This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: The International Transmission of Inflation

Volume Author/Editor: Michael R. Darby, James R. Lothian and Arthur E. Gandolfi, Anna J. Schwartz, Alan C. Stockman

Volume Publisher: University of Chicago Press

Volume ISBN: 0-226-13641-8

Volume URL: http://www.nber.org/books/darb83-1

Publication Date: 1983

Chapter Title: The Mark III International Transmission Model: Estimates

Chapter Author: Michael R. Darby, Alan C. Stockman

Chapter URL: http://www.nber.org/chapters/c6127

Chapter pages in book: (p. 113-161)

6
 The Mark III International Transmission Model: Estimates

Michael R. Darby and Alan C. Stockman

The simultaneous estimation of the Mark III International Transmission Model produced some surprising results. The major implications of the model estimates are: (1) Countries linked by pegged exchange rates appear to have much more national independence than generally supposed. (2) Substantial or complete sterilization of the contemporaneous effects of the balance of payments on nominal money appears to be a universal practice of nonreserve central banks. (3) Quantities such as international trade flows are not well explained by observed prices, exchange rates, and interest rates. (4) Explaining real income by innovations in aggregate demand variables works well for U.S. real income but does not transfer easily to other countries.

Our estimation method is explained in section 6.1 before the results are reported and interpreted in section 6.2. A detailed summary concludes the chapter.

6.1 Estimation Methods

If a simultaneously determined model such as ours is estimated by ordinary least squares (OLS), simultaneous equation bias occurs. This arises because the endogenous variables respond to each other so that the random disturbance in any one behavioral equation may be reflected in movements of all the other endogenous variables. As a result, when some endogenous variables are used to explain the behavior of another endogenous variable, their values are potentially correlated with the random disturbance in the equation. Their OLS coefficients will reflect not only their effect on the variable being explained but also the effect of its residual on them. Simultaneous equation methods are used to remove this spurious correlation that is due to reverse causality.

The most popular simultaneous equation methods are two-stage and three-stage least squares (2SLS and 3SLS, respectively.)' Unfortunately, neither exists for our model. This is because the first stage of each approach involves obtaining fitted values of each of the endogenous variables which are uncorrelated with the other endogenous variables. This is done by fitting OLS regressions for each endogenous variable as a function of all the predetermined variables (exogenous and lagged endogenous). In large samples, these fitted values are uncorrelated with the residuals in the behavioral equations and, when substituted for the actual values in OLS estimates of the behavioral equations, give unbiased estimates of the coefficients. Unfortunately, when the number of predetermined variables equals or exceeds the number of observations, the first-stage regressions can perfectly reproduce the actual values of the endogenous variables and no simultaneous equation bias is removed.

We reduce the number of predetermined variables relative to the number of observations in two ways: (1) For each country we use as predetermined variables only domestic variables for that country plus fitted values of only those foreign variables which enter that country's submodel. The fitted foreign variables are obtained by fitting interest rates, income, and prices on each foreign country's own domestic variables and then forming indexes (where necessary as indicated by identities (R18), (R19), (N18), and (N19)) of these fitted foreign variables. (2) Using this reduced set of predetermined variables, ${ }^{2}$ we take sufficient principal components to explain over 99.95% of their variance. (Variables were initially standardized so that the principal components are not affected by their scale.) Usually this involves thirty to thirty-five components (indicating thirty to thirty-five independent sources of variation in the instrument list). However, in estimating certain equations for short subperiods ${ }^{3}$ it is necessary to limit the number of principal components to half the number of observations in the subperiod. In either case these principal components are used as our matrix for obtaining fitted values of the endogenous variables in the first stage of our 2SLS regressions.

In summary, the model is estimated by the principal-components 2SLS method where (a) the basic instrument list for each country consists of domestic predetermined variables plus fitted values of those foreign variables which appear in the model based on foreign predetermined variables, and (b) this basic instrument list is spanned by a number of components either equal to half the observations being used or sufficient to explain over 99.95% of the variance in the basic instrument list, whichever is smaller.

1. Other, more complicated methods exist but could not be entertained for such a large model as ours because of software and computing budget limitations.
2. The actual lists of predetermined variables for each country are presented in table 6.1.
3. That is, for the floating period for all nonreserve countries except Canada and the pegged period for Canada.

6.2 Estimation Results

The estimated model is reported in tables 6.2 through 6.16. We first discuss the estimates equation by equation in this section and then check the cross-correlations of the residuals for evidence of omitted channels of transmission. We draw our general conclusions in section 6.3. The period of estimation is 1957I-76IV except, as indicated, where the model differs during pegged and flexible rate periods. Details on the data used are contained in the appendix to this chapter.

6.2.1 Real-Income Equations (R1) and (N1)-Table 6.2

For the United States, there appear to be substantial effects from money shocks and weak or nonexistent effects from both realgovernment spending and export shocks. For the nonreserve countries, a few apparently significant monetary shocks enter, but we generally cannot reject the hypothesis that all the money shock coefficients are zero. This is shown in table 6.3, where only Canada and Italy among the nonreserve countries reach even the 10% level of significance. The apparent impotence of monetary policy in the nonreserve countries may be real, or it may reflect either a greater measurement error in defining the money shocks or a stable monetary policy, which would also reduce the signal-to-noise ratio in the \hat{M}_{j} data. ${ }^{4}$

The other demand shock variables, with occasional exceptions, also seem to have little systematic effect on the nonreserve countries' real incomes. The sensitivity of these results to alternative definitions of demand shocks and to effects of anticipated variables is examined in chapter 9 .

6.2.2 Price-Level Equations (R2) and (N2)-Table 6.4

The price-level equations have the difficulties usually encountered in the stock-adjustment formulation: a tendency for autocorrelation in the residuals to bias the coefficient of the lagged dependent variable toward 1 and the long-run demand variables toward zero. ${ }^{5}$ We have included three lagged money shocks in addition to the current one suggested by Carr and Darby (1981). These serve to explain current movements in demand variables in what are nearly first difference in $(\log P-\log M)$ equations.

[^0]Software difficulties prevented us from trying a correction for autocorrelation. ${ }^{6}$

The fact that current money shocks enter with a coefficient near -1 indicates, since $\log M_{j}-\hat{M}_{j}=\left(\log M_{j}\right)^{*}$, that expected rather than actual money enters in the price-level equation. With a coefficient of -1 , money shocks affect the current price level only via indirect interest-rate or real-income effects. The shock-absorber adjustment process suggested by Carr and Darby is thus supported by the data.

The foreign interest-rate channel $\left(\beta_{j 5}\right)$ is both significant and of the right sign only for the United Kingdom and Japan. Further, if we recall that interest rates are measured as decimal fractions, we see that both elasticities are very small in absolute value and compared to the elasticity of money demand with respect to the domestic interest rate. Nonetheless we are able to detect some asset substitution in two of our eight countries.

6.2.3 Unemployment-Rate Equations (R3) and (N3)-Table 6.5

The unemployment-rate equations indicate conformity to a dynamic version of Okun's law for the United States, United Kingdom, and France. For the other countries there was no significant correlation between changes in the unemployment rate and past and present changes in real income. As the equation was not required for the model, it was dropped for those countries.

6.2.4 Nominal-Money Equations (R4) and (N4)—Tables 6.6 and 6.7

The U.S. reaction function (R4) reported in table 6.6 indicates a negative impact of lagged inflation on nominal money growth, surprisingly weak (though) positive effects from unexpected real government spending, and a stimulative effect from a two-quarter lagged change in unemployment rate. The time trend term is extremely potent: For plausible steady-state values it increases the growth rate of nominal money from 0.2% per annum in 1956 to 5.9% per annum in 1976 . Indeed a constant and time trend alone would explain approximately 31% of the variance of the growth rate of nominal money, with all the other variables together accounting for only another 25%.

Darby (1981) reports on experiments testing other variables which might explain U.S. money growth. The balance of payments entered with coefficients which were trivial, insignificant, and of the wrong sign. The joint test of all coefficients being 0 yielded an $F(3 / 64)$ statistic of only 0.26 compared to a 95% critical value of 2.75 . So the U.S. appears to have determined its monetary policy without regard to its balance of payments (as is appropriate for a fiat reserve country). ${ }^{7}$ Although financing the

[^1]Vietnamese War is a popular explanation of the onset of the inflationary process, neither the fraction of the total labor force in the military nor the number of troops in Vietnam entered the reaction function (R4) at all significantly. ${ }^{8}$ So the Vietnamese War apparently had no more effect than any similar sequence of unexpected increases in government spending.

A number of factors have been suggested to explain the gradually rising target level of inflation implicit in the U.S. reaction function. Most-such as the increasing influence of Keynesian economics on politi-cians-appear unquantifiable and untestable. It may well be that the upward trend reflects acceptance of whatever has been our recent experience, so that the government spending shocks of the Vietnamese War began a dynamic process which has since fed upon itself.

The results for the nonreserve countries are reported in table 6.7. The key element for international transmission is the effect of the balance of payments on the money supply. Table 6.8 indicates what fraction of the balance of payments is not sterilized by the central bank-a value of 1 indicates no sterilization and a value of 0 indicates complete sterilization. During the pegged period, sterilization appears to have been a universal practice, although there was a substantial impact effect of the balance of payments on the German and Japanese nominal money supply. When we take account of lagged adjustments, the money supplies of all countries except Italy appear to respond, albeit partially, to the balance of payments. In principle a lagged adjustment may be sufficient to maintain a pegged exchange-rate system. ${ }^{9}$ The continued impact of the balance of payments on nominal money during the floating period is consistent with a joint policy of exchange intervention and monetary adjustments in response to exchange-rate pressures.

6.2.5 Interest-Rate Equations (R5) and (N5)-Table 6.9

The interest-rate equations are somewhat puzzling: A partial adjustment process appears to operate with nominal rather than real interest rates. A partial adjustment process for real interest rates is not ruled out by efficient capital markets, but a partial adjustment process for nominal rates is harder to rationalize. One possibility is that this result reflects an expectational process in the adjustment formulation along lines suggested by Waud (1968). The money shocks and export shocks generally have the expected signs on their impact coefficients (negative and positive, respectively), but real-government-spending shocks generally have a negative impact effect on interest rates. We suspect the solution to these puzzles may lie in the formation of expectations, but leave this as an area for future research.

[^2]
6.2.6 Export Equations (R6) and (N6)-Table 6.10

The export equations indicate that measured price influences are not very strong. An increased real oil price enters as a proxy for increased real income of the rest of the world and has the expected positive sign except for Japan. Foreign real income has much weaker positive impact than would be expected from the absorption approach. The sum of the current and lagged domestic price level is negative for all countries except the U.S. and Canada, but the effects are universally weak. Similarly, foreign prices and the exchange rate generally have weak positive effects.

6.2.7 Import Equations (R7) and (N7P)—Table 6.11

The import demand equations display a J-curve type of effect. An increase in relative import prices initially (except for Germany and Italy) increases the nominal value of imports relative to nominal income. Lagged quantity adjustment, indicated by negative coefficients on lagged relative import prices, gradually offsets the initial increase. While the price effects are somewhat stronger here than for exports, ${ }^{10}$ there is no evidence of a "law of one price level" operating strongly in the current period.

6.2.8 Relative-Price-of-Imports Equations (N7F)—Table 6.12

During the floating period, we solve the import demand equation for the relative price of imports. The implied parameter estimates are frequently quite different from those in table 6.11. This may be due to biases from the (different) lagged dependent variable which appears in each equation.

6.2.9 Import-Price Equations (R8) and (N8P)—Table 6.13

The import supply equations indicate that increases in foreign prices increase import prices, although the coefficients are insignificant for the United States and Canada. Changes in exchange rates are significantly positive for the four countries which changed their peg during the period of estimation, but not for Canada, Italy, or Japan. Oil prices are important only for the U.S. and perhaps Italy and the Netherlands.

6.2.10 Exchange-Rate Equations (N8F)-Table 6.14

The inverted import supply equations are used to explain exchangerate movement during the floating period. Although it is somewhat

[^3]arbitrary in a simultaneous model which one is declared the exchangerate equation, this one was chosen because exchange rates entered most directly and strongly here. The approach clearly worked well for France, Japan, and the Netherlands and not so well for the United Kingdom, Canada, Germany, and Italy. Why this is so is puzzling to us.

6.2.11 Capital-Flows Equations (R9) and (N9)-Table 6.15

The capital-flows equations worked poorly for the United Kingdom and Japan, perhaps reflecting the effectiveness of their capital controls. For the other countries, net capital outflows generally were negatively related (albeit weakly so) either to the exchange-rate adjusted interest differential $\left[R_{j}-\left(4 \Delta \log E_{j, t+1}\right)^{*}-R_{1}\right]$ or to changes in this differential, judging from the coefficients estimated on its component parts. But the estimated coefficients are neither large nor precisely estimated as would be suggested by discussions of "interest arbitrage" in the asset approach. Apparently foreign and domestic securities are treated as imperfect substitutes in the portfolio. Alternatively, movements in the differential may reflect changes in the equilibrium value with no flows resulting. These issues are further investigated in chapters 10 and 11.

6.2.12 Balance-of-Payments Equations (N10F)—Table 6.16

These equations attempt to model intervention in the floating ex-change-rate markets and include the variables popularly discussed: movements in the exchange rate relative to recent movements or lagged relative inflation rates and the lagged dependent variable. These variables appear to have some explanatory power for intervention except in the French and Dutch cases.

6.2.13 A Check for Omitted Channels

A useful check of model adequacy is to examine cross-correlations of the residuals. ${ }^{11}$ A pattern of significant residuals would indicate where we had failed to include important channels of influence. Here we report checks for two classes of residual cross-correlation: (1) within the country submodel and (2) U.S. nominal money, real income, and price level versus all residuals in the foreign submodels. ${ }^{12}$ If the model is inadequate, evidence should certainly show up here.

Tables 6.17 and 6.18 report all the significant cross-correlation coefficients obtained for the pegged and floating periods, respectively. The entry " $\rho\left(\log P_{1}, R_{1}\right)=-0.348^{*}$ " in table 6.17 , for example, indicates that the residuals of the U.S. price-level and interest-rate equations (R2)

[^4]and (R5), respectively, were negatively correlated during the pegged period; the asterisk indicates that the correlation was significant at the 0.01 level or better. We might infer that our treatment of inflationary expectations was wrong if we focused on this coefficient alone. However, when we look at a large number of residual correlation coefficients, some should appear significant even if all the residuals are drawn from independent white noise processes.
The evidence suggests that we have not missed significant channels of transmission, particularly international channels of transmission. Of the 923 cross-correlation coefficients computed, only 7.8% are significant at the 5% level or better. Among these we have 3.1% of the total significant at the 1% level or better. Further, these small excesses of observed over nominal frequencies are almost entirely due to within-country crosscorrelations as detailed in table 6.19. Thus, to the small extent that our simple model has missed significant relations among variables, these omissions appear to be within rather than across countries. Further, as indicated in the notes to tables 6.17 and 6.18 , in no case were the same cross-correlations significant in more than two countries; ${ }^{13}$ so no pattern of missed channels is indicated. If we wish to consider models comparable across countries, this is about as clean a result as we could hope for. In summary, there appear to be no significant channels of transmission either within or across countries which we have failed to incorporate in the model.

6.3 Conclusions and Areas for Future Research

Our main empirical results can be summarized by the statement that linkages among countries joined by pegged exchange rates appear to be much looser or more elusive than has been assumed in many previous studies, particularly those associated with the monetary approach to the balance of payments. In particular, substantial or complete sterilization of the effects of contemporaneous reserve flows on the money supply appears to be a universal practice. This implies, among other things, that domestic credit cannot be properly treated as an exogenous variable and that central banks may have influenced their nominal money supplies despite pegged exchange rates. Much of the remainder of this volume is devoted to further investigation of these issues and their implications.

The estimates reported in this chapter indicate that:

1. The link between countries provided by the price-specie-flow mechanism is not strong and operates only with a lag. There are two reasons for this. First, relative price effects on the balance of trade are not
2. In only one case- $\rho\left(\log y_{i}, \log P_{1}\right)$ for the United Kingdom and Netherlands in the pegged period-were there even two significant cross-correlations of the same type involving cross-country comparisons.
large, although they increase over time. Second, the effect of the balance of payments on the domestic money supply and hence domestic prices is small and operates with a lag. This reflects the apparent practice of sterilization of contemporaneous reserve flows mentioned above.
3. Currency substitution does not seem to provide a significant link between countries. Evidence of currency substitution was found only in the British and Japanese cases, and its magnitudes even there were small.
4. International capital flows do not appear to be very well related to interest differentials (adjusted for expected depreciation). One possible explanation is that we only observe changes in the equilibrium interestrate differential consistent with risk differences, controls, and the like. The role of capital flows in the transmission of inflation would be small in any case due to sterilization of the effects of reserve flows on the money supply.
5. A J-curve phenomena was observed for imports, so that the shortrun and long-run effects of variables affecting domestic inflation through the balance of trade (the absorption channel) may differ. This weakens the short-run link between countries on pegged exchange rates relative to the long-run link.
6. The effects of money shocks on real income are much weaker in the countries other than the United States.
7. Money seems to play a shock-absorber role, as emphasized by Carr and Darby, in all of the countries. Innovations in nominal money have little effect on contemporaneous inflation, although there are small contemporaneous effects on real income and interest rates.

These results raise serious questions about a number of popular hypotheses and some widely used assumptions in models of open economies.

Acknowledgments

The other contributors to this volume have made innumerable helpful suggestions in regard to the estimates and their interpretation. Daniel M. Laskar, Michael T. Melvin, M. Holly Crawford, and Andrew A. Vogel performed the calculations using the Troll system and Charles Nelson's Box-Jenkins routines at MIT.

Appendix

The variables described in table 5.1 of the previous chapter generally either are drawn directly from the project data bank (see chapter 3 and the Data Appendix to this volume) or are transformations of such vari-
ables. In a few cases minor revisions have been made in the data bank series subsequent to the date in which we placed the variable in the model data set, but in no case were the changes sufficiently substantial to justify reestimation and resimulation of the model. ${ }^{14}$ The specific basic data series are summarized in tables 6.20 and 6.21.

References

Carr, J., and M. R. Darby. 1981. The role of money supply shocks in the short-run demand for money. Journal of Monetary Economics 8 (September): 183-99.
Darby, M. R. 1980. The monetary approach to the balance of payments: Two specious assumptions. Economic Inquiry 18 (April): 321-26.
1981. The international economy as a source of and restraint on United States inflation. In W. A. Gale, ed., Inflation: Causes, consequents, and control. Cambridge, Mass.: Oelgeschlager, Gunn \& Hain, Publishers.
Waud, R. N. 1968. Misspecification in the "partial adjustment" and "adaptive expectations" models. International Economic Review 9 (June): 204-17.

