he computed as

(1.32)

but ei is probably best calculated as r..?~~l.

Since.l~ = [tP.;/o], equation (1.30) becomes

(1.33) 6
,t

1 = J
r

- [ei + {' r/J~r/Jo - ~ ~¢~¢o)u"
. lJ'I'o

[¢~f - k~(r/J~f)1.'(l ] .

lol

What matrix of preliminary regressors Xl should be used in (1.33)? In an
analogy to the linearized equation (1.29), the inel uded exogenous variates arc 1.;
while the excluded variates are X 2' This would argue for the use of

(1.34) X I = [/oX 2].

The advantage of (1.34) is that the matrices needed in (1.32), except G, can be
computed exactly, as in the linear case, through the QR decomposition of Z =
[XoX 2r/Jof)' The relevant blocks of this decomposition may be combined as in
(1.10). The disadvantage is that the projection into the Xl space afforded by this
decomposition in obtaining (¢'or/JOhXl and (r/J'of).lx, must be recomputed at each
iteration sin4.:e the coterms 1.0 will change with each iteration.

An alternative technique would be to use

(1.35)

X is unchanging; and as has been demonstrated by Amemiya (1973), the resulting
estimator retains consistency-although the comparative small-sample properties
of different instruments remain an open question.

The use of(l.35) does not, however, allow full exploitation of the decomposition
leading to (1.10), since X 1 and not 1.0 is employed. Rather (r/J'or/JoLx and (4)~fhx

would be determined from a QR decomposition of Z = [X 1X 2cPof], with the
first K steps computed only on4.:C at the first iteration and stored for repeated use in
subsequent iterations. The remaining moments with Xo in (1.33) must be recom­
puted at each iteration.

1.6. SUMMARY OF COMPUTATIONAL STEPS

Linear Estimation

I. Form Z == [X 1X 2 Yy).
2. Determ inc k 1 • k 2 or type of class.
3. Form QR decomposition of Z:

(a) K steps only for 2SLS (k = !);
(b) K + G steps otherwise.

4. Determine JI as in (1.16) if k is LIM L.
5. Form (1.10) and solve for c.
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6. Determine
(al e as from (1.19);
(b) :,2 as from (1.20);
(e) relevant elements of M . 1 as from (1.11) or (1.24).

7. Output, minimally, c, s2, l\r I (relevant elements), some hOllsekeeping
information on roles of variates.

Nonlinear Estimation

1. Form fo(Do) and determine [Q>bl.'b].
? Form [1.bX2¢bfJ == z.
3. Determine k" k2 or type of class.
4. Form QR dc<:omposition of Z:

(a) M I + K2 steps only for k = I (2SLS);
(b) M steps otherwise.

5. Determine)l as in (1.16) if LIML.
6. Form Gand relevant matrices as in (1.10) for (lJI); solve for c.
7. Iterate to convergence.
8. Form final estimates and output as for linear case.

PART 2. SINGULAR VALUE DECOMPOSITION, PSEUDOINVERSES,

AND MULTICOLLINEARITY

2.0. INTRODUCTION

This part focuses on a specific matrix decomposition, the singular value
decomposition (SVD), that relates directly to the solution of the general least
squares problem, including the case where X has less than full rank. The SVD
is discussed in Section 2.1. The relation of the SVD to pseudoinverses is examined
in Section 2.2. The two are brought together in Section 2.3 to provide a general
solution to the least squares problem both when X is rank deficient and when
X has full rank(the conventional OLS estimator). Section 2.4 explores the relevance
of a procedure that can deal with the problem of multicollinearity even in the
presence of rank deficiency. It is shown that the information given by the SVD
may provide useful diagnostics for the presence and whereabouts of multicol­
linearity. Finally, a computational procedure that effecis the SVD in the solution
of the Icast squares problem is described. This procedure is called MINFIT.

2.1. THE SINGULAR VALUE DECOMPOSITION 16

temma 2.1

Any m x n matrix A can be decomposed as

(2.1 ) A = UIV'

where U and Vare orthogonal matrices of sizes to be discussed below, and L is a
diagonal matrix not necessarily square, whose nonzero diagonal elements are
always positive and arc called the singular values of A.

16 See further Golub (1969,1970) and Hanson and Lawson (1969).
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See Lanczus (1961) Of Osborne (1961) for a proof of Lemma 2.1.
V, L,and Vcan be sized in several different ways, each ofwhich has appropriate

<lppliCalions. A is m x II. m ~ II. and equation (2.1) can take the foHowing forms:

mXll III X II II x .II II x II

(2.1 a) A V L V'

m x n III x III III X II II X II

(2.lb) A U L V'

In addition, if A has rank r S II, then equation (2.1) can take the form

IIlXII mxr rxr rX/i

(2.lc) A u V'.

In each case U'V = V'V = In. The nonzero elements of L are always positive
and lie only on the first diagonal. In (2.1c) L is always square and has fuH rank with
all its diagonal elements being strictly positive.

It is clear that

(2.2)

and

Hence Vand U are orthogonal matrices that diagonalize A'A and AA', respectively.
It follows that the diagonal elements of L are the positive square roots of the
eigenvalues of A'A and AA', and Vand U are the matrices of eigenvectors of
A'A and AA', respectively.l? U and Vare necessarily of full rank. The rank of L,
however, is equal to r, that of A; and L has r nonzero positive elements along
its diagonal and zeros elsewhere.

2.2. PSEUOOINVERSES

An immediate application of the SVD is in calculating the pseudolnrerse l8

of the matrix A. The pseudoinverse of any //I )( II matrix A is the ullique II x //I

matrix A + satisfying aH of the foHowing:

(2.3a)

(2.3b)

(2.3c)

(2.3d)

(AA+)'=AA+

(A+.4)'=A+A

AA + A = A

For proof of the uniqueness of A +, see Greville (1959) or Rao (1965, p. 25).
It is readily verified that the pseudoinverse A + can be derived from the SVD of

17 See, for example. Graybill (1969), Theorem 3.4.4.
\8 The term pseudoinl'eTse is not universal. Rao (1965) refers to A + as the Moore Inverse. and

Graybill (1969) and Theil (1971) l:all it the generalized inverse. This latter term. however. is more
commonly reserved for any II x m matrix A·· such that for any vector Y for which AX = Y is a con­
sistent equation, X = A - Y is a solution (Rao, 1965, p. 24) In general there is an infinity of such A - .
of which A + is a unique special case.
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of; = Ill; U'
.4 = U~V' as

(2.4)

where 1 + is the pseudoin I'erse 01 L A~ ag<lin may bc IcaJil)' \t:l ilinl, 1 + i, dt:tcr­
mined from l simply by replacing the nonzero dIagonal .elements of r by their
reciprocals, leaving all other zeros. induding any on the dIagonal, unchanged.

2.3. SVD AND LEAST SQUARES

This section begins with a review of the role of the pseudoinverse in the
solution of the general least squares problem: 19 this establishes the relevance of
the SVD to the least squares problem, since tile SV 0 is a means of calculating the
pseudoinverse. The analysis is then extended to the case where the data matrix of
··independent'· variates X is of less than full rank.

X Has FilII Rank

In the linear model y = Xh + e, the normal equations that characterize
e'e, the minimum sum of squared errors, are

(2.S) X'Xb = X'y.

When the T x K matrix X has full rank, i.e. p(X) = K ::; T, the unique least
squares solution is

(2.6)

Applkation of the SVD to X gives

(2.7)
TxK

X
TxK KxK

U r
KxK

V'

where V'V = VT = I K and r is diagonal and nonsingular. Hence (2.6) reduces to

(2.8) b = (VlV'U1:Vr I VE'l/'y

= Vr-IV'y = X+y

where (2.4) is used and it is recognized that 1: + = r - 1 when r is nonsingular.
Equation (2.8) shows that knowledge of X + allows solution of the least

squares problem without the costly and often unstable calculations of the moment
matrix X'X and its inverse (X'X)~ '. These calculations are required in the con­
ventional formation of (2.6)-at least if X has full rank.

X Has Less Than Fu/f Rank

The solution in (2.8) is general, for pseudoinverses exist even when the data
matrix X has less than full rank .

• 19 These basic cah.:ulatio~s.are not new, and Theirs new texthook (1971) makes them generally
available. Another goed exposlhon of the pseudoinverse in the It>ast squares context is found in Peters
and Wilkinson (1970).
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(2.9)

Suppose now that piX) = r::;; K. The normal eqw!tions (2.5) remain valid,
but now they dctermine a K - r dimensional space S of solutions fer h, al! giving
the same minimized squared error length e'e. It will now be shown that the specific
solution in (2.S) fur lite full-rank cast: bt = X"y remains a solution in the rank­
deficient case b* E S, and has the additional property that among all bE S, b'" has
minimum length.

X has p(Xj = r :::;; K. Application of the SVD to X in the form of (2.lc) gives

Txr rxr rxK
X = V L V'

where V'U = VT = IT; and L is a square, diagonai, nonsingular matrix of size
r. The normal equations (2.5) therefore become vrv'VI V'b = Vl:U'y or,

(2.10) V'b = I- IV'y.

Premultiplying by V gives the equivalent normal equations

(2.11) VV'h = n:-Jv')' == X+y.

Now two lemmas show:

Theorem 2.1

b* = X +Y is the unique vector of minimal length satisfying the normal
equations (2. t I) and, hence, minimizing the sum of squared residuals e = y - Xb,
where P(X) = r ~ K.

Proof

Lemma 2.2

b* = X + Y satisfies (2.11) .

Proof

VV'b* = VV'X+ y

= VV'VI+U'y = vr+v'y = X+y.

Lemma 2.3

Let bO be any solution to VV'b = X+ y, and define d by bO == b* + d. Then
VV'd = 0 and d'b* = O.

Proof

VV'd = VV'(bo - b*) = X +Y - X+ Y = O. He".;e, b* = VV'b*, and d'b* =
d'VV'b* = O.

