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Annals of Economic and Social Measurement, 4/2, 1975

MULTISTAGE PRICiNG UNDER UNCERTAIN DEMAND

BY CHEE-YEE CHONG AWl) DAVID C. CHENCI

The optimal pricing policy of a monopolistic firm facing random demand and maximizing its e '.pecteIprofit over a period of several stages is considered. The demand function
is assumed to he time invarg(snbut unknown. A special case when the cost is certain and the demand is

a linear function of the price isinvestigated. This is formulated as a stochastic control problem. is
is found that when both the intercept

and slope of the demand function are unknown, the Optimal pricing policy
does not correspond to optimal

prices for each individual stage. Approximate methods are used to find the optimal policies Simulationresults are gtrcn.

I. INTRODUCTION

There have been a growing number of studies of the behavior of the firm under
uncertainty. Most of the existing work is concerned with the single-period analysis
of the impact of uncerlainty. e.g. Mills (1959), Hymans (1966), Smith (1969),
Horowitz (1969), Zabel (1970), Baron (1971) and Leland (1972). The dynamics
and the learning behavior of the firm facing uncertainty have largely been ignored.
In the work of Clower (1959), Day (1966) and Hadar and Hillinger (1969), some
dynamic adjustment processes are introduced to characterize the adaptive
behavior of firms. Under certain conditions, they are shown to give rise to
convergent time paths of output and price, which are related to optimal price and
output decisions under certainty. However, these processes are ad-hoc measures,
and the adjustment coefficients have not been derived from optimization pro-
cedures. Nevins (1966) conducts simulation studies ofdynamic price-setting arid
quantity-setting policies of a monopoly model. As in the other studies (except
for the certainty-equivalence assumption), no consideration has been taken into
account to allow for learning about uncertainty.

Dreze (1972) suggests that "full optimization would call for taking into
consideration the expected value of the information generated by the decisions,
in addition to the expected value of the direct consequences of the decisions.
To be concrete, a monopolist may wish to depart from the price which maximizes
expected profit, simply to learn more about his demand function." This dual
aspect of decision-making was first investigated by Feldbaum (1960) under the
title of dual control. Interesting approximations to the optimal solution of dual
control problems are suggested recently by MacRae (1974), Tse, Bar-Shalom and
Meier (1973) and Tse (1974).

Since learning plays a crucial part in dynamic economic behavior under
uncertainty, dual control is a powerful tool of analysis. Chow (1973) and Aoki
(1973) and (1974) are among the first to apply dual control to economics. They
have been able to shed more light into the complexities of optimizing behavior
in dynamic and stochastic economic models.

An attempt has been made to study from the viewpoint of dual control the
effect of uncertainty upon the behavior of the firm over time. To highlight the
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role of learning in intertemporal dccisionmaking, we study a special model of

monopolist which carries no inventory, sets the price and produces instantaneously

according to demand. Even though the monopolist tries to maximize his expected

profit LIVCI a finite horizon, this niodel is essentially static if no learning is akcn

into account. The intertemporal optimal pricing policy simply consists of optimal

prices for the individual stages. This will no longer he the case when the monopolist

utilizes the extra data generated by his pricing strategy to learn niore about the

uncertain demand curve.
A simple model of the firm is introduced in Section 11. In Section 111, the

equations governing the solution are presented. A special case which can

solved exactly is discussed in Section IV. Three methods to 1pprOXjfl)ate the

solution for the general case are given in Section V. Section VI contains SO1flt

simulation results using two different methods.

ii. fIlI MoIliL

We assume that during any period k a monopolist faces the following demand

curve.

(2.1) i1(k) = p(k) + fi + 0(k)

where

p(k) is the price charged by the monopolist in period 1<

q(k) is the quantity demanded

z fi are parameters characterizing the demand curve

<o, fl>o
(1(k) is the error tcrn (noise) in the demand equation.

