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PART 0. INTRODUCTION

Several purposes are served by this paper. First, it describes the technical
underpinnings of a comprehenstve system of single- and multiequation econo-
metric estimators—-including the general k-class, three stage least squares (3SLS),
instrumental variables (IV), limited and full tnformation efficient instrumental
variabies(LIVE}and (FIVE), and asa byproduct of the latter, linear full-information
maximum likelthood (FIML).! Design specifications for such estimators are,
of course, not new ; but the presentation given here is comprehensive and consistent,
and introduces computational techniques of numerical analysts that will indeed
be new and interesting te many econometricians.

* The author wishes to express gratitude to the following people for their aid, comments, dis-
cussion, and thoughts: Gregory Chow, John Dennis, Mark Eisner, Gene Golub, Jerry Hausman,
Paul Holland, Dale Jorgenson, Edwin Kuh, Virginia Klema, Alexander Sarris. This research was
supported under NSF Grant GJ-1154X3 to the NBER.

! The k-class and 1V estimators are given in both lirear and nonlinear forms. This paper orly
presents linear estimation for 3SLS and FIML. See Jorgenson and Laffont (cisewhere in this issne)
on nonlinear 3SLS. The basis for the nonlinear FIML facility will be Gregory Chow’s work (1972, 1573).
Hausman (elsewhere in this iss'1e) shows the refationship of iterated FIVE to linear FIML.
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The estimation techniques described here are currently being implemented
as a software system called GREMLIN (Generalized Research Environment and
Modeling Language for the Integrated Network); this work is being done at the
NBER Computer Research Center for Economics and Management Science.
Hence, a second purpose of this paper is to give users of GREMLIN more detailed
computational specifications than can be provided by the usual software docu-
mentation. In this regard it should be emphasized that the system is stiil being
programmed and may differ in some details from the specifications given here;
but this paper describes the basic design of the final product.

Third, this paper may introduce to econometricians several useful com-
putational techniques of modern numerical analysis—in particular, the QR
decomposition of a matrix (effected stably and efliciently by the Householder
transformation) and the singular value decomposition oi a matrix. These concepts
and their properties, which are discussed in some detail here, will hardly be new
to those familiar with the literature of nunierical analysis ; but they will be new to
most econiometricians, who until recentiy have not taken advantage of much
relevant work done in that field. Both of these matrix decompositions produce
efficient and stable computational schemes—efficient in the sense that the operation
counts of many large econometric calculations can be reduced ; and stable in the
sense that the calculations are significantly less sensitive to the ill-conditioned
(nearly singular) data matrices that are frequently encountered in econometric
practice. In the work that follows, both the QR decomposition and the singular
value decomposition are employed in widely differing situations, attesting to
their power in practical computational centexts. It is also to be conjectured
that the simplification of complex matrix expressions that frequently accompanies
the application of these decompositions will show them to be powerful analytic
tools.

0.1. Scope OF THIs PAPER

In Section 0.2, motivation wiil be offered for the development of the system
described here. Then Part 1 treats the theory and calculations of the general
k-class estimator. This discussion begins with preliminary lemmas on the QR
decomposition and its application to ordinary least squares computations. This
decomposition (effected by the Houscholder transformation) not only simplifies
calculations but also yields expressions devoid of moment matrices and the need
for matrix inverses—both major sources of computational problems to be avoided
where possible.” The decomposition is then applied to the linear k-class estimator,
which is in turn adapted for nonlinear (in the parameters) estimation.

Part 2 treats another important matrix decomposition, the singular value
decomposition. This concept and its relation to pseudoinverses are developed
and applied in the context of a general discussion of multicollinearity. Indeed,
the singular value decomposition presents a means of calculation that remains
stable even in the presence of perfect multicoltinearity, and it also offers a promising

%It 1s advantageous to tetain normal equations in moment-matrix form for the & -class estimator,
although the QR decomposition still plays a central role. A linear form is possible, but for k > 1,

it inv_olves the need for storing matrices of complex numbers and is not readily adaptable for the
iterative nonlinear estimation techniques of Section 1.5 and Appendix A.
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means of detecting multicollinearity and determining if any estimates can be
salvaged in spite of it.

Part 3 deals with the calculations of lincar 3SLS;* here again, the QR de-
composttion simplifies the calculations. Part 4 examines estimation subject to
linear constraints and presents a method employing the R decomposition that
may be applied directly to ihe moment matrices. This means of dealing with
linear restrictions, which differs from the usual Lagrange technique or the method
of substitution, is employed to allow efficient iteration for nenlinear estimation.
Part 5 develops the computational procedures for several instrumental variables
estimators. A method employing the QR decomposition is presented for the
standard IV estimator, and its computaticnal advantage is assessed. Further,
several devices for constructing instruments through the use of principal com-
ponents andjor preiiminary regressions are developed (this draws heavily on
the work of Kloek and Mennes (1960)). Finally, the resulting IV estimator is
atilized to implement the Brundy-Jorgenson (1971) estimators LIVE and FIVE.?

GREMLIN will also include a general procedure for nonlinear full-information
maximum likelihood estimates. The basis for the calculations to be employed
are those developed by Gregory Chow (1972, 1973).

(.2. BACKGROUND AND PERSPECTIVE

The last two decades have witnessed extraordinary growth not only in the
theory of econometrics but also in its practice and its recognition as an essential
pait of virtually every phase of economics. This growth has not ceased, vet as in
most rapidly growing fields, as many questions have been created as answered.
The onslaught of econotnetric creativity has left pockets of ““rubble’ that must be
tidied up and put into their proper place. A principal portion of this rubble in
econometric theory is ignorance of the small-sample properties of the single-
and multiequation estimators that have been accepted to varying degrees over
the years, based primarily upon large-sample considerations or other assumed
properties that have little to do with the reality from which economic data derive.
Similarly, in the area of econometric practice, such examples of rubble are easily
given; indecd, in considering the degree to which economic theory lacks hard
empirical verification, cne readily realizes that rubble is more the rule than the
exception.

While there are many important reasons for our ignorance of small-sample
properties and our incomplete empirical knowledge of economic systems, there is
one ingredient, so far absent, that would help advance the profession in both
areas——namely, a widely available estimation system that includes all important
economeiric estimators and is consistent, flexible, and efficient. The need for such
a system motivates this work.

2 A procedure for nonlinear 33LS is given by Jorgenson and Laflont elsewhere in this issue.
¢ Jerry Hausman, elsewhere in this issue, shows the relation of iterated FIVE to linear full-
information maximum likelihood.
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Small-Sample Properties

The most direct source of ignorance of the small-sample properties of many
econometric estimators is, of course, the intractable quality of the mathematics
describing them— a difficulty that often disappears as sample sizes become indefi-
nitely large. In order to gain the needed small-sample information, work has been
in two general directions: exact, or nearly exact, results are sought in those few
cases that admit such analysis ; and Monte Carlo studies.

Recent theoretical results show that some exact or nearly exact answers
may be possible. Light on exact small-sample properties has been shed in papers
by Basmann (1961, 1963), Richardson (1968), Sawa (1969), Marino and Sawa (1971),
and Kadane (1971); but these results deal with special cases and do not admit of
obvious generalization to more complex and more realistic cases. Additional
information has been obtained on nearly exact properties of small-sample esti-
mators by using approximate results that take second- and even higher-order
terms into account in “returning’” from the asymptotic to the finite world. This
promising research is exemplified by Anderson (1972), Anderson and Sawa (1970,
1973a, 1973b), and Nagar (1959).

In contrast to the theoretical work just mentioned, much effort also has
been devoted to the small-sample properties and comparative efficiencies of the
various estimators through Monte Carlo studies. This computation-intensive
approach is well exemplified in siudies by Summers (1965), Cragg (1966, 1967),
Griliches and Rao (1969), Quandt (1962, 1965), Nagar (1960) and Wagner (1958);
and the basic results are well summarized in Johnston (1972).

There is strong agreement in the general conclusion so far derived from boih
the theeretical and the Monte Carlo studies: namely, it all deperds-—just abcut
anything can happen depending upon the circumstances.

Such an agnostic conclusion sounds, perhaps, more pessimistic than it is in
fact; for in it there is at least the indication that in any given set of circumstances
(at some specified point in the parameter and the data space), it may indeed be
possible to derive meaningful small-sample conclusions for, and comparisens
among, the various estimators. Since in the real world, not all circumstances
are possible, and since informed limitations can be put on both the parameter and
data space, theoretical analysis of important select regions of the parameter and
data space may result in a less sterile conclusion than ““anything can happen”.
This optimistic hope applies both to additional theoretical conclusions and to
additional Monte Carlo results, for both tools seem most meaningfully applied
when the model specification is narrowed and particularized.

One iikes to think that the efficacy of theoretical studies has been limited by
inadequate mathematical tools in combination with a shortage of genius, and that
someday something will happen to change all that. Unfortunately, such a solution
is outside our control. On the other hand, some of the main limiting factors for
Monte Carlo studies can be controlled, namely, 1) the high cost of conducting
studies of sufficiently varying parameter and sample conditions to gain any real
overall picture;*> 2) the lack of software estimation systems sufficiently compre-

5 Th«lz initia) vp{sion of GREMLIN may not fully exploit all computer capabilities required for
truly efficient repetitive experiments; however, later versions will be made expressly with this in mind.
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hensive to allow an individual investigator to make consistent comparisons of
many different estimators, and 3) the unavailability of such software to the
econometrics profession in general. The estimation facility planned here for the
GREMLIN system will go a long way to relaxing these limitations.

Model Estimation

The role of large econometric models in furthering economic research and in
aiding governmental and managerial policy decisionis is perhaps best evidenced
by the continuing use of many existing models, each highlighting some important
area of theoretical or practical concern. Notable examples include the models of
Klein-Goldberger (1955), the Brookings Institution (Duesenberry et al, 1965),
the Wharton Schooi, and MIT-FRB as well as the Michigan Model. The facility for
building, estimating, and manipulating these models, however, is not widely
available for econometricand managerial research. Whereas “'regression packages”™
are universally available, systems which can execute all important full-system
estimators upon large numbers of equations are available to but a few.

In order, then, to advance knowledge of the smalil-sample properties of
econometric estimators and to facilitate applied econometric research in general,
it seems useful to provide a comprehensive, consistent system of the important
single- and multiequation estimaters. Such a system should be implemented in
a general research environment that includes facilties for data editing, model
editing, and full-system simulation. The system should be generally available
to the profession, should provide the power and flexibility needed to advance
frontiers in all areas of applied cconometric research, and should also provide
the scope and efficiency needed for meaningful experimentation into the small-
sample properties of the estimators.

PART |. DOUBLE-k CLASS CALCULATION
1.0. INTRODUCTION

This part focuses on the calculations of the double-k class estimators of a
single equation containing both endogenous and exogencus regressors. This
general class of estimators includes such well-known estimators as ordinary least
squares (OLS), two-stage least squares (251.S) and limited information maximum
likelihood (LIML).

First, in Section 1.0, the basic problem is defined, and notation that will
be empioyed throughout the paper is developed. Section 1.1 presents the pre-
liminary theoretical results that underlie the first-stage calculations given in
Section {.2. The basis of these preliminary results is the QR decomposition of a
matrix, an operation that reduces the solution of the OLS problem to one whose
calculations are deveid of moment matrices and inverses. The simplifications
afforded by this decomposition will be frequently exploited in this paper. An
outline of the final k-class computational procedure is given in Sections 1.3 and 1 4.
Section 1.5 deals with estimation of equations that are nonlinear in the parameters,
and Section 1.6 summarizes the computational steps.
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Consider the multivariate equation

(1.1) y=Yr+ X pt+e

where v is T x 1, a vector of T observations on the normalized “dependent”
' variable ;
Yis T x G,a matrix of T observations on G endogenous variables included
as Iegressors;
X,is T x K,, a matrix of T observations on K, included exogenous
variables ;

tis T x 1, a vector of stochastic disturbance terms:
~is G x 1.a vector of G unknown parameters to be estimated ; and
Bis K, x 1,a vector of K, unknown parameters to be estimated.

In addition to these, define

X,tobe T x K,, a matrix of T observations on K, additional exogenous
variables (the exciuded exogenous variables);

and define

X ={X,X,],a T x K matrix with K = K; + K,.

The double-k class estimator of 7 and # is a function of the data y, Y, X, and
two parameters k, and &, that are determined in ways to be discusscd later on.
The basic form of the double-k class estimator (though not the form in which we
shall calculate it) is

qar [][V7 Rt v 7]
By XY XX, ¥ '

Were it not for the inclusion of the matrices (Y'Y),, and (Y'y),y, (1.2) would
simply be a (G + K,) square system of linear equations based on the moment
matrices of y, Y, and X,. (Y'Y),x, however, depicts the inner product of those
components of Y with themselves insofar as they are orthogonal to the space
spanned by the columns of X. Quite simply, (Y'Y),y is the matrix of residual
second moments resulting from regressing Y on X, and (Y’y),y is analogously
defined.” Thus, in calculating (1.2), the equivalent of a ““first-stage’” regression of
Yon X is required to determine (YY), and (Y'y), -

¢ The notation (Y'Y),, and (Y'y), y, which is explained immediately below. is Rukle’s (1968).
and will prove useful at a later stage.

" In projective terminology. any T vector Y can be decomposed into its orthogonal projection
lying in the space spanned by the K columns of X, denoted ¥, (¥ parallel with the space spanned by X),
and its orthogonal projector, denoted Y, ,, so that Y = Y, + Y,,. Since Y, ¥,y =0, then ¥'Y =
(Y'Y)yx + (Y'Y}, the standard decomposition of the second moment of Yinto the “explained” and
“unexplained (residual)” components.
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Ii is a standard result of regression analysis that, when X is of full rank {i.c.,
p(X) = K),

]

3 (Y¥)y =YY = ¥'X(X'X)"'X'Y, and
(1.3)
(YVix =Yy~ VXXX) "Xy

These calculations will not, however, be directly required. Indeed all of the sub-
matrices in (1.2) may be obtained from a single QR decomposition of an appro-
priately expanded data matrix. This procedure has the following advantages:

1. It reduces significantly the sizes of the matrices for subsequent operations.

2. The Householder transformations that produce the QR decomposition
ar¢ somewhat faster than ordinary regression calculations and are very
stable.®

3. The calculation of (YY), and (Y'y); x can take place even when X is
singular.’

4. Therelevant matrices for determining the LIML value of k are given almost
gratis.

We turn now, in Section 1.1, to some preliminary theoretical results that form
the basis of the calculation procedure given in the Section 1.2.
1.1. PRELIMINARY RESULTS

The principal results for the method of calculation given here depend upon
the QR decomposition of a matrix A, namely

Lemma 1.1a

For every m x n matrix A (m > n) there exists an m x m orthogonal matrix
0 such that
~ R
¢

where R is n x nand upper triangular and 0 is (m — n) x n.
Lemma 1.la may be restated in another form that gives name to the QR

decomposition. Let § = [g] with Q' n x m. Then since QA4 = 4 = QR, and
conversely (since Q may alwéys be augmented with orthogonal basis for the null
space of A), we have

Lemma 1.1b

Every m x nmatrix A (m = n)can be decomposed as

A=0QR

8 On the Householder transformation see Golub (1969), Businger and Golub {1965), and Hanson
and Lawson (1969).

® A true advantage during “‘first-stage” regressions where statistical tests of hypotheses are not
being made, and hence no major problem arises from multicollinearity.
Jor p! y
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where Q is m x n (the same size as A) and Q°Q = I, and R is n x n and upper
triangular.