Thus, to complete the proof to Theorem 2.1 ;

bO'bo = boll'b* + 2b*'d + d'd

=b*'b* + d'd,
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and hence !Ib*il :0:;; iiholi. The uniqueness of h* follows from the uniqueness of the
SVD and the pseudoinverse.

1.4. MULTICOLLINEARITY AND M INHI

The preceding has shown that within the context of the linear regression model
y = xP + f:, the solution of the least squares problem can always be made unique
(if not economically interpretable), even when X has less than full rank. by ex­
tending the problem to that of finding the b* of minimum I.ength that also mini­
mizes the sum of squared residuals. If X has full rank, thIS expanded problem
produces the least squares estimator (2.6) that is familiar to econometricians. Thus,
the use of pseudoinverses is a means of calculating least squares solutions (and
predil:tions) even in the face of perfectly collinear data.

MJNFIT is a computer routine that performs these calculations with com­
putational stability. At the same time, MINFIT holds out the promise of being
able to create diagnostics for the presen~e of multicollinearity. We will return to
a description of MINFIT below, but before we do so, a word or two on l:ollinear
data seems in order.

Multicollinearity

As a general rule, estimation in the presence of perfectly collinear data is
problematic for the econometrician. An exception is Marschak's (1953) now
famous "prediction only" case, but this case is not of practical significance (except
as noted below). In the predktion-only case, the collinear conditions upon which
the estimation is based are expedoo to l,;ontinue inlo the prediction period.
Clearly such a case is, as a mechanical matter, handled effectively by simply
dropping one of the collinear variates.2o

However, one special instance of Marschak·s case does occur as a practical
matter: the calculation of multistage least squares estimators. In 2SLS, for example,
the prediction of the .v's is the sole object of the first-stage calculations; this is the
special case where the observation period (upon which the estimates are based)
and the prediction period are identical. It is of practical advantage, therefore,
to have first··stage computational devices that proceed stably even when the first­
stage regressors are linearly dependent (as they may happen to be--either through
poor planning or because of their large numbers in models with many equations).
Such a procedure will produce correct second-stage estimates even in those cases
where standard regression packages (which require inverting XX) would "blow
up".

The real interest in a routine like MINFIT, however, occurs not when X
is singular (of less than full rank), but when X is nearly singular (ill-conditioned).
In this case, which is of extreme practical importance to the econometrician,
standard programs, requiring the computation of (X'X) - I, become computation­
ally unstable. Clearly a routine that produces stable calculations when X'X is

• 20 This so.Jution first requires that the offending variates be identified if calculations arc to proceed
In t~e co~venl1?nalmanner of(2.6). This requirement, and indeed the need altogether to drop offending
vanates, IS aVOided by a computational routine like MINFIT that works even in the presence of pure
multicollinearity.
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singular will have no computational trouble when XX is nearly singular. Equally
clearly, however, such a routine does not solve the basic problem of near wl­
linearity~theinability to separate structurally distinct but statistically confounded
effects. It mcrely prevents this logical e~timati()11 problt:/U from bt:ing compounded
by an additional mechanical problem of unstable calculations.

There is, however, an obvious danger in lIsing a method of calculation that
always produces "unique" estimates, since perfect collinearity could make them
economically meaningless. Integral to such a procedure, then, there should also
be a means of diagnosing multicollinearity and alerting the user to its presence.
The singular values computed by MINFIT as part of its basic calculations may
well serve this purpose.

The Computations of MINFIT

MINFITis acomputational program 21 that solves the general (p(X) = r ~ K)
least squares problem of Theorem 2.1. It determines the b* of minimum length
that minimizes e'e, namely b* = X+ y. The basis of its computations is the deter­
mination of the pseudoinverse X + through the SVD of X, that is X + = V~ +V'
as in (2.4). The basic output of MINFIT includes b* = X+ y, V. U and the singular
values of X~the p:>sitive diagonal elements of~. It is these latter elements that
help in diagnosing multicollinearity.

Conditioning of Matrices and Singular Values

The condition number22 of an n x m matrix A, denoted K(A), is defined
to be the ratio of its maximum to minimum nonzero singular values, (Tma)(Jmin.

In the SVD of A = U~V', p(A) = p(~). Hence, as A becomes "nearly singular"
its mi~;;iJUm singular value approaches zero and K(A) becomes large. It is also
clear that K(A) = Kf).A) for any scalar )., and hence the conJition number (unlike
the determinant) is a measure of near singularity or ill conditioning that is in­
variant to the scale of the given matrix.

Since MINFIT, on its way to computing b* == X +y, also calculates the
singular values of X, the user caD be informed of K(X) and can thereby be alerted
to the presence of multicollinearity.

SVD and the Decomposition of the Estimated Variance

The singular values and the SVD have great promise in diagnosing the source
of multicollinearity and in assessing the extent of the troubles it may cause. As is
well known, collinear data can cause some or all regression coefficients to be
known only with very poor precision. However, nct all the regression coefficients
need be rendered useless by ill-conditioned data, and the extent to which this is
true can be examined through a decomposition of the estimated variance into
components associated with each singular value of X.

11 MINFIT was developed by Gene Golub, Computer Sciences Department, Stanford University,
and is published in Golub and Reinsch (1970). A version of MINFIT in use at the NBER Computer
Research Center is published in Becker, Kaden, and Klema (1974).

22 Also called [he spectral condition number. See further Hanson and Lawson (t969).
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Let h. "" X' I' hc thc OLS estimatc of /1 in ~hc standard lincar model .I' ;-c

X/I ~ I:, in which I: is appropriately di~trihllh:~ ':~th 1l:!0 mean .•"HI F(t:) "0 (12/:

,IV h )'''CVI''- jll-conditiollt;d. has full rank 1\.. I hcn.In( ,\, l.. "

(2.12)

and. lIsing (2.4;.

(2.13)

/1· . . /1 c;; X j I:

V{ll.) = (12 X • X' ,

= (12VL 2V'.

Let bt be thc k-th c1cmcnt of II·. and V == (I'U)' i. j ~~ I,., K: hencc it follows
from (2.1J) that

(2.14)

The variant:e of b:t- is thus seen to be a slim of cOll\ponent~ of the form f':';(J2
, oj J

eadl associated wit h OIlC of the singular values rTi' Ct'/('f';S pC/rUms. the morc nearly
singular (the more ill-wnditiolled) the X. the smaller the certain rT j : and hence, the
larger the impact or those wmponcnts on var(1I:). However, the ill effects of a
very small ajCiln be mitigated. or even nullified, if the assodatcd l'~J in the numerator
is l:orrcspondingly small. Indeed, letting XI denote thc i-th column of X, it is
wnjectured that if Xi is orthogonal to Xk and is nonorthogonai only to columns
of X which are themselves orthogonal to Xb then 0.; = O. This result, which
appears true in practice (an example is given below). requires formal proof. If true,
howevcr, it indicutcs that ncar singularity, resulting in very small rTJ for such Xj ,

would have lillie detrimental influence in determining the precision with which
{ll can be estimated by Icast squares. Such a result is in accord with theory, for it is
well known tha t in ordimlry least squares, the addition of a new variate that is
orthogonal to all preccding variates will not affect thc pref,,;cding regression
estimates. Indeed, then, adding two perfectly correlated variatcs, each of whith
is orthogonal to all prcl:cding variates, should Icave the preceding regression
estimates. and the precision with whkh they arc known, unchanged even though
the augmented X matrix is singular. This result is seen in the following example.

An Example

Consider the case where l' = 6, K = 5 and

-74 IW 1M - 56
-

1l2 l
14 -69 21 52 104 I
66 -72 -5 764 i52K

X:-=:
·-12 66 - )0 4096 8192

3 8 -, 7 -13276 -16552

4 ,-12 4 842! t61142
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This matrix, due to Bauer (1971), has the property that X s is exactly twice X 4 •

and both X 5 and X4 are orthogonal to X I' X 2 and X 3' The V matrix resulting
from the SVO of X = Ur. V' is

I
r 0.5478640 00 -0.6253470 00 0.5556850 00 I

1--0.8359300 00 -0.3833130 00 0.3928000 00 :

l~~~:~~:~~~~~~:~~:~~~-~~ -~~:~~~~~~~ L--
0.3214230 -15 0.1081740 -15 -0.4566720 - 14

0.1483620 -18 -0.543183D -14

: 0.2156180 -19 -0.4704350 - 14
I
10.1581130-18 -0.7294490-14____ L _

:-0.4472140 00 0.8944270 00
I
1-0.894427D 00 -0.4472140 00
I

The resulting singular values, the diagonal elements of 1:, are

0'1 = 0.170701D 03

0'2 = 0.6053320 02

0'3 = 0.760190D 01

0'4 = 0.3636840 05

0'5 = 0.131159D -II.

A glance at V shows that the Vij corresponding to the cross terms between
group X 4 and X 5 on the one hand and group Xl' X 2 and X 3 on the other are all
of the magnitude of 10- 14 or smaller and are well within the effective zero of the
computational precision.

Fmther, one singular value, 0'5 is much smaller than the other four, indicating
(within the zero tolerances of the machine) the rank deficiency of X. 23 However,
0's' small as it is,.is several orders of magnitude larger than its corresponding
ViS for i = 1 - 3; and hence the contributions of the vfs/O'; components to cal­
culations of var(bt), var(b~), and var(bn in (2.14) will be small. That is, the presence
of pure multicollinearity will not significantly upset the precision with which the
coefficients of other variates can be estimated, provided these other variates are
reasonably isolated from the offending collinear variables through near orthogon­
ality.

n Indeed 11, relalive 1011., the largest <1, is of tile order of 10- 16 and, according to bounds given
by the numerical analy~ts, is within the zero of the machine. Professor Golub claims 'hat anY!1t having
the property that I1Afu..... :s; Ji, where e is the machine zero, is evidence of rank deficiency.
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To demonstrate this point, calculate the relative components of var(bt) by

means of (2.14):

(2.15)

5 v2.

var(bi) = 0
2 L -¥

)=1 u)

= /j2(0.OOI0 + 0.0107 + 0.5343 + O~ + 0.(017)10- 2

= /12(0.5488 x 10- 2).