[^5]
Table 6.1 Basic Instrument Lists for Computation of Principal Components ${ }^{+}$

a) United States

Domestic Instruments

$\hat{g}_{1}, \hat{\mathrm{~g}}_{1, t-1}, \hat{\mathrm{~g}}_{1, t-2}, \hat{\mathrm{~g}}_{1, t-3}, \hat{\mathrm{~g}}_{1, t-4}, \log P^{R O}, \log P_{t-1}^{R O},(X / Y)_{1}^{*},(I / Y)_{1, t-1}$, $\log M_{1, t-1}, \hat{M}_{1, t-t}, \hat{M}_{1, t-2}, \hat{M}_{1, t-3}, \log P_{1, t-1},\left(\log P_{1, t-1}-\log P_{1, t-3}\right)$,
$\left(\log P_{1, t-3}-\log P_{1, t-5}\right), \log P_{1, t-1}^{\prime}, R_{1, t-1}, R_{1, t-2}, R_{1, t-3}, u_{1, t-1}$,
$u_{1, t-2}, u_{1, t-3}, u_{1, t-4},(X / Y)_{1, t-1},(X / Y)_{1, t-2}, \hat{x}_{1, t-1}, \hat{x}_{1, t-2}, \hat{x}_{1, t-3}$,
$\log y_{1, t-1}, Z_{1, t-2}$
Fitted Foreign Instruments ${ }^{8}$
$\left(\log P_{1}^{R}\right)^{\mathrm{FIT}},\left(\log P_{1, t-1}^{R}\right)^{\mathrm{FIT}},\left(\log y_{1}^{R}\right)^{\mathrm{FIT}},\left(\log y_{1, t-1}^{R}\right)^{\mathrm{FIT}},\left(R_{2}\right)^{\mathrm{FIT}}$, $\left(R_{2, t-1}\right)^{\mathrm{FIT}},\left(R_{2, t-2}\right)^{\mathrm{FIT}},\left(R_{2, t-3}\right)^{\mathrm{FIT}}$,
b) Nonreserve Countries

Domestic Instruments
$\left[D F_{j}, D F_{j, t-1}\right]{ }^{\ddagger} \hat{\mathrm{g}}_{j}, \hat{\mathrm{~g}}_{j, t-1}, \hat{\mathrm{~g}}_{j, t-2}, \hat{\mathrm{~g}}_{j, t-3}, \hat{\mathrm{~g}}_{j, t-4}, \log P^{R O}, \log P_{t-1}^{R O}$, $(X / Y)_{j}^{*},(I / Y)_{j, t-1}, \log M_{j, t-1}, \hat{M}_{j, t-1}, \hat{M}_{j, t-2}, \hat{M}_{j, t-3}, \log P_{j, t-1}$,
$\left(\log P_{j, t-1}-\log P_{j, t-3}\right),\left(\log P_{j, t-3}-\log P_{j, t-5}\right), \log P_{j, t-1}^{l}, R_{1, t-1}$, $R_{1, t-2}, R_{1, t-3},(X / Y)_{j, t-1},(X / Y)_{j, t-2}, \hat{x}_{j, t-1}, \hat{x}_{j, t-2}, \hat{x}_{j, t-3},(B / Y)_{j, t-1}$, $(B / Y)_{j, t-2},\left[(B / Y)_{j, t-3}+(B / Y)_{j, t-4}\right], \log y_{j, t-1}, Z_{j, t-2}$, $\left[u_{j, t-1}, u_{j, t-2}, u_{j, t-3}, u_{j, t-4}\right]^{*}$
Fitted Foreign Instruments ${ }^{\text {8 }}$
$\left(\log P_{j}^{R}\right)^{\mathrm{FIT}},\left(\log P_{j, t-1}^{R}\right)^{\mathrm{FIT}},\left(\log y_{j}^{R}\right)^{\mathrm{FIT}},\left(\log y_{j, t-1}^{R}\right)^{\mathrm{FIT}},\left(R_{1}\right)^{\mathrm{FIT}}$, $\left(R_{1, t-1}\right)^{\mathrm{FIT}},\left(R_{1, t-2}\right)^{\mathrm{FIT}},\left(R_{1, t-3}\right)^{\mathrm{FIT}}$
${ }^{+}$Certain variables listed as predetermined are not listed here because of extreme multicollinearity with listed variables or because they are not predetermined generally for the whole sample period.
${ }^{\text {s }}$ Fitted foreign instruments (indicated by superscript ${ }^{\mathrm{FIT}}$) are obtained by fitting $\log y_{j}$, log P_{j}, and R_{j} on the domestic instruments for country j for $j=1, \ldots, 8$. The indices $\left(\log y_{j}^{R}\right)^{\text {FiT }}$ and ($\left.\log P_{j}^{R}\right)^{\mathrm{FIT}}$ are obtained by applying (R18), (R19), (N18), and (N19) using the weights in table 5.7.
${ }^{\ddagger}$ The $D F_{j}$ variables are included only for estimates spanning the entire period; i.e. they are omitted in estimates made for only the pegged or floating period.
*For nonreserve countries other than the United Kingdom and France, $\log y_{j}-\log y_{j}^{P}$ is substituted for u_{j}.

Table 6.2 Real-Income Equations (R1) and (N1)
$\log y_{j}=\alpha_{j 1}+\alpha_{j 2} \log y_{j, t-1}^{P}+\left(1-\alpha_{j 2}\right) \log y_{j, t-1}+\sum_{i=0}^{3} \alpha_{j, 3+i} \hat{M}_{j, t-i}+\sum_{i=0}^{3} \alpha_{j, 7+i} \hat{g}_{j, t-i} \sum_{i=0}^{3} \alpha_{j, 11+i} \hat{x}_{j, t-i}+\epsilon_{j 1}$

	US	UK	CA	FR	GE	IT	JA	NE
Coefficients								
$\alpha_{j 1}$	$\begin{gathered} .0079 \\ (.0010) \\ 8.082 \end{gathered}$	$\begin{aligned} & .0056 \\ & (.0016) \\ & 3.533 \end{aligned}$	$\begin{gathered} .0108 \\ (.0014) \\ 7.845 \end{gathered}$	$\begin{gathered} .0125 \\ (.0020) \\ 6.219 \end{gathered}$	$\begin{gathered} .0108 \\ (.0015) \end{gathered}$	$\begin{gathered} .0114 \\ (.0015) \end{gathered}$	$\begin{gathered} .0204 \\ (.0017) \\ 11710 \end{gathered}$	$\begin{aligned} & .0100 \\ & (.0015) \\ & 6.591 \end{aligned}$
$\alpha_{j 2}$	$\begin{aligned} & .0747 \\ & (.0352) \\ & 2.124 \end{aligned}$	$\begin{aligned} & .2259 \\ & (.0867) \\ & 2.605 \end{aligned}$	$\begin{aligned} & .1376 \\ & (.0613) \\ & 2.245 \end{aligned}$		$\begin{aligned} & .0457 \\ & (.0425) \\ & 1.076 \end{aligned}$		$-.0178$ (.0351) $-.508$	$\begin{aligned} & .0756 \\ & (.0547) \\ & 1.381 \end{aligned}$
$\alpha_{j 3}$	$\begin{aligned} & .7784 \\ & (.3116) \\ & 2.498 \end{aligned}$	$\begin{gathered} -.1974 \\ (.1418) \\ -1.392 \end{gathered}$	$\begin{aligned} & .3020 \\ & (.1644) \\ & 1.837 \end{aligned}$	$-.2651$ (.3130) $-.847$	$\begin{aligned} & .3515 \\ & (.1571) \\ & 2.238 \end{aligned}$	$\begin{gathered} .0939 \\ (.1401) \\ .670 \end{gathered}$	$\begin{gathered} .1427 \\ (.1725) \\ .827 \end{gathered}$	$\begin{aligned} & .3078 \\ & (.1496) \\ & 2.058 \end{aligned}$
$\alpha_{j 4}$	$\begin{aligned} & .5902 \\ & (.2208) \\ & 2.673 \end{aligned}$	$\begin{gathered} .0404 \\ (.1008) \\ .401 \end{gathered}$	$\begin{aligned} & .2068 \\ & (.1052) \\ & 1.966 \end{aligned}$	$\begin{gathered} .0688 \\ (.1848) \\ .372 \end{gathered}$	$\begin{gathered} .0694 \\ (.1107) \\ .627 \end{gathered}$	$\begin{gathered} .0791 \\ (.0993) \\ .796 \end{gathered}$	$\begin{gathered} .1083 \\ (.1148) \\ .944 \end{gathered}$	$\begin{aligned} & .1988 \\ & (.1237) \\ & 1.607 \end{aligned}$
$\boldsymbol{\alpha}_{j}{ }^{5}$	-.0470 $(.2305)$ -.204	$\begin{gathered} -.0262 \\ (.0954) \\ -.275 \end{gathered}$	$\begin{gathered} .1044 \\ (.1057) \\ .988 \end{gathered}$	$\begin{gathered} .1001 \\ (.1823) \\ .549 \end{gathered}$	$-.0173$ (.1094) $-.158$	$\begin{aligned} & .2768 \\ & (.1033) \\ & 2.680 \end{aligned}$	$\begin{aligned} & .1856 \\ & (.1141) \\ & 1.627 \end{aligned}$	$\begin{gathered} .0352 \\ (.1221) \\ .288 \end{gathered}$
$\alpha_{j 6}$		$\begin{gathered} -.1269 \\ (.0930) \\ -1.365 \end{gathered}$	$\begin{aligned} & .1943 \\ & (.1022) \\ & 1.901 \end{aligned}$	$-.0552$ (.1776) $-.311$	$\begin{gathered} .0408 \\ (.1105) \\ .369 \end{gathered}$	$-.0176$ (.1100) $-.160$	$\begin{gathered} .0884 \\ (.1140) \\ .775 \end{gathered}$	$\begin{gathered} .0237 \\ (.1115) \\ .212 \end{gathered}$
$\alpha_{j 7}$	$\begin{gathered} -.0345 \\ (.0545) \\ -.632 \end{gathered}$	$\begin{gathered} .1831 \\ (.0540) \\ 3.395 \end{gathered}$	$\begin{gathered} -.0049 \\ (.0554) \\ -.088 \end{gathered}$	$\begin{aligned} & .0447 \\ & (.0411) \\ & 1.089 \end{aligned}$	$\begin{gathered} -.0349 \\ (.0275) \\ -1.273 \end{gathered}$	$\begin{gathered} -.0014 \\ (.0105) \\ -.129 \end{gathered}$	$\begin{aligned} & .0443 \\ & (.0362) \\ & 1.223 \end{aligned}$	$\begin{gathered} .0352 \\ (.0366) \\ .962 \end{gathered}$

$\alpha_{j 8}$	$\begin{aligned} & .1128 \\ & (.0573) \\ & 1.969 \end{aligned}$	$\begin{gathered} .0274 \\ (.0603) \\ .454 \end{gathered}$	$\begin{gathered} -.1641 \\ (.0604) \\ -2.714 \end{gathered}$	$\begin{gathered} .0075 \\ (.0415) \end{gathered}$	$\begin{aligned} & .0286 \\ & (.0276) \\ & 1.033 \end{aligned}$	$\begin{gathered} .0006 \\ (.0102) \\ .058 \end{gathered}$	$\begin{gathered} -.0196 \\ (.0371) \\ -.527 \end{gathered}$	$\begin{gathered} -.0586 \\ (.0385) \\ -1.520 \end{gathered}$
$\alpha_{j 9}$	$\begin{aligned} & .0547 \\ & (.0545) \\ & 1.002 \end{aligned}$	$\begin{aligned} & .1069 \\ & (.0575) \\ & 1.860 \end{aligned}$	$\begin{gathered} -.0283 \\ (.0536) \\ -.528 \end{gathered}$	$\begin{aligned} & .0518 \\ & (.0409) \\ & 1.265 \end{aligned}$	$\begin{gathered} -.0076 \\ (.0271) \\ -.281 \end{gathered}$	$\begin{gathered} -.0016 \\ (.0100) \\ .163 \end{gathered}$	$\begin{aligned} & .0450 \\ & (.0361) \\ & 1.247 \end{aligned}$	$\begin{gathered} -.0014 \\ (.0373) \\ -.036 \end{gathered}$
$\alpha^{13} 0$	$\begin{aligned} & .0837 \\ & (.0563) \\ & 1.489 \end{aligned}$	$\begin{gathered} -.0240 \\ (.0571) \\ -.420 \end{gathered}$	$\begin{gathered} -.0135 \\ (.0547) \\ -.247 \end{gathered}$	$\begin{gathered} .0164 \\ (.0403) \\ \hline .408 \end{gathered}$	$\begin{gathered} .0139 \\ (.0273) \\ .510 \end{gathered}$	$\begin{aligned} & .0274 \\ & (.0102) \\ & 2.700 \end{aligned}$	$\begin{gathered} -.0393 \\ (.0366) \\ -1.074 \end{gathered}$	$\begin{gathered} .0180 \\ (.0378) \\ .477 \end{gathered}$
$\alpha_{j 11}$	$\begin{aligned} & .7428 \\ & (.4943) \\ & 1.503 \end{aligned}$	$\begin{gathered} .1897 \\ (.2348) \\ .808 \end{gathered}$	$\begin{aligned} & .6833 \\ & (.3606) \\ & 1.895 \end{aligned}$	$\begin{gathered} .3427 \\ (.4893) \\ .700 \end{gathered}$	$\begin{aligned} & .2780 \\ & (.2648) \\ & 1.050 \end{aligned}$	$\begin{gathered} -.3343 \\ (.2931) \\ -1.141 \end{gathered}$	$\begin{gathered} -2.0920 \\ (1.0645) \\ -1.965 \end{gathered}$	$\begin{gathered} -.1159 \\ (.1312) \\ -.884 \end{gathered}$
$\alpha_{i 12}$	$\begin{aligned} & .4548 \\ & (.4148) \\ & 1.097 \end{aligned}$	$\begin{aligned} & .4127 \\ & (.1799) \\ & 2.293 \end{aligned}$	$\begin{gathered} .1648 \\ (.2401) \end{gathered}$	$\begin{gathered} -.7154 \\ (.3847) \\ -1.860 \end{gathered}$	$\begin{gathered} -.2451 \\ (.2215) \\ -1.107 \end{gathered}$	$\begin{gathered} -.0443 \\ (.1897) \\ -.233 \end{gathered}$	$\begin{gathered} .3499 \\ (.9034) \\ .387 \end{gathered}$	$\begin{gathered} -.1186 \\ (.0961) \\ -1.235 \end{gathered}$
$\alpha_{j 13}$	$\begin{gathered} -.0415 \\ (.4282) \\ -.097 \end{gathered}$	$\begin{gathered} -.2129 \\ (.1886) \\ -1.129 \end{gathered}$	$\begin{gathered} -.0287 \\ (.2358) \\ -.122 \end{gathered}$	$\begin{gathered} .0153 \\ (.3919) \\ .039 \end{gathered}$	$\begin{gathered} -.3293 \\ (.2339) \\ -1.408 \end{gathered}$	$\begin{gathered} -.2277 \\ (.1967) \\ -1.158 \end{gathered}$	$\begin{gathered} -1.7648 \\ (.9331) \\ -1.891 \end{gathered}$	$\begin{aligned} & .0943 \\ & (.0884) \\ & 1.066 \end{aligned}$
α_{114}	$\begin{gathered} -.9251 \\ (.4255) \\ -2.174 \end{gathered}$	$\begin{gathered} .0069 \\ (.1916) \\ .036 \end{gathered}$	$\begin{gathered} .5699 \\ (.2495) \\ 2.284 \end{gathered}$	$\begin{gathered} .1215 \\ (.4069) \\ .299 \end{gathered}$	$\begin{gathered} -.5084 \\ (.2268) \\ -2.242 \end{gathered}$	$\begin{gathered} -.4655 \\ (.1995) \\ -2.333 \end{gathered}$	$\begin{gathered} -.7337 \\ (.9308) \\ -.788 \end{gathered}$	$\begin{gathered} -.1334 \\ (.0847) \\ -1.575 \end{gathered}$
\bar{R}^{2}	. 9982	. 9923	. 9982	. 9969	. 9974	. 9978	. 9992	. 9977
S.E.E.	. 0087	. 0140	. 0122	. 0180	. 0133	. 0131	. 0155	. 0134
D-W	1.81	1.91	2.42	2.13	1.94	2.22	1.97	1.71

Note. Period: 19571-74IV. Standard errors are in parentheses below coefficient estimates; t statistics are below the standard errors.

Table 6.3 F Statistics for Groups of Demand Shock Variables for Estimates in Table 6.2

	$F(4 / 66)$ Statistics		
Country	\hat{M} Variables	\hat{g} Variables	\hat{x} Variables
US	7.128	1.820	2.188
UK	1.164	3.531	1.763
CA	2.315	3.191	1.858
FR	0.341	0.783	1.006
GE	1.473	0.748	2.353
IT	2.201	2.004	1.766
JA	1.152	1.141	1.660
NE	1.530	1.137	1.675

Notes. The reported F statistics are appropriate for testing the joint hypothesis that all four of the demand shock variables of the type indicated have a coefficient of zero. Such a test is conditional upon the other variables entering in the equation.
For $F(4 / 66)$, the 10% significance level is 2.04 , the 5% significance level is 2.52 , and the 1% significance level is 3.63 .