Clearly the rank of R equals that of 4, and hence R is a nonsingular triangular
matrix if 4 has full rank. This makes inverting R particularly simple.

Such a decomposition may be effected either by a sequence of Householder
transformations or by using classical or modified Gram-Schmidt orthogonaliza-
tion. The modified Gram-Schmidt dominates classical Gram-Schmidt when
Aisill-conditioned (nearly singular), as so frequently occurs in economic problems.
The Householder transformations appear to be a speedy compromise, as shown
in Businger and Golub (1965).

Simple regression is easily accomplished using the R decomposition. Indeed

Lemma 1.2

In the linear equation y = ¥ + ¢, the OLS estimator of fis b = R™1Q'y,
where X = QR. Further V() = ¢?R™'R" " 1.

Proof

This foliows from simply substituting for X in

b=(X'X)"'X'y = (RQQR)'RQ
= (R'R)'R'Q'y
=R'RTIRQy =K7'Qy

where the orthogonality of Q is used. Further, V(b) = ¢%(X'X)"! = 2R~ 'R~ 1.
Q.E.D.

Due to the upper triangularity of R, an equation system of the form Rb = gy
is quickly solved by backsolving, and the need for a formal inversion routine is
avoided. Further, moment matrices of the form X'X are not required and the
additicnal precision often necessitated by such accumulated sums of squares
can be dispensed with.!?

Soemewhat more generally we have

Lemma 1.3

Let X and Y be two sets of variates of size K and M, respectively (T observa-
tions each). Then, from the QR decomposition of

R,y R,,]
ZE[XY]=[Q1Q21[(;' RJ
22

'% Unfortunately, this especially nice property of the QR decomposition in the context of OLS
cannot always be exploited in more complicated estimators, particularly a method for linear equations
that can also be used iteratively for solutions of nonlinear equations (Section 1.5).
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(a) the moment matrix of residuals of Yregressed on X is
(Y'Y)L.\' = R'zszz
and (b) the moment matrix of predicted values is

(Y'Y)n.\' = RIIZRIZ-
Proof

VAVA [X'X X'y] R'Q'OR = RR
T lyx vyl h

_ [R,ll O ][Rll Rl2:| _ |: ’llRll R’llRlZ ]
LRy, RyupIL O Ryl LRLGR, RLRy, + RyRy,
Now (Y'Y),x = Y'Y — Y'X(X'X) 'X'Y; and by substitution of the appropriate
moments from above
Y'Y - Y'X(X'X)"'X'Y = R};R,; + R32Ry; — Ry,R(RY Ry )RR,
= R};R\; + R3,Ry; — R2Ry,
= R3;R;;.

Thus (a) is shown.
Now (b} follows immediately from the fact that

YY=(Y'Y)x+ (YY)

Hence

(YY) =YY (YY) x=R,3R\; + Ry;Ry; — Ry,R,,
= R,R,,.
Q.ED.

Lemma 1.3a

Inthe event that (Y'Y), x is required but(Y'Y), y is not, the QR decomposition
of Lemma 1.3 need progress only through its first K sieps (a fact we call Lemma
1.3a) since the sequence of Householder transformations works one row at a time,
and additional changes do not affect the rows above the row being worked on.

R,, R
After K Steps, therefore, R will be of the form [ (;l Slz] where S is some

rectangular (not upper triangular) matrix. in subsequent steps S will change but
R, will not, and hence R, is available after the K-th step for calculating (Y'Y),
= R\2R,,.

R;R,, can be calculated even if X is not of full rank. Its meaning will be
correct, 1.¢., the sum of squares and cross products of the predicted values of
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Yregressed on X, a unique value in spite of the fact that there may be an infinity
of representations of these predicted values in terms of linear combinz tions of X.
The results of Lemma 1.3 are readily extended for the case of lineai regression

in
Leinma 1.4

in the least squares block regression of Y (T x M)on X (T x K), ie. Y =
Xb +ewherebis K x Mand eis T x M, we have

{a) b = R[}'R,, (notation from Lemma 1.3)
(b) e = Q,R,,

and in the case where M = |,
(c) V(b) = a’R; 'R}

|
(d) §* = ?];';'_‘IEREZ-

Proof

Following the notation developed in Lemma 1.3, from the QR decompeosition
of 2

X=Q=Rn
Y=0R;; + O3R,;.

Hence
b=(X'X)"X'Y=R,'11Q',Y (bis K x M)
= R{'Q\W(Q\R,, + Q:R;3)
= R{{ Ry, since 0,0, = I and 0,0, = 0.
Now

e=7Y - Xb=(0Q,R), + Q,R,,) — {0\ Ry R{IR,,)
= Qszz-

Rather generally e'e = R),R,, (result {a) of Lemma 1.3), an M x M matrix
and for M = | ’

(”t’ = R%z
Hence

S

(c) is already shown in Lemma 1.2. Q.E.D
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1.2. THE k-CLaSs (DOUBLE-k CLASS} DECOMPOSITION

The preceding results are now applied to the determination of the double-&
class moment matrices in equation {1.2). Returning to the notation of Section 1.0,
form the augmented matrix

Z =X, X,YYy]

aT x (G + K + 1) matrix where X, Y, and y are from the linear equation (1.1),
and X, contains T observations on K, additional predetermined variables.
If X =[X,X,] contains all the predetermined variables in a full system of equa-
tions (of which (1.1) is a single equation to be estimated), we are dealing with a
proper k-class estimator. If X contains X |, and if X, is a subset of the remaining
predetermined variables, we are dealing with a truncated k-class esitmator. But,
rather generally, there 1s no reason X, cunnot contain any additional instrumental
variables (asymptotically uncorrelated with ¢, correlated with X ;).
Decomposing Z into a QR give-
= i
Ryy Ry Ryy Ry,
RZZ R?.J R24
Ry Ry,

0 Ri,

14y  Z=[X,X,Yy]=QR =(0,0,0,0.]

where the Q’s are the same sizes as the corresponding partitions of Z, ie.,
TxK, TxK, TxG Txl
Z = [X, X, Y v]
Q=10 Q, Qs Qal
and the R’s are sized as
K, K, G 1
’>Rn Ri; Ry, R14—| K,

R = RZZ R23 R24 KZ

0

Each of the diagonal blocks is square and upper triangular.
Write the basic moments of Z in terms of R as follows:

K, K, G |
XiX, X\ X, XiYo Xy Ky
XX, X3X, X3Y Xyl K,
YX, YX, YY Yy|G
Lyx, yx, ¥y oy |1

Ry, 1

L

(1.5) 2’7 =
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= R’Q’QR = R‘R

I—R'” 0 1 Ry, Ry; Ry,
12 RS Rz, Ry
B R’13 R23 RSS R33

’ ’
Ry Ry Ry Ry

[R,,R,;,  RuR.,  RuRn  RuRy ]
R, R R’lZRIZ R’12R13 R’12Rl4
12701 + Rj;R;; + R3,R;; + R3,R,,
RI ~R ‘R’13R13 R’13R14
(L) = RisRyy R,“R” + Ry3Rzy + RuaRy,
23722 + R3;R;; + Rj3R;3,4
RI R R'14R13 R’14Rl4
R4Ry, 1tz + R34R3; + R3Ry
+ R%4R,; + R34R;; + R3.R;,
— + R’44R44 _

Now partition

Z=[X,X,Yy]
as
(X1 X, Yy] = [XIW],
where
X=[X,X,lisTxKand W =Yy]is T x (G + 1).
Lemma 1.3 is applied to [X W] to obtain
" (Y'Y)ix (Y'y)

(1.7) (WW)x = ((YyI[Yy])ix = L , U_( ,} H

YY) ('Y
(1.8) =

[ w 0 ][Rss R34]

Ris RidL 0 R,y

I: 33R33 33R 3, ]
3aR33 R3,Ry4 + Ry,R,,
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The relevant submatrices from (1.6) and (1.8) are paired with those in (1.5)
and {1.7) to obtain

Raw Moment

Matrix R Decomposition Size
X)X, = R,R, K, x K,
Y'X, = Rj:R,, M x K,
(Y'Y)ix = RjRy, M x M
(L9 Y'Y = R3R;3+Ry;:R;3+RuR;: M x M
(Yyix = 33R34 M x1
Yy = R;R4+Ry%R,, +R3:3R;,, M x|
Xy = RR,, K, x1

These can be substituted into (1.2) to give the double-k class estimator only in
terms of the R;; (all of the large Q matrices are unnecessary at this stage):

(1.10) li‘)iklkz] _ Ry3Ry3 + Ry;3R,;5 + (1 = &y )R5;3R5; ’13Rll:|—l
L 1R Ry iRy,
[R13R14 + RysRy + (1 - kz)R33R34J
Ry Ry, '

kiky

The system of linear equations (1.10), which is surnmarized as
(L.11) c=M"'d or Mc=d,

can be solved by 2 general linear equation-solving routine like MINFIT or by
some similar routine that is more directly suited to dealing with a real symmetric
system of equations. (MINFIT and other such procedures will be discussed more
fully in Section 2.)

Itis to be noted that both R and M require storage only of the upper triangle—
R because it is upper triangular and M because it is symmetric.

1.3. THE VALUES OF & AND Two SpEcIAL Casgs (2SLS anp LIML)

Calculation of M in (1.11) requires knowledge of k; and k,. In the k-class
estimator, as distinguished from the double-k class, k; = k,. Various well-known
estimators result from special values of k. Indeed, in the cases of k = k; = k, the
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following estimators resuli:

Value of & Estimator
k=0 Ordinary least squares'’
k=1 Two-stage least squares
k=np Limited information maximum likelihood
(the determination of g will be discussed
beiow)
k=1+ K- K'T- ¢-1 Nagar's'? Unbiased to order T

In GREMLIN, the value of K is to be specified by the user and he may specify
different values for k, and k. It is envisioned, therefore, that the entire k-class
package can be invoked by a single name; or any of the specific values given
above can be invoked by a special name, such as 2SLS, LIML, OBK, which
automatically causes the appropriate & to be used in the calculations.

Two special cases of k—2SLS (k = 1) and LIML (k = u}—deserve special
attention because they have specific computational implications.

A8LSk=1)

This case deserves special attention for two reasons. First, as is clear from
(1.10), with k = 1 the terms (1 — k)R3R;3; and (1 — k)R33R3, do not appear and
therefore need not be calculated. Second, as 1s also clear from {1.10), with k = 1,
the only submatrices of R that are needed are R,,, R,3, R4, R;3, and R,,—all
from only the first two block rows. Applying Lemma 1.3a, therefore, it is required
that the QR decomposition of Z proceed for only K = K, + K, steps to obtain
the needed submatrices. In general K + G steps will be required.

Both points can be exploited to make computation of this special case less
burdensome.

LIML (k = )

The LIML estimator is calculated as a k-class estimator with k equal to the
minimum eigenvalue of the eigensystem

(1.12) |H, — uH} =0,
where

H =YY-YX, (X, X)X\ Y =(Y'Y)y,
and

H=YY—-YX(XX)'XY=(YY),.

! This is an unnecessarily cumbersome means of calculating OLS, but it offers 2 good means of
chec_king the program by comparison with the OLS estimator in TROLL (Eisner and Pindyck, 1973;
National Bureau of Economic Research, 1974). '

"?Where X isT x K, X,isTx K,, Yis T x G.
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From (1.7) and (1.8) it follows that

(1.13) H = (YY) x = Ry\;Ry;,
and from (1.5) and (1.6) it follows that

Hy =(Y'Y)y, =YY - Y'X[(X\ X)X}V
{1.14) = R13Ry3 + R23Ra3 + R33Rs33 — Ry3R (R}, Ry)T'R Ry,

= R33Ry3 + R33R;;.
The determiniantal equation (1.12) thus becomes
(115) IRy3Rp3 — (1 — DR33Ryl =0 or
[(R33R33) " 'Ry3R,3 — (u — DIf = 0.

The LIML g, then, can be calculated as either of the following :

(1.16) {a) The minimum eigenvaiue, o.,,, of {(R3;R3;)"'R3;R;4, in which
case 4 = gp;, + L.

(b) The maximum eigenvalue, 6,,,,, of {R33R;3)” 'R3;R;3,
in which case 4 = l/o,,,, + L

Depending upon the eigenvalue finder, method (a) would have an advantage,
since R, is upper triangular and its inverse is more readily found to produce
(R33R3y) 7" = R3'R5;

R;;is required for the LIML computations, and hence the QR decomposition
of Z must proceed through the first K + G operations. R,,, however, need not
be directly computed—-although, since it is | x I, no substantial saving is
accomplished here.'?

Special facility for determining the minimal or maximal eigenvalue of (1.16)
will therefore be required when the LIML option has been selected by the user,
but no other special considerations arise in this case.

General k-Class

The user should be able to specify any value of k or k; and k,. Equation (1.10)
shows that R;; is required for all k-class estimators except 2SLS {k = 1). Hence
it is necessary to effect the QR decomposition of Z through its first G + K steps. It
is never necessary to go through all G + K + 1 steps.

1.4. THE k-CLASS CALCULATIONS

The preceding calculations result in the square, symmetric linear system (1.11),
repeated here,

(1.17) Mc=d
from which ¢, the k-class estimator, can be determined.
12 The calculations for LIML given here have an advantage over those suggested by Dent and

Golub (1973) in that they avoid the need to store the large ¢ matrix.
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There should be at least two means of solving this linear system, and t.he user
shouid have the option of picking the one he wants. The ﬁrst 1S 2 routine like
MINFIT (briefly explained below) that.cun calcplate the singular values o.r M.
Such a routine would be highly useful in anz.quSIs‘ of proeblems due 1o multigo!-
linearity, albeit at the cost of added computation time. . .