This shows that the component of var(bt) affected adversely by the collinearity,
namely v~5/oL is small (0.0017 x 10- 2

) relative t.o th~ total. (0.5488 x 10~2).
Indeed, this term has definition only through the finite arIthmetIc of the machme ;
in theory, it is an undetermined ratio of zeros. In practice there is reason to cast
out this component in actual calculations of var(bT).

The preceding is in stark contrast to the calculation of var(bt) or var(b~),

for these are the variances of coefficients that correspond to variables involved in
the singularity of X. Indeed,

(2.16)24
5 2

2 '" V5)var(b~) = /1 ~-2
)=1 (1)

= /12(00 + 0.0 + 0.0 + 0.0000 + 1.1626 x 1023
).

This variance is obviously huge and completely dominated by the last term and
its role in <.:ausing the singularity of X.

This example strongly suggests that there are situations in which near (or
even perfect) collinearity need not prevent meaningful estimations of some
regression coefficients-and these situations can be diagnosed and analyzed
with data from the :E and V matrices produced by the SVD of X. The situation in
which such partial salvaging seems possible is when the offending multicollinear
variates are adequately isolated from the others (perfect isolation being ortho­
gonality). CI~rly the problem of multicollinearity is a continuum: it increases as
the strictness of the orthogonality is violated and as the X matrix becomes more
nearly singular-as evidenl.:ed by one or more very small singular values.

There is no hope of salvaging estimates among the offending variates. In
spite ofmuch current research into the recovery of all estimates even with collinear
data (research strangely reminiscent of the alchemists), one cannot retrieve that
which was never there in the first place. The use of the SVD does, however, deserve
investigation both as a diagnostic tool and as a means of retrieving all that is
available when multicollinearity is present.

24 The use of 0.0 and 0.0000 is intended to distinguish a number within the machine·s zero (0.0)
from a nonzero number with small exponent. The O.O's in (2.16) are of the order of 10- 3D, while the
0.0000 is ofthe order 10- 10•
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PART 3. TIIRI:F-STAG[ LEAST SQUARES

3.0. iNTRODUCTION

This part presents the basic calculatioo:s COl linear 3SLS estimates 01 a full
system of G linear equations, or of a subsystem of such equations. The procedure
given here uses the same efficient and stable computational schemes for the first­
stage calculations as those developed in Part I. The result is an efficient means of
calculating linear 3SLS estimates, but unfortunately, this efficiency cannot be
extended to nonlinear (in the parameters) estimation. The latter requires a different
approach, as discussed by Jorgenson and Laffom elsewhere in this issue.

In the single-equation caiculations for the k-c1ass estimations of Part 1,
the variates in the equation were ordered first into the included exogenous variates
X I' second into the excluded exogenous variates X 2' and finally into the included
elldogenous variates Y. This ordering was exploited in the subsequent QR de­
composition, e.g., in (2.4). When there are several equations, however, the included
exogenous variates of one equation a:e the excluded variates of another, and no
such straightforward ordering is possible. A more general approach is, therefore,
indicated if many operations are not to be duplicated. Here, then, a generai set
ofcalculations will be determined (effectively the first two stages), and a means will
be determined for selecting appropriate subsets to build up the third-stage cal­
culations.

Section 3.1 develops notation and determines the 3SLS estimator to .be
calculated. III Section 3.2 the basic 3SLS calculations are derived. The QR de­
composition is once again exploited to produce the information from the "first
two stages". An indexing scheme is determined to build up the filial estimates
from the moments of R.

Nothing has so far been said about estimation subject to linear constraints.
This is the subject of Part 4, which treats the effect of iinear restraints on 3SLS
as well as on the K-c1ass.

3.1. THE BASIC 3SLS MODEL

Consider the system of G equations

(3.1 ) yr + XB + U = 0

where Y is a T x G matrix of G endogenous variables (specified as such);
X is a T x K matrix of K predetermined variables (specified as such);
r is a G x G matrix of unknown parameters to be estimated (some of
which are specified initially to be zero) :
B is a K x G matrix of unknown parameters to be estimated (some of
which are specified to be zero); and
U is a T x G matrix of stochastic disturbance terms.25

For purposes of calculation it is better to rewrite (3.1) in a way that more
directly deals with the individual equations. In particular, consider the goth

25 II is assumed that U is Ihe result of a G-varia!e slalionary sloachaslic process with mean 0 and
variance-covariance matrix L"".
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equation in (3.1):

(12) ¥)i, + XPc + II, = 0

where y is the g-th column of r,
P: is the g-th column of B, and
II is the g-th column of V.,

Since, in general, not all G of the }"s and not all K of the X's enter this equation,
the variates are assumed to be ordered so that all zero coefficients in )i, and P,
come last, i.e.,

(3.3) [~ ]- • g
')Ig = 0 and

where26 }ig is Gg x I, and Pg is Kg x l.

G , then, is the number of endogenous variables included in equation g (clearly
G

g
_. Ggare excluded), and Kg is the number of predetermined variables included

in equation g.
Partitioning Yand X in accordance with the above gives

(3.4) rye + XPg+ ug= [Yry:J[~J + [Xgx:J[~J + u,

= Y,rg + XgP, + ug = 0

where Y, is the T x G matrix of included endogenous variables,
Yg• is the T x (G - Gg) matrix of excluded endogenous variables,
Xgis the T x Kg matrix of included exogenous variables, and
X: is the T x (K - Kg) matrix of excluded exogenous variables.

Finally, the equation is normalized (since the variance of V is assumed to be
known only up to a scalar) so that one of the coefficients (usually one of the Yg's)
equals minus unity. This coefficient and its variate are assumed to be placed first.
Thus (3.4) becomes:

(3.5)
[YgYg{ ~glJ + XgPg + ug = 0

Yg = ~}'g + X,P, + ug ,

or

where ¥: =: [yg Yg];

jig is T x 1, the normalized variate;
Yg is T x (Gg - I), the remaining included endogenous variates;
X is T x K .

g "
Y,is(Gg - I) x l;and
Pg is Kg x 1.

26 The reason for which )i, is given a bar but P. is noI, will become apparent below.
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Equation (3.5) is usually summarized as

(3.6)

where

T x (Gg + Kg - I),

and

(Gg + Kg - 1) x l.

In this notation (which includes all zero restrictions on the elements of r and B),
the full system of equations (3.1) can be summarized as

(3.7) y = 26 + u

where

r);1

yt· GT x I

YG

2 1 10
Z= Zg I GT x "f.,(Kg + Gg - l)

l 0 . z. j
rO'l

0:= 0, !.,(K, + G, - l) x I

oj
UI

u:= ug TG x l.

ud
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== N-'d

(3.9)

The 3SLS estimator of () in (3.7) which can be derived as a generalized least
squares estimator ·takes the forml"

(3.8) lS11(Z'I.. 11),X .. , :;1 G([I:Zl,)"'\J

6.'SLS :=

.sGl(Ze-;ZI)qX'" .sGG(Z(;Zc;)iiX

where

l
-(Y;,}'ghx Y~Xgl

(Zi,Zg)'iX= X'),' X'X h,R=I ... G
_ " ~ h g-'

is the inner product of the columns of Zh and Zg insofar as they lie in the space
spanned by the columns of X. (Zi,.\'gkx is analogously deft ned. 28

When X has full rank, it is well known that

(3.10) (Zi,Zg)i/x = Z~X(X''\T I X'Zg and (Z~Yg)iIX = Zi,X(X'X)-1 X'Yg.

The sij in (3.8) arc the elements of S- 1 where S is the estimator of the variance­
covariance matrix L, based on 2SLS. The calculations for S will be discllssed
more fully later.

It is the elements of (3.8). then, that must be calculated to determine the
bJ!>LS' These calculations arc discussed in the next section.

3.2. THE BASIC 3SLS CALCULATIONS

All blocks in (3.10) can be determined by a single QR decomposition of the
matrix Z = [XYj. Notice that X = UgX g and Y = Ug[ygYg], where the symbol
U indicates set union. 29 We would then have

(3.11 )

where

and the relevant matrix sizes are

K G

T[X }' ]

T[QI Q2]

R1I and R22 are upper triangular.

G

~7 This result is available in any standard econometrics text, e.g., Johnston (1972 397)
<8 See footl1ote 7 above ' p. .
29 I "

. d' 'd nIPracl1~ It may be useful to have the machine determine Yand X from specifications for
In IVI ua equauons rather than have the user additionally specify them.
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Application of Lemma 1.3 gives

(3.12)

and

(x'}") = R'I,R,2'

(Y'Y)!!X = R'12RI2'

Hence a basic matrix of size (K + G)2 can be constructed

(3.13) [
X'X X'Y ]

M == Y'X (Y'Y)iIX

where R] = [R11Rd, the first block-row of R. Since M is based only on the first
K r0WS of R, Lemma 1.3a can be applied to show that only the first K steps of
the QR decomposition of Z are required-thereby determining RI' Both this fact
and the fact that M is symmetric and hence requires only its upper triangle to
be stored, should be exploited.

Forming the (Z'Z)liX

Consider (Z;'Zg) II x· All elements of this general block of (3.8) are also elements
of M, and hence can be derived from M. To do this will require some straight­
forward indexing.

Assume that each Yand each X are numbered:

... K K+I. .. K+G

(3.14) Z = [Xl'" XI.: Y1 '" Y(;]

(X K = k-th column of X, Yg = g-th column of Y).

These numbers will be used to identify those variates included in a specific equation.
In equation g, for example, the included variates can be summarized as:

(3.15) Zg = [Xg Yg )'g], T x (Gg + Kg + I).

The columns of 2g can be labeled by their names from Z:

(3.16)

where

X gi is the i-th column of Xg

Ygj is the j-th column of Yg

and the rj above the columns of 2g are the corresponding index names in (3.14).