The monopolis.t knows that the demand is linear with constant but unknown
parameters and fi. A Bayesian assumption is used, i.e., the monopolist has
available to him prior statistics of the parameters and fi as well as of the noise
0(k) affecting his demand. For instance, these can he obtained from standard
econometric models using past data. We assume is normal with mean and
covariance a. fi is normal with mean and variance i, and 0(k) is normal with
zero mean and covariance 1. The random variables are all independent.

The monopolist produces a homogenous product in each period and his
objective is to maximize the expected profit over N period. Thus his utility
function is linear in risk. We also assume that once he selects a price p(k), he can
produce, and supply the quantity demanded according to equation (2.1).

The profit for each period is

I) I p(k)q(k) - cq(k)

where c is a known and constant marginal cost.
The expected profit over N periods is thus

(2.3) J p(k)q(k) cq(k)}
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and the monopolist has to choose optimal prices p(k), k = 1,.. . , N in order t
maximize his expected profit.

The model we study is one that is frequently used. Although assumed time-
invariant here, x and /3 can be relaxed to be time-varying, The normal distributions
are assunicd for convcnicnce but ate not overly restrictive. Most of the existing
work dealing with uncertain demand treats static cases with the monopolist
optimizing his expected utility. Differences between price Setting and quantity
setting were illustrated (e.g. Leland, etc.). In this paper we try to reflect the fact
that most monopolists do not choose their price only once but can in effect vary
it from time to time. If his objective is to maximize the expected profit over several
periods, then the pricing strategy which maximizes the expected profit of each
period may not be the one to use. The intertemporal optimal strategy has to take
into account the fact that learning is possible, and thus should be adaptive in
nature. Some related results along this line have been obtained by Aoki (1973)
and (1974).

III. OPTIMAL PRICING STRATEGIES

In principle, the solution to our problem can be found using dynamic pro-
gramming (Aoki, 1967). The following equation has to be solved recursively to
obtain the optimal p(k).

(3.1) J(1(k - 1), k) = max E[p(k)q(k) - cq(k) + 1(1(k), k + 1)jJ(k - 1)}
p(k)

with

(3.2) E{J(1(N - 1), N)fI(N 1)} = E{p(N)q(N) - cq(N)jI(N - l)}.

I(k - 1) is the information available to the monopolist up to the beginning of
period k and consists of all the past prices and the quantities demanded, i.e.,

(3.3) 1(k - 1) = {p(0),. . . , p(k - 1), q(0),. . . , q(k - 1)).

The past stream of profits is also information available to the monopolist.
When the cost of production c is assumed to be known, this information is redun-
dant since profit is given by p(k)q(k) - cq(k). When c is not known exactly, then
the past profit will be useful in determining the optimal pricing policy.

It is well known that all the information in 1(k - 1) can be replaced by the
following estimates (Athans, 1974) of and /3 which can be generated recursively.
Let
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(3.4) 1(k)1.(k) = [(k)j - E{[] I(k)}

I
(3.5) L(k) coy j, ijj' [] 1(k)}.



rt..
k

(3.6) + 1; (k)]
(k

I)[P ± 1)]+ l'i] (k)

x e'(q(k + 1) p(k + lj(k) -

(3.7)
(k + 1) = t() [P(k + l)]o 'p(k + 1), l]y'

(3.8) (Ø) [1'
(0)

= [
This result is obtained by applying the standard Kalman filtering algorithm

to the filtering problem given by the trivial difference equation

[x(k +
1)I

[ct(k)]

f3(k + 1) /3(k)

(k)1
q(k) = [p(k) 1][(k)j + 0(k).

EquatiOn (3.9) is a statement that the parameters and /3 are constant. The details

of this can be found in (Athans, 1974).

Note that in general the estimation error 2(k) of the parameters will depend

on the past policies p(k). However, when is known, then the estimation error of

/3 no longer depends on the decisions of the monopolist. As we shall see in the

next section, the pricing strategy then becomes very simple.

1V. A SPECIAL CASE: is KNOWN

When is known, only the intercept of the demand curve is uncertain.

Under such circumstances the error covariance of the parameter $ becomes

(4.1) L(k + 1) = ( (k) + 0-')'

This is independent of p(k).