Second, there should be facility to solve (1.17) using a computationally
efficient and speedy procedure such as the Cholesl.cy decomposition, dgscribcd
below. The increased speed will be of great value in Montg Carlo studies and
repetitive sampling experiments where the added information afforded by the

singular values is not as inportant.

MINFIT

Both the nature of a matrix’s singular values and the routine MINFIT wil]
be described in Part 2. Here it need only be noted that MINFIT produces a
diagonal matrix I of singular values and an orthogonal matrix V such that the
reai symmetric matrix M in (1.i7) can be decomposed as

(1.18) M=VIV.

c is then calculated as M*d = VE*V'd, where M* and £* are the pseudo-
inverses of M and 2 respectively. (Pseudoinverses will also be discussed in

Section 2))
The residual vector

(1.19) e=y— Y% — X B

&
is best formed by using the ¢ = [ik

B,

] calculated above directly with the raw

data y, Y, and X, as in (1.19).
The estimator of g2, namely

1.20 2 €e
(1.20) e e

is to be calculated in exactly this way.
Finally, the estimated variance-covariance matrix of ¢ is simply

(121) $2M1 =SZV2—1V'_

Because most applications require only the diagonal elements of (1.21) to
be prpduced, It seems reasonable to calculate only these values in the absence of
additional optional specification by the user. If V = (vy) and X = diag(s, ...
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o6k i, j=1...G + K, the k-th diagonal clement of M ™! is simply

2 i o,
(1.22) mt =y g —

j=1 Gj

Cholesky Decomposition

Itisalways possible to decompose a real, symmetric, positive-definite matrix,'*
such as M, into

(1.23) M=DD

where D is upper triangular. With this decomposition, (1.17) is solved as two
backsolves

Df=d and Dc={,

stable calculations that avoid matrix inversion.
The calculations for 52, e are as in (1.19) and (1.20), but M ' must now be
calculated as

(1.24) M '=D"'D",

which requires a routine for inverting an upper triangular matrix.

Note the relation between the Cholesky and QR decompositions relative
toa positive-definite matrix of the form X’ X . There is an infinity of upper triangular
Cholesky matrices D such that X'X = D’D; but only one of these, namely D = R,
1s also associated with an orthogonal Q such that X’X = R'Rand X = QR.

1.5. NONLINEAR ESTIMATION

The procedure applied here to the estimation of an equation that is non-
linear in its parameters is a generalization of the preceding calculations, since it is
akin to iteration on a linearized version of the given equation.!?

Consider a general nonlinear equation

(1.25) . —-fiZ,9)=c¢
where fis a random vector of size T,
~f(Z,,6)
—f =
~f7(Z+,9)

and where Z = [X,, Y];
Z, isthet-throwof Z;
X,isa T x K, matrix of exogenous variables {identified as such);
Y isa T x G matrix of endogenous variabies (identified as such);

14 See. for example, Golub {1969), who also describes several computational procedures for
effecting the decomposition.

15 A more detailed explanation of the notation employed here and the calculations involved is
given in Appendix A.
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X, isa T x K, matrix of additional exogenous variables (identified
as such): .
8 =(8,...8,) is a vector of M unknown parameters to be estimated .
and
¢ isa T x | vector of stochastic disturbances.
Linearizing (1.25) by expanding about §, (and submerging the inessential
argument Z) gives

(1.26) e= —f(8) = —f(d0) — f5{00)(d — Bl
where
S S
of ) )
{1.27) fs = Pyl
/1. S

the Jacobian of f with respect to ¢, and called the matrix of coterms.

In gencral some of the columns of f; are functions of the endogenous Y’s (as
well, perhaps, as of the X's), and some are functions of the exogenous X's alone.
Group the first set of coterms together in ¢;, 2 T x M, matrix of endogenous
coterms; and group the second set together in y;, a T x M, matrix of exogenous
coterms. Hence :

{1.28) fs = [ds15)-

The vector & will be commensurately reordered and so partitioned as

[]

Equation (1.26) can be written in a form analogous to (1.1) as
(1.29) f,,((io)éo — f(dg) = f5(0)d + &

In & manner described in detail in Appendix A, (1.29) leads to a Newton—-Raphson
iteration ol the form

(1.30) Sru = Sr - {G + f3fs — kl(.f;)fa)i‘\',]il Afsf - I\'z(f;sf)_L.\',]
where X is a matrix of preliminary regressors and G is a matrix formed of second-
partials of fas
(1.31) G = (gy) = 7Y
where #' is the G x G matrix
21t
(fw) = [%g_ﬁg] g.k=1...G,

and

[r=Wif= XX X)X, f.
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The elements g, can also be computed as
(1.32) g = SaWi! = [ul.

but G is probably best calculated as ZF'f".
Since f; = [¢s7,), equation {1.30) becomes

(1.33) G = — [G n { 5P — kildas).x, ‘l‘):a'/.o}:'l
ah ’ . 159s As/s

[¢;f~ k2(¢;fn.‘.-,]
15t
What matrix of preliminary regressors X, should be used in (1.33)7 In an

analogy to the linearized equation (1.29), the iacluded exogenous variates are y,
while the excluded variates are X,. This would argue for the use of

(1.34) X = [1sX2)

The advantage of (1.34) is that the matrices needed in (1.32), except G, can be
computed exactly, as in the linear case, through the QR decomposition ¢f Z =
{xsX .¢;f] The relevant blocks of this decomposition may be combined as in
(1.10). The disadvantage is that the projection into the X, space afforded by this
decomposition in obtaining (¢s¢), x, and (¢;f),x, must be recomputed at each
iteration since the coterms g, will change with each iteration.

An alternative technique would be to use

(1.35) X, =X =[X,X,]

X is unchanging; and as has been demonstrated by Amemiya (1973), the resulting
estimator retains consistericy—although the comparative small-sample properties
of different instruments remain an open question.

The use of (1.35) does not, however, allow full exploitation of the decomposition
leading to (1.10), since X, and not y, is employed. Rather (¢j¢s), x and (df), x
would be determined from a QR decomposition of Z = {X,X,d,f], with the
first K steps computed cnly once at the first iteration and stored for repeated use in
subsequent iterations. The remaining moments with ¥, in (1.33) must be recom-
puted at each iteration.

1.6. SUMMARY OF COMPUTATIONAL STEPS

Linear Estimation

I. FormZ = [X,X,Yy].
2. Determine k. k, or type of class.
3. Form QR decomposition of Z:
(a) K steps only for 2SLS (k = 1);
(b) K + G steps otherwise.
4. Determine p as in (1.16) if k is LIML.
5. Form (1.10) and solve for c.
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6. Determine
(a) e as from (1.19);
(by s? as from (1.20);
(c) relevant elements of M ! as from (1.21) or (1.24). _
7. Qutput, minimally, ¢, s* M~ (relevant elements), some housckeeping

>

infermation on roles of variates.

Nonlinear Estimation

Form f(8,) and determine [¢s7;]-

Form [4;X,¢,f1 = Z.

Determine k,, k, or type of class.

Form QR decomposition of Z:

(a) M, + K, steps only for k = 1 (2SLS};

(b) M steps otherwise.

Determine u as in (1.16)1f LIML.

Form G and relevant matrices as in (1.10) for (1.31); solve for c.
lterate to convergence.

Form fina! estimates and output as for linear case.

B =

0 N O

PART 2. SINGULAR VALUE DECOMPOSITION, PSEUDOINVERSES,
AND MULTICOLLINEARITY

2.0. INTRODUCTION

This part focuses on a specific matrix decomposition, the singular value
decomposition (SVD), that relates directly to the solution of the general least
squares problem, including the case where X has less than full rank. The SVD
is discussed in Section 2.1. The relation of the SVD to pseudoinverses is examined
in Section 2.2. The two are brought together in Section 2.3 te provide a general
solution to the least squares problem both when X is rank deficient and when
X hasfull rank (the conventional OLS estimator). Section 2.4 explores the relevance
of a procedure that can deal with the problem of multicollinearity even in the
presence of rank deficiency. It is shown that the information given by the SVD
may provide useful diagnostics for the presence and whereabouts of multicol-
linearity. Finally, a computational procedure that effecis the SVD in the solution
of the least squares problem is described. This procedure is called MINFIT.

2.1. THE SINGULAR VaLut DECOMPOSITION'®

Lemma 2.1

Any m x n matrix 4 can be decomposed as
2.1 A=UZV
where U and Vare orthogonal matrices of sizes to be discussed below, and X is a
diagonal matrix not necessarily square, whose nonzero diagonal elements are
always positive and are called the singular values of A.

16 See further Golub (1959, 1970) and Hanson and Lawson (1969).
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See Lanczus (1961) or Osborne (1961) for a proof ¢f Lemma 2.1.
U, Z,and Vcan be sized in several different ways, each of which has appropriate
applications. 4 ism x n.m = n, and equation (2.1) can take the following forms:

mxH mxhnh hxXn nxHn

(2.1a) A = U z |

mxn mxm mxn nxn

(2.1b) A = U z V.
In addition, if A has rank r < n, then equation (2.1) can take the forin

mxn mxr r r rxun

X
(2.1c) A = U x V.

In each case U'U = V'V = I,. The nonzero elements of £ are always positive
and lie only on the first diagonal. In{2.1¢) ¥ is always square and has full rank with
all its diagonal elements being strictly positive.

It is clear that

(2.2) AA=VE

AA = UZ?U".

Hence Vand U are orthogonal matrices that diagonalize 4’4 and A A’, respectively.
It foliows that the diagonal elements of ¥ are the positive square roots of the
eigenvalues of A'A and AA', and Vand U are the matrices of eigenvectors of
A'A and AA’, respectively.’” U and Vare necessarily of full rank. The rank of Z,
however, is equal to r, that of 4; and Z has r nonzero positive elements along
its diagonal and zeros elsewhere.

2.2. PSEUDOINVERSES

An immediate application of the SVD is in calculating the pseudoinverse'®
of the matrix A. The pseudoinverse of any m x n matrix A4 is the unique n x m
matrix A7 satisfying all of the following:

(2.3a) (AA*Y = AA*
(2.3b) (474) = A" A
(2.3¢) AATA = A
(2.3d) AT AAT =AY

For proof of the uniqueness of A™, see Greville (1959) or Rao (1965, p. 25).
It is readily verified that the pseudoinverse 4~ can be derived from the SVD of

17 See, for example, Graybill (1969), Theorem 3.4.4.

'8 The term pseudoinverse is not universal. Rao (1965) refers to A% as the Moore Inverse. and
Graybill {1969) and Thei! (1971) call it the generalized inverse. This latter term, however, is more
commonly reserved for any n x m matrix 4~ such that for any vector Y for which AX = Y is a con-
sistent equation, X = A~ Yis a solution (Rao, 1965, p. 24). In general there is an infinity of such 4™,
of which A* is a unique special case.
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A= ULV as

(2.4) AF =VET
where 37 is the pseudoinverse of L. As again may be readily varilicd, £7 iy deter-
mined from I simply by replacing the nonzero diagonal elements of T by their
reciprocals, leaving all other zeros. including any on the diagonal, unchanged.

2.3. SVYD anD LEAST SQUARES

This section begins with a review of the rolc. of the .pseudoinvcrse in the
solution of the general least squares problem:lg this establishes the relevance of
the SVD to the Jeast squares problem, since tne SVD is a means of calculating the
pseudoinverse. The analysis is then extended to the case where the data matrix of

“independent’” variates X is of less than full rank.

X Has Full Rank

In the linear model v = Xb + e, the normal equations that characterize
¢'e, the minimum sum of squared errors, are

(2.5) X'Xb=X'y.

When the T x K matrix X has full rank, ie. p(X) = K < T, the unique least
squares solution is

{2.6) b* = (X'X)"'X'y.
Application of the SVD to X gives

TxK TxK KxK KxK
2.7) X = U z v’
where U'U = V'V = I and T is diagonal and nonsingular. Hence (2.6) reduces to
28) b= (VEU'UZV) 'WWEZ'U'y
=VZWy=X"y

where (2.4) is used and it is recognized that £* = X! when I is nonsingular.

Equation (2.8) shows that knowledge of X* allows solution of the least
squares problem without the costly and often unstable calculations of the moment

matrix X'X and its inverse (X'X)" !. These caiculations are required in the con-
ventional formation of (2.6)—at least if X has full rank.

X Has Less Than Full Rank

The solution in (2.8) is general, for pseudoinverses exist even when the data
matrix X has less than full rank.

'® These basic calculations are not new, and Theil's new texthook (1971) makes them generally

availab.le..Another gocd exposition of the pseudoinverse in the least squares context is found in Peters
and Wilkinson (1970).

572



Suppose now that p{X) = r < K. The normal equations (2.5) remain valid,
but now they determine a K — r dimensional space S of solutions for b, all giving
the same minimized squared error length e'e. It will now be shown that the specific
solution in {2.8) {or the full-rank case b* = Xy remains a solution in the rank-
deficient case b* ¢ S, and has the additional property that among all b € S, b* has
minitmum length.

X has p(X} = r < K. Application of the SVD to X in the form of (2.1¢) gives

Txr rxr rx K
(2.9) X= U X 4
where U'lJ = V'V = I,; and ¥ is a square, diagonaj, nonsingular matrix of size

r. The normal equations (2.5) therefore become VIU'UZV'D = VEU'y or,

(2.10) Vb =3 Uy

Premultiplying by V gives the equivalent normal equations
(2.11) VVb=VEI WWy= X"y

Now two lemmas show:

Theorem 2.1

b* = X"y is the unique vector of minimal length satisfying the normal
equations (2.11) and, hence, minimizing the sum of squared residuals e = y — Xb,
where p(X)=r < K.

Proof
Lemma 2.2
b* = X"y satisfies (2.11).
Proof
VVb* = VV'X*y
=VVVI'Uy=VI*Uy=X"y
Lemma 2.3

Let b° be any solution to VV'b = X"y, and define d by b° = b* + d. Then
VV'd =0and db* = 0.