583



Hence each Zg can be identified by its list of r's. Take Zh and .lg,

(1.17)
Zh={rl I"1O.h l"1O.h+I···r1O.h+(;, 1"10.,+<;,+1:·

19={SI ~K. SK.+l···S1O..+u. s·1O..'t..+I).

(3.18)

Now the (I, 1) element of (Z~ZR)IIX is simply the (/"1' sJl element of M, and, in
general, the (m, II) element of (ZhZg)l! x is the (rm' sIll element of AJ. These blocks
will be of size (K h + Ghl x (Kg + Gg).

Similarly, in determining the (Z~Yg)lIx vectors, which will be (K h + Gh) x I,
the n-th component will be the (r", SK. +G.+ ,) clement of M.

Determining the li
As each (Z;'Zg) II x is formed, it should be stored in its appropriate block of

(3.8); note ofcourse that if (3.8) is written as N03SlS = el, N is symmetric and only
its upper triangle need be stored. At this stage, d may consist only of

d ~ f(Z',r, ),,,1
llz,rG1J

The sij are determined from 2SLS estimates on each equation separately,
and these can be obtained Irom the data blocks already computed as a solution to:

(3.19) (Z~Zg)IIX()g2SlS = (Z~Yg)!Ix g = 1, ... , G

This is a square symmetric system to be solved through backsolving by some
computationally speedy procedure such as the Cholesky decomposition. The
additional output of the more costly MINFIT is not required in this use.

Having bgms for g = 1, ... , G, the 2SLS residuals can be formed as:

(3.20) eg = Yg - Zgbg2SlS'

a T x 1 vector to be stored in

g= I, ... ,G,

(3.21) T x G.

S is then a G x G matrix determined as

(3.22) s = ~E'E
T

G x G,

a matrix whose inverse gives the sii required in (3.8),

(3.23) s- 1 = (sii).

Now it i.s pos~.ible to finish forming (3.8) by weighting the blocks of N with the
appro~nate .Sl) and by forming the sums for each component of d. This latter
operatlO~ WIll require additional submatrices of the form (Z~Yg)IIX to be picked
from M In the manner described above.

Once the final Nand d are finished, 03SlS is solved from the linear system

(3.24) NJ: d
U3SlS = .
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This will usually be a large system, for N has dimensions

As was true for the k-c1ass estimators, the user should have the option of
solving (3.24) either by a MINFIT-like routine that produces singular values,
or by a faster routine like the Cholesky decomposi~ion.

PART 4. LINEAR RESTRICTIONS IN OLS, k-CLAss, A1-:D 3SLS

4.0. INTRODUCTION

On account of the nonlinear facility of the k-dass estimation system described
in Part I, lineal' reslrictions within a single equation can be built directly into the
formulation of the model. For example, in the equation

(4.1 )

with the linear restriction

(4.2)

correct constrained estimation will result from estimating the nonlinear equation

(4.3)

This procedure has the advantage that it is easy for the user to include the
restrictions; further, the procedure is not limited to linear constraints among the
parameters. The disadvantages are that this procedure is computationally in­
efficient and is not directly applicable to constraints among coefficients in different
equations of simultaneous systems. The first disadvantage is, perhaps, minor.
The second makes it appropriate to consider a facility for estimating 3SLS and
the like subject to linear constraints.

Section 4.1 briefly reviews and compares the two most commonly employed
methods of including linear restriction in OLS-the method of Lagrangean
constrained maximization and the method of substitution. A third method,
more useful for the current purpose, is also explained; in this method the con­
straints are used directly to modify the moment matrix of the normal equations
being solved. This has the following advantages:

I. The routines for k-c1ass and 3SLS estimation developed in Parts I and 3
can be readily adapted to estimation subject to linear constraints.

2. The size of the final system of equations that must be solved is reduced
rather than increased.

Section 4.2 extends the modified moment-matrix method to introduce linear
restrictions in k-c1ass estimation, and Section 4.3 further extends it to 3SLS.
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(4.4)

4.1. U;-':EAR RrSTRICTlO~S IN OLS

Consider the problem of estimating

Y = Xp + I:

where
X is T x K

by OLS subject to the r independent linear constraints

(4.5) All:::: a

where
A is r x K

pIA) =,. < K.

i\1etllOd oI Lagrallge

An obvious way of treating this problem is to minimize eOe :::: (}' -- Xh)'

(Y _ Xb) subject to (4.5), by Lagrange's method:

(4.6) !f(b,i.):::: yo}' - 2b'X'Y + b'X'Xb - i."[a - Ab]

(4.6a)

(4.6b)

'![
~_. :::: -2X'Y + 2XXb + A'i.:::: 0
i'b

'!f'
~:::: _. a + Ab :::: O.
ti.

Equations (4.6a) and (4.6b) give

b:::: (X"X)-IX'Y + (X'X)-IA'[A(X'X)-IA'] I[a - A(X'X)'IX'y)
(4.7) t""

:::: b + (X'AT 1 A'[A(X"Xr 1 AT 1[(/ _. Ao]

where h is the OLS estimator

(4.8)

Substitution of (4.4) into (4.7), with reference to (4.5) gives

(4.9)

(4.10)

where

and hence

V(b) :::: E(b - fi)(b - fl)'

= (j2[(X'Xr 1 _ (X'Xj- I A"F- II1(X'X)-IJ-

Estimation via (4.7) clearly involves a regression of order K and much addi­
tional computation. The method ofsubstitution reduces the order of the regression
and thus seems to warrant consideration.
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Method of SlI!JscilIlC;OIl

Beginning with

(4.11) AI3 = a,

order the Irs (and also the X's) so that (4.11) can be partitioned as

(4.12)

where

and

A2 is l' x (K - 1').

This gives

(4.13)

Substitution of (4.13) into (4.4), commensurately partitioned, gives

(4.14) Y = XI{Jl + X 2{J2 + f.

= XIAi la + [X 2 - A.A1 IA2J{J2 + f..

Equation (4.14) becomes

(4.15) [Y- XIAilaJ = [X 2 - X t A1I A2J{J2 + F.

V = W{J2 + f.

where

J1 1 = A11[a - A2J{J2

V = Y -- X I A11a T x

W=X 2 -X,A 1I A2 Tx(K-r).

Equation (4.15) is directly amenable to OLS, and computationally is a regression
of order (K - r) with a preliminary decomposition of A.

The decomposition of A can be done effectively by a QR decomposition of the
augmented matrix [A a] r x (K + 1). This results in

(4.16)

where

R I is r x r, upper triangular;

R2 is r x (K - r); and

R3 is r x 1.
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Premultiplying (4.11) by Q gives

(4.17) QAfl = Qa or

[RIR2{~J = [RJJ.

Hence

(4.18) or

Since Ris upper triangular, its inverse-or indirectly, its back-solution-is
easily accomplished. Thus, the procedure for calculating the OLS estimates of
(4.4) subject to the linear constraints (4.5) is

I. QR decomposition of [A aJ --> [R 1R2RJ ].

2. Form back-solution to

RI[c t C2J = [R2RJ J

so that CI = R1 I R2 and C2 = R11R J .

3. Form V = Y - X lC2

W= X 2 - XIClo

4. Apply OLS to I~ W

The variance-covariance mat.ix of f1 can now be derived from

(4.20)

Since bl is estimated from (4.18) as

(4.21)

we have

(4.22)

and hence

(4.23)

Thus

(4.24) V(b l ) = E(b l - f11)(b l - P.Y = CI V(b2kl = a2cI{W'Wl-ICI

Cov(blb~) = E(b l - Pt!(b2 - P2)' = -c
i
V(b

2
) =_(j2CI(W'W)-I.

Combining these gives

(4.25) V(b) = (j2(CI(W'UT leI
-(W'W)-IC'I

= (j2d(W'W)- Id'
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where

d = [-('I J].

Whereas this method requires a QR decomposition of [A a), a matrix of the
size r x (K + I), the addilional backsolvings are very fast, and the size of the
ultimate OLs computations is reduced from K to K - r.

Modification in Mometlt-Matrix Forni

The substitution method can be modified for application to the normal equa­
tions (4.8) based on the unconstrained estimation---rather than being used to
reduce the system before calculation as in the procedure given in the previous
section. The advantage of such a modification is that the k-c1ass and 3SLS routines
developed in Parts I and 3 can easily be adapted for estimation subject to linear
constraints. At the same time, computational advantage of the method of substi­
tution-namely, reducing the size of the system of equations to be solved-is
retained.

Define

(4.26)

Then (4.20 becomes

(4.27)

Define

(4.28)

so that

R;-IR 3 =!

-R1I R2 =F.

F=[J

Fb =1

and (4.14) becom~s

(4.29) Y - XI! = [XIF + Xl,J{32 + c = XFP2 + e.

OLS applied to (4.29) gives

(4.30) b2 = (F'X'XF)-I F'X'(Y -- X If).

Equation (4.30) can be calculated by either of the following methods:
1. OLS of Y - XIIon XF; or
2. Formation of normal equations X'Xb = X'Y, adapted by

(a) forming F'(X'X)F, and
(b) forming X'X d(from appropriate columns of X' X) and then

F'(X'Y - X'XI!).
In method 2constraints can be taken into account after an unconstrained moment
matrix has been formed-a procedure that will be useful for k-c1ass estimation
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and for 3SLS. Specified in slightly greate~ detail, Method 2 is: Given X'X ,wd XT

(or its R equivalent), . '
l. form Ab - II from F and.t a, desCrIbed above,
2. form F'X'XF =: ,\1,

3. form X'y·- X'X If = c,
4. formF'(X'l'- X'X I /) = F'c.
5. solve li2 from AI Ii 2 = F'c.

6. calculate 1;1 = f + fb 2 where F = [~J
The variance-covariance matrix of h can be calculated by noting

(4.31) r(6;) == a2(F'X'XFr I = a 2(W'11T I

for Was in (4.25), and hence

rib) = (J2F(F'X'XF)-IF".(4.32)

4.2. LINEAR RESTRICTIONS IN k-O.ASS ESTIMATION

As shown in Section 1.2, the k-dass estimator results in the system ofequations

[
Yk1k1J = [R'DR IJ + R~]R2J + (l - kJR:,}RJ ., R'I3R IIJ-1

(4.33) #k,k_ R'IIR 1J R'IIR II

.[R'I3RI4 + R'nR24 + (l - k2)RJJRJ4]

R'I ~R14

which can be shortened as

(4.34) Me = d.