At k = N

(4.2) J((N - 1), N) = max E{p(N)q(N) - cq(Nfl(N -- l)}.
p(N

Maximization of this gives

(4.3)
p*(N) = --((N - 1) - c)

(4.4) J(,(N - 1), N) = ((N - 1) ±
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I

At k = N -

(45) J(fl(N - 2), N - I) IflaX E{p(N - I )q(N I) - cq(n - I)p(N -

± J(fl(N I), N)/(N -- 2)}.

But

(4.6) E{J($(N - I), N)IR(N -- 2)) = -((N 2) + c)2
4

+ - I) - (N 2)]4

is independent of p(N - 1). For details of this result, see Appendix Thus

(47) p*(N -- 1) = _±(fl(fr - 2) - ac).
2

In general

(4.8) p*(k) = (fl(k I) -- ac).
2

This is the optimal pricing policy for the single period k if all the past prices and
quantities are used to generate a better estimate of the parameter fl Except for
the use of estimates instead of actual parameters, this policy is the same as in the
static and deterministic case. Thus, although the monopolist is optimizing over
N periods, the statistical assumption is such that all he has to consider is the
immediate future. The optimal pricing policy for each period has the same form
and is independent of the total number of periods. We may expect, however, that
his estimate should improve with more measurements, and this may affect the
actual prices used.

V. GENERAL CASE: Bom AND fi UNCERTAIN

The relevant equation to be solved is given by (3.1). At k = N, the solution
of this equation gives

(5.1) p(N) = - 1) (N - i)c)

where (N - 1) and fl(N - 1) are as given in Section III. The pricing policy is
similar to the static and deterministic case except for the use of estimates. This is
expected since at that stage, the monopolist essentially faces a static problem.
The expected profit is given by

(5.2) J(I(N - 1), N) =
4.(N

1)(ft(N - I) + (N - 1)c)2.
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At k N - 1, we have to solve

(5.3) J(!(N - 2), N - I) = max E{p(N - 1 )q(N - 1) - cq(N I)
1)

- 4(N - 1
- 1) + (iV I )c)2I(P - 2)}.

From Section 111, we can see that the last term in this maximization depends

on p(N - 1) and q(N -- i. Moreover, the dependence is nonlinear and not

quadratic. An analytic solution is thus not possible. Various approximations have

been suggested.

Open-Loop Feedback Optimal

At any time k, an open-loop problem is solved which assumes that no addi-
tional information will be available in the future. Thus the problem is to choose

a deterministic sequence of prices

(5.4) p(k), p(k + 1).....p(N)}

to maximize the expected future profit

(5.5) E{> p(i)q(i) -- cq(i)Il(k l)}.

Only p(k) is used. Once q(k) is observed, the estimates on and fi are updated and
the problem is solved again. For the problem under consideration the solution is
extremely simple. The optimal price is given by a certainty equivalence policy
which is the same as that for a static one-period case.

(5.6) p(k) = 2(k (fl(k - I) - c(k - 1)c).

This price policy does not take an active role in reducing the uncertainty.
Since our model is uncoupled temporally except for the flow of information, the
optimal pricing policy thus reduces to that of a one-period problem.

Wide-Sense Adaptive Dual Control

In this approach (Tse, Bar-Shalom, Meier,- 1973). emphasis is placed on
finding an approximate representation for the function J(I(k), k + I) in equation
(3.1) given an arbitrary price p(k) The expression in (Il) is then solved numerically
to obtain p(k). Specifically, we use the following method to approximate the
expected profit.

Assume a price p(k) has been chosen at time k.
(k), the error covariance of the parameters can then be found using

equation (3.7). The predicted values of the parameters remain (k - I)
and (k - I) because of the special nature of our problem.
A nominal pricing policy {p0(k + 1), p0(k + 2).....p0(N)} is then chosen
which depends only on the predicted values of (k -- I) and 1(k - I).
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One possible candidate is the certainty equivalence type strategy described
in Section V(a). Thus

(5.7) Po(/) 2(k 1)((k - I) - -- l)c) I k 4 1.....N

(5.8) q0(j) = (k - l)p0(j) + (k - 1) j k + I.....N.
The nominal profit function is

Nk
(5.9) J0(k + 1) =

42(k
1)((k - 1) + (k - l)C)2.