Proof

VVid=VV'{E® — b% = X*y ~ X*y = 0. Heuce, b* = VIV'b* and d'b* =
dVVb* =0,

Thus, to complete the proof to Theorem 2.1:
bOb0 = b*'b* + 2b%d + d'd
= b*b* + d'd,
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and hence |b*} < [Ib%]i. The uniqueness of b* follows from the uniqueness of the
SVD and the pseudoinverse.

2.4. MULTICGLLINEARITY AND MINFL]

The preceding has shown that within the context of the linear regression mpdel
y = 3B + & the solution of the least squares problem can always be made unique
(if not economically interpretable), even when X I.m._s less than full rank. by ex-
tending the problem to that of finding the b* of minimum I.englh that also mini-
mizes the sum of squared residuals. If X has full rank, this expanded problem
produces the least squares estimater (2.6) that is familiar to econometricians. Thus,
the use of pseudoinverses is a means of calculating least squares solutions (and
predictions) even in the face of perfectly collinear data. .

MINFIT is a computer routine that performs these calculations with com-
putational stability. At the same time, MINFIT holds out the promise of being
able to create diagnostics for the presence of multicollinearity. We will return to
a description of MINFIT below, but before we do so, a word or two on ¢ollinear

data seems in order.

Mudlticollinearity

As a general rule, estimation in the presence of perfectly collinear data is
problematic for the econometrician. An exception is Marschak’s (1953) now
famous **prediction only” case, but this case is not of practical significance (except
as noted below). In the prediction-only case, the collinear conditions upon which
the estimation is based are expecled to continue inio the prediction period.
Clearly such a case is, as a mechanical matter, handled effectively by simply
dropping one of the collinear variates.*®

However, one special instance of Marschak's case does occur as a practical
matter : the calculation of multistage least squares estimators. In 2SLS, for example,
the prediction of the §'s is the sole object of the first-stage calculations; this is the
special case where the observation period (upon which the estimates are based)
and the prediction period are identical. It is of practical advantage, therefore,
to have first-stage computational devices that preceed stably even when the first-
stage regressors are linearly dependent (as they may happen to be-—either through
poor planning or because of their large numbers in models with many equations).
Such a procedure will produce correct second-stage estimates even in thosc cases
where standard regression packages (which require inverting X'X) would ““blow
up’’.
The real interest in a routine like MINFIT, however, occurs not when X
is singular (of less than full rank), but when X is rearly singular (ill-conditioned).
In this case, which is of extreme practical importance to the econometrician,
standard programs, requiring the computation of (X'X)" ", become computation-
ally unstable. Clearly a routine that produces stable calculations when X'X is

20 - . . . . . oy .
) This sqlutlon first requires that .the offending variates be identified if calculations are to proceed
in the conventional manner of (2.6). This requirement, and indeed the need altogether to drop offending

varia.tes, i.s avoided by a computational routine like MINFIT that works even in the presence of pure
multicollinearity.
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singular will have no computational trouble when X'X is nearly singular. Equally
clearly, however, such a routine does not solve the basic problem of near col-
linearity—the inability to separate structurally distinct but statistically confounded
effects. It merely prevents this logical esiimation problem from being compounded
by an additional mechanical problem of unstable calculations.

There is, however, an obvious danger in using a method of calculation that
always produces “unique” estimates, since perfect collinearity could make them
economically meaningless. Integral to such a procedure, then, there should also
be a means of diagnosing multicollinearity and alerting the user to its presence.
The singular values computed by MINFIT as part of ats basic calcuiations may
well serve this purpose.

The Computations of MINFIT

MINFIT is a computational program?! that solvesthe general (p(X) = r < K)
least squares problem of Theorem 2.1. It determines the b* of minimum length
that minimizes ¢’e, namely b* = X *y. The basis of its computations is the deter-
mination of the pseudoinverse X * through the SVD of X, thatis X * = VZ*U’
as in (24). The basic output of MINFIT includes b* = Xy, ¥, U and the singular
values of X—the positive diagonal elements of Z. it is these latter elernents that
help in diagnosing multicollinearity.

Conditioning of Matrices and Singular Values

The condition number?? of an n x m matrix A, denoted k(A), is defined
to be the ratio of its maximum to minimum nonzero singular values, 6,../0i-
In the SVD of A = UZV", p{4) = p(X). Hence, as A becomes “nearly singular”
its miziuum singular value approaches zero and x(A) becomes large. It is also
clear that x(A4) = x(14) for any scalar 4, and hence the condition number (unlike
the determinant) is a measure of near singularity or ill conditioning that is in-
variant to the scale of the given matrix.

Since MINFIT, on its way to computing b* = X ¥y, also calculates the
singular values of X, the user can be informed of x(X) and can thereby be alerted
to the presence of multicollinearity.

SVD and the Decomposition of the Estimated Variance

The singular values and the SVD have great promise in diagnosing the source
of multicollinearity and in assessing the extent of the troubles it may cause. As is
well known, collinear data can cause some or all regression coefficients to be
known only with very poor precision. However, nct all the regression coefficients
need be rendered useless by ill-conditioned data, and the extent to which this is
true can be examined through a decomposition of the estimated variance into
components associated with each singular value of X.

31 MINFIT was developed by Gene Golub, Computer Sciences Department, Stanford University,
and is published in Golub and Reinsch (1970). A version of MINFIT in use at the NBER Computer
Research Center is published in Becker, Kaden, and Klema (1974).

22 Also called the spectral condition number. See further Hanson and Lawson (1969).
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Jet b* = X 'y be the OLS estimate of f#in the standard hincar model y -~
Xf rlr in which ©is appropriately distributed with zero mean, and F) == g2+
: ¥ however il-conditioned, has fuli rank K. Then

and

(2.12) IS
and, using (2.4},

(2.13) Vib*) = a?X ' X'

0.2 153 2 l/l‘

f

Let bt be the k-th clement of b*, and V" = (1), i.j=1...K: hence it follows

from (2.13) that

Xk
varh*) = a* % Y
(2.14) (he) ) 10f

i

The variance of b is thus seen to be a sum of components of the form v}/g?
cach associated with onc of the singular values a;. Ceteris paribus. the more nearly
singular (the more ill-conditioned) the X. the smaller the certain a;: and hence, the
targer the impact of those components on varih¥). However, the ill effects of a
very small ¢;can be mitigated, or even nullified, if the associated v in the numerator
is correspondingly small. Indecd, letting X, denote the i-th column of X, it is
conjectured that if X; is orthogonal to X, and is nonorthogonai only to columns
of X which are themselves orthogonal to X, then vy; = 0. This result, which
appears true in practice (an example is given below), requires formal proof. If true,
however, it indicates that near singularity, resulting in very small o, for such X,
would have little detrimental influence in determining the precision with which
f}, can be estimated by least squares. Such a result is in accord with theory, for it is
well known that in ordinary least squares, the addition of a new variate that is
orthogonial to all preceding variates will not affect the preceding regression
estimates. Indeed, then, adding two perfectly correlated variates, cach of which
is orthogonal to all preceding variates, should lcave the preceding regression
estimates, and the precision with which they are known, unchanged even though
the augmented X matrix is singular. This result is seen in the following example.

An Example

Consider the case where 7= 6, K = § and

~74 80 18 -S6 112
14 —69 N 52 104
06 ~72 -5 764 Q528

~12 66 =30 409 8192
3008 =7 -13276 26552
4 =12 4 a2l 16842
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This matrix, due to Bauer (1971), has the property that X is exactly twice X,
and both X and X, are orthogonal to X,, X, and X ;. The V" matrix resulting
fromthe SVDof X = UZV'is
" 0.547864D 00 —0.625347D 00 0.555685D 00 E
-0.835930D 00 -0.383313D 00 0.392800D 00 |
t
0.326342D -01 $679715D 00 0.732750D 00

--0.642653D ~15 —0216297D —~15 0.913326D —14 |
| 0.321423D -15 0.108174D —15 -0456672D —14 f

0.148362D —18 —0.543183D —14
0215618D —19 —0470435D — 14
0.J58113D —18 —0.729449D — 14

| .0447214D 00  0894427D 00
~0894427D 00 —0447214D 00

The resuiting singular values, the diagonal elements of L, are

o, = 017070iD 03
g, = 0605332D 02
gy = 0.760190D 0l
o4 = 0363684D 05
o5 = 0.131159D  —11.

A glance at Vshows that the v;; corresponding to the cross terms between
group X, and X 5 on the one hand and group X,, X; and X; on the other are all
of the magnitude of 107 '* or smaller and are well within the effective zero of the
computational precision.

Further, one singular value, a5 is much smaller than the other four, indicating
(within the zero tolerances of the machine) the rank deficiency of X.2® However,
a5, small as it is, is several orders of magnitude larger than its corresponding
v;s for i = 1 — 3; and hence the contributions of the v%/6? components to cal-
culations of var(b?), var(b%), and var(b%) in {2.14) will be small. That is, the presence
of pure multicollinearily will not significantly upset the precision with which the
coefficients of other variates can be estimated, provided these other variates are
reasonably isolated from the offending collinear variables through near orthogon-
ality.

2% Indeed o, reiative to g, the largest g, is of the order of 10 ¢ and, according to bounds given
by the numerical analysts, is within the zero of the machine. Professor Golub claims that any ¢, having
the property that 6,/0,,,, < /¢, where ¢ is the machine zero, is evidence of rank deficiency.
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To demonstrate this point, calculate the relative components of var(b¥) by
means of (2.14):

b* 2 o YL
Qs VA =0t L

5(0.0010 + 0.0107 + 0.5343 + 00 + 0.0017)1072
= ¢%(0.5488 x 10779

This shows that the component of var(b¥) affected adversely by the collinearity,
namely v?4/o2, is small (0.0017 x 107?) relative to the total (0.5488 x 1072,
Indeed, this term has definition only through the finite arithmetic of the machine;
in theory, it is an undetermined ratio of zeros. In practice there is reason to cast
out this component in actual calculations of var(h¥).

The preceding is in stark contrast to the calculation of v?r(bt) or var(b¥),
for these are the variances of coefficients that correspond to variables involved in
the singularity of X. Indeed,

v

s
a2y -
=1

il

(2.16)2*  var{h?¥) a.'

g

6400 + 0.0 + 0.0 + 0.0000 + 1.1626 x 10%3).

This variance is obviously huge and completely dominated by the last term and
its role in causing the singularity of X.

This example strongly suggests that there are situations in which near (or
even perfect) collinearity need not prevent meaningful estimations of some
regression coefficients—and these situations can be diagnosed and analyzed
with data from the Z and V matrices produced by the SVD of X. The situation in
which such partial salvaging scems possible is when the offending muiticollinear
variates are adequately isolated from the others (perfect isolation being ortho-
gonality). Clzarly the problem of multicollinearity is a continuum: it increases as
the strictness of the orthogonality is violated and as the X matrix becomes more
nearly singular—as evidenced by one or more very small singular values.

There is no hope of salvaging estimates among the offending variates. In
spite of much current research into the recovery of all estimates even with collinear
data (research strangely reminiscent of the alchemists), one cannot retrieve that
which was never there in the first place. The use of the SVD does, however, deserve
investigation both as a diagnostic tool and as a means of retrieving all that is
available when multicollinearity is present.

24 The use of 0.0 and 0.0000 is intended to distinguish a number within the machine’s zero (0.0)
from a nonzero number with small expenent. The 0.0% in (2.16) are of the order of 167 3%, while the
0.0000 is of the order 1012,
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PART 3. THREF-STAGE LEAST SQUARES
3.0. INTRODUCTION

This part presents the basic calculations [or linear 3SLS estimates of a full
system of G linear equations, or of a subsystem of such equations. The procedure
given here uses the same efficient and stable computational schemes for the first-
stage calculations as those developed in Part 1. The result is an efficient means of
calculating linear 3SLS estimates, but unfortunately, this efficiency cannot be
extended to nonlinear (in the parameters) estimaiion. The latter requires a different
approach, as discussed by Jorgenson and Laffont elsewhere in this issue.

In the single-equation calculations for the k-class estimations of Part 1,
the variates in the equation were ordered first into the included exogenous variaies
X, second into the excluded exogenous variates X ,, and finally into the included
enidogenous variates Y. This ordering was exploited in the subsequent QR de-
composition, ¢.g., in (2.4). When there are several equations, however, the included
exogenous variates of one equation are the excluded variates of another, and no
such straightforward ordering is possible. A more gencral approach is, therefore,
indicated if many operations are not to be duplicated. Here, then, a generai set
of calculations will be determined (effectively the first two stages), and a means will
be determined for selecting appropriate subsets to build up the third-stage cal-
culations.

Section 3.l develops notation and determines the 3SLS estimator to be
calculated. In Section 3.2 the basic 3SLS calculations are derived. The QR de-
composition is once again exploited to produce the information from the **first
two stages”. An indexing scheme is determined to build up thc final estimates
frorn the moments of R.

Nothing has so far been said about estimation subject to linear constraints.
This is the subject of Part 4, which treats the effect of iinear restraints on 3SLS
as well as on the K-class.

3.1. THE Basic 3SLS MoDEL
Consider the system of G equations
(3.1) YI'+XB+U =0

where Yisa T x G matrix of G endogenous variables {specified as such);
Xisa T x K matrix of K predetermined variables (specified as such);
T'is a G x G matrix of unknown parameters to be estimated (some of
which are specified initially to be zero):
Bis a K x G matrix of unknown parameters to be estimated (some of
which are specified to be zero); and
Uisa T x G matrix of stochastic disturbance terms.?*
For purposes of calculation it is better to rewrite (3.1) in 2 way that more
directly deals with the individual equations. In particular, consider the g-th

25 ) is assumed that U is the result of a G-variate stationary stoachastic process with mean 0 and
variance-covariance matrix ¥ .
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equation in (3.1):
(3.2) Y§, + XB +u, =0
where 7, is the g-th column of ',

B, is the g-th column of B, and
g is the g-th column of U.

Since, in general, not all G of the Y’s and not all K of the X's enter this equation,
the variates are assumed to be ordered so that all zero coefficients in ¥, and B

come last, ie.,

(3.3) Jy = [ﬂ and B, = [g{l

where?® 5.8 Gy x 1, and  Bis Ky x 1.

4

G,, then, is the number of endogenous variables included in equation g (clearly
G - G, are excluded), and K, is the number of predetermined variables included

in equation g. . .
Pariitioning Yand X in accordance with the above gives

(3.4) Y5, + XB, +u, =% Y:][)(’;] + (X X} [i‘] + Uy

= Y5, + X,Bg + 1, = 0

where '}7, is the T x G matrix of included endogenous variables,
Y.* is the T x (G — G,) matrix of excluded endogenous variables,
X, isthe T x K, matrix of included exogenous variables, and
X¥isthe T x (K — K,) matrix of excluded exogenous variables.