For k = k l = k2 it is straightforward to verify that (4.34) is the set of normal
equations for OLS applied to

(4.35)

where

H' Y = H'Zb + Wi;

H = [(I - W I2 Ik l
:
2Q).

and where Qresults from the QR decomposition in (1.4). That is, we have

M = Z'HH'Z and d = Z'HHT

Hence the k-cIass estimator e5k can be obtained simply by applying OLS to

(4.36) y = Z'e5k + l

where the tilde denotes the given matrix premultiplied by H'.
lt is clear that estimation of bk subject to linear constraints can proceed

exactly as for the case of OLS in the previous section.
If Ab = a, then form Fb = fand determine

(4.37) 1>], = [F'(Z'Z)fr I rZ'( Y- ZI j)

590



which can be calculated in moment form (as described nbove) as

(4.38) (F'Z'ZF)b 1 = f'(Z'.v - Z:ZI.!) or (F'MF)b 2 :=: F'(c - 1I1 1fl

where 1\1 1 == Z·t I' taken irom the relevant columns of M. Clearly, as in (4.32),
bl = I + FJ2 and

(4.39)

4.3. LINEAR RESTRICTIONS IN 3SLS

The 3SLS estimates come from a solution to the linear equations (3.24),
repeated here,

(4.40)

Additional linear constraints

Ac5 = a

can be taken into account exactly as for the k-c1ass estimator. Form F and f
as described above under the method of modification of the moment matrix and
determine

(4.41) (F'N F)b 2 = F'(d - N I f)

where N 1 is the columns of N corresponding to (jl . Then

(4.42) 81 = f + FJ 2

and

(4.43)

PART 5. INSTRUMENTAL VARIABLES COMPUTATIONS

5.0. INTRODUCTION

The instrumental variables (IV) estimator is among the most general consis­
tent estimators of linear equations since it subsumes 2SLS, LIML, and 3SLS as
special cases. The usefulness of IV estimation has been further enhanced by recent
work of Brundy and Jorgenson and of Hausman. Brundy and Jorgenson (1971,
1973) introduced two-stage IV-type estimators called LIVE (Limited Information
Instrumental Variables Efficient) and FIVE (Full Information Instrumental
Variables Efficient). LIVE and FIVE have, respectively, the same Cramer-Rao
best asymptotic efficiency as 2SLS and LIML, on the one hand, and as 3SLS and
FIML, on the other. This asymptotic efficiency is ~ained without requiring a
set of preliminary regressions on all exogenous variables in the systems of
equations~a requirement in 2SLS and 3SLS that often cannot be met for large
systems with few observations. Hausman (1973) showed that the FIVE estimator30

when iterated, converges to the FIML estimate (ifit converges at all). Thus a sin~le

well-integrated IV package can afford the user a wide choice of single- and multi-

30 See further Hausman's paper in this issue.
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equation estimators that po~s~ss both consistency, a basic propert~ o~ all IV
estimators, and asymptotic efhclency, a propert y onl y of LI VE and FI VE estImators
(which include 2SLS and 3SLS) 31 . . .

In Section 5.1 the basic IV estimator IS detl:rIl\l1lCd. !1\ SedlOIl 5.2 methods
for constructing and computing the more interesting and widely employed
instruments are discussed. Section 5.3 presents a means ofcalculating IVestimators,
and a computationally efficient method employing the .QR decomposition is
proposed. In Section 5.4 the LIVE and FIVE t\Vo-stage estimators arc dealt with.

5.1. THE BASIC IV ESTIMATOR

Consider with the linear equation

(5.1 )

where

y is T x I

Vis T x G

XI is T X K I

f. is T x 1.

z = [X I Y] is T x (K I + G)

b = [~J is (K I + G) x I

A set of G + K, linearly independent instruments, J.¥, is picked where W is
T X (K I + G), with p(W) = K, + G.

In general, the instruments should be correlated with the variates X I' but
uncorrelated (at least asymptotically) with c. Interest centers on picking and
computing these instruments, a problem to be dealt with at length in the next
section. Once the instruments have been picked, form

(5.2) W'y = W'Zb + W'r.,

which implies the IV estimator

(5.3) or

a square, nonsymmetric system of equations that can be solved directly through
the use of a general routine like MINFIT (Section 2.4). In Section 5.3, however,
these baliic normal equations for J,v will be transformed by a QR decomposition
to produce a system ofequations capable of more efficient solution~ven counting
the cost of the QR decomposition. The variance-covariance matrix of b,v is
readily derived (Johnston, 1972, p. 283):

(S.4)

Jl LIVE is a bit of a misnomer. for it is not "Iimited information" in the sense of L1ML or 2SLS
:-vhere specification need be made only for the single equation being estimated. LIVE is really a "full
mfor~ation" estima~or that ignorc.~ cross-equation corrections but essentially requires the full set of
equalIons to be specified.
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5.2. PICKING THE INSTRUMENTS

If an IV routine is to be truly useful in an interactive ~ystem like GREMLIN,
it should have a capability for nearly automatic generation of widely used classes
ot instruments. This section specifies these instruments and their computation.

The task is to fill the G + K I columns of W with variates that are (i) cor­
related with X I but (ii) asymptotically uncorrelated with E. Since the columns of
X I fit these requirements ideally, it is assumed that X I is always used as K I of the
instruments. Hence it remains only to pick the additional G instruments corres­
ponding to the G-included endogenous variates Y. W is therefore of the form

(5.5)

where F is T x G, a set of G instruments to be determined.
As a practical matter, the user has at his immediate disposal a set of variates

Y that satisfies (i) and Oi). Y usually includes the following subset:
1. X I' the predetermined variates included in the given equation.
2. X 2 (or some subset of X 2)' the set of all other predetermined (cotempor-

aneously uncorrelated) variates in the system of equations. (X == [X IX2].)

3. X-I' additional lagged values of the X's.
4. D, dummy variables constructed by the user.
In addition to the basic elements of §, a facility should be available by

which the user can readily augment these variates by various principal components
of the elements of !IF or of elements derived from those in Yi. The use of principal
components in this context has been formalized by Kloeck and Mennes (1960),
whose work is incorporated here. Being linear combinations of the elements of Y,
these principal components also satisfy conditions (i) and (ii) and hence are legiti­
mate possibilities. Thus, routines will be required to generate the following:

5. PI' the principal components (or first principal components) of any subset
or~

6. P2, the principal components (or first principal components) of the residuals
of the block regression of any subset of !IF regressed on any other subset
of $'.32

Denote by JIf the set :¥ augmented as in (5) and (6). Two methods33 of
determining F can now be usefully distinguished:
Method I, Substitution: Determine F as any G columns (presumably linearly
independent) picked from G elements of .Jf.
Method II, Regression: Determme F as f, the G-predicted values resulting from
a regression of Yon any subset of Jf of order G or greater.

31 PI allows for instruments corresponding to Kloeck and Mennes (1960) methods I and 4, while
PI allows for their methods 2 and 3.

33 Clearly Method II is but another means of augmenting the sel .f(' to include additional instru­
ments. But it sc:eCUi useful to separate this case so that its relation to multistage least squares techniques
can be kept in mind.
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OptiollS fo,. Metllot! 1, Dircct Substitutio/l

In general, the lIser should be able to c.hoose f: as any subset of (J elements
of .'If. He shollld have options for the followlllg specIal cases:

(a) F taken to be any subset of .~ of ordcr G, not including those elemcnts

in X,.
(b) F taken to be the G largest principal components of any subsct of § of

order G or greater.
l) F = G largest principal components of .¥.
2) F = G largest principal components of.<F excluding X I'

(c) F taken to be the G largest principal components of the residuals of any
subset of sF (exclusive of X,) regressed on X, ; i.~ .. let P be the matrix
whose columns are members of .~ not also included in XJ, and then
form F as the G largest principal components of the residual matnx
p - X ,(X',X t>-' X'I P,
I)P=X 2 ·

2) P = LX2X _,D], i.e.,.'F exclusive of X,.
(d) As in (b) except that the ordering is not by descending eigenvalues ai,

but by descending values of aW - rf) where rf is the multiple cor­
relation coefficient of the k-th variate in .'F on X ,. This ordering can
be applied to either 1) or 2) in (b).34

These options require that the IV routine have access to a principal com·
ponents finder and an OLS package to find multiple correlation coefficients in (d).

Opti01lS for Method II, Prelimilwr)' Regression

In general, the user should be able to choose any subset of G or more elements
of :F to act as preliminary regressors in determining Yas F. Denote the matrix
of such regressors by L.

(a) L = any subset of G or more elements of :F.
(b) L = the G + 11 (/I ~ 0) largest principal components of any subset of §

of order G + /I or greater.
1) L = G + n largest principal components of <~.
2) L := G + n largest principal components of § excluding X I'

(c) As in Method I(c) except that G + n principal components can be taken.
(d) As in Method I(d) except that G + n prmcipal components can be taken.

Calculation of Instruments

Let B be a T x M matrix whose M columns are composed of the basic sel
of instruments from the set :F. These variables, supplied by the operator, can sem

34 The numbering of methods here corresponds to numbering of methods in Klocek and Mennes
(1960) as follows:

Kloeck and Mennes

I
2
3
4
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as instiUments by themselves, or they can be transformed into other instruments,
as, for example, by taking various of their principal components. B can be defined
for a whole system of equations, but for single-equation IV estimation it will be
particularized for that equation. Fm a given equation, B will always contain X I'

the set of included exogenous variables. Hence write

(5.6)

As described earlier, B. can contain a subset of X 2 (the excluded predeter­
mined variates), a subset of X _. (lagged values of any of the predetermined
variates), and D, a matrix of appropriate dummy variates.