Table 6.4 Price Level Equations (R2) and (N2)
$\log P_{j}=\log M_{j}+\beta_{j 1}+\beta_{j 2} \log y_{j}^{P}+\beta_{j 3}\left(\log y_{j}-\log y_{j}^{P}\right)+\beta_{j 4} R_{j}+\beta_{j 5}\left[R_{1}+\left(4 \Delta \log E_{j, t+1}\right)^{*}\right]^{\dagger}+\beta_{j 6}\left(\log M_{j, t-1}-\log P_{j, t-1}\right)$

$$
+\sum_{i=0}^{3} \beta_{j .7+i} \hat{M}_{j, t-i}+\epsilon_{j 2}
$$

	US	UK	CA	FR	GE	IT	JA	NE
Coefficients								
$\beta_{j 1}$	$\begin{gathered} .0851 \\ (.1067) \\ 798 \end{gathered}$	$\begin{gathered} -.2409 \\ (.1361) \\ -1.770 \end{gathered}$	$\begin{aligned} & .1175 \\ & (.0421) \\ & 2.789 \end{aligned}$	$\begin{gathered} -.0692 \\ (.0554) \\ 1.248 \end{gathered}$	$\begin{gathered} .0818 \\ (.0517) \\ 1.583 \end{gathered}$	$\begin{aligned} & .1672 \\ & (.2679) \\ & .624 \end{aligned}$	$\begin{gathered} .4466 \\ (.1109) \\ 4.026 \end{gathered}$	$\begin{gathered} -.0057 \\ (.0417) \end{gathered}$
$\beta_{j 2}$	$\begin{gathered} -.0224 \\ (.0058) \\ -3.863 \end{gathered}$	$\begin{gathered} -.0313 \\ (.0282) \\ -1.113 \end{gathered}$	$\begin{gathered} -.2196 \\ (.0368) \\ -5.967 \end{gathered}$	$\begin{gathered} -.0247 \\ (.0250) \\ -.987 \end{gathered}$	$\begin{gathered} -.0662 \\ (.0228) \\ -2.900 \end{gathered}$	$\begin{gathered} -.0648 \\ (.0480) \\ -1.349 \end{gathered}$	$\begin{gathered} -.2017 \\ (.0363) \\ -5.562 \end{gathered}$	$\begin{gathered} -.0796 \\ (.0332) \\ -2.397 \end{gathered}$
$\beta_{j 3}$	$\begin{gathered} -.0915 \\ (.0199) \\ -4.601 \end{gathered}$	$\begin{gathered} -.3687 \\ (.1490) \\ -2.476 \end{gathered}$	$\begin{gathered} -.1519 \\ (.0678) \\ -2.242 \end{gathered}$	$\begin{gathered} -.0189 \\ (.0576) \\ -.328 \end{gathered}$	$\begin{gathered} -.0062 \\ (.0255) \\ -.245 \end{gathered}$	$-.0430$ (.0781) .550	$\begin{gathered} -.0621 \\ (.0421) \\ -1.474 \end{gathered}$	$\begin{aligned} & .0938 \\ & (.0526) \\ & 1.785 \end{aligned}$
$\beta_{j 4}$	$\begin{aligned} & .3489 \\ & (.0685) \\ & 5.094 \end{aligned}$	$\begin{aligned} & .4405 \\ & (.1694) \\ & 2.601 \end{aligned}$	$\begin{aligned} & .2487 \\ & (.1372) \\ & 1.813 \end{aligned}$	$\begin{aligned} & .4813 \\ & (.0852) \\ & 5.647 \end{aligned}$		$\begin{gathered} .1183 \\ (.1588) \\ .745 \end{gathered}$.9316 $(.4464)$ 2.087	$\begin{gathered} .0227 \\ (.0945) \\ .241 \end{gathered}$
$\beta_{j 5}$	$-.0011$ (.0117) $-.097$	$\begin{aligned} & .0815 \\ & (.0355) \\ & 2.295 \end{aligned}$	$\begin{gathered} -.0209 \\ (.0981) \\ -.213 \end{gathered}$	$\begin{aligned} & .0239 \\ & (.0196) \\ & 1.216 \end{aligned}$	$\begin{gathered} -.0089 \\ (.0168) \\ -.527 \end{gathered}$		$\begin{gathered} .0873 \\ (.0376) \\ 2.322 \end{gathered}$	$\begin{gathered} -.0397 \\ (.0288) \\ -1.380 \end{gathered}$

Table 6.4 (continued)

	US	UK	CA	FR	GE	IT	JA	NE
$\beta_{j 6}$	$\begin{gathered} -.9907 \\ (.0248) \\ -39.974 \end{gathered}$	$\begin{gathered} -.8571 \\ (.0548) \\ -15.646 \end{gathered}$	$\begin{gathered} -.6260 \\ (.0606) \\ -10.329 \end{gathered}$	$\begin{gathered} -.9918 \\ (.0203) \\ -48.824 \end{gathered}$	$\begin{gathered} -.9335 \\ (.0200) \\ -46.760 \end{gathered}$	$\begin{array}{r} -.9485 \\ (.0255) \\ -37.190 \end{array}$	$\begin{gathered} -.8273 \\ (.0296) \\ -27.963 \end{gathered}$	$\begin{gathered} -.8941 \\ (.0347) \\ -25.750 \end{gathered}$
$\beta_{j 7}$	$\begin{gathered} -.7145 \\ (.1503) \\ -4.754 \end{gathered}$	$\begin{gathered} -.7401 \\ (.1734) \\ -4.269 \end{gathered}$	$\begin{gathered} -1.0824 \\ (.1504) \\ -7.199 \end{gathered}$	$\begin{gathered} -.7633 \\ (.1927) \\ -3.962 \end{gathered}$	$\begin{gathered} -1.0874 \\ (.0774) \\ -14.049 \end{gathered}$	$\begin{array}{r} -1.2105 \\ (.1280) \\ -9.456 \end{array}$	$\begin{gathered} -1.0066 \\ (.1165) \\ -8.640 \end{gathered}$	$\begin{gathered} -1.0174 \\ (.1271) \\ -8.008 \end{gathered}$
$\beta_{j 8}$	$\begin{gathered} -.3961 \\ (.0924) \\ -4.288 \end{gathered}$	$\begin{gathered} .0374 \\ (.1065) \\ .351 \end{gathered}$	$\begin{gathered} -.2690 \\ (.1080) \\ -2.491 \end{gathered}$	$\begin{gathered} -.2414 \\ (.1111) \\ -2.172 \end{gathered}$	$\begin{array}{r} -.1448 \\ (.0518) \\ -2.798 \end{array}$	$\begin{gathered} -.1738 \\ (.0900) \\ -1.932 \end{gathered}$	$\begin{gathered} -.3656 \\ (.0839) \\ -4.358 \end{gathered}$	$\begin{gathered} -.4761 \\ (.0866) \\ -5.497 \end{gathered}$
$\beta_{j 9}$	$\begin{aligned} & .1655 \\ & (.0914) \\ & 1.810 \end{aligned}$	$\begin{gathered} -.1519 \\ (.1009) \\ -1.506 \end{gathered}$	$\begin{gathered} -.2761 \\ (.1046) \\ -2.641 \end{gathered}$	$\begin{gathered} .0248 \\ (.1059) \\ .234 \end{gathered}$	$\begin{gathered} -.3170 \\ (.0521) \\ -6.084 \end{gathered}$	$\begin{gathered} -.3615 \\ (.0925) \\ -3.909 \end{gathered}$	$\begin{gathered} -.3207 \\ (.0849) \\ -3.779 \end{gathered}$	$\begin{gathered} -.6534 \\ (.0889) \\ -7.352 \end{gathered}$
β_{10}	$\begin{gathered} .0164 \\ (.1028) \\ .160 \end{gathered}$	$\begin{gathered} -.1675 \\ (.0996) \\ -1.681 \end{gathered}$	$\begin{gathered} -.6435 \\ (.1051) \\ -6.212 \end{gathered}$	$\begin{gathered} .0494 \\ (.1045) \\ .473 \end{gathered}$	$\begin{gathered} -.3196 \\ (.0571) \\ -5.601 \end{gathered}$	$\begin{gathered} -.1435 \\ (.0951) \\ -1.509 \end{gathered}$	$\begin{gathered} -.3017 \\ (.0876) \\ -3.445 \end{gathered}$	$\begin{gathered} -.2813 \\ (.0868) \\ -3.243 \end{gathered}$
\bar{R}^{2}	. 9997	. 9983	. 9978	. 9987	. 9993	. 9988	. 9987	. 9989
S.E.E.	. 0035	. 0147	. 0116	. 0105	. 0063	. 0117	. 0119	. 0109
$h[\mathrm{D}-\mathrm{W}]^{\text {s }}$	1.69	. 66	-1.64	3.57	2.85	[1.54]	2.67	- 1.92

Note. Period: 1957I-76IV. Standard errors are in parentheses below coefficient estimates; t statisties are below the standard errors.
${ }^{\dagger}$ For the United States, the foreign interest rate is $R_{2}-\left(4 \Delta \log E_{2, t+1}\right)^{*}$.
${ }^{8}$ The biased Durbin-Watson statistic is reported in square brackets in those cases in which Durbin's h cannot be computed (is imaginary).

Table 6.5 Unemployment-Rate Equations (R3) and (N3)
$u_{j}=u_{j, t-1}+\gamma_{j 1}+\sum_{i=0}^{7} \gamma_{j, 2+i} \Delta \log y_{j, t-i}+\epsilon_{j 3}$

	US	UK	FR
Coefficients			
$\gamma_{j 1}$	$\begin{gathered} .0046 \\ (.0004) \\ 11.183 \end{gathered}$	$\begin{gathered} .0023 \\ (.0003) \\ 7.031 \end{gathered}$	$\begin{aligned} & .0019 \\ & (.0003) \\ & 6.648 \end{aligned}$
$\gamma_{j 2}$	$\begin{gathered} -.1952 \\ (.0277) \\ -7.055 \end{gathered}$	$\begin{gathered} -.0849 \\ (.0162) \\ -5.252 \end{gathered}$	$\begin{gathered} -.0339 \\ (.0077) \\ -4.385 \end{gathered}$
$\gamma_{i 3}$	$\begin{gathered} -.1876 \\ (.0241) \\ -7.802 \end{gathered}$	$\begin{gathered} -.0327 \\ (.0125) \\ -2.616 \end{gathered}$	$\begin{gathered} -.0360 \\ (.0058) \\ -6.202 \end{gathered}$
$\gamma_{j 4}$	$\begin{gathered} -.0528 \\ (.0235) \\ -2.248 \end{gathered}$	$\begin{gathered} -.0660 \\ (.0122) \\ -5.407 \end{gathered}$	$\begin{gathered} -.0240 \\ (.0060) \\ -4.010 \end{gathered}$
$\gamma_{j 5}$	$\begin{gathered} -.0624 \\ (.0232) \\ -2.691 \end{gathered}$	$\begin{gathered} -.0556 \\ (.0125) \\ -4.437 \end{gathered}$	$\begin{gathered} -.0125 \\ (.0059) \\ -2.116 \end{gathered}$
$\gamma_{j 6}$		$\begin{gathered} -.0415 \\ (.0126) \\ -3.300 \end{gathered}$	$\begin{gathered} -.0037 \\ (.0059) \\ -.628 \end{gathered}$
$\gamma_{j} 7$	$\begin{gathered} .0177 \\ (.0237) \\ .746 \end{gathered}$	$\begin{gathered} -.0165 \\ (.0126) \\ -1.311 \end{gathered}$	$\begin{gathered} -.0116 \\ (.0060) \\ -1.944 \end{gathered}$
$\gamma_{j 8}$	$\begin{gathered} -.0349 \\ (.0244) \\ -1.431 \end{gathered}$		$\begin{gathered} .0005 \\ (.0060) \\ .079 \end{gathered}$
$\gamma_{j 9}$	$\begin{gathered} -.0602 \\ (.0226) \\ -2.668 \end{gathered}$	$\begin{gathered} .0004 \\ (.0126) \\ .028 \end{gathered}$	
\bar{R}^{2}	. 8089	. 4428	. 4492
S.E.E.	. 0019	. 0016	. 0009
D-W	1.36	1.26	1.40

Note. Period: 1957I-76IV. Standard errors are in parentheses below coefficient estimates; t statistics are below the standard errors.

$$
\begin{aligned}
& \Delta \log M_{1}=0.4612 \Delta \log M_{1, t-1}-0.2295 \Delta \log M_{1, t-2}+0.0044+0.0003 t \\
& \begin{array}{cccc}
(0.1158) & (0.1159) & (0.0028) & (0.0000) \\
3.984 & -1.981 & 1.587 & 5.057
\end{array} \\
& +0.0040 \hat{g}_{1}+0.0016\left(\hat{g}_{1, t-1}+\hat{g}_{1, t-2}\right)+0.0293\left(\hat{g}_{1, t-3}+\hat{g}_{1, t-4}\right) \\
& (0.0286) \quad(0.0205) \quad(0.0200) \\
& \begin{array}{lll}
0.141 & 0.076 & 1.465
\end{array} \\
& -0.0576\left(\log P_{1, t-1}-\log P_{1, t-3}\right)-0.2372\left(\log P_{1, t-3}-\log P_{1, t-5}\right)-0.1167 u_{1, t-1} \\
& \text { (0.0905) (0.0996) (0.1930) } \\
& \begin{array}{lll}
-0.636 & -2.381 & -0.604
\end{array} \\
& +0.5393 u_{1, t-2}-0.4316 u_{1, t-3}-0.0546 u_{1, t-4} \\
& \begin{array}{lll}
(0.3627) & (0.3670) & (0.1950)
\end{array} \\
& 1.487-1.176 \quad-0.280 \\
& \bar{R}^{2}=0.5624, \quad \text { S.E.E. }=0.0046, \quad[\mathrm{D}-\mathrm{W}=2.05]^{+}
\end{aligned}
$$

Note. Period: 1957I-76IV. Standard errors are in parentheses below coefficient estimates; t statistics are below the standard errors.
${ }^{+}$The biased Durbin-Watson statistic is reported in square brackets because Durbin's h cannot be computed (is imaginary).

Table 6.7 Nonreserve-Country Nominal-Money Equations (N4)

$$
\Delta \log M_{i}=\eta_{j 1}+\eta_{j 2} t+\eta_{j 3} \hat{g}_{j}+\eta_{i 4}\left(\hat{g}_{j, t-1}+\hat{g}_{j, t-2}\right)+\eta_{j 5}\left(\hat{g}_{j, t-3}+\hat{g}_{j, t-4}\right)+\eta_{j 6}\left(\log P_{j, t-1}-\log P_{j, t-3}\right)+\eta_{j 7}\left[D F \left(\log P_{j, t-1}\right.\right.
$$

$$
\left.\left.-\log P_{j, t-3}\right)\right]+\eta_{j 8}\left(\log P_{j, t-3}-\log P_{j, t-5}\right)+\eta_{j, 9}\left[D F_{j}\left(\log P_{j, t-3}-\log P_{j, t-5}\right)\right]+\eta_{j, 10} u_{j, t-1}+\eta_{j, 11} u_{j, t-2}
$$

$$
\begin{aligned}
& +\eta_{j, 12} u_{j, t-3}+\eta_{j, 13} u_{j, t-4}+\eta_{j 14}(B / Y)_{j}+\eta_{j, 15}\left[D F_{j}(B / Y)_{j}\right]+\eta_{j, 16}\left[(B / Y)_{j, t-1}+(B / Y)_{j, t-2}\right]+\eta_{j, 17}\left\{D F _ { j } \left[(B / Y)_{j, t-1},\right.\right.
\end{aligned}
$$

$$
\left.\left.+(B / Y)_{j, t-2}\right]\right\}+\eta_{j, 18}\left[(B / Y)_{j, t-3}+(B / Y)_{j, t-4}\right]+\eta_{j, 19}\left\{D F_{j}\left[(B / Y)_{j, t-3}+(B / Y)_{j, t-4}\right]\right\}+\epsilon_{j 4}
$$

	UK	CA	FR	GE	IT	JA	NE
Coefficients							
$\eta_{\text {j1 }}$	$\begin{gathered} -.0058 \\ (.0103) \end{gathered}$	$\begin{gathered} .0101 \\ (.0055) \end{gathered}$	$\begin{gathered} .0354 \\ (.0051) \end{gathered}$	$\begin{gathered} .0160 \\ (.0090) \end{gathered}$	$\begin{gathered} .0167 \\ (.0117) \end{gathered}$	$\begin{gathered} .0540 \\ (.0067) \end{gathered}$	$\begin{gathered} .0097 \\ (.0070) \end{gathered}$
	-. 561	1.841	6.936	1.793	1.434	8.026	1.375
$\eta_{j 2}$	$\begin{gathered} -.0000 \\ (.0002) \end{gathered}$	$\begin{gathered} .0002 \\ (.0002) \end{gathered}$	$\begin{gathered} -.0003 \\ (.0001) \end{gathered}$	$\begin{gathered} -.0001 \\ (.0001) \end{gathered}$	$\begin{gathered} .0004 \\ (.0002) \end{gathered}$	$\begin{gathered} -.0000 \\ (.0001) \end{gathered}$	$\begin{gathered} .0003 \\ (.0001) \end{gathered}$
	-. 003	1.001	-2.517	-. 586	2.363	-. 149	2.151
$\eta_{i 3}$	$\begin{gathered} .0874 \\ (.0656) \end{gathered}$	$\begin{gathered} .1156 \\ (.0760) \end{gathered}$	$\begin{gathered} .0030 \\ (.0254) \end{gathered}$	$\begin{gathered} .0363 \\ (.0305) \end{gathered}$	$\begin{gathered} -.0145 \\ (.0232) \end{gathered}$	$\begin{gathered} -.0219 \\ (.0422) \end{gathered}$	$\begin{gathered} .0641 \\ (.0405) \end{gathered}$
	1.333	1.521	. 119	1.192	-. 622	-. 518	1.582
$\eta_{j 4}$	$\begin{gathered} .1540 \\ (.0562) \end{gathered}$	$\begin{gathered} .1849 \\ (.0613) \end{gathered}$	$\begin{gathered} .0307 \\ (.0221) \end{gathered}$	$\begin{gathered} -.0149 \\ (.0232) \end{gathered}$	$\begin{gathered} -.0342 \\ (.0208) \end{gathered}$	$\begin{gathered} .0317 \\ (.0426) \end{gathered}$	$\begin{gathered} -.0395 \\ (.0307) \end{gathered}$
	2.741	3.018	1.387	-. 644	-1.647	. 744	-1.286
η_{j}	. 0299	-. 0035	-. 0178	-. 0225	-. 0317	. 0262	-. 0397
	(.0661)	(.0655)	(.0228)	(.0227)	(.0222)	(.0388)	(.0312)
	. 452	-. 054	-. 781	-. 993	-1.430	. 676	-1.274

Table 6.7 (continued)