Finally, the equation is normalized (since the variance of U is assumed to be
known only up to a scalar) so that one of the coefficients (usually one of the §,s)
equals minus unity. This coefficient and its variate are assumed to be placed first.
Thus (3.4) becomes:

[}’,m[:}l :l + X By +u, =0 or
g

.Vg = g‘)’g + X!ﬂx + ug,

(3.5

where Y, = [3,Y,];
¥g1s T x |, the normalized variate;
Y is T x (G, — 1), the remaining included endogenous variates:

X‘iSTx K!;
Y,18(G, — 1) x 1;and
Byis K, x 1.

26 S . )
The reason for which 3, is given a bar but B, is not, will become apparent below.
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Equation (3.5) is usually summarized as
(3.6) Yg = Zelp + 1y
where
Z, ={%X,] Tx(G, +K, -1},
and

5, = [I';] (G + K, ~ 1) x 1.

In this notation (which includes all zero restrictions on the elements of I and B),
the full system of equations (3.1) can be summarized as

37 y=2Z0+u
where
2
Y=Y GT x 1
_yGJ
[Z, ]

Z = Zg GT x Zg(KS+G‘- 1)
0 Z |
o= 53 E,(K,+Gg-l)><l
_50.1
i
u=lu, TG x 1.
LUy ]
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The 3SLS estimator of 3 in {3.7) -which can be derived as a generalized least
squares estimator- -takes the form?”
U2 U200 S R vy

¥

(3.8) Org1s = : : = Ly
VYA SOUZGZ )i Y SHZve i x
14
where
(YY) YaX 1 .
3. Vo = ! heg=1...G
( 9) (Zhlg) R [- Xh YA. X;.Xg_;

is the inner product of the colunns of Z, and Z, insofar as they lie in the space
spanned by the columns of X. (Z;},), v is analogously defined.?®

When X has full rank, it is well known that
G.10) (Z,Z)x = ZpX(X'X)'X'Z, and (Ziydyx = ZuX(X'X) ' X'y,

The 57 in (3.8) are the clements of S ™' where S is the estimator of the variance-
covanance matrix £, based on 2SLS. The calculations for § will be discussed

more fully later.
It is the elements of (3.8), then, that must be calculated to determine the

J3¢;5- These calculations are discussed in the next section.

3.2. THe BAsic 3SLS CALCULATIONS

All blocks in (3.10) can be determined by a single QR decomposition of the
matrix Z = [XY]. Notice that X = U, X, and Y = U,[y,Y,], where the symbol
U indicates set union.2® We would then have

. Rn sz-
(X Y]= QR = [QIQ]][ J

(3.11) Z= 0 R,,
where
QQ = Iy
and the relevant matrix sizes are
K G K G

X r] K[Rn RIZ]
T[Q, Q)] GLO Ry,

R,, and R,, are upper triangular.

27 Th: : R ;

“" This result is available in any standard econometrics text, e.g., Jehnston (1972, p. 397).

%8 See footriote 7 above.

29 e :
o In practice it may be useful to have the machine determine Yand X from specifications for
individual equations rather than have the user additionally specify them.
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Application of Lemma 1.3 gives

(3.12 (X'Y) = R\ \R,,.
(Y'Y)x = Ri2Ry,,
(X'X)= R Ry,
Hence a basic matrix of size (K + G)? can be constructed
XX Xy
[Y'X (Y'Y)u.x]

R1R RR
:[ ’11 11 ’11 lz}zR',Rl
R2Ry RiRy,

(3.13)

where R, = [R|,R,,], the first block-row of R. Since M is based only on the first
K rows of R, Lemma 1.3a can be applied to show that only the first K steps of
the QR decomposition of Z are required—thereby determining R, . Both this fact
and the fact that M is symmetric and hence requires only ils upper triangle to
be stored, should be exploited.

Forming the (Z'Z);

Consider (£,Z,), x- All elements of'this general block of (3.8) are also elements
of M, and hence can be derived from M. To do this will require some straight-
forward indexing.

Assume that each Y and each X are numbered:

1 ..K K+1..K+¢G
(3.14) Z=[X,...Xy Y, .
(X x = k-th column of X, Y, = g-th column of Y).

These numbers wiil be used to identify those variates included in a specific equation.
In equation g, for example, the included variates can be summarized as

(3.15) Z,=[X, Y, 5], Tx(G, +K,+1)

The columns of Zg can be labeled by their names from Z:
ryo..rk, PRe+1 - - Tha+Gg The+Gotl

(3.16) Zyo=[Xp. X, Yo Yo, %)

where
X, is the i-th column of X
Y;; is the j-th column of ¥,
and the r; above the columns of Zx are the corresponding index names in (3.14).
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Hence each Zg can be identified by its hist of r's. Take Z,and Zg,

. . . |
Z,, =4ty g, TRpeto - TKavGn PRntGread

G.17)

Zg:{sl...h‘\-g SKE+]"'SKK+(12 S‘\",(’x,‘,l}.
Now the {1, 1) element of (Z,Z))x is simply the (r,,s,) element of M, and, in
general, the (m, n) element of (Z,Z,); v 18 the {r,, s,) element of M. These blocks

will be of size (K, + Gy x (K, + Gg)' . . ’
Similarly, in determining the {Z;y);x vectors, which will be (K, + G,) x 1,
the n-th component will be the (v, Sg, +G,+ 1) element of M.

Determining the s*

As each (Z}Z,), x is formed, it should be stored in its appropriate block of
(3.8); note of course that if (3.8) is written as N5 = d. N is symmetric and only
its upper triangle need be stored. At this stage, d may consist only of

(211}'1);3 .x']
(3.18) d= : J
LZ6yalux

The s” are determined from 2SLS estimates on each equation separately,
and these can be obtained from the data blocks alrcady computed as a solution to:

3.19) (Z;Zg)uxfsgzsm = (Zgyhyx g=L....G

This is a square symmetric system to be solved through backsolving by some

computationally speedy procedure such as the Cholesky decomposition. The

additional output of the more costly MINFIT is not required in this use.
Having ngs forg =1,..., G, the 2SLS residuals can be formed as:

(3.20) & =g~ Zdgsts, £=1,...,G,
a T x 1 vector to be stored in

(3.21) E=le ... e T x G.
Sisthen a G x G matrix determined as

(3.22) S:%EE G x G,

a matrix whose inverse gives the s/ required in (3.8),

(3.23) S7 = (sY).

Now it is possible to finish forming (3.8) by weighting the blocks of N with the
appropriate s¥ and by forming the sums for each component of d. This latter
operation will require additional submatrices of the form (Ziyg)yx to be picked
from M in the manner described above.

Once the final N and d are finished, J35.5 18 solved from the lincar system
(3:24) Nosgs = d.
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This will usually be a large system, for N has dimensions
[ZG, + Kl x [E(G, + K,)).

As was true for the k-class estimators, the user should have the option of
solving (3.24) either by a MINFIT-like routine that produces singular values,
or by a faster routine like the Cholesky decomposition.

ParT 4. LINEAR RESTRICTIONS IN OLS, k-CLaSs, AND 3SLS
4.0. INTRODUCTION

On account of the nonlinear facility of the k-class estimation system described
in Part 1, linear restrictions within a single equation can be built directly into the
formulation of the model. For example, in the eguation

4.1 Y =0+ a4 X, + 0% + &

with the linear restriction

4.2) ay=1—ua,

correct constrained estimation will result from estimating the nonlinear equation
4.3) y=oag+oax, + (I —alx; + ¢

This procedure has the advantage that it is ¢asy for the user to include the
restrictions; further, the procedure is not limited to linear constraints among the
parameters. The disadvantages are that this procedure is computaticnally in-
efficient and is not directly applicable to constraints among coefficients in different
equaiions of simultaneous systems. The first disadvantage is, perhaps, minor.
The second makes it appropriate to consider a facility for estimating 3SLS and
the like subject to linear constraints.

Section 4.1 briefly reviews and compares the two most commonly employed
methods of including linear restriction in OLS—the method of lagrangean
constrained maximization and the method of substitution. A third method,
more useful for the current purpose, is also explained; in this method the con-
straints are nsed directly to modify the moment matrix of the normal equations
being solved. This has the following advantages:

1. The routines for k-class and 3SLS estimation developed in Parts 1 and 3

can be readily adapted to estimation subject to linear constraints.

2. The size of the final system of equations that must be solved is reduced

rather than increased.

Section 4.2 extends the modified moment-matrix method to introduce linear
restrictions in k-class estimation, and Section 4.3 further extends it tc 3SLS.
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4.1. LINEAR RESTRICTIONS IN OLS
Consider the problem of estimating
4.4) Y=Xf+¢
where
Xis TxK
by OLS subject to the r independent linear constraints

(4.5) A =a

where
Aisrx K

oA) =r < K.

Method of Lagrange
An obvious way of treating this problem is to minimize ¢'e = (Y - Xb)
(Y — Xb)subject to (4.5), by Lagrange's method:

(4.6) Pbi)= Y'Y — WXV + bXXb— ila — Ab)
'ln(/)
(4.62) f?— e XY 4+ 2X'Xb+ A =0
»
(4.6b) = —atAb=0

Eauations (4.6a) and (4.6b) give
@7 b=(XX)'X'Y+ (X'X) ' ATAX X) 4] “la - AX'X)'X'Y)
= b+ (XX ATAXX) A7 a — A4b)

where b is the OLS estimator

(4.8) b=(X'X)'X'Y.

Substitution of (4.4) into (4.7), with reference to (4.5) gives

49 b=f+[1 —(XX)"AF '4UX'X) 'Xe
where

F=AXX)'4,
and hence
(4.10) Vib) = E(b — P)(b — B)
= [(X'X) ' - (XX)'AF 'AXX) ']

; l{Isumanon via (4.7) clearly involves a regression of order K and miuch addi-
.lona computation. The method of substitution reduces the order of the regression
and thus seems to warrant consideration.
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Method of Substitution
Beginning with
4.11) Aff = q,

order the f's (and also the X's) so that (4.11) can be partitioned as

(4.12) [AlAz]{ﬁ‘J = A, + Ay, =a
BZ
where
Ayisr xr, plAy)=r,
and

Ayisi x (K —r).
This gives

(4.13) [;1 :A;I[a"‘Azﬁzl.
Substitution of (4.13) into (4.4), commensurately partitioned, gives

4.14) Y=Xf,+ X,B,+¢
=X, A7'a+ [X; — X A7 '4,)6; + ¢
Equation (4.14) becomes
4.15) (Y~ X,A7'a) = [X, — X, A7 4,18, + ¢
V=Wg,+¢
where
B1= Ay [a — A,]B,
V=Y - X,A;7'a Tx1
W=X,—X,A;'4, Tx(K~-r).
Equation (4.15) is directly amenable to OLS, and computationally is a regression
of order (K — r) with a preliminary decomposition of A.

The decomposition of 4 can be done effectively by a QR decomposition of the
augmented matrix [4a] r x (K + 1). This results in

(4.16) Q[Aa] = [R,R;R;]

where
R, is r x r, upper triangular;
R,isr x (K — r); and
Ryisr x 1.
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Premultiplying (4.11) by Q gives

(4.17) QAf = Qa or
[RIRZJ[ﬁ ] = [R]
B,
Hence
(4.18) R.fy = Ry — Ryp; or

ﬂl = Rl—l[RJ - Rzﬁz]-

Since R is upper triangular, its inverse—or indirectly, its back-solution—is
easily accomplished. Thus, the procedure for calculating the OLS estimates of
{4.4) subject to the linear constraints (4.5) is

. QR decomposition of [4 a] — [R,R,R;].
. Form back-solution to
Ry[c1c3] = [RyR;]
so thatc, = Ry 'R, and ¢; = R, 'R;.
3. FoomV=Y- Xc,
W = X2 — chl -

4. Apply OLSto V, W

o =

The variance-covariance matiix of f# can now be derived from

(4.20) V(b)) = e} (W' W)™,

Since b, is estimated from (4.18) as

(4.21) by =Ry 'Ry — R{'Rzb,

we have

(4.22) Eb, = ¢, — ¢, Eb, = ¢; — ¢, = B,,
and hence

(4.23) by — By = —c\(b, - B,).

Thus

4.24) Viby) = E(b, — B))(b, — B,y = c1V(by)e) = olc)(WW) ¢,
Covib,b;) = Eb, — B, — By) = = V(b)) = —a’c(Ww) .
Combining these gives
LW WY Ieh —e (W)
—~Ww)yle,  (ww)!
= o2d(W'W) 4
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where
d=[-c, 1]

Whereas this method requires a QR decomposition of [4 a), a matrix of the
size r x (K + 1), the additional backsolvings are very fast, and the size of the
ultimate OLS computations is reduced from K to K — r.

Madification in Moment-Matrix Form

The substitution method can be modified for application to the normal equa-
tions (4.8) based on the unconstrained estimation—rather than being used to
reduce the systern before calculation as in the procedure given in the previous
section. The advantage of such a modification is that the k-class and 3SLS routines
developed in Parts 1 and 3 can easily be adapted for estimation subject to linear
constraints. At the same time, computational advantage of the method of substi-
tution—namely, reducing the size of the system of equations to be solved—is
retained.

Define

(4.26) Ri'Ry=f

~R{'R, = F.
Then (4.21) becomes
(4.27) b, = f + Fb,.
Detine
4728 F=
@ H
so that

Fb=7f

and (4.14) becomes
(4.29) Y- X, f=[X,F+ X,)p; +e=XFB, + ¢
OLS applied to (4.29) gives
(4.30) b, =(FX'XF)Y 'FX'(Y - X /). ,

Equation (4.30) can be calculated by either of the following methods:
1. OLSof Y — X, fon XF;or
2. Formation of normal equations X'Xb = X'Y, adapted by
(a) forming F(X'X)F, and
(b) forming X'X, f(from appropriate columns of X' X) and then
F(X'Y - XX, /)
In method 2 constraints can be taken into account after an unconstrained moment
matrix has been formed—a procedure that will be useful for k-class estimation
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and for 3SLS. Specified n stightly greater detail, Method 2 is: Given XX and XY
(or its R equivaleni),
1. form Ab — afrom F and f as described above,
form FX'XF = M,
form X'Y - X'X,f=¢
. form F/(X'Y — ){'X,j') = F¢,
solve b, from Mb, = F'c.