The discussions of Methods I and II indicate the need for generating various
types of principal components of B and its submatrices. In particular, the following
computational routines are needed:

PC(k: LIST). This routine produces the k largest principal components of
the variates given in LIST-all columns of B. The user specifies k subject to
certain restrictions that should be automatically checked and flagged if violated.
The restrictions are:

1) If Method I is used, k = G and LIST must have G = k or more elements.
2) If Method II is used, k ~ G and LIST must have k or more elements.

A default option should be provided that assumes LIST indicates all of B if no
list is given. Further, a symbol should be available which causes LIST to include
only the elements of B. (B exclusive of X I)' such as PC(k: Rd.

This routine implements Methods I(b) and II(b).
PCl(k: LIST). This routine produces the k largest principal components of

the residual matrix of the variables in LIST regressed on X I. In this case no
variables composing X: should be permitted in LIST, for this will guarantee
perfect collinearity in the ultimate IV equations. A check for such consistency is
desirable.

These calculations can be accomplished as follows. Let C be the matrix whose
columns are in LIST. Applying Lemma 1.3, decompose A = [X.CJ by the QR
routine to obtain

The matrix of residuals is Ql R22 == U (Lemma 1.4); the k largest principal compo­
nents of this matrix are sought. If the principal components of V ::; Q2R~2 are
calculated by forming the eigenvectors of V'V, Qis orthogonal and V'V is simply
R~2R22. However, Q2 must be preserved in this instance so that the principal
components of V can be calculated. If Vis the matrix of eigenvectors of V'V, then
P == Q2R22 V is sought as the principal components of Q2R22.

The same checks on the relation of k to Gdescribed above for the two Methods
should be made. This routine implements Methods I(c) and lI(c).

PC2(k: LIST). This routine, used in conjunction with PC(k: LIST), modifies
the ordering of that routine and takes the k largest principal components according
to the new ordering. In particular this routine does the following:

I. Forms the principal components of LIST (always exclusive of X ,}----eall
these by the matrix P-along with their corresponding eigenvalues III-
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all the "other prede!ermined" variates in the system of equations, the resulting
multistage least squares estimator will lack the efficiency of 2SLS, but such
estimators are popillar and their easy access is desirable.

Although the trunci'l'ed ?SLS estimator described above is inefficient, so also,
rather generally, is IV estimation. But either of these estimators can be used
separately or together to form a set of consistent-not necessarily efficient­
estimates of the full system of equations; and these estimates can be employed
in a multistage IV procedure such as LIVE or FIVE, to produce asymptotically
efficient estimators. This will be discussed more fully in Section 5.4.

5.3. THE IV COMPUTATIONAL PROCEDURE

In the notation of Section 5.1, the task is to calculate [he Jrv solving

(5.11 )

where

(W'ZjJ,v = W'y

w= [X,F] is T x (G x Kd

Z = [X t Y] is T x (G + K I)

and F has been determined as a T x G matrix of instruments (Section 5.2).
The variance-covariance matrix of ~IV is

(5.12)

(5.11) is a square, nonsymmetric system of equations that can be solved with
MINFIT or a similar routine after the relevant moment matrices W'Z and W'y
have been formed, and it may be useful to have facility for carrying out these
direct calculations. However, an alternative procedure is given here that, in terms
of operations counts, is faster and more efficient.

The Calculations

Form the QR decomposition of

(5.13)

to get

(5.14)

A == [X ,Ffy]

R I1 R12 R IJ

R"iQA = Q[X I Fl'}'] =
Rn R23 k 24

0
S S

s Js
where only K I + G steps in the decompositions are taken, and the S's represent
the remaining parts of A after the first K I + G rows are formed using Householder
transformations. The S elements are essentially discarded for subsequent cal­
culations. Q is orthogonal and R 11 and R 22 are upper triangular.

Now,

W'Z = W'Q'QZ = (QWYQZ
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and

(5.15)

with

and

and

r
:::1-[In]

Qy = S J= f-

LS

111 = [R I4J.
R24

Further,

(5.16) W'W = W'Q'Qlt' = [M'O'J[;] = M'M

W'Z = W'Q'QZ = [M'O'J[~] = M'M

[nI]W'y = W'Q'Qy = [M'O'] f = M'm.

By substitution of (5.15) and (5.16) into (5.11), J1V becomes

(5.17) 3lV = (W'Z)-IW'y = (M'M)- JM'/11 = Nt - 1m.
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V(Dlv) in (5.12) becomes

(5.18)

Now

V/J,vl = a 2( W'Zj- 1W'W(Z'HT I

= (J2(M'KT) -I M'M(M'M)- I

= a 2S1- 1."1'-1.

(5.19)

and (5.\7) becomes

(5.20)

Thus, the following computational steps result in the IV estimator:
\. Form.4 = [X IF Yy} (order is important).
2. Take K 1 + G steps in the QR decomposition of .4 to get

K

K[R I1
G 0

G G

3. Solve R23c = R 24 , a rectangular system.
4. Solve R11b = R l4 - RI.'c, a triangular system.
5. Obtain e:= y - Yc - X1b and form S2 = e'f'j(T - K I ).

6. FormRII',R231 andtheM-'Ar- ' .

Operation Counts

The computational scheme just proposed for the IV estimator and its
variance-covariance matrix has two advantages over direct computation of the
moment matrices in the normal equations (5.3) and in (5.4): tirst, the proposed
scheme employs the computationally stable QR decomposition and hence has
advantages in dealing with collinear data; second, in most cases the proposed
scheme is computationally more efficient in a direct comparison of operatiolls
counts. The exception occurs if G » K1 (not a likely occurrence), and even here
the disadvantage occurs in the computation only of c5lv but not of V(8Iv).

Operation counts were made first for computing b1v directly as in (5.3) and
then for computing it as in Steps 1 through 4 above. The relative counts were
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Operation

based on the following evaluation of numhers of operations:

Count

l. Solution to general square linear
(

-31,13 +. 11
2

system n x /I)

2. Solution to triangular linear system
(n x n) t/l 2

3. QR decomposition on 111 x /I matrix
(proportionately less if cut off early) t"lll"

4. Inner product of III x /I and /I x p
matrices I1lllp

5. Inversion /I x n matrix 1/13

The method of calculation suggested above has in its favor tT(K~ - G
2

) +
2TGK I + ~TGl + iT(G + K I) + tG3 + G2 + tK} + K I G counts t~rough the
calculation of J;v in (5.17) in comparison with the direct calculation of c}.v through
(5.3). Only if G » K I will (5.3) prove more efficient. Comparison of the calculation
of V(3rv ) by (5.18) with the direct calculation of(5.4) offers clear additional evidence
that the QR decomposition has a computational edge in all cases. Indeed, the
calculation of (5.18) instead of (5.4) has these advantages: the emire W' W matrix
newly required by (5.12) need not be formed; only one matrix product need be
taken instead of two; and inversion in (5.18) is of a K I x K I upper triangular
matrix and a G x G general matrix instead of the (K I + G) x (K I + G) general
matrix (W'Z)-I.

5.4. LIVE AND FIVE

The advantages of estimation by instrumental variables have been extended
by the work of Brundy and Jorgenson (1971). Instrumental variables estimators, by
their very structure, are consistent; but only in special cases do they also possess
relative efficiency. Through a two-stage instrumen tal variables procedure, however,
Brundy and Jorgenson (1971, 1973) have determined two efficient IV estimators,
LIVE (Limited Information Instrumental Variables Efficient) and FIVE (Full
Information Instrumental Variables Efficient). Whereas LIVE is called a "limited"
information estimator, ill fact both LIVE and FIVE are based on estimation of
the full system of G equations. LIVE is "Iimited information" in the sense that it
does not take into account any information on across-equation covariation.
As a result, LIVE has the same asymptotic efficiency (Cramer-Rao lower bound)
as LIML and 2SLS; while FIVE, which does employ information on across­
equation covariation, has the same asymptotic efficiency as FIML. Indeed
Hausman (1974) has shown that FIVE iterates to FIML.

In what follows, the calculations leading to LIVE and FIVE are examined
in turn. The set of G equations to be estimated is

(5.21) Yg= YgYg + XgfJg + f.g

= Zgc}g + f:g

=: [XgYgJ[~:J + f:g
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where Ys is T x 1, a vector of T observations on the normalized endogenous
variable of equation g;

Yg is T x Gg , Gg endogenous variables included in equation g;

Xs is T x Kg, Kg predetermined variables included in equation g;
l's is Gg x 1, a vector of Gg nonzero parameters to be determined;
Pg is Kg xl, a vector of Kg nonzero parameters to be determined; and
cg is T x 1, a vector of disturbance terms.

Further, define

(5.22) u = [£1'" £uJ

1:" = plim ~U'U.

The First-Stage Estim(/(es

Both LIVE and FIVE are two-stage estimators and assume that consistent
(perhaps inefficient) estimates of the Pg and j'g g = 1 ... G have been obtained in
the first stage. In GREMLIN the user should be able to specify that any available
consistent single-equation technique be used on any equation in the first stage.
The k-c1ass estimators or any IV estimator discussed above is a legitimate esti­
mator for this purpose. The role of the LIVE and FIVE routine in the first stage
i5 principally bookkeeping: specifying each equation in the system; generating
data for the first-stage estimator for each equation; calling the relevant single­
equation estimation package to carry out the estimation; and, finally, summarizing
the first-stage results for use by the second-stag'..l LIVE or FIVE estimator. This
routine, therefore, draws upon all completed packages discussed above. The user
should also be able simply to enter first-stage consistent estimators obtained
from any other source.

Let Y= UgYg, and X = UgXg, where U denotes set union; and rewrite
the system (5.21) as

(5.23) yr + Xp + U = 0

where r is a G x G square, nonsingular matrix whose goth column contains (a)
the associated elements of rg for each slot corresponding to a column of
Yg , (b) the value -1 corresponding to Ys' and (c) the value 0 elsewhere.

p is a K x G rectangular matrix whose goth column is composed of the
associated element of {3g for each slot corresponding to a column of
Xg , and zeros elsewhere.