	UK	CA	FR	GE	IT	JA	NE
$\eta_{j 6}$	$\begin{gathered} .0771 \\ (.2107) \\ .366 \end{gathered}$	$\begin{gathered} -.1972 \\ (.5889) \\ -.334 \end{gathered}$	$\begin{gathered} -.0859 \\ (.0989) \\ -.868 \end{gathered}$	$\begin{gathered} .0977 \\ (.2470) \\ .395 \end{gathered}$	$\begin{gathered} -.0956 \\ (-.2764) \\ -.346 \end{gathered}$	$\begin{gathered} -.5453 \\ (.1811) \\ -3.011 \end{gathered}$	$\begin{gathered} -.2390 \\ (.1639) \\ - \\ -1.458 \end{gathered}$
$\eta_{i 7}$	$\begin{gathered} .0242 \\ (.2218) \\ .109 \end{gathered}$	$\begin{gathered} .2649 \\ (.5583) \\ .474 \end{gathered}$	$\begin{aligned} & .5748 \\ & (.3598) \\ & 1.597 \end{aligned}$	$\begin{gathered} -.8816 \\ (.3516) \\ -2.507 \end{gathered}$	$\begin{gathered} .0372 \\ (.3573) \end{gathered}$ $.1041$	$\begin{aligned} & .4078 \\ & (.2181) \\ & 1.870 \end{aligned}$	$\begin{aligned} & .3620 \\ & (.2675) \\ & 1.353 \end{aligned}$
$\eta_{j \mathrm{j}}$	$\begin{gathered} .1567 \\ (.2396) \\ .654 \end{gathered}$	$\begin{gathered} -.1133 \\ (.6025) \\ -.188 \end{gathered}$	-.0535 $(.0972)$ -.551	$\begin{gathered} -.4020 \\ (.2971) \\ -1.353 \end{gathered}$.2625 $(.2601)$ 1.009	$\begin{array}{r} -.2006 \\ (.1490) \\ -1.346 \end{array}$	$\begin{gathered} .0566 \\ (.1628) \\ .348 \end{gathered}$
$\eta_{j 9}$	-.0748 $(.2727)$ -.274	$\begin{gathered} -.0016 \\ (.5691) \\ -.003 \end{gathered}$	$-.3655$ (.4059) $-.900$		$\begin{gathered} -.1297 \\ (.4102) \\ -.316 \end{gathered}$	$\begin{gathered} .0145 \\ (.2135) \\ .068 \end{gathered}$	$\begin{gathered} .0622 \\ (.2397) \\ .260 \end{gathered}$
η_{110}	1.2313 (1.5107) .815	$\begin{gathered} -.1548 \\ (.1785) \\ -.867 \end{gathered}$	1.5859 (1.8373) .863	$\begin{gathered} .0364 \\ (.1331) \\ .274 \end{gathered}$	$\begin{gathered} -.1055 \\ (.2265) \\ -.466 \end{gathered}$	$\begin{gathered} -.0059 \\ (.1410) \\ -.042 \end{gathered}$	-.0338 $(.1589)$ -.213
$\eta_{1 / 1}$	$\begin{gathered} -3.4256 \\ (2.3092) \\ -1.483 \end{gathered}$	$\begin{gathered} .0546 \\ (.2149) \\ .254 \end{gathered}$	$\begin{gathered} -4.0365 \\ (3.2469) \\ -1.243 \end{gathered}$	$\begin{gathered} -.1024 \\ (.1684) \\ -.608 \end{gathered}$	$\begin{aligned} & .1264 \\ & (.2788) \\ & .453 \end{aligned}$		$\begin{gathered} -.3617 \\ (.2141) \\ -1.690 \end{gathered}$
$\eta_{1 / 2}$		$\begin{gathered} .0777 \\ (.2193) \\ .354 \end{gathered}$	$\begin{gathered} 7.8250 \\ (3.3058) \\ 2.367 \end{gathered}$	$\begin{aligned} & .1912 \\ & (.1734) \\ & 1.103 \end{aligned}$	$\begin{gathered} -.1260 \\ (.2759) \\ -.457 \end{gathered}$	$\begin{gathered} .1636 \\ (.1724) \\ .949 \end{gathered}$	$\begin{aligned} & .3568 \\ & (.2104) \\ & 1.696 \end{aligned}$

$\eta_{j 13}$	$\begin{gathered} -4.2754 \\ (1.7219) \\ -2.483 \end{gathered}$	$\begin{gathered} .0413 \\ (.2003) \\ .206 \end{gathered}$	$\begin{gathered} -5.0553 \\ (2.1008) \\ -2.406 \end{gathered}$	$\begin{gathered} -.0848 \\ (.1297) \\ -.653 \end{gathered}$	$\begin{gathered} .3273 \\ (.2263) \\ 1.446 \end{gathered}$	$\begin{gathered} -.3035 \\ (.1343) \\ -2.260 \end{gathered}$	$\begin{gathered} .0288 \\ (.1524) \\ .189 \end{gathered}$
$\eta_{j 14}$	$\begin{gathered} -.5155 \\ (.5838) \\ -.883 \end{gathered}$	$\begin{gathered} -.1068 \\ (1.2418) \end{gathered}$ $-.086$	$\begin{gathered} -.4060 \\ (.6601) \\ -.615 \end{gathered}$	$\begin{aligned} & 1.6489 \\ & (.5769) \\ & 2.858 \end{aligned}$	$\begin{gathered} -5.7268 \\ (2.5394) \\ -2.255 \end{gathered}$	2.2503 (1.2800) 1.758	$\begin{gathered} .4210 \\ (.8439) \\ .499 \end{gathered}$
$\eta_{j 15}$	$\begin{gathered} 2.1291 \\ (1.0068) \\ 2.115 \end{gathered}$	$\begin{gathered} 3.3238 \\ (2.3210) \\ 1.432 \end{gathered}$	$\begin{gathered} .1031 \\ (1.1007) \\ .094 \end{gathered}$	$\begin{gathered} .0196 \\ (.8884) \\ .022 \end{gathered}$	6.5592 (3.0475) 2.152	$\begin{aligned} & -.5742 \\ & (1.5246) \\ & -.377 \end{aligned}$	$\begin{gathered} .7008 \\ (1.4222) \\ .493 \end{gathered}$
$\eta_{\text {j16 }}$	$\begin{aligned} & .4856 \\ & (.2139) \\ & 2.270 \end{aligned}$	$\begin{aligned} & .8225 \\ & (.5970) \\ & 1.378 \end{aligned}$	$\begin{gathered} .3233 \\ (.3260) \\ .992 \end{gathered}$	$\begin{gathered} .0938 \\ (.2371) \\ .395 \end{gathered}$	$\begin{gathered} 2.5421 \\ (1.1070) \\ 2.296 \end{gathered}$	$\begin{aligned} & 1.5380 \\ & (.6816) \\ & 2.256 \end{aligned}$	$\begin{aligned} & .3972 \\ & (.3402) \\ & 1.168 \end{aligned}$
$\eta_{j 17}$	$\begin{gathered} -.5212 \\ (.3625) \\ -1.438 \end{gathered}$	$\begin{gathered} -3.2249 \\ (1.2196) \\ -2.644 \end{gathered}$	$\begin{gathered} -.1322 \\ (.5630) \\ -.235 \end{gathered}$	$\begin{gathered} .3328 \\ (.4828) \\ .689 \end{gathered}$	-.6868 (1.0566) -.650	$\begin{gathered} -2.5332 \\ (.8004) \\ -3.165 \end{gathered}$	$\begin{gathered} -1.1151 \\ (.6231) \\ -1.790 \end{gathered}$
$\eta / 18$	$\begin{aligned} & .3309 \\ & (.2078) \\ & 1.592 \end{aligned}$	$\begin{gathered} .2862 \\ (.6238) \\ .459 \end{gathered}$	$\begin{gathered} .7214 \\ (.2587) \\ 2.788 \end{gathered}$	$\begin{aligned} & .5458 \\ & (.2864) \\ & 1.906 \end{aligned}$	$\begin{gathered} -.3723 \\ (.7726) \\ -.482 \end{gathered}$	$\begin{aligned} & 1.8032 \\ & (.7378) \\ & 2.444 \end{aligned}$	$\begin{gathered} .0915 \\ (.2997) \\ .305 \end{gathered}$
η_{19}	$\begin{gathered} -.2042 \\ (.3388) \\ -.603 \end{gathered}$	$\begin{gathered} 1.4646 \\ (1.1676) \\ 1.254 \end{gathered}$	$\begin{gathered} .0605 \\ (.5414) \\ .112 \end{gathered}$	$\begin{gathered} .0399 \\ (.4740) \\ .084 \end{gathered}$	$\begin{gathered} .8100 \\ (1.0940) \\ .740 \end{gathered}$	$\begin{array}{r} -1.8875 \\ (.8633) \\ -2.186 \end{array}$	$\begin{gathered} -.9712 \\ (.5983) \\ -1.623 \end{gathered}$
\bar{R}^{2}	. 2888	. 1540	. 3474	2765	-. 6681	. 4160	2950
S.E.E.	. 0170	. 0163	. 0118	. 0133	. 0224	. 0155	. 0148
D-W	1.95	1.88	1.78	2.30	2.11	1.65	1.87

Note. Period: 1957I-76IV. Standard errors are in parentheses below coefficient estimates; t statistics are below the standard errors.

Country	Pegged Period		Floating Period		Mean Value of $(H / Y)_{j}^{\ddagger}$
	Impact Money Effect ${ }^{\dagger}$	Cumulative Money Effect ${ }^{8}$	Impact Money Effect ${ }^{*}$	Cumulative Money Effect ${ }^{\$}$	
UK	-0.058	0.125	0.181	0.201	0.1122
CA	-0.007	0.138	0.210	0.125	0.0652
FR	-0.057	0.235	-0.042	0.229	0.1394
GE	0.158	0.280	0.160	0.353	0.0957
IT	-0.926	-0.224	0.135	0.876	0.1617
JA	0.165	0.656	0.123	-0.035	0.0734
NE	0.045	0.150	0.121	-0.223	0.1076

${ }^{\dagger}$ This is the fraction of the current effect of the balance of payments on nominal money which is not sterilized by the central bank; computed as ($\partial \Delta \log$ $\left.\left.M_{j}\right) / \partial(B / H)_{j}\right] \approx\left[\right.$ coefficient of $\left.(B / Y)_{j}\right] \times\left[\right.$ mean value of $\left.(H / Y)_{j}\right]$, where H_{j} is high-powered money.
${ }^{8}$ This is the total effect including lagged adjustments by the central bank; computed as $\left(\partial \Delta \log M_{i}\right) /\left[\partial(B / H)_{i}\right] \approx\left[\Sigma_{i}\right.$ coefficients of $\left.(B / Y)_{,, t-i}\right] \times[$ mean value of $\left.(H / Y)_{j}\right]$.
${ }^{\ddagger}$ Sample mean for 1957I-76IV.

Table 6.9 Interest-Rate Equations (R5) and (N5)
$R_{j}=\delta_{j 1}+\delta_{j 2} t+\delta_{j 3}\left(4 \Delta \log P_{j, t+1}\right)^{*}+\delta_{j 4} R_{j, t-1}+\delta_{j 5}\left(4 \Delta \log P_{j}\right)^{*}+\sum_{i=0}^{3} \delta_{j, 6+i} \hat{M}_{j, t-i}+\sum_{i=0}^{3} \delta_{j, 10+i} \hat{g}_{j, t-i}+\sum_{i=0}^{3} \delta_{j, 14+i} \hat{x}_{j, t-i}+\epsilon_{j 5}$

	US	UK	CA	FR	GE	IT	JA	NE
Coefficients								
$\delta_{j 1}$. 0059	. 0016	. 0037	0049	. 0003	$-.0031$	-. 0019	. 0059
	(.0023)	(.0061)	(.0023)	(.0033)	(.0042)	(.0020)	(.0021)	(.0035)
	2.584	. 262	1.622	1.481	. 068	-1.523	-. 907	1.708
$\delta_{j 2}$. 0000	. 0002	-. 0001	. 0002	. 0000	0000	-. 0001	. 0001
	(.0000)	(.0001)	(.0001)	(.0001)	(.0001)	(.0000)	(.0000)	(.0001)
	. 455	1.985	-1.599	2.767	. 440	. 406	-6.182	1.422
$\delta_{j 3}$. 2085	. 0018	. 0949	. 1369	. 2868	. 0246	. 0393	-. 1238
	(.1035)	(.0449)	(.0320)	(.0680)	(.1703)	(.0280)	(.0107)	(.0716)
	2.015	. 041	2.963	2.012	1.684	. 878	3.674	-1.727
$\delta_{j 4}$. 7577	. 8761	. 9951	. 6435	. 7940	1.0404	1.0043	. 7998
	(.0991)	(.1277)	(.0854)	(.1050)	(.0929)	(.0370)	(.0249)	(.0740)
	7.649	. 861	11.651	6.117	8.545	28.086	40.282	10.813
$\delta_{j 5}$	$-.1046$	$-.0223$. 0060	. 0124	-. 0695	-. 0200	. 0333	. 0451
	(.0865)	(.0287)	(.0215)	(.0663)	(.1215)	(.0229)	(.0076)	(.0547)
	- 1.210	--. 776	. 278	. 187	-. 572	-. 872	4.406	. 826
$\delta_{j 6}$	-. 3230	-. 3059	-. 0782	-. 4602	. 1307	- . 0204	$-.0100$. 0784
	(.2031)	(.0866)	(.1056)	(.1576)	(.1349)	(.0492)	(.0101)	(.1192)
	-1.590	-3.533	-. 741	-2.920	. 969	-. 415	-. 988	. 658

Table 6.9 (continued)

	US	UK	CA	FR	GE	IT	JA	NE
$\delta_{j 7}$	$\begin{aligned} & .3091 \\ & (.1334) \\ & 2.317 \end{aligned}$	$\begin{gathered} .0254 \\ (.0692) \\ .367 \end{gathered}$	$\begin{gathered} .0153 \\ (.0662) \\ .231 \end{gathered}$	$\begin{gathered} -.1887 \\ (.0938) \\ -2.012 \end{gathered}$	$\begin{gathered} .0757 \\ (.0961) \\ .788 \end{gathered}$	$\begin{gathered} .0046 \\ (.0345) \\ .134 \end{gathered}$	$\begin{gathered} -.0276 \\ (.0086) \\ -3.202 \end{gathered}$	$\begin{gathered} -.1676 \\ (.0949) \\ -1.766 \end{gathered}$
$\delta_{j 8}$	$\begin{gathered} .0917 \\ (.1256) \\ .730 \end{gathered}$	$\begin{gathered} .0365 \\ (.0586) \\ .622 \end{gathered}$	$\begin{aligned} & .1491 \\ & (.0671) \\ & 2.223 \end{aligned}$	$-.0914$ (.1011) .904		$\begin{aligned} & .0479 \\ & (.0328) \\ & 1.464 \end{aligned}$	$\begin{gathered} -.0380 \\ (.0080) \\ -4.734 \end{gathered}$	$\begin{aligned} & .1154 \\ & (.0941) \\ & 1.226 \end{aligned}$
$\delta_{j 9}$	$\begin{aligned} & .1624 \\ & (.1186) \\ & 1.369 \end{aligned}$	$\begin{aligned} & .0851 \\ & (.0557) \\ & 1.527 \end{aligned}$	$\begin{aligned} & .1540 \\ & (.0606) \\ & 2.543 \end{aligned}$	$\begin{gathered} .0367 \\ (.1018) \\ .361 \end{gathered}$	$\begin{gathered} .0585 \\ (.1017) \\ .575 \end{gathered}$		$\begin{gathered} -.0194 \\ (.0071) \\ -2.737 \end{gathered}$	$\begin{gathered} .0062 \\ (.0810) \\ .077 \end{gathered}$
$\delta_{j 10}$		$\begin{gathered} -.0524 \\ (.0309) \\ -1.694 \end{gathered}$	$\begin{gathered} -.0614 \\ (.0282) \\ -2.175 \end{gathered}$	$\begin{gathered} -.0278 \\ (.0215) \\ -1.290 \end{gathered}$	$\begin{gathered} -.0239 \\ (.0237) \\ -1.010 \end{gathered}$	$\begin{gathered} -.0053 \\ (.0032) \\ -1.663 \end{gathered}$	$\begin{gathered} .0005 \\ (.0022) \\ .220 \end{gathered}$	$\begin{gathered} .0024 \\ (.0270) \\ .088 \end{gathered}$
$\delta_{j 11}$	$\begin{gathered} .0189 \\ (.0304) \\ .622 \end{gathered}$	$\begin{gathered} .0229 \\ (.0325) \\ .703 \end{gathered}$	-.0020 $(.0308)$ -.065	$\begin{aligned} & .0167 \\ & (.0208) \\ & .804 \end{aligned}$	$\begin{gathered} .0028 \\ (.0235) \\ .118 \end{gathered}$	$\begin{gathered} -.0059 \\ (.0031) \\ -1.915 \end{gathered}$	$\begin{aligned} & .0029 \\ & (.0023) \\ & 1.266 \end{aligned}$	$\begin{gathered} .0004 \\ (.0271) \\ .015 \end{gathered}$
$\delta_{j 12}$	$\begin{gathered} .0229 \\ (.0288) \\ .797 \end{gathered}$	$\begin{gathered} .0142 \\ (.0307) \\ .462 \end{gathered}$	$\begin{aligned} & .0556 \\ & (.0296) \\ & 1.878 \end{aligned}$	$\begin{gathered} -.0161 \\ (.0217) \\ -.743 \end{gathered}$	$\begin{gathered} -.0128 \\ (.0242) \\ -.529 \end{gathered}$	$\begin{gathered} -.008 \\ (.0035) \\ -.218 \end{gathered}$	$\begin{gathered} .0009 \\ (.0025) \\ .359 \end{gathered}$	$\begin{gathered} .0066 \\ (.0256) \\ .259 \end{gathered}$
$\delta_{j 13}$	$\begin{gathered} .0154 \\ (.0302) \\ .509 \end{gathered}$	$\begin{gathered} .0015 \\ (.0316) \\ .046 \end{gathered}$	$\begin{aligned} & .0307 \\ & (.0282) \\ & 1.088 \end{aligned}$	$\begin{gathered} -.0079 \\ (.0207) \\ -.384 \end{gathered}$	$\begin{gathered} .0167 \\ (.0260) \\ .641 \end{gathered}$	$\begin{gathered} -.0033 \\ (.0033) \\ -1.005 \end{gathered}$	$\begin{aligned} & .0006 \\ & (.0024) \\ & .257 \end{aligned}$	$\begin{gathered} .0161 \\ (.0263) \\ .611 \end{gathered}$