RN

6. calculate b, = f + Fb, where F = [fJ

The variance-covariance matrix of b can be caiculated by noting
(4.31) wb,) = o (FX'XF) ' = a2(WW)'
for Was in (4.25), and hence
(4.32) vib) = 6*F(F X'XF)"'F".

4.2. LiNEAR RESTRICTIONS IN k-C1AS3 ESTIMATION
As shown in Section 1.2, the k-class estimator results in the system of equations
(4.33) [Tihkz’] _ [R'an + REJR?s + (1 — k)RR, R:UR“—J"'
Ri\Rys R11Ryy
[R’HRM + Ry:R, + (1 — I\-Z)R’“RM]
| Ry:R.s

kik2

which can be shortened as
(4.34) Mc=d

For k = k; = k, it is straightforward to verify that (4.34) is the set of normal
equations for OLS applied to

(4.35) HY=HZé+ H:
where
H={1-k"1k"2Q]
and where @ results from the O R decomposition in (1.4). That is, we have
M=ZHHZ and d=72"HHY.
Hence the k-class estimator &, can be obtained simply by applying OLS to
(4.36) Y =26 +¢

where the tilde denotes the given matrix premultiplied by H'.
It is clear that estimation of J, subject to linear constraints can proceed
exactly as for the case of OLS in the previous section.
If A0 = a, then form Fé = fand determine
(4.37) 6, =[F(ZZ)F)"'FZ(Y - Z, /)
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which can be calculated in moment form (as described above) as
(438) (FZ'ZF), = F(Zy —ZZ,f) or (FMF}§, = F(c — M,J)

\}’here M, = Z'Z,, taken from the relevant columns of M. Clearly, as in (4.32),
0, = f + Fb, and

(4.39) t(0,) = e F(FMF) 'F".

4 3. LivEAR RESTRICTIONS IN 3SLS

The 3SLS estimates come {rom a solution to the linear equations (3.24),
repeated here,

(4.40) Néyos = d.
Additional linear constraints
Ad =a

can be taken into account exactly as for the k-class estimator. Form F and J
as described above under the method of modification of the moment matrix and
determine

(4.41) (FFNF)8, = F'(d — N, f)
where N, is the columns of N corresponding to 8, . Then
(4.42) 6, =f+ F8,

and

4.43) t(d3s15) = o*F(F'NF)™'F".

PART 5. INSTRUMENTAL VARIABLES COMPUTATIONS
5.0. INTRODUCTION

The instrumental variables (IV) estimator is among the most general consis-
tent estimators of linear equations since it subsumes 2SLS, LIML,, and 3SLS as
special cases. The usefulness of IV estimation has been further enhanced by recent
work of Brundy and Jorgenson and of Hausman. Brundy and Jorgenson (1971,
1973) introduced two-stage IV-type estimators called LIVE (Limited Information
Instrumental Variables Efficient) and FIVE (Full Information Instrumental
Variables Efficient). LIVE and FIVE have, respectively, the same Cramer—Rao
best asymptotic efficiency as 2SLS and LIML, on the one haud, and as 3SLS and
FIML, on the other. This asymptotic efficiency is gained without requiring a
set of preliminary regressions on all exogenous variables in the systems of
equations—a requirement in 2SLS and 3SLS that often cannot be met for large
systems with few observations. Hausman (1973) showed that the FIVE estimator®°
when iterated, converges to the FIML estimate (if it converges at all). Thus a sincle
well-integrated 1V package can afford the user a wide choice of single- and multi-

30 See further Hausman’s paper in this issue.
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equation estimators that possess both consistency, a basic property of all 1V
estimators, and asymptoticefficiency, a property only of LIVE and FIVE estimators
(which include 2SLS and 3SLS).*!

15 Section 5.1 the basic 1V estimator is determined. In Scction 5.2 methods
for constructing and computing the more interesting and widely employed
instrutnents are discussed. Section 5.3 presentsa means of calculating 1V estimators,
and a computationally efficient method employing the .QR decomposition is
proposed. In Section 5.4 the LIVE and FIVE two-stage estimators are dealt with.

5.1. THE Basic IV ESTIMATOR

Consider with the linear equation

(5.1 y=Yy+ X pf+e=2Zd+e¢
where
yis T x 1 Z=[X,Y1isTx (K, +G)
| - [8].
YisT x G 0= s (K, + G) x |
¥
X,is T x K,
cis T x L.

A set of G+ K, linearly independent instruments, W, is picked where W is
Tx (K, +G), with p(W) =K, + G.

In general, the instruments should be correlated with the variates X, but
uncorrelated (at least asymptotically) with &. Interest centers on picking and
computing these instruments, a problem to be dealt with at length in the next
section. Once the instruments have been picked, form

(5.2) Wy =WZd+ Wk,
which implies the 1V estimator
(5.3) Sy=W2Z)y 'Wy or (WZdy=Wy,

a square, nonsymmetric system of equations that can be solved directly through
the use of a general routine like MINFIT (Section 2.4). In Section 5.3, however,
these basic normal equations for d,y will be transformed by a QR decomposition
to produce a system of equations capable of more efficient solution—even counting
the cost of the QR decomposition. The variance-covariance matrix of &y is
readily derived (Johnston, 1972, p. 283):

(54} V(Sw) = JZ(W'Z)— I(W'w)(Z:W/)— l.

i LIVF. isg bit of a misnormer. for it is not “‘limited information™ in the sense of LIML or 2SLS
yvhere sp.emﬁ.caufm need be made only for the single equation being estimated. LIVE is really a “full
information” estimator that ignores cross-equation corrections but essentially reguires the full set of

equations to be specified.
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5.2. PICKING THE INSTRUMENTS

If an IV routine is to be truly useful in an interactive system like GREMLIN,
it should have a capability for nearly automatic generation of widely used classes
of instruments. This section specifies these instruments and their computation.

The task is to fill the G + K, columns of W with variates that are (i) cor-
related with X, but (ii) asymptotically uncorrelated with & Since the columns of
X, fit these requirements ideally, it is assumed that X | is always used as K, of the
instruments. Hence it remains only to pick the additional G instruments corres-
ponding to the G-included endogenous variates Y. W is therefore of the form

(5.5) W = [X,F]

where Fis T x G, a set of G instruments to be determined.

As a practical matter, the user has at his immediate disposal a set of variates
F that satisfies (i) and (ii). # usually includes the following subset:

1. X,, the predetermined variates included in the given equation.

2. X, (or some subset of X,), the set of all other predetermined (cotempor-

aneously uncorrelated) variates in the system of equations. (X = [X,X,])

3. X _,. additiona! lagged values of the Xs.

4. D, dummy variables constructed by the user.

In addition to the basic elements of %, a facility should be available by
which the user can readily augment these variates by various principal components
of the elements of # or of elements derived from those in #. The use of principal
components in this context has been formahized by Kloeck and Mennes (1960),
whose work is incorporated here. Being linear combinations of the elements of Z
these principal components also satisfy conditions (i) and (ii) and hence are legiti-
mate possibilities. Thus, routines will be required to generate the following:

5. Py, the principal components (or first principal components) of any subset

of &

6. P,,theprincipal components (or first principal components) of the residuals

of the block regression of any subset of & regressed on any other subset
of #3?

Denote by # the set % augmented as in (5) and (6). Two methods®? of
determining F can now be usefully distinguished:

Method I, Substitution: Determine F as any G columns (presumably linearly
independent) picked from G elements of #,

Method II, Regression : Determine F as ¥, the G-predicted values resulting from
a regression of Y on any subset of 2 of order G or greater.

32 p, allows for instruments corresponding to Kloeck and Mennes (1960} methods 1 and 4, while
P, allows for their methods 2 and 3.

33 Clearly Method 11 is but another means of augmenting the set # to include additional instru-
ments. But it seems useful to separate this case so that its relation to multistage least squares techniques
can be kept in mind.
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Gptions for Method 1, Direct Substitution

In general, the user should be able to choose F as any subset of G elements
of .. He should have options for the following special cases:

{a) F taken to be any subsct of # of order G, not including those elements

\(

(b ?t‘;(l:en to be the G largest principal compounents of any subset of # of
order G or greater. N
1) F = G largest principal components of “/; .

2) F = G largest principal components of # excluding X, -

(c) F taken to be the G largest principal componcntg of the residuals of any
subset of # (exclusive of X,) regressed on X, ;1.c. let P be the matrix
whose columns are members of # not also included in X, and then
form F as the G largest principal components of the residual matnyx
P— XX\ X)) 'X\P.

HP=X,.
2) P=[X,X_,D) ie, # exclusive of X,.

(d) As in (b) except that the ordering is not by descending eigenvalues 47,
but by descending vaiues of oi(l — rf) where r{ is the multiple cor-
relation coefficient of the k-th variate in .# con X,. Tlis ordering can
be applicd to either 1) or 2) in {b}.>*

These options require that the IV routine have access to a principal com.

ponents finder and an OLS package to find multiple correlation coefficients in (d).

Options for Method 11, Preliminary Regression

In general, the user should be able to choose any subset of G or more elements
of # to act as preliminary regressors in determining Yas F. Denote the matrix
of such regressors by L.

(a) L = any subset of G or more elements of &

(b) L = the G + n (n = 0) largest principal components of any subset of

of order G + n or greater.

1) L = G + n largest principal components of F.

2) L = G + nlargest principal components of # excluding X,.
{c) Asin Method I{c) except that G + n principal components can be taken.
(d) Asin Method I(d) except that G + n principal components can be taken.

Calculation of Instrusnents

Let Bbea T x M matrix whose M cclumns are composed of the basic sel
of instruments from the set #. These variables, supplied by the operator, can serve

3¢ The numbering of methods here corresponds to numbering of methods in Kloeck and Mennes
(1960 as follows:

Kloeck and Mennes This Paper
1 l(b) 2y
2 i(c)
3 I(d)
4 I{(h) 1)
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as insttuments by themselves, or they can be transformed into other instruments,
as, for example, by taking various of their principai components. B can be defined
for 2 whole system of equations, but for single-equation IV estimation it will be
particularized for that equation. For a given equation, 8 will always contain X, ,
the set of included exogenous variables. Hence write

(5.6) B = (X B

As described earlier, B, can contain a subset of X, {the excluded predeter-
mined variates), a subset of X _, (iagged values of any of the predetermined
variates), and D, a matrix of appropriate dummy variates.

The discussions of Methods I and I indicate the need for generating various
types of principal components of B and its submatrices. In particular, the following
computational routines are needed :

PC(k: LIST). This routine produces the k largest principal components of
the variates given in LIST—all columns of B. The user specifies k subject to
certain restrictions that should be automatically checked and flagged if violated.
The restrictions are:

1) If Method I 15 used, k = G and LIST must have G = k or more elements.

2) If Method 11 is used, k = G and LIST must have k& or more elements.
A default option should be provided that assumes LIST indicates all of 8 if no
list is given. Further, a symbol should be available which causes LIST to include
only the elements of B, (B exclusive of X ,), such as PC{k:B,).

This routine implements Methods I{b) and II(b).

PCI(k: LIST). This routine produces the k largest principal components of
the residual matrix of the variables in LIST regressed on X,. In this case no
variables composing X, should be permitted in LIST, for this will guarantee
perfect collinearity in the ultimate IV equations. A check for such consistency is
desirable.

These calculations can be accomplished as follows. Let C be the matrix whose
columns are in LIST. Applying Lemma 1.3, decompose A = [X,C] by the ¢R

routine {o obtain
1 Rn Rlz]
A= )
[Q.QZJ[O P

The matrix of residuals is Q, R,, = U (Lemma 1.4); the k largest principal compo-
neats of this matrix are scught. If the principal components of U = Q,R,, are
calculated by forming the eigenvectors of U'U, Q is orthogonal and U'U is simply

5,R,,. However, Q, must be preserved in this instance so that the principal
components of U can be calculated. If Vis the matrix of eigenvectors of U'U, then
P = Q,R,,V is sought as the principal components of Q;R,,.

The same checks on the relation of k to G described above for the two Methods
should be made. This routine implements Methods I{(c) and Ilc).

PC2(k: LIST). This routine, used in conjunction with PC(k: LIST), modifies
the crdering of that routine and iakes the k largest principal components according
to the new ordering. In particular this routine does the following:

1. Forms the principal components of LIST {always exclusive of X }—call

these by the matrix P—along with their corresponding eigenvalues u?.

595



LIFL] A 4 ) . . N )
> Deternnes the maitiple cotrelntion ol the eleme mln ol I repressed on g .
(let the fth such multiple conrelution be denoted rj).
Vo Onders the pancapal componeiits according o the tanking
: 2 2
(0.0 Aot
Thie p? vesult from the determination ol the puncipal components i Step |
and can be ebtained Trom 7€ (h LISTY where h vomide the same size as the opdey

of LIST.
The rj are formed as lollows. Decompose A4 [z P o obtam

lkn R:z’

VA 0 8

(Y

. : S f i 0 e P g :
stopping after K steps shwe only By, s I\t‘l'““‘|~.'l"‘“\’v' ("l ‘.““ Ry Ry, by
Lemma 1.3 Hence the dingonal elements™ wre (150), P, ;oo Futther

0 g since these are prinapal components, hence
(5.8) i | l "
' ) » J
' ty i
or
(59) T
Hence
. : I :
(510) D T N 4 B T T A PR P

PCXK: LIST) now determines those principal components in P corresponding
to the k fnrgest values of the 4, in (5.10).

Reletion of 1V 1o Multistage Least Squares

Mecthods 1 and  above olies imany ways of choosing insteuments to form W,
Those givens in Method H involve preliminnry regressions 1o determine the
instruments, and as s well known, these 1V estimators bear i relation to multistage
(truncated or angmented two-stiage) lewst squares estiimators,

The muitistage 2SLS (k- 1) estimator and the corresponding IV estimato
are identical when (and only when) the list of preliminny regressors includes a
bugis for X, the set of exogenons variates inchaded in the particulnr equation
being estimated (Brandy and Jorgenson, 1973). Only when this i tiue will the
multistage leasi squaves estimntor be consistent  although the IV estinator iy
consistent fegardless of whether the instonments or the preliminary tegicssors
contain i basis foy X,

The method of A-class estinition given in Part 1 guarantees that the iecladed
predetennined varintes X | are utilized in the first-stage regressions along with the
matrin X, which can be uny of the other predetermined varates used here as
instruments. Therclote, the A-class packige should have aceess 1o the instrument-
genernting routines discussed here. When an X is employed thit does not contain

L LI, :
Since only the diagonal elements of R Ry, are needed, only these mner producis ieed be
computed from R, ‘
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all the “‘other predetermined’ variates in the system of equations, the resulting
multistage least squares estimator will lack the efficiency of 2SLS, but such
estimators are popular and their easy access is desirable.