4. A perturbation analysis is done about the nominal of equation (5.8) to
obtain the model

(5.10) q(j) = 2(k - l)p(j) + &p0(j) + öfl + 0(j).

The incremental expected profit about this nominal is

(5.11) J(k + 1) = J(I(k),k + I) - J0(k + 1)

= ôp(j)q0(j) + p0(j)q(j) - eq(j)
j=Ic+ 1

+ oP(J)&i(i)I(k)}.

Equations (5.10) and (5.11) define an optimization problem similar to the
special case discussed in Section IV. In fact the optimal incremental price
is given by

(5.12) = 2(k l) i)p(i) + j - 1)]

j=k-t-1,...,N
where the incremental parameter estimates are given by equations similar
to those in Section III. The error covariances of the incremental estimates
are, however, independent of the incremental price.
Let

is a constant matrix since p0(j) given by equation (5.7) is constant forj > k

(5.16) 1(k) = L '(k - 1)
[Pk]0_

'[p(k), 1].
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(5.14) (J)='(J.. l)+ K0(j) j=k+ 1.....N
where

(5.15) K0(k) [Po(J)] ®_ '{p0(j), 1]



The optimal expected incremental profit from period k + I to v i

(5.17) iJ(k + 1) = 4(kl)° +

+ (N - k)[p0(k)öfl(k) + Ô(k)p(k)

- c 2(k)p0(k) - c oJI(k)]

+ 4(:(A j - l)((j + o(j))K0(k).

The quantity on the right hand side of equation (3.I)to be maximized can
then be approximated by

(5.18) E{p(k)q(k) - cq(k) + J0(k + I) + 5J(k + 1)II(k l)}.

Since J0(k + 1) is independent of p(k), the quantity to be maximized is then

(5.19) Jp(k)) = Ep(k)q(k) - cq(k)Jl(k - l)}

+
tr[0(N - 1) + 0(N - 2)+

+ 0(k)]K0(k) k = I.....N - I
(5.20) Jd(p(k)) = E{p(k)q(k) - cq(k)Il(k - l)}, k = N.

5. After p*(k) is found, a new estimate of the parameters (k), fl(k) and their
covariances (k) are then updated. The whole process is then repeated to
find p(k + 1).

In equation (5.19) except for k = N the quantity to be maximized consists of
two parts. The term inside the conditional expectation is the expected profit
influenced by the price for that stage. The second part consists of the error co-
variances of the parameter estimates about the nominal. They depend on p(k)
since 0(k) depends on p(k). Since &(k - 1) is negative, the maximization of this
second part is equivalent to the minimization of the future error covariances of
the estimates. The optimal pt(k) is neither the price which maximizes the profit
for period k nor the one which minimizes the error covariances of the future.
The dual nature of p*(k) is thus very clearly displayed. At the last stage, however,
p*(k) will simply be the maximization of profit.

(c) Approximate solution of equation (3.1)

The method presented in Section V(b) is one which has to be done in real
time. At each period k, the effect of the price p(k) on the expected total profit from
that period to the final period is investigated by doing a perturbation analysis.
This includes computation ofall the incremental covariances 10(k),. . . * 0(N - 1),
and doing an optimization of a nonlinear and nonquadratic function. In the
problem under consideration this is a realistic way since there is usually sufficient
time between the times when the price is changed. Moreover, the quantity to be
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optimized is simple enough so that an optimization can be done easily using
numerical techniques. Other methods are also available which approximate the
solution to equation (3.1) (e.g. Chow, 1974). The optimal price p*(k) at each stage
is then a precomputahie function of the parameter estimates. This approach is
more suitable for situations when p(k) has to be changed rapidly so that insufficient
time is available for carrying out the optimization problem.

Specializing to our problem, the following steps are necessary.

I. A nominal price sequence is chosen to be {p(l).....p0(N)}.
This gives rise to a nominal sequence of quantities demanded

q0(1 ).....q0(N).

and nominal estimates

0(N - 1)}, {/(l).....0(N - 1)}.