$\delta_{j 14}$	$\begin{aligned} & .6220 \\ & (.2585) \\ & 2.407 \end{aligned}$	$\begin{aligned} & .1849 \\ & (.1683) \\ & 1.099 \end{aligned}$	$\begin{gathered} -.0079 \\ (.1792) \\ -.044 \end{gathered}$	$\begin{gathered} .2001 \\ (.2551) \\ \hline .784 \end{gathered}$	$\begin{gathered} .2022 \\ (.2741) \\ \hline .738 \end{gathered}$	$\begin{aligned} & .2097 \\ & (.0945) \\ & 2.220 \end{aligned}$	$\begin{gathered} .0074 \\ (.0709) \\ .104 \end{gathered}$	$\begin{aligned} & .1605 \\ & (.0920) \\ & 1.744 \end{aligned}$
$\delta_{j 15}$	$\begin{aligned} & .3002 \\ & (.2448) \\ & 1.226 \end{aligned}$	$\begin{gathered} .0184 \\ (.1366) \\ .135 \end{gathered}$	$\begin{gathered} .0373 \\ (.1262) \\ .295 \end{gathered}$	$\begin{gathered} .1224 \\ (.2146) \\ .570 \end{gathered}$	$\begin{gathered} -.2416 \\ (.2058) \\ -1.174) \end{gathered}$	$\begin{aligned} & .1516 \\ & (.0601) \\ & 2.521 \end{aligned}$	$\begin{gathered} -.0252 \\ (.0549) \\ -.459 \end{gathered}$	$\begin{aligned} & .0721 \\ & (.0678) \\ & 1.064 \end{aligned}$
$\delta_{j 16}$	$\begin{aligned} & .5449 \\ & (.2549) \\ & 2.138 \end{aligned}$	$\begin{gathered} -.0039 \\ (.1278) \\ -.031 \end{gathered}$	$\begin{gathered} -.0140 \\ (.1182) \\ -.118 \end{gathered}$	$\begin{aligned} & .3068 \\ & (.2033) \\ & 1.509 \end{aligned}$	$\begin{gathered} .0877 \\ (.2014) \\ .435 \end{gathered}$	$\begin{gathered} .0547 \\ (.0627) \\ .871 \end{gathered}$	$\begin{gathered} .0257 \\ (.0573) \\ .448 \end{gathered}$	$\begin{gathered} .0338 \\ (.0622) \\ .544 \end{gathered}$
δ^{117}	$\begin{gathered} -.2137 \\ (.2339) \\ -.914 \end{gathered}$	$\begin{aligned} & .1883 \\ & (.1174) \\ & 1.603 \end{aligned}$	$\begin{gathered} -.0327 \\ (.1330) \\ -.246 \end{gathered}$	$\begin{gathered} .0768 \\ (.2116) \\ .363 \end{gathered}$	$\begin{gathered} -.2494 \\ (.1937) \\ -1.288 \end{gathered}$	$\begin{gathered} -.0098 \\ (.0633) \\ -.154 \end{gathered}$	$\begin{gathered} .0023 \\ (.0581) \\ .039 \end{gathered}$	$\begin{aligned} & .0736 \\ & (.0599) \\ & 1.229 \end{aligned}$
\bar{R}^{2}	. 9267	. 9109	. 8996	8764	. 8120	. 9586	. 9782	. 7489
S.E.E.	. 0046	. 0078	. 0060	. 0089	. 011	. 0040	. 0009	. 0091
$h[\mathrm{D}-\mathrm{W}]^{\dagger}$	-. 28	[1.82]	1.84	[1.63]	[1.67]	[1.70]	2.28	[1.67]

Note. Period: 1957I-76IV. Standard errors are in parentheses below coefficient estimates; t statistics are below the standard errors.
${ }^{+}$The biased Durbin-Watson statistic is reported in square brackets in those cases in which Durbin's h cannot be computed (is imaginary).

Table 6.10 Export Equations (R6) and (N6)

$$
\begin{aligned}
(X / Y)_{j}= & \theta_{j 1}+\theta_{j 2} t+\theta_{j 3} \log P^{R O}+\theta_{j 4}\left(\log y_{j}-\log y_{j}^{P}\right)+\sum_{i=0}^{1} \theta_{j, 5+i}(X / Y)_{j, t-1-i}+\sum_{i=0}^{1} \theta_{j, 7+i} \log y_{j, t-i}^{R}+\sum_{i=0}^{1} \theta_{j, 9+i} \log P_{j, t-i} \\
& +\sum_{i=0}^{1} \theta_{j, 11+i} \log P_{j, t-i}^{R}\left[+\sum_{i=0}^{1} \theta_{j, 13+i} \log E_{j, t-i}+\sum_{i=0}^{1} \theta_{j, 15+i} D F_{j, t-i} \log E_{j, t-i}\right]^{\dagger}+\epsilon_{j 6}
\end{aligned}
$$

	US	UK	CA	FR	GE	IT	JA	NE
Coefficients								
$\theta_{j 1}$. 0976	. 6132	2497	. 1831	. 1097	-. 8423	-. 0395	. 2820
	(.0189)	(.0805)	(.0884)	(.0657)	(.0523)	(.1945)	(.0820)	(.1430)
	5.169	7.618	2.826	2.785	2.099	-4.331	$-.482$	1.972
$\theta_{j 2}$	-. 0012	-. 0035	-. 0025	-. 0052	-. 00010	-. 0017	-. 0002	-. 0026
	(.0003)	(.0010)	(.0013)	(.0011)	(.0011)	(.0010)	(.0003)	(.0026)
	-4.356	-3.511	-1.863	-4.890	-. 938	- 1.625	-. 616	- 1.009
$\theta_{j 3}$. 0138	. 0148	. 0089	. 0139	. 0296	. 0188	-. 0028	. 0321
	(.0026)	(.0064)	(.0072)	(.0049)	(.0053)	(.0075)	(.0034)	(.0150)
	5.356	2.325	1.234	2.846	5.616	2.502	-. 826	2.146
$\theta_{j 4}$. 0299	-. 0384	-. 0688	. 0111	. 0435	-. 0962	-. 0405	. 1931
	(.0161)	(.0695)	(.0790)	(.0448)	(.0426)	(.0726)	(.0139)	(.1629)
	1.855	-. 553	- . 871	. 248	1.021	-1.335	-2.919	1.186
$\theta_{j} 5$. 5326	. 1784	. 2876	. 1989	. 3689	. 2681	. 2783	. 4754
	(.1193)	(.1276)	(.1277)	(.1119)	(.1216)	(.1213)	(.1064)	(.1250)
	4.466	1.398	2.251	1.778	3.034	2.211	2.615	3.802

$\theta_{\text {/ }}$	$\begin{gathered} .0723 \\ (.1077) \\ .671 \end{gathered}$	$\begin{gathered} .1021 \\ (.1025) \\ \hline .996 \end{gathered}$	$\begin{gathered} .3141 \\ (.1146) \\ 2.742 \end{gathered}$	$\begin{aligned} & .2406 \\ & (.4067) \\ & 2.488 \end{aligned}$	$\begin{gathered} .1134 \\ (.1285) \\ .883 \end{gathered}$	$\begin{aligned} & .2652 \\ & (.1214) \\ & 2.185 \end{aligned}$	$\begin{aligned} & .1423 \\ & (.1095) \\ & 1.300 \end{aligned}$	$\begin{gathered} .0819 \\ (.1281) \\ .639 \end{gathered}$
θ_{j}	$\begin{aligned} & .0586 \\ & (.0312) \\ & 1.881 \end{aligned}$	$\begin{gathered} -.0101 \\ (.1152) \\ -.088 \end{gathered}$	$\begin{aligned} & .1090 \\ & (.1030) \\ & 1.058 \end{aligned}$	$\begin{gathered} .2338 \\ (.1027) \\ 2.276 \end{gathered}$	$\begin{aligned} & .1931 \\ & (.1066) \\ & 1.811 \end{aligned}$	$\begin{gathered} .0555 \\ (.1703) \\ .326 \end{gathered}$	$\begin{gathered} -.0967 \\ (.0452) \\ -2.140 \end{gathered}$	$\begin{aligned} & .6712 \\ & (.2613) \\ & 2.569 \end{aligned}$
$\theta_{j 8}$	$\begin{gathered} .0184 \\ (.0343) \\ .535 \end{gathered}$	$\begin{aligned} & .1624 \\ & (.1178) \\ & 1.379 \end{aligned}$	$\begin{aligned} & .1337 \\ & (.1131) \\ & 1.182 \end{aligned}$	$\begin{gathered} .0542 \\ (.1030) \\ .526 \end{gathered}$	$\begin{gathered} -.0217 \\ (.0898) \\ -.241 \end{gathered}$	$\begin{aligned} & .1797 \\ & (.1438) \\ & 1.250 \end{aligned}$	$\begin{gathered} .1139 \\ (.0404) \\ 2.821 \end{gathered}$	$\begin{gathered} -.3902 \\ (.2586) \\ -1.509 \end{gathered}$
$\theta_{\text {j }} 9$	$\begin{gathered} .0083 \\ (.0354) \\ .234 \end{gathered}$	$\begin{gathered} -.1545 \\ (.0787) \\ -1.962 \end{gathered}$	$\begin{aligned} & .0855 \\ & (.0682) \\ & 1.254 \end{aligned}$	$\begin{gathered} -.0215 \\ (-.0689) \\ -.312 \end{gathered}$	$\begin{gathered} -.0665 \\ (.1252) \\ -.531 \end{gathered}$	$\begin{gathered} .0559 \\ (.0909) \\ .616 \end{gathered}$	$\begin{gathered} .0311 \\ (.0364) \\ .854 \end{gathered}$	$\begin{gathered} -.5752 \\ (.2051) \\ -2.804 \end{gathered}$
$\theta_{j 10}$	$\begin{gathered} .0114 \\ (.0348) \\ .327 \end{gathered}$	$\begin{gathered} -.0952 \\ (.0726) \\ -1.312 \end{gathered}$	$\begin{gathered} -.0416 \\ (.0644) \\ -.646 \end{gathered}$	$\begin{gathered} -.0539 \\ (.0650) \\ -.829 \end{gathered}$	$\begin{gathered} -.1939 \\ (.1426) \\ -1.360 \end{gathered}$	$\begin{gathered} -.1409 \\ (.0833) \\ -1.690 \end{gathered}$	$\begin{gathered} -.0330 \\ (.0281) \\ -1.176 \end{gathered}$	$\begin{gathered} .1862 \\ (.1940) \\ .960 \end{gathered}$
$\theta_{j 11}$	$\begin{gathered} .0102 \\ (.0207) \\ .491 \end{gathered}$	$\begin{aligned} & .1635 \\ & (.1105) \\ & 1.480 \end{aligned}$	$\begin{gathered} .0251 \\ (.0940) \\ .267 \end{gathered}$	$\begin{gathered} .0103 \\ (.0738) \\ .139 \end{gathered}$	$\begin{aligned} & .1815 \\ & (.1102) \\ & 1.648 \end{aligned}$	$\begin{gathered} -.0713 \\ (.1096) \\ -.651 \end{gathered}$	$\begin{aligned} & .0617 \\ & (.0365) \\ & 1.692 \end{aligned}$	$\begin{aligned} & .8770 \\ & (.2853) \\ & 3.074 \end{aligned}$
$\theta_{j 12}$	$\begin{gathered} -.0085 \\ (.0201) \\ -.423 \end{gathered}$	$\begin{gathered} .3009 \\ (.0955) \\ 3.151 \end{gathered}$	$\begin{gathered} -.0552 \\ (.0890) \\ -.621 \end{gathered}$	$\begin{aligned} & .2875 \\ & (.0812) \\ & 3.543 \end{aligned}$	$\begin{gathered} .0446 \\ (.0881) \\ .506 \end{gathered}$	$\begin{aligned} & .1265 \\ & (.0960) \\ & 1.318 \end{aligned}$	$\begin{gathered} -.0487 \\ (.0332) \\ -1.465 \end{gathered}$	$\begin{gathered} -.4179 \\ (.2952) \\ -1.415 \end{gathered}$

Table 6.10 (continued)

	US	UK	CA	FR	GE	IT	JA	NE
$\theta_{j 13}$	-		$\begin{gathered} -.1529 \\ (.0921) \\ -1.661 \end{gathered}$	$\begin{aligned} & .0657 \\ & (.0198) \\ & 3.315 \end{aligned}$	$\begin{aligned} & .0408 \\ & (.0305) \\ & 1.340 \end{aligned}$	$\begin{gathered} -.0186 \\ (.0450) \\ -.412 \end{gathered}$	$\begin{aligned} & .0250 \\ & (.0206) \\ & 1.216 \end{aligned}$	$\begin{aligned} & .1332 \\ & (.0932) \\ & 1.429 \end{aligned}$
$\theta_{j 14}$	-	$\begin{aligned} & .1432 \\ & (.0424) \\ & 3.382 \end{aligned}$	$\begin{aligned} & .1425 \\ & (.0960) \\ & 1.483 \end{aligned}$	$\begin{aligned} & .0670 \\ & (.0258) \\ & 2.594 \end{aligned}$	$\begin{gathered} .0099 \\ (.0272) \\ .364 \end{gathered}$	$\begin{gathered} .1804 \\ (.0474) \\ 3.804 \end{gathered}$	$\begin{gathered} -.0129 \\ (.0176) \\ -.732 \end{gathered}$	$\begin{gathered} -.0657 \\ (.1155) \\ -.568 \end{gathered}$
$\theta_{j 15}$	-	$\begin{gathered} -.0069 \\ (.0086) \\ -.799 \end{gathered}$	$\begin{aligned} & .0852 \\ & (.0741) \\ & 1.150 \end{aligned}$	-.0007 $(.0033)$ -.197	$\begin{gathered} -.0013 \\ (.0051) \\ -.261 \end{gathered}$			
$\theta_{j 16}$	-		$\begin{gathered} -.0838 \\ (.0702) \\ -1.195 \end{gathered}$	$\begin{gathered} -.0038 \\ (.0034) \\ -1.111 \end{gathered}$	$\begin{gathered} .0031 \\ (.0057) \\ .556 \end{gathered}$		$\begin{gathered} -.0004 \\ (.0005) \\ -.865 \end{gathered}$	$\begin{gathered} .0002 \\ (.0143) \\ .0173 \end{gathered}$
\bar{R}^{2}	. 9799	. 9647	. 9500	. 9685	. 9696	. 9727	. 7767	. 8568
S.E.E.	. 0023	. 0069	. 0062	. 0050	. 0058	. 0071	. 0121	. 0149
$h[\mathrm{D}-\mathrm{W}]^{\text {§ }}$	[2.06]	[1.96]	[2.05]	-6.42	[1.65]	[2.14]	-. 55	[1.49]

Note. Period: 19571-76IV. Standard errors are in parentheses below coefficient estimates; t statistics are below the standard errors.
${ }^{+}$The exchange-rate terms do not appear in the U.S. equation (R6).
${ }^{\S}$ The biased Durbin-Watson statistic is reported in square brackets in those cases in which Durbin's h cannot be computed (is imaginary).

Table 6.11 Import Equations (R7) and (N7P) ${ }^{\dagger}$
$(I / Y)_{j}=\lambda_{j 1}+\lambda_{j 2}(I / Y)_{j, t-1}+\lambda_{j} \log y_{j}^{P}+\sum_{i=0}^{1} \lambda_{j, 4+i}\left(\log y_{j, t-i}-\log y_{j, t-i}^{P}\right)+\sum_{i=0}^{3} \lambda_{j, 6+i} Z_{j, t-i}+\epsilon_{j 7}$

	US	UK	CA	FR	GE	IT	JA	NE
Coefficients								
$\lambda_{j 1}$	$\begin{gathered} -.1034 \\ (.0388) \\ -2.662 \end{gathered}$	$\begin{gathered} -.3300 \\ (.0935) \\ -3.529 \end{gathered}$	$\begin{gathered} -.3403 \\ (.2160) \\ -1.576 \end{gathered}$	$\begin{gathered} -.0497 \\ (.0506) \\ -.982 \end{gathered}$	$\begin{gathered} -.3324 \\ (.1296) \\ -2.566 \end{gathered}$	$\begin{gathered} -.3432 \\ (.2732) \\ -1.257 \end{gathered}$		$\begin{gathered} -.9957 \\ (.7004) \\ -1.422 \end{gathered}$
$\lambda_{j 2}$			$\begin{aligned} & .2796 \\ & (.2134) \\ & 1.310 \end{aligned}$		$\begin{aligned} & .3815 \\ & (.1505) \\ & 2.535 \end{aligned}$	$\begin{aligned} & .7865 \\ & (.0919) \\ & 8.554 \end{aligned}$	$\begin{aligned} & .7148 \\ & (.0945) \\ & 7.561 \end{aligned}$	$\begin{gathered} .3908 \\ (.1504) \\ 2.598 \end{gathered}$
$\lambda_{i 3}$		$\begin{aligned} & .1358 \\ & (.0339) \\ & 4.004 \end{aligned}$	$\begin{aligned} & .1164 \\ & (.0483) \\ & 2.409 \end{aligned}$	$\begin{aligned} & .0114 \\ & (.0089) \\ & 1.281 \end{aligned}$	$\begin{aligned} & .0708 \\ & (.0235) \\ & 3.015 \end{aligned}$	$\begin{aligned} & .0350 \\ & (.0259) \\ & 1.353 \end{aligned}$	$\begin{gathered} .0035 \\ (.0039) \\ .880 \end{gathered}$	$\begin{aligned} & .2773 \\ & (.1600) \\ & 1.734 \end{aligned}$
$\lambda_{j 4}$		$\begin{gathered} -.1075 \\ (.1141) \\ -.942 \end{gathered}$	$-.0179$ (.1643) $-.109$	$\begin{aligned} & .0710 \\ & (.0347) \\ & 2.045 \end{aligned}$	$\begin{gathered} .0634 \\ (.0765) \\ .828 \end{gathered}$	$\begin{gathered} .0927 \\ (.1158) \\ .800 \end{gathered}$	$\begin{gathered} .0137 \\ (.0221) \\ .619 \end{gathered}$	$\begin{gathered} .1427 \\ (.2757) \\ .518 \end{gathered}$
$\lambda_{j 5}$	$\begin{gathered} -.0644 \\ (.0368) \\ -1.751 \end{gathered}$		$\begin{aligned} & .1806 \\ & (.1252) \\ & 1.442 \end{aligned}$	$\begin{gathered} -.0677 \\ (.0306) \\ -2.216 \end{gathered}$	$\begin{gathered} .0146 \\ (.0653) \\ .224 \end{gathered}$	$-.0139$ (.1098) $-.127$	$\begin{gathered} .0003 \\ (.0202) \\ .016 \end{gathered}$	$\begin{gathered} .0428 \\ (.2168) \\ .197 \end{gathered}$

Table 6.11 (continued)

	US	UK	CA	FR	GE	IT	JA	NE
$\lambda_{j 6}$. 0366	. 1425	. 1882	. 0500	-. 0077	-. 0401	. 0101	. 5824
	(.0188)	(.0583)	(.1146)	(.0234)	(.0570)	(.0697)	(.0204)	(.1957)
	1.953	2.446	1.643	2.135	- . 135	-. . 575	. 497	2.975
$\lambda_{j} 7$	0545	0890	$-.0756$	$-.0189$. 0336	. 1494	. 0438	-. 1574
	(.0349)	(.0628)	(.1167)	(.0253)	(.0660)	(.0812)	(.0250)	(.1955)
	1.562	1.416	$-.647$	-. 747	. 510	1.841	1.754	-. 805
$\lambda_{j *}$	$-.0753$	$-.0320$	$-.0556$	-. 0481	. 0536	$-.1032$	-. 0001	-. 0741
	(.0401)	(.0617)	(.1158)	(.0239)	(.0705)	(.0897)	(.0225)	(.1670)
	-1.877	$-.518$	-. 481	-2.016	. 760	-1.151	-. 004	-. 444
$\lambda_{j 9}$. 0044	. 0145	. 0661					$-.0417$
	(.0230)	(.0471)	(.0910)	$(.0186)$	$(.0485)$	$(.0621)$	$(.0161)$	$(.1344)$
	. 191	. 308	. 726	. 976	-. 595	. 260	-2.556	$-.310$
\bar{R}^{2}	. 9746	. 8174	. 8977	. 9383	. 9082	8885	. 8612	. 7034
S.E.E.	. 0027	. 0070	. 0045	. 0033	. 0047	. 0077	. 0017	. 0143
$h[\mathrm{D}-\mathrm{W})^{\text {s }}$	[1.97]	[1.83]	[1.75]	-1.08	[1.88]	[1.88]	1.80	[1.96]

Note. Standard errors are in parentheses below coefficient estimates; t statistics are below the standard errors.
${ }^{\dagger}$ For the nonreserve countries, these regressions are estimated over only the pegged portion of 1957I-76IV (excludes floating periods listed in part a of table $5.6)$.
"The biased Durbin-Watson statistic is reported in square brackets in those cases in which Durbin's h cannot be computed (is imaginary).