Although the truncated 2SLS estimator described above is inefficient, so also,
rather generally, is 1V estimation. But either of these estimators can be used
separately or together to form a set of consistent--not necessarily efficient—
estimates of the full system of equations; and these estimates can be employed
in a multistage IV procedure such as LIVE or FIVE, to produce asymptotically
efficient estimators. This will be discussed more fully in Section 5.4.

5.3. THE IV COMPUTATIONAL PROCEDURE
In the notation of Section 3.1, the task is to calculate the &,y solving
(5.11) (W'2)byy = W'y

where
W= [X,FlisTx (G % K,)

Z=[XY)isTx(G+K),)

and F has been determined as a T x G matrix of instruments (Section 5.2).
The variance-covariance matrix of ¢,y is

(5.12) V(dy) = cX(W'Z)y W' W)Z'W) .

(5.11) is a square, nonsymmetric system of equations that can be solved with
MINFIT or a similar routine after the relevant moment matrices W'Z and W'y
have been formed, and it may be useful te have faciliiy for carrying out these
direct calculations. However, an alternative procedure is given here that, in terms
of operations counts, is faster and more efficient.

The Calculations
Form the QR decomposition of
(5.13) A =[XFYy]
to get
R,, R,, R,; Ry,

R R k
(5.14) QA = Q[X ,FYy] = 22 23 24
0 S S
s s ]

where only K, + G steps in the decompositions are taken, and the S$’s represent
the remaining parts of 4 after the first K, + G rows are formed using Househoider
transformations. The S elements are esseniially discarded for subsequent cal-
culations. Q is orthogonal and R, and R,, are upper triangular.

Now,

WZ=W{Q0zZ=(QW)QZ
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with

and

and

Further,

{5.16)

Ry, er.] 2
QW = QIX F] = 0 0 RzzJE [0|
R,y Ry,
vl Ry :[A—q
0Z = QIX,Y] = 1=l
LV s

' Ry _ [m]
Q) s | =L

m =

M

]: MM
0

WW = WQQW = [M’O’][

=)

M .
WZ=WQQZ= [M'O’][ F] = MM

m
W'y = WQ@'Qy = [M'()'][f] = M'm.

By substitution of (5.15) and (5.16) into (5.11), 8,y becomes

(5.17)

Sy=(WZ)y'Wy=MM "'"Mm=M 'm
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F(8,y) in (5.12) becomes

(5.18) Vi) = oW 2) "W W(ZW) !
= o (M'M) " 'M'M(M M)~
= ag*M M.
Now
(5.19) Mo'= [R“ Rn]" ~ [Rfl' —RII’R”R;;]
0 R,; 0 R;y

and (5.17) becomes

(5.20) 8y = [”] _ [R{.‘ ~R{1'1f:3R;;][R,4]
¢ 0 Rlz R24

_ l:R;llRi4 —RI_I’RIJR;J!RBLt]
Rz‘31R24 ‘

Thus, the following computational steps result in the IV estimartor:
1. Form 4 = [X FYy]j (order is important).
2. Take K, + G steps in the QR decomposition of 4 0 get

K G G 1

K[Rll RlZ R!3 RI4J
¢Le RZZ R23 R24

3. Solve R,;¢c = R,,, a rectangular systen.

4. Solve R, ;b = R,, — R, ;c, a triangular system.

5. Obtaine = y — Yc — X,b and form s? = ¢2/(T — K ).
6. Form Ry}, R34 and the Af 'A%,

Operation Counts

The computational scheme just proposed for the IV estimator and its
variance-covariance matrix has two advantages over direct computation of the
moment matrices in the normai equations (5.3) and in (5.4): first, the proposed
scheme employs the computationally stable QR decomposition and hence has
advantages in dealing with collinear data; second, in most cases the proposed
scheme is computationally more efficient in a direct comparison of operations
counts. The exception occurs if G » K, (not a likely occurrence), and even here

the disadvantage occurs in the computation only of SWAbut not of ¥'(8,y).

Operation counts were made first for computing 9,y directly as in (5.3) and
then for computing it as in Steps 1 through 4 above. The relative counts were
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based on the following evaluation of numbers of operations:

Operation Couan
1. Solution to general square linear s ,
system (n x n) T+
2. Solution to triangular linear systein .
(n x n) 3
3. QR decomposition on m x n matrix )
i i : Simn?
(proportionately less if cut off early) 3!
4. Inner product of m x nand n x p
matrices mnp
. . 4,3
S. Inversion n x n matrix 3N

The method of calculation suggested above has in its favor $T(K] — G*) +
2TGK, + 4TG* + 4T(G + K,) + 3G* + G* + 4K} + K,G counts through the
calculation of 8,y in (5.17) in comparison with the direct calculation of o,y through
(5.3).Only if G » K, will{3.3) prove more efficient. Comparison of the calculation
of V(S,v) by (5.18) with the direct calculation of (5.4) offers clear additional evidence
that the QR decomposition has a computational edge in all cases. Indeed, the
calculation of (5.18) instead of (5.4) has these advantages: the entire W’W matrix
newly required by (5.12) need not be formed; only one matrix product need be
taken instead of two; and inversion in (5.18) is of a K, x K, upper triangular
matrix and a G x G general matrix instead of the (K, + G) x (K, + G) general
maitrix (W’'Z)~ L.

5.4. LIVE anp FIVE

The advantages of estimaticn by insirumental variables have been extended
by the work of Brundy and Jorgenson (1971). Instrumental variables estimators, by
their very structure, are consistent; but only in special cases do they also possess
relative efficiency. Through a two-stage instrumental variables procedure, however,
Brundy and Jorgenson (1971, 1973) have determined two efficient 1V estimators,
LIVE (Limited Information Instrumental Variables Efficient) and FIVE (Fuli
Information Instrumental Variables Efficient). Whereas LIVE is called a **limited”
information estimator, in fact both LIVE and FIVE are based on estimation of
the full system of G equations. LIVE is “limited information” in the sense that it
does not take into account any information on across-equation covariation.
As a result, LIVE has the same asymptotic efficiency (Cramer-Rao lower bound)
as LIML and 2SLS; while FIVE, which does employ information on across-
equation covariation, has the same asymptotic efficiency as FIML. Indeed
Hausman (1974) has shown that FIVE iterates to FIML.

In what follows, the calculations leading t¢ LIVE and FIVE are examined
in turn. The set of G equations to be estimated is

(5.21) V=Yg + X B +e, g=1...G

= Z,0, + ¢

= [X,%] [’3] e,
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where y, is T x 1, a vector of T observations on the normalized endogenous
variable of equation g;
Y,is T'x G,, G, endogenous variables included in equation g ;
X, is T x K, K, predetermined variables included in equation g;
¢ 18 G, x 1, a vector of G, nonzero parameters to be determined ;
B, is K, x 1, a vector of K, nonzero parameters to be determined ; and
g, 1s T x 1, a vector of disturbance terms.
Further, define

(5.22) U=1[¢...t;]

N
%, = plim ,—rb U.

The First-Stage Estimates

Both LIVE and FEVE are two-stage estimators and assume that consistent
(perhaps inefficient) estimates of the f, and y, g = 1 ... G have been obtained in
the first stage. In GREMLIN the user should be able to specify that any available
consistent singie-equation technique be used on any equation in the first stage.
The k-class estimators or any IV estimator discussed above is a legitimate esti-
mator for this purpose. The role of the LIVE and FIVE routine in the first stage
is principally bookkeeping: specifying each equation in the system; generating
data for the first-stage estimator for each equation; calling the relevant single-
equation estimation package to carry out the estimation; and, finaily, summarizing
the first-stage results for use by the second-stage LIVE or FIVE estimator. This
routine, therefore, draws upon all completed packages discussed above. The user
should also be able simply to enter first-stage consistent estimators obtained
from any other source.

Let Y= U,Y,, and X = U,X,, where 1J denotes set union; and rewrite
the system (5.21) as

(5.23) YT +XB+U=0

where I" is a G x G square, nonsingular matrix whose g-th column contains (a)
the associated elements of 7, for each slot corresponding to a column of
Y,, (b) the value —1 corresponding to y,, and (c) the value O elsewhere.
Bis a K x G rectangular matrix whose g-th column is composed of the
associated element of B, for each slot corresponding to a column of
X,, and zeros elsewhere.
U is as in (5.22).

The stage-one estimation (assumed already accomplished) results in estimated
vectors §, and B,, g = 1...G which together compose consistent estimates of
I"and P, denoted by I and f.
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Determining the Second-Stage Instruments
The reduced form of (5.23) is
(5.24) Y=XBI'-vur!
=XIT+V
n=-Br V= -Ur,
and the corresponding consistent estimator of I (with zero restrictions) is
(5.25) n=-Br
The predicied vaiues of Y from this estimated reduced form are simply
(5.26) Y= Xxil

These linear functions of the predetermined variables serve as the instruments in

the second stage of LIVE and FIVE.

The predicted values ¥ can be computed in either of two equivalent ways.
First, as 1mpl|ed by (5.26). ¥ can be computed directly by determining " and B,
inverting T, and computing —BI"~'. Second once each of the G equations in the
system has been consistently estimated in the first stage, the system can be subjected
to static simulation to determinc the ¥'s. A simulation facility such as that in
TROLL (National Bureau of Economic Research, 1974) makes this second alterna-

tive attractive.

LIVE
For cach equationg{g = 1 ... G)

- B
(5.27) Ye=ZPgt by = [ngg],:..g g
Tg

form a matrix of instruments ? as the G,-predicted values from (5.21)—or the
simulation-—correspondingto those variates included in Y, the inctuded endogen-
ous variables of equation g.

The IV estimation technique of Section 53 can now be applied to the
matrix

(5.28) 4, =X, YY)

to obtain 3¢,yg, an efficient LIVE estimate of J,.
o2, the variance of £, can be conqlstently estimated through the use of the
first-stage consistent estimates 6 by forming

(5.29) € =y, — Zgég
. |5
where 9, = ] and/f} andj, are the first-stage consistent estimates usedin(5.25).
g
&, can now be estimated consistently as
ee ee
(5.30) sP=._ 88 hi .4
*TT-K,-¢ O 7
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The Variance-Covariance Matrix. The variance-covariance matrix of the
LIVE estimator takes a simpler form than that of the usual IV estimator. The
asymptotic variance-covariance matrix of T'%(0§,vg — o) is

(5.31)  plin TV,Z) ™ (W e e, WZ, W) ™!

= G:EI;:Z‘ZWKW‘ZZ_;“" = G:Z_zlwx
since plim T™' W,Z, = plim T™! W, W,
_ Hence a good estimator of the approximate variance-covariance matrix of
Ofivg i
(532) Vtwe) = sp(W Wy~
where W = [ng’g], the T x (G, + K,) matrix of instruments. Reference to
(5.16) indicates this is easily calculated from the elements of the QR decomposition
already used to calculate 8§,y as

(5.33) SEM'M)™ = sZM T IM ]

Ry Ry,
0 R,,
its upper triangularity.

Across-Equation Covariance Matrix. It is also possible to make use of the
LIVE estimates to obtain estimates of the asymptotic covariance betweern 8§ ;v and
" vE. the estimated coefficients from two separate equations. Indeed

(534 plim T(‘S%_IVE - 53)(5';_IVE — )
= plim T(W.Z,)" 1 Wie e, W{(Z, W)~ !

where M = [ ] as in (5.15) and is a matrix that is easily inverted due to

= O'ghz!;':w,zw,w,.zb;,l.w,.
where a,, is the gh-th element of Z,, from (5.22) and Zy w, = plim T~ 'W,W,

by definition.
Hence the approximate covariance between 6§y and 0%,y is estimated by

(5.35) s MM )~ (W W) (MM, !

The first and last of the three matrix terms in (5.35) have already been computed
in (5.33), when V(3,y¢) and V(8! ) were computed. The middle term, W, W,
must be computed anew for these calculations. The estimated covariance is
calculated as

(536) Sg,, = 0

where e, and e, are determined from (5.29).

Summary of Computational Steps for LIVE. The computational steps for the
LIVE estimator can be summarized as follows:

1. For each g determine first-stage consistent estimates of Sg and s} as in

{5.29).
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From these 5 form ", Band f1 = —BT 1.
Form the LlVE instruments ¥ = XTI, or determine Ydlrcctly by simula-

tion from Step 1. (In the latter case skip Step 2.)
4. Form A4, == [Xg?g)’gyg] and use the IV estimator of Section 5.1 to determine

w

v - ) e inre
S. Form M~ ! and calculate V(0%,yg) as s;M ™ 'M’™ " from (5.33).

6. Calculate s,W,W,, and form (5.35) along with the (M ,M,)~' from
Step 5.

FIVE

FIVE, like LIVE, is a full-system estimator. It is **full information” relative
o LIVE not in the sense that it requires full specification of the entire system (for
both LIVE and FIVE require this), but in the sense that FIVE takes into account
the across-equation covariation ignored by LIVE. The asymptotic efficiency of
FIVE, therefore, is the same as that of 3SLS and FIML.

The FIVE estimator uses the same building blocks as LIVE, but unfortu-
nately the resulting equation system cannot be solved in a way that expioits the
computationally efficient algorithm of Section 5.2. Instead the IV normal equations
must be solved in their basic form (5.11).

The FIVE Instruments. FIVE begins exactly as does LIVE : for each equation

=1...G, a 6 and e, = y, — Z, (5 are determined from (5.29) through some
consnstent (but pcrhdps mefﬁcnem) single-equation estimator. From these bg
and e, one forms [, B, and 1 = BI"~! from (5.25) and § = T~ 'U'U, where U =
fe, ...eG], a T x G matrix of estimated residuals. § is clearly an estimated co-
variance matrix whose elements s, will be used to weight the blocks in the FIVE
normal equations.