U is as in (5.22).

The stage-one estimation (assumed already accomplished) results in estimated
vectors }is and P"~ g = 1 ... G which together compose consistent estimates of
rand p, denoted by f and ~.
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Determining tire Sel'Oiul-Stage [list rumellt s

The reduced form of (5.23) is

(5.24) y=xBr~l- Ui"l

= xn + V

(5.29)

and the corresponding consistent estimator of n (with zero restrictions) is

(5.25) fI == - llf-I.

The predicted values of Y from this estimated reduced form are simply

(5.26) Y == XI"!.

These linear functions of the predetermined variables serve as the instruments in
the second stage of LIVE and FIVE.

The predicted values Ycan be computed in either of two equivalent ways
First as implied by (5.26), Y can be computed directly by determining f and B,
inverting f, and computing -8f-'. Second once each of the G equations in the
system has been consistently estimated in the first stage, the system can be subjected
to static simulation to determine the f"s. A simulation facility such as that in
TROLL (National Bureau of Economic Research, 1974) makes this second alterna­
tive attractive.

LIVE

For each equation g (g = 1 ... G)

(5.27) Yg = Z/J( + Fog = [XgYg{~:J + c~

form a matrix of instruments Yg as the Gg-predicted values from (5.21 )-or the
simulation--(;orresponding to those variates included in Y

g
, the induded endogen­

ous variables of equation g.

The IV estimation technique of Section 5.3 can now be applied to the
matrix

(5.28) Ag = [Xg~ YgJ'g]

to obtain DriVE, an efficient LIVE estimate of t5 .
ai, the variance of fog, can be consistentI; estimated through the use of the

first-stage consistent estimates 8
g

by forming

e==r-Zbg • g g g

where bg = [::].and AandYg are the first-stage consistent estimates used in(5.25).

ai can now be estimated consistently as

(5.30)
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The Variance-COl'ariance Matrix. The variance-covariance matrix of the
LIVE estimator takes a simpler form than that of the usual IV estimator. The
asymptotic variance-covariance matrix of T 1i2(8i1VE - 6g ) is

(5.3i) plilll T(W~Zg)-I(W/l~W~)(Z~a~)-1

since plim T- l W~Zg = plirn T-I W~Wg.

Hence a good estimator of the approximate variance-covariance matrix of

8tlVE is

(5.32) V(JilVE) = s;(W~Wg)-1

where W = [XgYg], the T x tGg + Kg) matrix of instruments. Reference to
(5.16) indicates this is easily calculated from the elements of the QR decomposition
already used to calculate SLIVE as

(5.33) si(M'i\'1)-' = siM~IM'-1

where M = [R
II

R
I2Jas in (5.1 5) and is a matrix that is easily inverted due too R 22

its upper triangularity.

Across-Equation COl!ariance Matrix. It is also possible to make use of the
LIVE estimates to obtain estimates of the asymptotic covariance between 8f.tVE and
StIVE' the estimated coefficients from two separate equations. Indeed

(5.34) plim T(J{IVE - clg)(JilVE - (jh)'

= plim T(W~Zg)-1 W~EbWh(Z~"~)-1

~-I ~ ~-I= O"gh"-WgWe-w.w""-w"w,,

where Ugh is the gh-th element of L.. from (5.22) and Lwew" = plirn r IW~Wh
by definition.

Hence the approximate covariance between JtlVE and SilVE is estimated by

(5.35)

The first and last of the three matrix terms in (5.35) have already been computed
in (5.33), when V(JtIVE) and vlJilvE) were computed. The middle term, W~"'h,
must be computed anew for these calculations. The estimated covariance is
calculated as

(5.36)

where eg and eh are determined from (5.29).
Summary oj Computational Steps for LIVE, The computational steps fol' the

LIVE estimator can be summarized as follows:
1. For each g determine first-stage consistent estimates of bg and s; as in

(5.29).
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? From these J , fonn f', Band ft = -fif- I.
_. g - - -
3. Form the LIVE instruments Y = xn, or determine Ydirectly by simula-

tion from Step l. (In the latter case skip Step 2.)
4. Form A = rx PYv 1and use the IV estimator of Section Sl to determinc

g - g g g. g.

Jf
LIVE· . , - 2 - I ,- 1

5. Form M- I and calculate ~ (Jt"'E) as sgM M from (5.33).
6. Calculate Sgh W~ J-~g and form (5.35) along with the (M~M g) - I from

Step 5.

FIVE

FIVE, like LIVE, is a full-system estimator. It is "full information" .elative
10 LIVE not in the sense that it requires full specification of the entire system (for
both LIVE and FIVE require this), but in the sense that FIVE takes into account
the across-equation covariation ignored by LIVE. The asymptotic efficiency of
FIVE, therefore, is the same as that of 3SLS and FIML.

The FIVE estimator uses the same building blocks as LIVE, but unfortu­
nately the rcsulting equation system cannot be solved in a way that expioits the
computationally efficient algorithm ofSection 5.3. Instead the IV normal equations
must be solved in their basic form (5.11).

The FI VE Instruments. FIVE begins exactly as does LIVE: for each equation
g = 1... G, a 8g and eg = Yg - 2 gb. are determined from (5.29) through some
consistent (but perhaps inefficient) single-equation estimator. From these Jg

and eg one forms t, D, and fi = at - I from (5.25) and S = T - I U'U, where U =
[e, ... eG], a T x G matrix of estimated residuals. S is clearly an estimated co­
variance matrix whose elemcnts Sgh will be used to weight the blocks in the FIVE
normal equations.

For each equation, then, a set of instruments is formed as

(5.37) a T x (G g + Kg) matrix, g = 1... G,

where fig is the K x Gg submatrix of fi formed by taking only the columns
of fl corresponding to the Gg endogenous variables Yg included in equation g.36

From these a set of cross-equation blocks is formed as

(5.38) g,k = 1... G

(5.39)

where sgk is the gk element of §- I.

Finally, a complete instrument matrix is formed as

w = [W" W" w,"1
I;GI r;G2 ... ~GrJ'

a matrix of size GT x I:g{Gg + Kg}.

J6That is, if eq~ation g includes only Y. YsYs ana Y9 • then fI, would consist of colum.:~ 1,5,8,
and 9 of fi-or eqUivalently. t. == xfi, would consist of columns I. 5. 8. and 9 of Y.
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Tile fl VE Normal Equatiom. The goth equation of the systcm is Yg = Zg()g +
I:g , and the full system to which the instruments W of (5.39) are applied is

(5.40) y = Zli + I:

where

Z'=

The normal equations from which the FIVE estimator bF1VE is solved are

(5.41) (W'Z)JF1VE = W'y.

in general a very large systcm, for W'Z is square and of size Lg(Gg + Kg). W'Z
should be formed directly. and MINFIT or some other suitablc routine should
be applied directly to (5.41). However. W need not be formed and stored as a
whole, for its G2 blocks are composed only of the G matrices Wg from (5.37) and
the elements from the G '" G matrix S. W can be formed piecemeal, as required.
from these building blocks. while W'Z and Wy in (5.41) are being formed. Like­
wise, the full TG x L(Gg + Kg} matrix Z need never be formecl for it is block
diagonal with blocks Zg. g = I ... G, from (5.40). The block multiplication
which foons WZ can therefore take advantage of the sparsity of both Wand Z.

The Variance-Covariance Matrix. The estimated variance-covariance matrix
of JF1VE is easily fomlUlated but presents computational difficulties because
it is usually very large. The true asymptotic variance-covariance matrix of
TI/2(~ '} .()FIVE - u IS

(5.42) = plim T(W'Z)-l W't:f.'w(z'wr I

- [gh.... 1- I
- t1 h.."'gWh •

where ash is gil-th element of L ~/ and

Hence the estimated approximate variance-covariance matrix of JF1VE is given by

(5.43) g, II = I ... G

a square, symmetric matrix of size 2:lGg + Kg).

In general V($I'IVEl is large, and an inversion routine capable of such matrices
is required.

Priur Restrictioll 011 L". As in 3SLS, the calculations involved in computing
JF1VE from (5.41) and V(JFlVE) fmm (5.43) can be substantially reduced ifsome of the
sgh are constrained to be zero. This would be the case if L were assumed to be
block diagonal from the outset. So also, then, would be L- I, and both (5.41) and
(5.43) would be sparse. In this case routines exploiting the resulting block de-
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composilion should be utilized to reduce the calculations to several systems of

smaller size.
Summary (~rS(el'sj;)J' FI VE. The computational steps for the FIVE estimator

can be summarized as foliows: ~

I. For each g, determine first-stage consistent estimates 1\: and for each
g and II, determine SKh as in (5.36) and form S = (S~h)'

2. From the J
g

• form r. Band 11 = - of -I as in (5.25).
3. Form the FIVE instruments Y= X fL or determine Ydirectly by simula-

tion from Step l. (In the latter case skip Step 2.)
4. Fonn WK = [YKXg] =: [Xl1g XK) for g = I ... G.
5. Calculate S- 1 and form U~h = SKhWh, g, II = I ... G.
6. Form (W'Z) and (W'y) as

(W'Z) = (ShgW~ZhJ

(W'y) == ~ ~ shgW~Yh}
~h~1

= {w~ t ShKyh }.
h= i

7. Calculate JFlVE as (W'Z)J fIVE = Wy.
8. Form V = [sghW~W~]. g, II = I .. , G. and calculate V-I as V(JflVrJ, re­

calling that Vis symmetric.
Steps 6-8 should take advantage of any zero restrictions given on 1:tt'

Iterative FIVE. Hausman (1974) has shown that the FIVE estimator (5.41)
iterates to the FIML estimator of (j. Iteration of FIVE proceeds as follows: an
initial estimate 8Vl~E is determined as in the previous section. The<5VI~E becomes the
Jg of Step I. and a new estimate, $Vl~f' is produced. This in turn is used at Step I
until an effective convergence of 8~lvE ~ 8~,v~) occurs. Step 8 need be calculated
only once, at the end.