Table 6.12
Relative-Price-of-Imports Equations (N7F)
$Z_{j}=\frac{-\lambda_{j 1}}{\lambda_{j 6}}+\frac{1}{\lambda_{j 6}}(I / Y)_{j}-\frac{\lambda_{j 2}}{\lambda_{j 6}}(I / Y)_{j, t-1}-\frac{\lambda_{j 3}}{\lambda_{j 6}} \log y_{j}^{P}-\sum_{i=0}^{1} \frac{\lambda_{j, 4+i}}{\lambda_{j 6}}\left(\log y_{j, t-i}-\log y_{j, t-i}^{P}\right)-\sum_{i=1}^{3} \frac{\lambda_{j, 6+i}}{\lambda_{j 6}} Z_{j, t-i}-\frac{\epsilon_{j 7}}{\lambda_{j 6}}$

	UK	CA	FR	GE	IT	JA	NE
Coefficients							
$-\lambda_{j 1} / \lambda_{j 6}$	$-.7098$. 3108	4.0912	-2.8389	- 10.5063	. 4408	-. 5967
	(1.0135)	(.0990)	(2.5134)	(3.2782)	(11.0556)	(2.4054)	(1.0728)
	-. 700	3.141	1.628	-. 866	-. 950	. 183	-. 556
$1 / \lambda_{j 6}$	1.9019	1.3247	4.3304	2.2772	1.6392	11.5779	1.3619
	(.3771)	(.5007)	(1.2205)	(2.2405)	(1.4812)	(3.9031)	(.5171)
	5.044	2.645	3.548	1.016	1.107	2.966	2.634
$-\lambda_{j 2} / \lambda_{j 6}$							
	$(.6476)$	$(.5098)$	(1.1609)	(1.7221)	$(.9947)$	(5.2844)	$(.4519)$
	$-.293$	-. 824	$-.370$	-1.013	-. 851	-. 302	-. 646
$-\lambda_{j 3} / \lambda_{j 6}$. 0489	-. 1201	-. 7055	. 4096	. 9383	-. 0654	. 0047
	(.2656)	(.0349)	(.3942)	(.5436)	(1.0244)	(.2069)	(.1917)
	. 184	-3.439	-1.790	. 753	. 916	$-.316$. 024
$-\lambda_{j 4} / \lambda_{j 6}$	-. 1153	-. 0508	. 1843	. 6405	1.0612	$-.5164$	1.2541
	$(.4699)$	$(.2953)$	(1.0028)	(1.2641)	(1.2402)	(1.0151)	(1.1212)
	$-.245$	-. 172	. 184	. 507	. 856	-. 509	1.119

Table 6.12 (continued)

	UK	CA	FR	GE	IT	JA	NE
$-\lambda_{j 5} / \lambda_{j 6}$	$\begin{gathered} -.3631 \\ (.2864) \\ -1.268 \end{gathered}$	$\begin{gathered} -.3419 \\ (.2542) \\ -1.345 \end{gathered}$	$\begin{gathered} .1800 \\ (.5645) \\ .319 \end{gathered}$	$\begin{gathered} -.0096 \\ (.8593) \\ -.011 \end{gathered}$	$\begin{gathered} .5556 \\ (1.2274) \\ .453 \end{gathered}$	$\begin{gathered} -.3701 \\ (.8033) \\ -.382 \end{gathered}$	$\begin{gathered} -1.1448 \\ (.7698) \\ -1.487 \end{gathered}$
$-\lambda_{j 7} / \lambda_{j 6}$	$\begin{aligned} & .6335 \\ & (.2782) \\ & 2.277 \end{aligned}$		$\begin{aligned} & .1853 \\ & (.1723) \\ & 1.075 \end{aligned}$	$\begin{aligned} & .8729 \\ & (.3690) \\ & 2.365 \end{aligned}$	$\begin{gathered} .6988 \\ (.2831) \\ 2.469 \end{gathered}$	$\begin{aligned} & .4583 \\ & (.3703) \\ & 1.238 \end{aligned}$	$\begin{aligned} & .6319 \\ & (.3738) \\ & 1.691 \end{aligned}$
$-\lambda_{j 8} / \lambda_{j 6}$		$\begin{gathered} -.1488 \\ (.1810) \\ -.822 \end{gathered}$	$\begin{gathered} .1247 \\ (.2363) \\ .528 \end{gathered}$	$-.2489$ (.3266) $-.762$		$-.1189$ (.3002) $-.396$	$\begin{gathered} -.0552 \\ (.3680) \\ -.150 \end{gathered}$
$-\lambda_{j 9} / \lambda_{j 6}$	$\begin{gathered} .0585 \\ (.1555) \\ .376 \end{gathered}$	$\begin{gathered} -.0821 \\ (.1252) \\ -.656 \end{gathered}$	$\begin{gathered} .2125 \\ (.2145) \\ .991 \end{gathered}$	$\begin{gathered} .1413 \\ (.3371) \\ .419 \end{gathered}$	$\begin{gathered} .1455 \\ (2968) \\ .490 \end{gathered}$	-.0560 $(.2319)$.242	$\begin{gathered} .0680 \\ (.3114) \\ .219 \end{gathered}$
\bar{R}^{2}	. 9865	. 9353	. 9570	. 8534	. 9475	. 9718	. 8818
S.E.E.	. 0188	. 0184	. 0225	. 0349	. 0543	. 0303	. 0297
$h[\mathrm{D}-\mathrm{W}]^{+}$	[1.50]	[2.20]	3.25	[2.14]	[2.56]	[2.29]	[2.99]

Note. These regressions are for the floating periods listed in part a of table 5.6. Standard errors are in parentheses below coefficient estimates; t statistics are below the standard errors.
${ }^{\dagger}$ The biased Durbin-Watson statistic is reported in square brackets in those cases in which Durbin's h cannot be computed (is imaginary).

Table 6.13	Import Price Equations (R8) and (N8P) ${ }^{\dagger}$ $\log P_{j}^{I}=\log P_{j, t-1}^{\prime}+\mu_{j 1}+\mu_{j 2} \Delta \log P_{j, t-1}^{\prime}$							
	US	UK	CA	FR	GE	IT	JA	NE
Coefficients								
$\mu_{j 1}$	$\begin{gathered} -.0017 \\ (.0038) \\ -.446 \end{gathered}$	$\begin{array}{r} -.0151 \\ (.0076) \\ -1.993 \end{array}$	$\begin{gathered} -.0030 \\ (.0083) \\ -.357 \end{gathered}$	$\begin{gathered} -.0070 \\ (.0105) \\ -.673 \end{gathered}$	$\begin{gathered} -.0107 \\ (.0045) \\ -2.380 \end{gathered}$	$\begin{gathered} -.0069 \\ (.0088) \\ -.786 \end{gathered}$	$\begin{gathered} -.0193 \\ (.0057) \\ -3.392 \end{gathered}$	$\begin{gathered} -.0012 \\ (.0057) \\ -.208 \end{gathered}$
$\mu_{j 2}$	$\begin{gathered} -.6420 \\ (.0850) \\ 7.557 \end{gathered}$	$\begin{gathered} -.0020 \\ (.1319) \\ -.015 \end{gathered}$	$\begin{gathered} -.0538 \\ (.2077) \\ -.259 \end{gathered}$	$\begin{gathered} -.0994 \\ (.1115) \\ -.891 \end{gathered}$	$\begin{gathered} .2422 \\ (.1150) \\ 2.107 \end{gathered}$	$\begin{gathered} .0728 \\ (.1588) \\ .458 \end{gathered}$	$\begin{gathered} .1248 \\ (.1422) \\ .877 \end{gathered}$	$\begin{aligned} & .2289 \\ & (.1196) \\ & 1.914 \end{aligned}$
$\mu_{j 3}$	$\begin{aligned} & .0717 \\ & (.0160) \\ & 4.483 \end{aligned}$	$\begin{gathered} -.0403 \\ (.0901) \\ -.448 \end{gathered}$	$\begin{gathered} -.2454 \\ (.5708) \\ -.430 \end{gathered}$	$\begin{gathered} .0522 \\ (.1115) \\ .468 \end{gathered}$	$\begin{gathered} .0070 \\ (.0613) \\ .113 \end{gathered}$	$\begin{aligned} & .1656 \\ & (.1008) \\ & 1.644 \end{aligned}$	$\begin{gathered} -.0717 \\ (.0655) \\ -1.095 \end{gathered}$	$\begin{aligned} & .0999 \\ & (.0644) \\ & 1.550 \end{aligned}$
$\mu_{j 4}$	$\begin{gathered} .1522 \\ (.2428) \\ .627 \end{gathered}$	$\begin{aligned} & .6483 \\ & (.4400) \\ & 1.473 \end{aligned}$	$\begin{gathered} .2795 \\ (.4498) \\ .621 \end{gathered}$	$\begin{gathered} -.0267 \\ (.5936) \\ -.045 \end{gathered}$	$\begin{aligned} & .2902 \\ & (.2723) \\ & 1.066 \end{aligned}$	$\begin{gathered} -.1488 \\ (.4512) \\ -.330 \end{gathered}$	$\begin{gathered} .8201 \\ (.3479) \\ 2.358 \end{gathered}$	$\begin{gathered} -.2553 \\ (.3150) \\ -.810 \end{gathered}$

Table 6.13 (continued)

	US	UK	CA	FR	GE	IT	JA	NE
$\mu_{i s}$	1.9255	. 1900	. 7223	1.9406	$-.3779$	- . 2210	3.0762	. 1692
	(.9474)	(.3909)	(.3940)	(1.0139)	(.3335)	(.4550)	(1.2324)	(.1091)
	2.032	. 486	1.833	1.914	-1.133	-. 497	2.496	1.550
$\mu_{j 6}$. 1424	1.3714	2029	1.2349	1.2003	1.2481	1.3652	. 8842
	(.1420)	(.5919)	(.8294)	(.7141)	(.3822)	(.7171)	(.4252)	(.4491)
	1.003	2.317	. 245	1.729	3.140	1.741	3.211	1.969
$\mu_{j 7}$	-	. 5061	. 0214	. 6364	. 4684	-1.1264	. 6959	. 8225
		(.1568)	(.5412)	(.1086)	(.1312)	(1.3049)	(.6067)	(.2579)
		3.229	. 040	5.861	3.570	- . 863	1.147	3.189
\bar{R}^{2}	. 9964	. 9734	. 9347	. 9468	. 9108	. 9194	. 9410	. 9135
S.E.E.	. 0129	. 0159	. 0084	. 0197	. 0106	. 0170	. 0117	. 0110
$h[\mathrm{D}-\mathrm{W}]^{\text { }}$	-4.48	-23.57	[1.86]	-1.05	-. 22	[2.13]	[2.10]	. 59

Note. Standard errors are in parentheses below coefficient estimates; t statistics are below the standard errors.
${ }^{4}$ For the nonreserve countries, these regressions are estimated over only the pegged portion of 1957I-76IV (excludes floating periods listed in part a of table 5.6).
*The exchange-rate term does not appear in the U.S. equation (R8).
*The biased Durbin-Watson statistic is reported in square brackets in those cases in which Durbin's h cannot be computed (is imaginary).

Table 6.14
Exchange-Rate Equations (N8F)
$\log E_{j}=\log E_{j, t-1}-\frac{\mu_{j 1}}{\mu_{j 7}}+\frac{1}{\mu_{j 7}} \Delta \log P_{j}^{I}-\frac{\mu_{j 2}}{\mu_{j 7}} \Delta \log P_{j, t-1}^{I}-\frac{\mu_{j 3}}{\mu_{j 7}} \Delta \log P^{R O}-\frac{\mu_{j 4}}{\mu_{j 7}} \Delta \log y_{j}^{R}-\frac{\mu_{j 5}}{\mu_{j 7}} \Delta(I / Y)_{j}-\frac{\mu_{j 6}}{\mu_{j 7}} \Delta \log P_{j}^{R}-\frac{\epsilon_{j 8}}{\mu_{j 7}}$

	UK	CA	FR	GE	IT	JA	NE
Coefficients							
$-\mu_{j 1} / \mu_{j 7}$. 0490	-. 0040	0507	. 0174	. 0283	. 0508	. 0162
	(.0368)	(.0055)	(.0257)	(.0363)	(.0402)	(.0212)	(.0202)
	1.333	-. 727	1.976	. 480	. 704	2.393	. 803
$1 / \mu_{j 7}$. 3454	. 2732	-. 0635	. 3949	. 8467	. 1140	. 3805
	(.8276)	(.2211)	(.5233)	(.5426)	(.4179)	(.2468)	(.4575)
	. 417	1.236	-. 121	. 728	2.026	. 462	. 832
$-\mu_{j 2} / \mu_{j}{ }^{\prime}$. 2291	. 0273	. 2030	-. 6752	$-.2330$	- . 2069	- . 2598
	(.4163)	(.1829)	(.2485)	(.3770)	(.2445)	(.1554)	(.2703)
	. 550	. 149	. 817	-1.791	-. 953	-1.331	-. 961
$-\mu_{j 3} / \mu_{j 7}$. 0518	-. 0775	-. 0045	-. 0078	. 0367
	$(.0582)$	$(.0144)$	(.0493)	(.0651)	(.0732)	(.0332)	(.0406)
	-. 032	- 1.401	1.050	-1.190	-. 061	- . 236	. 903

Table 6.14 (continued)

	UK	CA	FR	GE	IT	JA	NE
$-\mu_{j 4} / \mu_{j 7}$	$\begin{gathered} .9776 \\ (1.3640) \\ .717 \end{gathered}$	$\begin{gathered} .2732 \\ (.3320) \\ .823 \end{gathered}$	$\begin{aligned} & -.9932 \\ & (1.2940) \\ & -.768 \end{aligned}$	$\begin{gathered} -1.4449 \\ (1.3021) \\ -1.110 \end{gathered}$	$\begin{gathered} .5851 \\ (1.4865) \\ .394 \end{gathered}$	$\begin{gathered} -2.8944 \\ (.8975) \\ -3.225 \end{gathered}$	$-.2758$ (.6667) $-.414$
$-\mu_{j 5} / \mu_{j 7}$	$\begin{gathered} -1.3030 \\ (1.3132) \\ -.992 \end{gathered}$	$\begin{gathered} -.3851 \\ (.4451) \\ -.865 \end{gathered}$	$\begin{gathered} 1.7303 \\ (2.1846) \\ .792 \end{gathered}$	4.7085 (3.6567) 1.288	$\begin{gathered} -2.2140 \\ (1.8783) \\ -1.179 \end{gathered}$	7.0538 (4.9008) 1.439	$\begin{gathered} -.5083 \\ (.4632) \\ -1.097 \end{gathered}$
$-\mu_{j 6} / \mu_{j 7}$	$\begin{gathered} -2.8498 \\ (.9892) \\ -2.881 \end{gathered}$	-.0676 $(.2367)$ -.286	$\begin{gathered} -2.9759 \\ (.8646) \\ -3.442 \end{gathered}$	$\begin{gathered} -1.4430 \\ (1.4249) \\ -1.013 \end{gathered}$	$\begin{gathered} -1.8682 \\ (1.4868) \\ -1.256 \end{gathered}$	$\begin{aligned} & -1.9986 \\ & (.6666) \\ & -2.998 \end{aligned}$	$\begin{gathered} -1.6610 \\ (.6668) \\ -2.491 \end{gathered}$
\bar{R}^{2}	. 1213	. 0007	. 6551	. 1563	-. 6624	. 3304	. 5852
S.E.E.	. 0443	. 0135	. 0291	. 0493	. 0590	. 0283	. 0275
D-W	2.76	1.38	2.45	2.40	3.12	2.04	1.94

Note. These regressions are for the floating periods listed in part a of table 5.6. Standard errors are in parentheses below coefficient estimates; t statistics are below the standard errors.