For each equation, then, a set of instruments is formed as

(5.37) W, = [Xﬁ,g X,l a Tx (G, + K;)matrix,g = 1...G,

where ﬂ is the K x G, submatrix of f1 formed by taking only the columns
of 1 correspondmg to the G, endogenous variables Y, included in equation g’°
From these a set of cross- equauon blocks is formed as

(5.38) W,=s*W, gk=1...G

where 5 is the gk element of $™!.
Finally, a complete instrument matrix is formed as

Wi, W, W
(5.39) W= . : :

’

Wer Wep. Wy

3

a matrix of size GT x I (G, + K o

*¢ That is, if equation g includes only Y, ¥, Y; and ¥;. then fI, would consist of colum.:s 1, 5, 8,
and 9 of fI—or equivalently. f, = Xﬁ would consist of columns l 5.8,and 9 of V.
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The FIVE Normal Equations. The g-th equation of the system is y, = Z 0, +
t,, and the full system to which the instruments Wof (5.39) arc applied is

(5.40) yo=7Zd + ¢
where
¥i l'Zl 0 S, £
y=1 1, Z= T , 0= and e= 1|
Y L 0 Z; Lo £G

The normal equations from which the FIVE estimator &gy is solved are
(541) (W' Z)0aye = W'y.

in general a very large system, for W'Z is square and of size (G, + K,). WZ
should be formed directly. and MINFIT or some other suitable routine should
be applied directly 1o (5.41). However, W need not be formed and stored as a
whole, for its G* blocks are composed only of the G mairices W, from (5.37) and
the elements from the G x G matrix S. W can be formed piecemeal, as required,
from these building blocks. while W'Z and W'y in (5.41) are being forined. Like-
wise, the full TG x X(G, + K,} matrix Z need never be formed. for it is block
diagonal with blocks Z,. g =1...G, from (5.40). The block multiplication
which forms W'Z can therefore take advantage of the sparsity of both W and Z.

The Variance-Covariance Matrix. The estimated variance-covariance matrix
of dgve is easily formulated but presents computational difficulties because
it is usually very large. The true asymptotic variance-covarianceé matrix of
T2@ qye — 0) is

(542) = plim T(W'Z)" ' W'er W(Z'W)"

= [0"E )
where o#" is gh-th element of £7! and
Z, e = plim %;W;W,,.
Hence the estimated approximate variance-covariance matrix of §;,yg is given by
(543) Veve) = ("W, W) ' gh=1..G

a square, symmetric matrix of size Z (G, + K,).
In general V{b,yy,) is large, and an inversion routine capable of such matrices
1s required.

Prior Restriction on %,,. As in 3SLS, the calculations involved in computing
Serve from (5.41) and V(S;,ve) from (5.43) can be substantially reduced if some of the
s*" are constrained to be zero. This would be the case if £ were assumed to be
block diagonal from the outset. So also, then, would be £~ !, and both (5.41) and
(5.43) would be sparse. In this case routines exploiting the resulting block de-
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composition should be utilized to reduce the calculations to several systems of

smaller size.
Swummary of Steps for FIVE. The computational steps for the FIVE estimator
can be summarized as foliows:
. For each g, determine first-stage consistent estimates 5 and for each
g and h, determine 3 Sen 15 in(5.36) and form § = (s,).
2. From the 8, form I". Band 1 = —Bf !asin (5.25).
3. Form the FIVE instruments ¥ = X TI. or determine Y directly by simula-
tion from Step !. (In the latter case skip Step 2.)
4FormW—[YX] [XHX)forg,-l .G
5. Calculate S™ ' and form W, = "W, gh=1...G.
6. Form (W'Z) and (W'y) as

(W'Z) = {s"®W . Z,]

G
{5 o)

Lh=1

G
a7 Jhg o,
{wz Z § R-‘h}‘
h= i

il

(W'y)

i

7. Calculate 8pyyg as (W' Z)0pwe = Wy )
8. Form V = [s*"W.W,).g.h = 1...G. and calculate V"' as V(Opyp) re-
calling that Vis symmetric.
Steps 6-8 should take advantage of any zero restrictions givenon X, .

Iterative FIVE. Hausman (1974) has shown that the FIVE estimator (5.41)
iterates to the FIML estimator of 4. Iteration of FIVE proceeds as follows: an
initial estimate 8%}, is determined as in the previous section. The 6,,-,\,5 becomes the
5 of Step 1. and a new estimate, 82 . is produced This in turn is used at Step I
untll an effective convergence of 87 = 8w L) occurs. Step 8 need be calculated
only once, at the end.

The user should have the option of stopping the iterations prior to conver-
gence. Because FIVE is a consistent and asymptotically efficient estimator for
any consistent initial estimates in Step 1, each 6{) ¢ is consistent and asymptotically
efficient. Stopping before convergence, therefore, is costless in terms of these
asymptotic properties. Only when convergence is reached, however, will the
iterated FIVE cstimate also be FIML.

APPENDIX. ITERATIVE PROCEDURES FOR NONLINEAR EQUATIONS

A.0. INTRODUCTION

The purpose of this appendix is to examine estimation of a single equation
that is nonlinear in its parameters and to develop in detail the notation and
terminology utilized in Section 1.5.
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A model that is appropriate to OLS is considered first. Then the results are
extended to a model that is appropriate to estimation of one equation from a
simultaneous system---i.e., one equation having endogenous regressors. A Gauss—
Newton method (using first dertvatives only) 1s developed first; this technique
was employed in earlier versions of TROLL (National Burcau of Economic
Research, 1974) but often failed to converge. A Newton-Raphson (second-
derivative) technique was used with greater success, and this technique is presented
next and adapted for usc in simultaneous equations.

A.l. PROCEDURE WITH EXOGENOUS COTERMS

Assume T observations on the outcome of a nonlinear random function
f'in K observed arguments x(t) and having G unknown constant parameters
(nonlinear) f# which are the object of estimation.®” Hence in period t assume

(A1) ~ fix0), By = «,,

where ¢, is a random variable having mean zero, constant variance and independent
across time.
In matrix summary we have

U, py ]
(A.2) X ==~ :
ST(T), mJ

[ven)
xX(T)

p is the G-vector of parameters to be estimated

where fis a T-vector function

X is the T x K data matrix X

¢ is distributed with mean 0, and
V(e) = a?l.
Further. define the Jacobian matrix of coterms*®
(/i s

a T x G matrix.

(A3) Sy =

2N

I 7
L. .{ fG-J
In this section f; is assumed to be nonstochastic; i.e., the partial of f (which is a

stochastic function) with respect to all parameters is assumed to be nonstochastic.
This assumption is appropriate to a nonlinear generalization cof the context of

37 The notation ' meuns not that function f is different in each period—it is in fact the same
function for all +—but that it is evaluated at different x(t).

38 The meaning of ““coterms” will become apparent in equation (A.5) below. where coterms are
paired up with their corresponding f’s in the linearized approximation. Also se¢ Eisner and Pindyck,
1973.
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OLS with all the regressors exogenous. The assumption will be relaxed in Section
A2

Linearized OLS: A Gauss-Newton Procedure
Using the first two terms of a Taylor expansion about ;. linearize (A.2) as
(A4) e=—f(B) = —f(Bo) = fs(Bo)B ~ Pol
=[S (Bo) + flBoBol — f5Bo)f
or
(A.5)*° JoBo)Bo — f(Bo) = f5Bo)B + &,

where all partials are evaluated at fiy. For given B0, OLS can be applied to (A5)
to obtain the least squares estimator.

(A.6) B = 1S sBolfuBo)) ™S (Ba) fsBolBo — f(Bol]
= ﬁo - [f};(ﬁo)fp(ﬁo)]w lf;a(ﬂo)f(ﬁo)-
The form of {A.6) suggests the iterative procedure
(A7) beoy = b, = Fb) 301" 36 ) S (b)

This method, employed in earlier versions of TROLL, displayed some difficulties
in converging, and was replaced by the Newton-Raphson procedure described
next.

A Newton-Raphson Procedure

If (A.7) converges so that b, ., = b, = b, then it reduces to

(A.8) —[fab) [0 [ b) fb) = 0
or equivalently
(A9) Sb)f(b) = 0.

This set of normal equations, whose solution is necessarily the same as a
convergent solution of (A.7), can alsc be derived from minimizing the sampling
sum of squared errors from

(A.10) e = —f(X,b),
1., the solution of

(A-1D)* min ¢'e = f'f
Define F(b) as b

(A.12) Fb) = fub)f(b) =0

’_" The use of “"coterms™ should be clear from (A.5). In the linearized model, the J serve the same
function relative to the parameters § as the X's do in the standard linear model y = X8 + ¢.
* Differentiating (A.11) produces 2f,'(b)f () = 0.
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and expand F about b, to obtain
(A.13) 0 = F(b) = F(b,) + Fyibo)[b — by)

where F, = ¢F/cB, a G x G nonstochastic matrix.
Solving (A.13) gives

(A.14) b = b, — F; Y(bo)F(b),
which, rewritten in terms of f, becomes

T -1
(A.15) b=bc—[2 3"'f’+fkfp] f3f,

=1
where #'isthe G x G Hessian matrix oy = (f1,).
aﬁkaﬂg £

Iteration in terms of (A.15) is like that in terms of (A.7), except that a second-
derivative term ZT_ | #'f" is included additively in the inverse.*!

A.2. PROCEDURE WITH ENDOGENCUS COTERMS

In Section A.1 the coterm matrix f; is assumed nonstochastic ; this is the non-
linear analog to the OLS case. Now, however, nonlinear estimation is extended to
simultaneous equations ; hence it is assumed that:

i. f5is a stochastic matrix (some of whose elements may be nonstochastic).

2. X, (distinct from X) is a set of H preliminary regressors assumed in-

dependent of ¢ (i.e., of the stochastic elements of f—and hence, also of fy).

Instrumental Variables in the Limited Information Case

Begin with the linearized equation (A.5), in which, however, f; is no longer
independent of ¢. Application of OLS to (A.5) is no longer indicated; instead,
a set of instrumentsfp is introduced by regressing f; on X .

(A.16) fo=XP=X{X: X)X\ f;
=Zfp

where

(A.17) Z, = X,X: XD 'x;.

In the spirit of instrumental variables, f; in the right-hand side of (A.5) is replaced
by fs from (A.16). As will be clear from (A.20), there is no need to purge the left-hand
side of its stochastic terms; hence, the estimation is based on

(A.18) fﬁ(ﬁo)ﬁo - f(Bo) = jﬁ(ﬂo)ﬂ +n
where n=c¢-+ [fﬁ(ﬁo) - fp(ﬁo)]ﬁ
=¢+ Vi

“F=f =T, /S = [F) a G x 1 vector. Then Ff = 9F%/2f, = T4 f'uf" + fif1) and

1= 1

hence Fp = [Ffl = 5 #Y; + f, f)-
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Least squares applied to (A.18) gives

(A.19) /} = (fﬂ[ﬂ) l_f,}(/}r/}o = [y =B~ (f;;.i,-n) l.f;f,/‘
which uses the fact that
(A.20) Tote=Z) e =S ZNZ S = T4,

due to the idempotency of Z,. This last fact proves that f; nead rot be adjusted

by Z, on the left-hand side of (A.18).
The iterative procedure suggested by (A.19), and analogous to (A7), is

(A.21) bovy = b, — [f3b) o)) b, ) f(b,).

Newton—-Raphson in the Limited Information Case
If(A.21) converges to b, , , = b, = b, then again the normal equations
(A-22) Sab)f(h) =0

must be satisfied by b. An alternative io finding b is therefore offered by solving
(A.22) for b by Newton's method.
Using (A.10), let

(A.23) F=fyf=ryz,f=0.
Expanding F gives
(A.24) 0 = F(f) = F(Bo) + FiBo)(B — Bo)
or
(A.25) B =8y~ Pﬂ_ l(ﬂo)ﬁ(ﬁo)-
Rewriting (A.25) in terms of f gives
(4.26) B=PBo =[G+ [3fyl s
where

G = (ggk.)
and

e = Z!zrf’gkzlrft ghk=1..G,

Z=(Z),
R AR
= a/}kaﬁg) '
alternatively,
ek = fész
where
1
gk
Ja=1| -
r
gk
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Also
G =LF7"

The properties of (A.26) as an estimator need to be investigated. Clearly
the estirnator is consistent if the stochastic nature of the auxiliary relationship
between f, and the instruments X, approaches that assumed behind (A.16), ie,
if f; constantly estimates f;. Otherwise the properties of the resulting estimator
depend upon the true stochastic relation between f;, X,, V, and .

A.3. THE DOUBLE-k CLASS ADAPTATION

The preceding adjustment procedure can be generalized to the double-k
class context. Instead of regressing f; on X (effectively the 2SLS option), calculate

(A27) (foSplix, and  (f3f).x,,

to use in an iterative scheme generalizing the basic double-k class estimator (1.2).

Gauss —Newton Generalization

Applying the Gauss-Newton iterative procedure analogous to (A.7) to the
double-k class estimator {1.2) results in the following iterative scheme:

(A.28) ooy =b, — [fify = ki S, ' 3S — kol 5,

The Newton—Raphson Generalization
The analogous adaptation of the Full-Newton Step would be
(A29) b,y =b, — G+ [ify = kFafux) U3 S = kol f 3]
where
G= B B = fodf
J=1I-kH
H=1-2
Z=X{X:X)"'X; ,
or

ggk = f;;hf - kl(f’gkf)J.X,'

Some f, Nonstochastic

When not every element of fj is stochastic, some partials can be functions of
the X, alone, and f; can be partitioned as

(A.30) fﬁ = [Cb_s Xp]

where ¢, is the matrix of stochastic coterms, and y, is the matrix of nonstochastic
coterms. Estimation can now proceed by adjusting only the ¢,, as, for example,
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with a Newton-Raphson step of

3 b —b — [G 4 [‘b:’i‘pﬂ - kl((ﬁ,ﬁ'd)/}hx, ¢;‘f1¢f]]_l
(A.- l) r+t T Yr ) lbd)a /},/ﬂ |

_ [qb'ﬂ,/' - kz(z,b;,_/'n,\-,]
7S :

Should the 7, be included with the X, as instruments? Some may already be
there if, for example, y; has a term linear in the X, . Either these lincar equivalences
must somehow be purged ; or, as is the case with most procedures considered in

this paper, the determination of ($pdp)ixy .(Wi.lere X% 15 the set of X, augmgmed
by 1) must be able to proceed even if X7 is singular. At lea§t oné computational
consideration is apparent: with a fixed X,, many calcul.atlon.s can be saved in
determining (Ppdp), v, but X7 will change with each iteration and cause re-
calculation of Z, = X¥X*X}) ' X+

Boston College and

NBER Computer Research Center
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