The user should have the option of stopping the iterations prior to conver­
gence. Because FIVE is a consistent and asymptotically efficient estimator for
any consistent initial estimates in Step I, each c5~'lvE is consistent and asymptotically
efficient. Stopping before convergence, therefore, is costless in terms of these
asymptotic properties. Only when convergence is reached, however, will the
iterated FIVE estimate also be FIML.

ApPENDIX. ITERATIVE PROCEDURES FOR NONLINEAR EQUATIONS

A.O. INTRODUCTION

The purpose of this appendix is to examine estimation 01 a single equation
that is nonlinear in its parameters and to develop in detail the notation and
terminology utilized in Section 1.5.
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A model that is appropriate to OLS is considered first. Then the results arc
extended to a model that is appropriate to estimation of one equation from a
simultaneous system--i.e., one equation having endogenous regressors. A Gauss­
No:wton method (using first derivatives only) is developed first; this technique
was employed in earlier versions of TROLL (National Bureau of Economic
Research, 1974) but often failed to converge. A Newton-Raphson (second­
derivative) technique was used with greater success, and this technique is presented
next and adapted for use in simultaneous equations.

A.I. PROCEDURE WITH EXOGENOUS COTERMS

Assume T observations on the outcome of a nonlinear random function
p in K observed arguments X(I) and having G unknown constant parameters
(nonlinear) IJ which are the object of estimation.37 Hence in period 1 assume

(A.I) - P(X(I), fi) = f."

where I:r is a random variable having mean zero, constant variance and independent
across time.

In matrix summary we have

(A.2)

(A.3)

wherefis a T-vector function

. [X'(I) ]X is the T x K data matrix X =
,.'dT)

fJ is the G-vector of parameters to be estimated

f: is distributed with mean 0, ;md

V(r.) = aZI,

Further. define the Jacobian matrix of cOlerms38

J
'I ·1
G

a T x G matrix.

j ·r
G~

In this section fp is assumed to be nonstochastic; i.e., the partial of f (which is a
stochastic function) with respect to all parameters is assumed to be nonstochastic.
This assumption is appropriate to a nonlinear generalization of the context of

37 The notation f' means not that func!ion f is different in each period~-it is in fact the same
function ror aliI-but that it is evaluated at different X(I).

38 The meaning or ··coterms" will become apparent in equation (A.5) below. where cotenns are
paired up with their corresponding P's in the linearized approximation. Also see Eisner and Pindyd.
1973.
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OLS with all the regressors exogenous. The assumption will be relaxed in Section

A.2.

Line(/rized 0 LS: A Gallss--N l'lI'tVlI Procedure

Using the first two terms of a Taylor expansion about Po' linearize (A.2) as

(A4)

or

I: = - I(fJ) = .-lUio) - liAPo) [P - {Jo]

= [ - j"({Jo) + f(J(Po){io] - '/p(Po)/J

(A.6)

(A5)39 f(J({Jo)fJo - !(Po) = !(J({Jo)P + f.,

where all partials are evaluated at (Jo' For given Po' OLS can be applied to (A5)
to obtain the least squares estimator.

fi = [fp(Po)/P({Jo)] - If'({Jo)[f(J(fJo)Po - l(Po)]

= Po - [fp([Jo)!p(Po)]' IIp(fJo)!([Jo)'

The form of (A.6) suggests the iterative procedure

(A7)

This method, employed in earlier versions of TROLL, displayed some difficulties
in converging, and was replaced by the Newton-Raphson procedure described
next.

A Newton-Raphson Procedure

If (A7) converges so that b~+ I = b. = b, then it reduces to

(A.8)

or equivalently

(A9)

- [fp(b)'!p(bjf lfp{b)f(b) = 0

!p(b)f(b) = O.

This set of normal equations, whose solution is necessarily the same as a
convergent solution of (A7), can also be derived from minimizing the sampling
sum of sq uared errors from

(AlO)

i.e., the solution of

(All)'~o

Define F(b) as

(A12)

e = -f(X,b),

min e'e = J:f
b

F(b) == Ip(b)l(b) = 0

~o The u~ of ··colerms" should be clear from (A.5). In the linearized model, thef~ serve the same
function relallve to the parameters pas the X's do in the standard linear model y == XP+ t.

40 Differentiating (A.lI) produces 2f,'(h}f(h) = O.
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and expand F about bo to obtain

(A.l3)

where Ffl = cF/i:JP, a G x G nonstochastil.: matrix.
Solving (A.l3) gives

(A.I4)

which, rewritten in terms of/, becomes

(A.I5) b = be - Lt
J

/F 'f' + fp!pJ-- Ifp/,

where $" is the G x G Hessian matrix [a;:~~J == (f~k).
Iteration in terms of (A. IS) is like that in terms of (A.7), except that a second­

derivative term 2,i~ I/F'f' is included additively in the inverse.41

A.2. PROCEDURE WITH ENDOGENCUS COTERMS

In Section A.I the coterm ma!rixfp is assumed nomtochastic; this is the non­
linear analog to the OLS case. Now, however, nonlinear estimation is extended to
simultaneous equations; hence it is assumed that:

1. h is a stochastic matrix (some of whose elements may be nonstochastic).
2. XI (distinct from X) is a set of H preliminary regressors assumed in­

dependent of f: (i.e., of the stochastic elements ofi-and hence, also of fu).

Instrumental Variahles in the Limited Information Case

Begin with the linearized equation (A.5), in which, however, fp is no longer
independent of c. Application of OLS to (A.5) is no longer indicated; instead,
a set of instruments!p is introduced by regressmgfp on X I.

(A.16) i p = X IP = XI(X~X/r I Xdp

==Zdp

where

(A. I?)

In the spirit of instrumental variables,fp in the right-hand side of (A.5) is replaced
byIp from (A.I6). As will be clear from (A.20), there is no need to purge the left-hand
side of its stochastic terms; hence, the estimation is based on

(A.I8)

where

fp({Jo){Jo - f(Po) = !p(/lo)P + rr

rJ = e + [fp(/Jo) - Ip(!Jo)]{J

== /; + Vfi·

41 F = f, I = a::~1I~f'] == [F'l a G x I vector. Then FI == oF'/apt = r.Jf~d' + I~I'J, and

hence F, = [Ff) = a::-l ~'J: + I; _'Pl.
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Least squares applied to (A IS) gives

(A.19) {/ = Cfit/,J II;u;IPo-.n = Po - (/;J~) II;i.I
which uses the fact that

(A20) /'pJil = (fpZ/).fP = (f'Z/)(Ldp) = lp.f~

due to the idempotency of ZI' This last fact proves thatjp need not be adjusted
by Zion the left-hand side of (AIS).

The iterative procedure suggested by (A.19), and analogous to (A.7), is

(A.21)

Newton-Raphson in the Limited Information Case

If (A.21) converges to b, + I = br = b, then again the normal equations

(A22) /'p(b)I(h) = 0

must be satisfied by b. An alternative to finding b is therefore otfered by solvin~

(A.22) for b by Newton's method. ­
Using (A.16), Jet

(A.23)

Expanding F gives

(A24)

or

(A25)

F == /'pf = fpZd = o.

Rewriting (A.25) in terms offgives

(A.26)

where

and

fJ = P - [G + j" l r II-' fo p. p_ p

alternatively,

where

ggk = r.,r.J~kZtJ[

Z == (Z,,),

I (a2r ')
f gk = apiJpg ;
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Also

G - ) cztl'.
- -r..T J .

The properties of (A.26) as an estimator need to be investigated. Clearly
the estimator is consistent if the stochastic nature of the auxiliary relationship
between/I! and the instruments XI approaches that assumed behind (A.16), i.e.,
if Jp constantly estimates /p. Otherwise the properties of the resulting estimator
depend upon the true stochastic relation between/p, XI' V, and f..

A.3. THE DOUBLE-k CLASS ADAPTATION

The preceding adjustment procedure can be generalized to the double-k
class context. Instead of regressing/p 011 X I (effectively the 2SLS option), calculate

(A.27) (fP!P)lX, and (fPf)lX"

to use in an iterative scheme generalizing the basic double-k class estimator (1.2).

Gauss -Newton Generalization

Applying the Gauss-Newton iterative procedure analogous to (A.7) to the
double·k class estimator (l.2) results in the following iterative scheme:

(A.28)

The Newton-Raphson Generalization

The analogous adaptation of the Full-Newton Step would be

(A.29) b,+ I = br - [G + f'p/p - k l(f'p/P)1X,r l[f'p/ - k2(fpf}L'(,]

where

G= (ggk)' ggk = f~kJ/

J = I -- klH

Ii = I - Z

Z = XI(X~XI)-IX~ ,

or

Some /p Nonstochastic

When not every element of/p is stochastic, some partials can be functions of
the X I alone, and!p can be partitioned as

(AJO)

where cPp is the matrix of stochastic coterms, and Xp is the matrix of nonstoehastic
eoterms. Estimation can now proceed by adjusting only the 4>p, as, for example,
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with a Newton-Raphson step of

[
..., [¢~1JP - k l (¢;'4>fJ).lX,

(A.3I) br + t = b, - G + . 'A,
- I.P'+'/J

. [4Jpf - ~~(~pniXtJ
I.rJ .

Should the l be included with the XI as instruments'! Some may already be

there if, for exam~e,l.phas a term linear in the "~t· Either these lincar equ~valences
must somehow be purged; or, as is the case with most procedures constdered in
this paper, the determination of (¢'p¢{J)lXf .(w~ere XT is the set of X1augm~nted
by I.. ) must be able to proceed evcn if Xr IS smgular. At lea~t one computatIOnal

con~deration is apparent: with a fixed XI' many calculatIOns can be saved in
determining (¢'p¢{J)J.Xt' but Xi will change with each iteration and cause re­

calculation of Z/ = XT(X/Xn- tX /*.
Boston College and
NBER Computer Research Center
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