Starting at the final period N, equation (5.2) is approximated by a Taylor
series expansion about the nominal, retaining only the linear and quadratic
terms of p(N - 1), (N - 2) and fl(N - 2).
Equation (5.3) can then be solved and will have a form dependent only on

- 2) and rnN - 2).
This process is repeated until k = 1. A sequence of p(k) in terms of the
estimates will have been obtained.
p(k) can then be used to generate a new nominal and the steps I to S are
then repeated. This can be done as often as possible.

The main feature of this approach is that the resulting pricing policies are
simple in structure. They will be of the form given by equation (5.1). However,
the optimality of the method depends on how far away the actual values are from
the nominal last used.

VI. S!1ULATION RESULTS

To illustrate the ideas of this paper, a numerical example is used. The demand
function is assumed to be

(6.1) q(k) = 2p(k) + 24 + 0(k).

Thus

(6.2) = 2 p = 24.

The constant cost of production is 2. The number of periods N is assumed to be

10 and 5.
The monopolist has the following prior statistical information on and /1

= 2.5 a =
(6.3)

fl=20

0(k) has a covariance of I which is assumed known to the monopolist.
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lithe monopolist knows the exact values of and J?, his optimal price for each
period will be

(6.4) p(k) = 7 k = I.....N.
His profit over ten and five periods will then have means of 500 and 250 and
standard deviations of 50 and 25 respectively.

The certainty equivalence (CE) policy in Section V(a) is compared with the
wide sense adaptive dual control (WSADC) policy in Section V(b). The method
in Section V(c) will be compared elsewhere. A linear search with quadratic inter-
polation is used to maximize Jd(p(k)) in equation (5.19). Ten simulation runs are
obtained for each policy.

The results for N = 10, = -2.5, 1.? = 20. ii = 1, cr = 4 are tabulated
below in Tables I to 3.

TABLE I
COMPARISON BbTwEFN CE PRICING POLICY i WSADC Poi.tcv

Average Profit Range of Profit Range of p(k) P( I)

TABLE 2
RFSUIT OF CE Poi.trv FOR ONF SAMPlE RUN

TABLE 3
RESULT OF WSADC POIJCY FOR ONE SAMPLE RUN

320

k p(k) q(k) &(k) ft(k) Cumulative Profit

I 5.000 14.157 -1.390 20.888 42.472
2 8.511 5.935 -1.842 22.213 81.116
3 7.030 9.008 - 1.852 22J98 126.421
4 6.993 10539 - 1.816 22.268 179.040
5 7.131 10.591 - 1.780 22.273 233.384
6 7.256 10.3 14 - 1753 22242 287.599
7 7.346 9.027 - 1.762 22.260 335.854
8 7.316 8.851 - 1.774 22.280 382.906
9 7.279 10.373 - 1.755 22.258 437.663

10 7.341 8.575 - 1.771 22.289 483.461

k p(k) q(k) rnk) Cumulative Protit

I 6.307 11.643 - 1.470 20.653 49.717
2 8.031 6.896 -1.703 21.268 91.304
3 7.410 8.247 - 1.723 21.276 135.920
4 7.384 9.756 - 1.580 21.269 188.449
5 7.444) 9.973 - 1.643 21.238 242.704
6 7.486 9.862 - I.67 21.203 296.765
7 7.556 8.606 - 1.628 21.225 344.581
8 7.521 8.442 -- 1.640 21.246 391.185
9 1.493 9.945 - 1.622 21.224 445.811