Table 6.15
Capital-Flows Equations (R9) and (N9)

$$
\begin{aligned}
(C / Y)_{j}= & \xi_{j 1}+\xi_{j 2} t+\xi_{j 3} \log P^{R O}+\xi_{j 4} R_{j}+\left[\xi_{j 5}\left(4 \Delta \log E_{j, t+1}\right)^{*}+\xi_{j 6} R_{1}\right]^{\dagger}+\xi_{j 7}\left[(X / Y)_{j}-(I / Y)_{j}\right]+\xi_{j 8}\left(\log y_{j}-\log y_{j}^{P}\right) \\
& +\xi_{j 9} \Delta \log y_{j}+\xi_{j 10} \Delta \log y_{j}^{R}+\sum_{i=0}^{2} \xi_{j, 11+i} \Delta R_{j, t-i}+\left[\sum_{i=0}^{2} \xi_{j, 14+i} \Delta R_{1, t-i}+\sum_{i=0}^{2} \xi_{j, 17+i} \Delta\left(4 \Delta \log E_{j, t+1-i}\right)^{*}\right]^{\dagger}+\epsilon_{j 9}
\end{aligned}
$$

	US	UK	CA	FR	GE	IT	JA	NE
Coefficients								
$\xi_{j 1}$. 0077	. 0198	-. 0211	-. 0159	. 0008	. 0249	. 1931	. 0009
	(.0053)	(.0206)	(.0128)	(.0114)	(.0227)	(.0237)	(.1136)	(.0149)
	1.455	. 965	- 1.642	- 1.396	. 034	1.052	1.700	. 060
$\xi_{j 2}$. 0004	-. 0003	-. 0001	$-.0001$	$-.0000$. 0002	-. 00005	. 0004
	(.0001)	(.0004)	(.0002)	(.0002)	(.0004)	(.0002)	(.0005)	(.0002)
	3.142	-. 716	$-.474$	-. 472	-. 010	. 641	-1.134	1.747
$\xi_{\text {/ }} / 3$	-. 0013	$-.0760$. 0075	. 0134	. 0044	. 0002	. 0134	. 0162
	(.0082)	(.0269)	(.0090)	(.0124)	(.0123)	(.0098)	(.0301)	(.0099)
	-. 164	-2.820	. 480	1.085	. 358	. 019	1.042	1.638
$\xi_{j 4}$	-. 1007	. 7525	-. 2095	$-.6406$	$-.3022$	$-.6437$	-2.4553	$-.5028$
	(.1849)	(.5526)	(.2558)	(.2298)	(.3641)	(.3542)	(1.3871)	(.3246)
	-. 545	1.362	-. 819	-2.788	- . 830	- 1.817	-1.770	-1.549
$\xi_{j 5}$. 0348	. 4443	. 3993	. 1171	. 0971	. 1421	. 0645	. 2198
	(.0534)	(.1535)	(.2398)	(.0493)	(.1478)	(.1020)	(.0876)	(.1079)
	. 651	2.895	1.665	2.373	. 657	1.393	. 736	2.036

Table 6.15 (continued)

	US	UK	CA	FR	GE	IT	JA	NE
$\xi_{j 6}$	$\begin{gathered} -.2098 \\ (.1402) \\ -1.496 \end{gathered}$	$\begin{gathered} -.9278 \\ (.6580) \\ -1.410 \end{gathered}$	$\begin{aligned} & .5253 \\ & (.3505) \\ & 1.499 \end{aligned}$	$\begin{aligned} & 1.0231 \\ & (.3579) \\ & 2.859 \end{aligned}$	$\begin{gathered} .2431 \\ (.6019) \\ .404 \end{gathered}$	$\begin{gathered} .1986 \\ (.3294) \end{gathered}$.603	$\begin{aligned} & .3620 \\ & (.3415) \\ & 1.060 \end{aligned}$	
$\xi_{j 7}$	$\begin{gathered} .7666 \\ (.2568) \\ 2.986 \end{gathered}$	$\begin{gathered} -.8730 \\ (.4839) \\ -1.804 \end{gathered}$	$\begin{gathered} .7222 \\ (.2698) \\ 2.677 \end{gathered}$	$\begin{aligned} & .7770 \\ & (.3074) \\ & 2.528 \end{aligned}$	$\begin{aligned} & .5354 \\ & (.5225) \\ & 1.025 \end{aligned}$	$\begin{aligned} & .5817 \\ & (.1277) \\ & 4.556 \end{aligned}$	$\begin{gathered} -.2125 \\ (.6198) \\ -.343 \end{gathered}$	$\begin{aligned} & .7699 \\ & (.1968) \\ & 3.911 \end{aligned}$
$\xi_{j 8}$	$\begin{gathered} -.0535 \\ (.0681) \\ -.786 \end{gathered}$	$\begin{gathered} -.4390 \\ (.3257) \\ -1.348 \end{gathered}$	$\begin{gathered} .1017 \\ (.1219) \\ .835 \end{gathered}$	$\begin{gathered} .0609 \\ (.1693) \\ .360 \end{gathered}$		-.0065 $(.1297)$ -.050	$\begin{gathered} .0441 \\ (.1487) \\ .296 \end{gathered}$	$\begin{aligned} & .2249 \\ & (.1612) \\ & 1.395 \end{aligned}$
$\xi_{j 9}$	$\begin{gathered} -.1069 \\ (.1890) \\ -.566 \end{gathered}$	$\begin{aligned} & .4491 \\ & (.3905) \\ & 1.150 \end{aligned}$	$\begin{gathered} -.4494 \\ (.2863) \\ -1.570 \end{gathered}$	$\begin{gathered} -.2608 \\ (.2020) \\ -1.291 \end{gathered}$		$-.1259$ (.1908) -. 660	$\begin{gathered} -.3308 \\ (.1824) \\ -1.814 \end{gathered}$	-.0454 $(.3549)$ -.128
$\xi_{j .10}$		$\begin{gathered} .0804 \\ (.8828) \\ .091 \end{gathered}$	$\begin{aligned} & .8661 \\ & (.4604) \\ & 1.881 \end{aligned}$	$\begin{aligned} & .5558 \\ & (.4806) \\ & 1.156 \end{aligned}$	$\begin{gathered} -1.0229 \\ (.7941) \\ -1.288 \end{gathered}$	$-.2624$ (.5041) -. 521	$\begin{gathered} .0348 \\ (.4485) \\ .078 \end{gathered}$	$\begin{gathered} -.4544 \\ (.7418) \\ -.612 \end{gathered}$
$\xi_{j, 11}$	$\begin{gathered} -.2997 \\ (.4298) \\ -.697 \end{gathered}$	$\begin{aligned} & .7571 \\ & (.6444) \\ & 1.175 \end{aligned}$	$\begin{gathered} -.5176 \\ (.4238) \\ -1.221 \end{gathered}$	$\begin{aligned} & .6364 \\ & (.3094) \\ & 2.057 \end{aligned}$	$\begin{gathered} .0952 \\ (.5455) \\ .714 \end{gathered}$	$\begin{aligned} & 1.3828 \\ & (.9374) \\ & 1.475 \end{aligned}$	-.6103 (3.1056) -.197	$\begin{aligned} & .6962 \\ & (.4190) \\ & 1.661 \end{aligned}$
$\xi_{j .12}$		$\begin{gathered} -.8290 \\ (.5917) \\ -1.401 \end{gathered}$	$\begin{gathered} -.2984 \\ (.3544) \\ -.842 \end{gathered}$	$\begin{gathered} .2588 \\ (.2594) \\ .998 \end{gathered}$	$\begin{gathered} -.4225 \\ (.3424) \\ -1.234 \end{gathered}$	$\begin{gathered} .4430 \\ (.6100) \\ .726 \end{gathered}$	$\begin{gathered} -1.1426 \\ (2.3290) \\ -.491 \end{gathered}$	$\begin{gathered} -.6873 \\ (.3728) \\ -1.844 \end{gathered}$
$\xi_{j, 13}$	$\begin{gathered} -.6649 \\ (.3729) \\ -1.783 \end{gathered}$	$\begin{gathered} -.8227 \\ (.5648) \\ -1.457 \end{gathered}$	$\begin{gathered} .1658 \\ (.3765) \\ .440 \end{gathered}$	$\begin{aligned} & .9085 \\ & (.2729) \\ & 3.330 \end{aligned}$	$\begin{gathered} .4053 \\ (.4166) \\ .973 \end{gathered}$	$\begin{gathered} .3617 \\ (.6552) \\ .552 \end{gathered}$	$\begin{aligned} & -.3466 \\ & (2.0206) \\ & -.172 \end{aligned}$	$\begin{gathered} .3636 \\ (.4770) \\ .762 \end{gathered}$

$\xi_{j, 14}$	$\begin{gathered} .0076 \\ (.1695) \\ \hline 045 \end{gathered}$	$\begin{gathered} .3171 \\ (1.3718) \\ .231 \end{gathered}$	$\begin{gathered} .1848 \\ (.5837) \\ .317 \end{gathered}$	$\begin{gathered} -.6548 \\ (.7819) \\ -.837 \end{gathered}$	$\begin{aligned} & 1.6290 \\ & (.9686) \\ & 1.682 \end{aligned}$	$\begin{gathered} -.1722 \\ (.5950) \\ -.289 \end{gathered}$	$\begin{gathered} -.8260 \\ (.6718) \\ -1.230 \end{gathered}$	$\begin{aligned} & .9836 \\ & (.7686) \\ & 1.280 \end{aligned}$
$\xi_{j, 15}$	$\begin{gathered} .0345 \\ (.1314) \\ .262 \end{gathered}$	$\begin{gathered} -.5770 \\ (.9802) \\ -.589 \end{gathered}$	$\begin{gathered} .2139 \\ (.4590) \\ .466 \end{gathered}$	$\begin{gathered} -.9947 \\ (.4586) \\ -2.169 \end{gathered}$	$\begin{gathered} .1326 \\ (.7422) \\ .179 \end{gathered}$	$\begin{gathered} -.3523 \\ (.4126) \\ -.854 \end{gathered}$	$\begin{gathered} -.0918 \\ (.3850) \\ -.238 \end{gathered}$	$\begin{gathered} .1718 \\ (.5909) \\ .291 \end{gathered}$
$\xi_{j, 16}$	$\begin{aligned} & .2389 \\ & (.1300) \\ & 1.838 \end{aligned}$	$\begin{gathered} .9616 \\ (1.0101) \\ .952 \end{gathered}$	$\begin{gathered} -.1944 \\ (.4392) \\ -.443 \end{gathered}$	$\begin{gathered} .3867 \\ (.4544) \\ .851 \end{gathered}$	$\begin{gathered} .5469 \\ (.6142) \\ .891 \end{gathered}$	$\begin{gathered} -.0210 \\ (.3988) \\ -.053 \end{gathered}$	$\begin{gathered} -.2326 \\ (.4311) \\ -.540 \end{gathered}$	$\begin{gathered} .9798 \\ (.6156) \\ 1.592 \end{gathered}$
$\xi_{j, 17}$	$\begin{gathered} .0033 \\ (.0404) \end{gathered}$	$\begin{gathered} -.3424 \\ (.1224) \\ -2.797 \end{gathered}$	$\begin{gathered} -.3006 \\ (.2497) \\ -1.204 \end{gathered}$	$\begin{gathered} -.0023 \\ (.0589) \\ -.038 \end{gathered}$	$\begin{gathered} .0029 \\ (.1142) \\ .025 \end{gathered}$	$\begin{gathered} -.0451 \\ (.0698) \\ -.646 \end{gathered}$	$\begin{gathered} .0383 \\ (.0808) \\ .474 \end{gathered}$	$\begin{gathered} -.0866 \\ (.0867) \\ -.999 \end{gathered}$
$\xi_{j, 18}$	$\begin{gathered} -.0040 \\ (.0119) \\ -.332 \end{gathered}$	$\begin{gathered} -.0765 \\ (.0607) \\ -1.261 \end{gathered}$	$\begin{gathered} -.0482 \\ (.0860) \\ -.561 \end{gathered}$	$\begin{gathered} .0007 \\ (.0231) \\ .029 \end{gathered}$	$\begin{gathered} .0469 \\ (.0448) \\ 1.049 \end{gathered}$	$\begin{gathered} .0380 \\ (.0414) \\ .917 \end{gathered}$	$\begin{gathered} .0331 \\ (.0516) \\ .640 \end{gathered}$	$\begin{gathered} -.0515 \\ (.0370) \\ -1.392 \end{gathered}$
$\xi_{j, 19}$	$\begin{gathered} .0019 \\ (.0116) \\ .167 \end{gathered}$	$\begin{gathered} -.0117 \\ (.0542) \\ .215 \end{gathered}$	$\begin{gathered} -.0687 \\ (.0880) \\ -.781 \end{gathered}$	$\begin{gathered} -.0173 \\ (.0217) \\ -.798 \end{gathered}$	$\begin{aligned} & .0516 \\ & (.0455) \\ & 1.134 \end{aligned}$	$\begin{aligned} & .0711 \\ & (.0379) \\ & 1.875 \end{aligned}$	$\begin{gathered} .0236 \\ (.0487) \end{gathered}$	$\begin{aligned} & .0468 \\ & (.0349) \\ & 1.341 \end{aligned}$
\bar{R}^{2}	. 1968	-. 0965	. 2811	. 1908	. 1568	. 3486	-. 1952	. 4587
S.E.E.	. 0072	. 0291	. 0133	- . 0419	. 0228	. 0137	. 0135	. 0189
D-W	1.87	1.98	1.69	1.72	2.30	1.20	1.65	1.84

Note. Period: 19571-76IV. Standard errors are in parentheses below coefficient estimates; t statistics are below the standard errors.
${ }^{\dagger}$ For the U.S. equation only, for " $\left(4 \Delta \log E_{j} \ldots\right.$ " read " $-\left(4 \Delta \log E_{2} \ldots\right.$ " and for " R_{1} " read " R_{2} " (see equation (R9)).

able 6.16 Balance-of-Payments Equations (N 10 F) $(B / Y)_{j}=\psi_{j 1}+\psi_{j 2}(B / Y)_{j, t-1}+\psi_{j 3} \Delta \log E_{j}+\psi_{j 4} \Delta \log E_{j, t-1}+\psi_{j 5}\left(\Delta \log P_{j, t-1}-\Delta \log P_{1, t-1}\right)+\epsilon_{j, 10}$								
Country	$\psi_{j 1}$	$\psi_{j 2}$	$\psi_{j 3}$	$\psi_{j 4}$	$\psi_{j 5}$	$\stackrel{\rightharpoonup}{R}^{2}$	S.E.E.	$h[\mathrm{D}-\mathrm{W}]^{+}$
UK	$\begin{gathered} 0.0002 \\ (0.0023) \\ 0.095 \end{gathered}$	$\begin{gathered} 0.4170 \\ (0.1889) \\ 2.208 \end{gathered}$	$\begin{gathered} 0.0191 \\ (0.0518) \\ 0.368 \end{gathered}$	$\begin{gathered} -0.0346 \\ (0.0371) \\ -0.931 \end{gathered}$	$\begin{gathered} -0.1007 \\ (0.0896) \\ -1.125 \end{gathered}$	0.1710	0,0074	0.05
CA	$\begin{gathered} 0.0003 \\ (0.0003) \\ 1.005 \end{gathered}$	0.2975 (0.1704) 1.746	$\begin{gathered} -0.0927 \\ (0.0328) \\ -2.824 \end{gathered}$	$\begin{gathered} 0.0403 \\ (0.0223) \\ 1.802 \end{gathered}$	$\begin{gathered} -0.0109 \\ (0.0147) \\ -0.738 \end{gathered}$	0.0943	0.0018	[1.89]
FR	$\begin{gathered} 0.0004 \\ (0.0015) \\ 0.241 \end{gathered}$	$\begin{gathered} 0.1640 \\ (0.2494) \\ 0.658 \end{gathered}$	$\begin{gathered} -0.0304 \\ (0.0333) \\ -0.912 \end{gathered}$	$\begin{gathered} 0.0124 \\ (0.0220) \\ 0.564 \end{gathered}$	$\begin{gathered} 0.0332 \\ (0.2015) \\ 0.165 \end{gathered}$	-0.1965	0.0047	[1.82]
GE	$\begin{gathered} 0.0052 \\ (0.0021) \\ 2.471 \end{gathered}$	$\begin{gathered} -0.0723 \\ (0.2621) \\ -0.276 \end{gathered}$	$\begin{gathered} -0.1020 \\ (0.0332) \\ -3.073 \end{gathered}$	$\begin{gathered} 0.0025 \\ (0.0267) \\ 0.094 \end{gathered}$	$\begin{gathered} 0.0766 \\ (0.1649) \\ 0.464 \end{gathered}$	0.0606	0.0053	[1.98]
IT	$\begin{gathered} -0.0022 \\ (0.0016) \\ -1.412 \end{gathered}$	$\begin{gathered} 0.1758 \\ (0.2351) \\ 0.748 \end{gathered}$	$\begin{gathered} -0.0465 \\ (0.0247) \\ -1.884 \end{gathered}$	$\begin{gathered} -0.0232 \\ (0.0268) \\ -0.865 \end{gathered}$	$\begin{gathered} 0.0411 \\ (0.0922) \\ 0.446 \end{gathered}$	0.1731	0.0046	[1.51]
JA	$\begin{gathered} 0.0007 \\ (0.0010) \\ 0.652 \end{gathered}$	$\begin{gathered} 0.7929 \\ (0.2136) \\ 3.712 \end{gathered}$	$\begin{gathered} 0.0397 \\ (0.0392) \\ 1.014 \end{gathered}$	$\begin{gathered} 0.0244 \\ (0.0276) \\ 0.883 \end{gathered}$	$\begin{gathered} -0.0193 \\ (0.0633) \\ -0.305 \end{gathered}$	0.4109	0.0038	1.01
NE	0.0021 (0.0019) 1.144	$\begin{gathered} -0.2072 \\ (0.2557) \\ -0.810 \end{gathered}$	$\begin{gathered} -0.0078 \\ (0.0529) \\ -0.147 \end{gathered}$	$\begin{gathered} -0.0295 \\ (0.0333) \\ -0.885 \end{gathered}$	0.0196 (0.1303) 0.150	-0.1179	0.0063	[2.09]

Note. These regressions are for the floating periods listed in part a of table 5.6. Standard errors are in parentheses below coefficient estimates; t statistics are below the standard errors.
${ }^{\dagger}$ The biased Durbin-Watson statistic is reported in square brackets in those cases in which Durbin's h cannot be computed (is imaginary).