10 7.543 8.170 -1.637 21.257 491.099

CE 476.02 457.12-496.18 5.000-10.750 5.00
WSADC 484.85 46256-501.96 6.307- 9.605 6.30



Our results show that the WSADC policy always gives a higher profit than the
CE pricing policy. On the other hand, the parameter estimates using CE pricing
are better than those of WSADC pricing. The most dramatic difference between
these two policies is in period 1. From Table 1, p( 1) is 5.000 for CE and is 6.307 for
WSADC policy. This is so because in the former case no use is made of the fact
that information will be available in the future. Because of the nature of our
problem, only the profit for that period is involved in the Optiflhization. Thus
p(l) is selected on the basis of a priori means ci and fi to maximize the profit for
period 1. The result is a very poor performance for period 1 which contributes
to the total profit. On the other hand, the WSADC approach takes into considera-
tion the fact that more measurements will be available in future. The future and
the present are no longer uncoupled. This results in a p(l) which is more optimal
for the overall problem. p(l) gives a bigger profit for period 1 and also improves
the estimates 2(l) and (l) leading to a better p(2). The reason that the future

estimates (k) and (k) are not as good as those given by certainty equivalence is
probably an accident.

Other priori statistical data have also been used. If is modified to 16, the
following results are obtained.

TABLE 4

N 10. a = 2.5. fi = 20. o = 1. o = 16

COMPARISON BErWEEN CE PRICING POLICY AND WSADC POLIcY

Average Profit Range of Profit Range of p1k) P(I)

CE 482.76 462.97-499.09 5.00-8.81 500

WSADC 485.03 463.43-501.21 5.31 -8.92 5.31

The CE policy performs almost as well as the WSADC policy and the prices

chosen at each period are almost identical. The parameter estimates are more

accurate than those obtained previously.
We also investigate how the time horizon affects the pricing policies. If the

time horizon is cut by half, i.e., N = 5 the prices used are almost the same as the

first five used with a longer time horizon. With certainty equivalence policies

this has been expected since the prices are independent of the time horizon. The

similar results for the WSADC policy indicate that in this case the learning effect

is not very strong. This may have to do with the assumption on the demand curve.

Since the demand is assumed to be linear with constant slopes and intercepts,

knowledge of two sets of prices and quantities will be sufficient to determine the

demand function. It is probable that when the demand function is more com-

plicated, e.g., with time varying parameters, the effect of learning will be more

significant.

VII. CONCLUSION

In this paper we have discussed the behavior of a firm under uncertainty.

A simple classical model of monopoly is chosen for study. The monopolist facing
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unknown demand is assumed to have linear risk, constant marginal cost, finite
planning horizon and instantaneous product ion capabilities. Without learning,
this model is static in the sense that optimal pricing for each individtl stage is
also optimal for the whole planning horizon. However, active learning changesthis picture. Except for the special case when the slope of the demand curve is
known, the multiperiod nature of the problem has important effects on the pricing
policy of the monopolist. The additional data collected by the monopolist can
always be used to update his information on the demand curve. However, his
policy also depends on the availability of future information. If he assumes that
the future data are not available, the optimal pricing policy is essentially the same
as the optimal one for each period. When future data are assumed to be available
this information will be used in his policy decision. Dual control methods arcapplied to find approximate optimal solutions. The simulation experiments indi-cate that by including uncertainty, we improve the performance of the monopolistthough in some cases the improvement is quite insignificant. It is, however, diffi-
cult to distinguish between the effects due to the inclusion of Uncertainty andthose due to the learning aspects of the algorithm.

In this paper, we have concentrated on the effect of uncertainty on multi-period problems which are essentially static in nature except for the propagation
of information. Natural extensions of this present research will be the investiga-tion of non-linear risk, the effect of risk aversion upon dual control strategy, the
inclusion of the possibility of inventory accumulation, and the comparison betweenthe price setting strategy and the output-setting strategy in the framework of dualcontrol.

Georgia Institute of Techno1og'
University of Alabama
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APPENDIX

E{J(/J(N - 1),N)fl(N - 2) = E{_(fl(N - 1) + ccc)2)fl(N - 2)}

- - 1) + c)2I(N -- 1)}lft(N - -I'- 4cr

- --E{(fJ + czc)2 - E(N - 1)I(N - 2)}.4cr

But (N - I) is independent of fl(N - 2) by equation (4,1). Thus

E{J(P(N - 1),Nfl(N - 2)} = E{(fl + crc)2I(N 2)} + - 1)

= _±.(fl(N - 2) + crc)2 - -- 2)
4cr 4

which gives equation (4.6).
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