Table 6.17 Significant Cross-Correlation Coefficients for Residuals within Countries and with U.S. Money, Income, and Prices: 0.05 Level or Better

Pegged Period: 1957II-71I (1962IV-70I Canada)

Country	Significant Correlations within Country	Significant Correlations with U.S. Variables
US	$\begin{aligned} & \rho\left(\log P_{1}, R_{1}\right)=-0.348^{*} \\ & \rho\left(\log P_{1},(X / Y)_{1}\right)=-0.310 \\ & \rho\left(\log P_{1},(C / Y)_{1}\right)=0.327 \\ & \rho\left(\log y_{1},(I / Y)_{1}\right)=-0.490^{*} \\ & \rho\left(\log y_{1},(C / Y)_{1}\right)=0.358^{*} \\ & \rho\left(u_{1}, R_{1}\right)=-0.275 \\ & \rho\left(\log P_{1}^{\prime},(X / Y)_{1}\right)=-0.286 \end{aligned}$	N.A.
UK	$\begin{aligned} & \rho\left(\log P_{2}, \log P_{2}^{I}\right)=-0.325 \\ & \rho\left(\log P_{2},(I / Y)_{2}\right)=-0.274 \\ & \rho\left(\log y_{2}, u_{2}\right)=0.272 \\ & \rho\left(\log y_{2}, \log M_{2}\right)=0.274 \\ & \rho\left(u_{2},(X / Y)_{2}\right)=0.279 \\ & \rho\left((I / Y)_{2},(C / Y)_{2}\right)=-0.336 \end{aligned}$	$\begin{aligned} & \rho\left(\log y_{2}, \log P_{1}\right)=-0.350^{*} \\ & \rho\left(\log M_{2}, \log M_{1}\right)=0.327 \\ & \rho\left(\log P_{2}^{I}, \log y_{1}\right)=-0.314 \\ & \rho\left((X / Y)_{2}, \log y_{1}\right)=0.372^{*} \end{aligned}$
CA	$\begin{aligned} & \rho\left(\log P_{3}, \log M_{3}\right)=0.521^{*} \\ & \rho\left(\log y_{3},(X / Y)_{3}\right)=-0.396 \\ & \rho\left(\log y_{3},(C / Y)_{3}\right)=0.427 \\ & \rho\left(\log M_{3}, R_{3}\right)=-0.473^{*} \\ & \rho\left(\log M_{3},(C / Y)_{3}\right)=-0.366 \end{aligned}$	None
FR	$\begin{aligned} & \rho\left(\log P_{4}, R_{4}\right)=-0.320 \\ & \rho\left(\log y_{4}, u_{4}\right)=0.500^{*} \\ & \rho\left(\log y_{4}, P_{4}^{\prime}\right)=-0.311 \\ & \rho\left(\log y_{4},(X / Y)_{4}\right)=0.307 \\ & \rho\left(\log M_{4}, R_{4}\right)=0.349^{*} \\ & \rho\left(\log P_{4}^{\prime},(I / Y)_{4}\right)=-0.367^{*} \\ & \rho\left(\log P_{4}^{\prime},(C / Y)_{4}\right)=-0.334 \end{aligned}$	$\rho\left(R_{4}, \log M_{1}\right)=0.272$

Table 6.17 (continued)

	Significant Correlations within Country	Significant Correlations with U.S. Variables
Country	None	None
GT	$\rho\left(\log M_{6},(C / Y)_{6}\right)=-0.599^{*}$	$\rho\left((I / Y)_{6}, \log y_{1}\right)=0.300$
	$\rho\left(R_{6},(I / Y)_{6}\right)=0.393^{*}$	
JA	$\left.\rho(I / Y)_{6},(X / Y)_{6}\right)=0.380^{*}$	
	$\rho\left(\log M_{7}, \log P_{7}^{\prime}\right)=0.299$	
NE	$\rho\left(R_{7},(I / Y)_{7}\right)=-0.455^{*}$	$\rho\left(\log P_{8}, \log M_{1}\right)=0.303$
	$\rho\left(\log M_{8},(I / Y)_{8}\right)=-0.521^{*}$	$\rho\left(\log y_{8}, \log P_{1}\right)=-0.278$
	$\rho\left(R_{8},(X / Y)_{8}\right)=-0.348^{*}$	$\rho\left(\log P_{8}^{\prime}, \log P_{1}\right)=-0.402^{*}$

Notes. Correlations marked with an asterisk are significant at the 0.01 level or better. The critical values for the correlation coefficients are ± 0.265 (± 0.361 for Canada) at the 0.05 level and ± 0.342 (± 0.463 for Canada) at the 0.01 level.
For each country, correlation coefficients were computed for all possible combinations of the residuals to all the equations (R1) through (R9) or (N1) through (N9) for the pegged period. In addition for the nonreserve countries, correlation coefficients were computed for the residuals of the U.S. equations (R1), (R2), and (R4) (i.e. the $\log y_{1}, \log P_{1}$, and $\Delta \log M_{1}$ equations) with the residuals of each of the equations (N 1) through (N 9). Since equation (N 3) is estimated only in the cases of the United Kingdom and France, the total number of correlation coefficients examined varies by country as follows:

Country	Domestic ρ	International ρ
United States	36	0
U.K., France	36 each	27 each
Other 5 countries	28 each	24 each
	248	174

The following correlation pairs were significant for more than one country:
$\left(\log P_{j}, R_{j}\right):$ United States*, France
$\left(\log y_{j},(C / Y)_{j}\right)$: United States*, Canada
$\left(\log y_{j}, u_{j}\right)$: United Kingdom, France
$\left(\log y_{j},(X / Y)_{j}\right)$: Canada, France
$\left(\log M_{j}, R_{j}\right)$: Canada, France*
($\left.R_{j},(I / Y)_{j}\right)$: Italy*, Japan
$\left(\log y_{j}, \log P_{1}\right):$ United Kingdom ${ }^{*}$, Netherlands
$\begin{array}{ll}\text { Table 6.18 } & \begin{array}{l}\text { Significant Cross-Correlation Coefficients for Residuals within } \\ \text { Countries and with U.S. Money, Income, and Prices: } \\ \text { 0.05 Level or Better } \\ \text { Floating Period: 1971III-76III }\end{array}\end{array}$
$\left.\begin{array}{lll}\hline & \begin{array}{l}\text { Significant Correlations } \\ \text { within Country }\end{array} & \begin{array}{l}\text { Significant Correlations } \\ \text { with U.S. Variables }\end{array} \\ \text { Country } & \text { N.A. } \\ \text { US } & \begin{array}{ll}\rho\left(\log P_{1}, R_{1}\right)=-0.452 \\ & \rho\left(R_{1},(I / Y)_{1}\right)=-0.482\end{array} & \\ \text { UK } & \rho\left(\log P_{2}, u_{2}\right)=0.488 \\ & \rho\left(\log M_{2},(C / Y)_{2}\right)=0.489 & \text { None } \\ & \rho\left(\log M_{2},(B / Y)=-0.536\right. & \\ & \rho\left(R_{2}, \log Z_{2}\right)=-0.505\end{array}\right)$

Table 6.18 (continued)

	Significant Correlations within Country	Significant Correlations with U.S. Variables
NE	$\rho\left(\log y_{8},(C / Y)_{8}\right)=-0.575^{*}$ $\rho\left(\log M_{8}, R_{8}\right)=0.467$ $\rho\left(R_{8},(B / Y)_{8}\right)=-0.512$ $\rho\left((C / Y)_{8},(B / Y)_{8}\right)=-0.588^{*}$	$\rho\left(R_{8}, \log M_{1}\right)=-0.563^{*}$

Notes. Correlations marked with an asterisk are significant at the 0.01 level (exceed 0.549 in absolute value). The critical values at the 0.05 level are ± 0.433.
For each country, correlation coefficients were computed for all possible combinations of the residuals to all the equations (R1) through (R9) and (N1) through (N10F) for the floating period. In addition for the nonreserve countries, correlation coefficients were computed for the residuals of the U.S. equations (R1), (R2), and (R4) (i.e. the $\log y_{1}, \log P_{1}$, and $\Delta \log M_{1}$ equations) with the residuals of each of the equations (N1) through (N10F). Since equation (N3) is estimated only in the cases of the United Kingdom and France, the total number of correlation coefficients examined varies by country as follows:

Country	Domestic ρ	International ρ
United States	36	0
U.K., France	45 each	30 each
Other 5 countries	$\underline{36}$ each	27 each
	306	195

The following correlation pairs were significant for more than one country:
$\left(\log P_{i}, R_{i}\right)$: United States, France*
($R_{j}, \log Z_{j}$): United Kingdom, Japan
$\left(\log Z_{i},(C / Y)_{j}\right)$: Canada, Germany
$\left(\log E_{j},(B / Y)_{j}\right)$: France, Italy
$\left((C / Y)_{j},(B / Y)_{j}\right)$: Japan,* Netherlands*

Table 6.19 Frequency of Significant Cross-Correlation Coefficients for Residuals by Type and Period

	Within Country	With U.S. Variables	
	5% Level or Better		
Pegged period	12.9%		5.2%
Floating period	8.5%	2.6%	
	1% Level or Better		
Pegged period	5.6%	1.7%	
Floating period	2.9%	1.5%	

Table 6.20
Data Sources for the Mark III Model

$(B / Y) ;$	Numerators [B_{j}]	
	USBPQSDR	Nominal balance of payments, official reserve settlement basis, SA, QR
	UKBPQSCF	Nominal balance of payments, official reserve settlement basis, SA, QR
	CABPQSCC	Quarterly change in nominal official reserves, SA, OR
	FRBPQSFF	Quarterly change in nominal net official reserves, SA, QR
	GEBPQSDR	Nominal balance of payments, official reserve settlement basis, SA, QR
	ITBPQSVL	Quarterly change in nominal official reserves, SA, OR
	JABPQSJJ	Quarterly change in nominal official reserves, SA, QR
	NEBPQSSB	Nominal balance of payments, official reserve settlement basis, SA, OR
	Denominators [Y_{j}]	
	USYNQSGN	Nominal gross national product, SA, AR
	UKYNQSGD	Nominal gross domestic product, SA, AR
	CAYNQSCA	Nominal gross national product, SA, AR
	FRYNQSFF	Nominal produit intérieur brut (PIB),SA,AR
	GEYNQSGN	Nominal gross national product, SA, AR
	ITYNQSGD	Nominal gross domestic product, SA, AR
	JAYNQSJJ	Nominal gross national product, SA, AR
	NEYNQSNP	Nominal gross national product, SA, AR
$(C / Y)_{j}$	Calculated as: $(C$ $(X / Y)_{j}$, and $(I / Y)_{j}$	$C / Y)_{j} \equiv(X / Y)_{j}-(I / Y)_{j}-4(B / Y)_{j} . \text { Note that }(C / Y)_{j},$ are at annual rates; $(B / Y)_{j}$ is at quarterly rates.
$D F_{j}$	Floating dummy; is 1 except in the following (pegged) quarters, when it is 0	
	UK 1955I-71II	IT 1955I-71II
	CA 1962III-701	I JA 1955I-71II
	FR 1955I-71II	NE 1955I-71I
	GE 1955I-71I	
E_{j}	US $\equiv 1$	
	UKXRQNLB	Spot exchange rate (London exchange), QAEM
	CAXRQNSP	Exchange rate (Canadian interbank), QAD
	FRXRQNFF	Spot exchange rate (IMF), QAD
	GEXRQNDM	Spot exchange rate (Frankfurt exchange), LMAD
	ITXRQNLR	Spot exchange rate (Rome and Milan exchanges), QAD
	JAXRQNSP	Exchange rate (interbank), QAEM
	NEXRQNGL	Spot exchange rate (Amsterdam exchange), QAW
$g{ }_{j}$	G_{j} / P_{j}, where P_{j} is defined below and G_{j} is:	
	USGXQSFD	Nominal federal government expenditure, SA, AR
	UKGXQSCG	Nominal central government expenditure, SA, AR
	CAGXQSEX	Nominal federal government expenditure, SA, AR
	FRGXQSFF	Nominal central government expenditure, SA, AR

Table 6.20 (continued)

GEGXQSFG	Nominal federal government expenditure, SA, AR
ITGXQSFD	Nominal federal government expenditure, SA,AR
JAGXQSEX	Nominal treasury payments (QAM),SA,AR
NEGXQSFD	Nominal central government payments, SA,AR

$\hat{g}_{j} \quad$ Residuals from $\operatorname{ARIMA}(p, d, q)$ processes fitted to $\log g_{j}$. The (p, d, q) values of the fitted processes are: ${ }^{\dagger}$

US	$(0,1,0)$	GE	$(0,1,1)$
UK	$(2,1,0)$	IT	$(0,1,1)$
CA	$(0,1,1)$	JA	$(0,1,6)\left[\theta_{2}=\theta_{4}=\theta_{5}=0\right]$
FR	$(0,1,1)$	NE	$(0,1,4)\left[\theta_{2}=\theta_{3}=0\right]$

$(I / Y)_{j} \quad$ Numerators $\left[I_{j}\right]$:
USIMQSTL Nominal total imports, SA,AR
UKIMQSCA Nominal total imports, SA,AR
CAIMQSTL Nominal total imports, SA,AR
FRIMQSFF Nominal merchandise imports, SA, AR
GEIMQSTL Nominal total imports, SA,AR
ITIMQSTL Nominal total imports, SA, AR
JAIMQSJJ Nominal merchandise imports (customs basis), SA, AR
NEIMQSTL Nominal total imports, SA,AR
Denominators [Y_{j}] as defined at $(B / Y)_{j}$ above.
$M_{j} \quad$ USM1QSAE \quad Nominal narrow money stock, SA, QAD
UKM1QSDR Nominal narrow money stock, SA,QAM
CAM1QSCC Nominal narrow money stock, SA,QAW
FRM2QSFF Nominal broader money stock, SA,QAM
GEM2QSDR Nominal broader money stock, SA,EQ
ITM1QSDR Nominal narrow money stock, centered on EQ
JAM1QSJJ Nominal narrow money stock, SA, QAM
NEM2QSDR Nominal broader money stock, SA, EQ
$\hat{M}_{j} \quad$ Residuals from ARIMA (p, d, q) processes fitted to $\log M_{j}$. The (p, d, q) values of the fitted processes are: ${ }^{\dagger}$

US	$(1,2,2)\left[\theta_{1}=0\right]$
UK	$(2,1,0)$
CA	$(2,2,4)\left[\theta_{1}=\theta_{2}=0\right]$
FR	$(1,1,6)\left[\theta_{1}=\theta_{2}=\theta_{3}=\theta_{4}=\theta_{5}=0\right]$
GE	$(0,1,3)$
IT	$(1,1,3)\left[\theta_{1}=0\right]$
JA	$(2,1,4)\left[\theta_{1}=\theta_{2}=\theta_{3}=0\right]$
NE	$(2,1,4)\left[\theta_{1}=\theta_{2}=\theta_{3}=0\right]$

$P_{j} \quad$ USPDQSN0 GNP implicit price deflator (1970 $=1.00$), SA
UKPDQSD7 GDP implicit price deflator $(1970=1.00)$, SA
CAPDQS70 GNP implicit price deflator $(1970=1.00)$, SA
FRPDQS70 PIB implicit price deflator $(1970=1.00)$, SA
GEPDQSN7 GNP implicit price deflator $(1970=1.00)$, SA
ITPDQS70 GDP implicit price deflator $(1970=1.00)$, SA
JAPDQSJJ GNP implicit price deflator $(1970=1.00)$, SA
NEPDQSN7 GNP implicit price deflator $(1970=1.00)$, SA

Table 6.20 (continued)

P_{j}^{\prime}	USPIQS70/100	Index of unit value of imports ($1970=100$, IFS series 75), SA
	UKPIQS70/100	Index of total imports unit value $(1970=100$, IFS series 75), SA
	CAPIQS70/100	Index of import prices (1970 $=100$, IFS series 75), SA
	FRPIQS70/100	Index of import prices (1970 = 100, IFS series 75), SA
	GEPIQS70/100	Index of purchase prices of foreign goods (1970 $=100$, IFS series $75 . \mathrm{x}$), SA
	ITPIQS70/100	index of import prices ($1970=100$, IFS series 75), SA
	JAPIQS70/100	Index of contract prices of importers (1970 = 100, IFS series 75.x), SA
	NEPIQS70/100	Index of unit value of imports ($1970=100$, IFS series 75), SA
P_{j}^{R}	See identities (R19) and (N19) and table 5.7.	
$P^{R O}$	Computed as VPOIL/($100 \cdot P_{1}$), where VPIOL is the doliar price index of Venezuelan crude oil $(1970=100)$ described in table 6.21.	
R_{j}	USRSQN3T	Three-month treasury bill yield, QAD
	UKRSQN3T	Three-month treasury bill yield, QAEM
	CARSQNTB	Three-month treasury bill yield, QAEM
	FRRSQNST	Short-term money market rate on private bills, QAD
	GERSQN3M	Three-month money market rate, pre-1967 LMAW, post-1966 LMAD
	ITRLQNGU	Market yield on long-term corporate bonds, QAM
	JARSQNLD	Average contracted interest rate on bank loans, QAW
	NERSQN3T	Three-month treasury paper yield to maturity, QAD
t	Time index ($1955 \mathrm{I}=1,1955 \mathrm{II}=2$, etc.)	
u_{j}	USURQSCV	Unemployment rate, SA, QAM
	UKURQSDR	Unemployment rate, SA, QAM
	FRURQSFF	Unemployment rate, SA,EQ
	For experiments	discussed in text (these do not appear in the model):
	CAURQS14	Unemployment rate, SA
	GEURQSDR	Unemployment rate, SA
	ITURQSDR	Unemployment rate, SA
	JAURQSUR	Unemployment rate, SA, QAM
	NEURQSSE	Unemployment rate, SA
$(X / Y)_{j}$	Numerators [X_{j}]:	
	USEXQSTL	Nominal total exports, SA,AR
	UKEXQSCA	Nominal total exports, SA,AR
	CAEXQSTL	Nominal total exports, SA,AR
	FREXQSFF	Nominal merchandise exports, SA,AR
	GEEXQSTL	Nominal total exports, SA,AR
	ITEXQSTL	Nominal total exports, SA,AR
	JAEXQSJJ	Nominal merchandise exports (customs basis), SA,AR
	NEEXQSTL	Nominal total exports, SA,AR
	Denominators [Y]	$\left.Y_{i}\right]$ as defined at $(B / Y)_{j}$ above.

Table 6.20 (continued)
$\hat{x}_{j} \quad$ Residuals from ARIMA (p, d, q) processes fitted to $(X / Y)_{j}$. The (p, d, q) values of the fitted processes are: ${ }^{+}$
US $\quad(0,1,3)\left[\theta_{1}=0\right]$
UK $\quad(0,1,7)\left[\theta_{1}=\theta_{3}=\theta_{5}=\theta_{6}=0\right]$
CA $\quad(1,1,8)\left[\theta_{1}=\theta_{2}=\theta_{3}=\theta_{4}=\theta_{5}=\theta_{6}=\theta_{7}=0\right]$
FR $\quad(1,1,4)\left[\theta_{1}=\theta_{3}=0\right]$
GE $\quad(0,1,4)\left[\theta_{1}=\theta_{2}=\theta_{3}=0\right]$
IT $\quad(2,1,11)\left[\theta_{1}=\theta_{2}=\theta_{3}=\theta_{4}=\theta_{5}=\theta_{6}=\theta_{7}=\theta_{9}=\theta_{10}=0\right]$
JA $\quad(2,2,9)\left[\theta_{1}=\theta_{2}=\theta_{3}=\theta_{5}=\theta_{6}=\theta_{7}=\theta_{8}=0\right]$
NE $\quad(0,1,9)\left[\theta_{2}=\theta_{3}=\theta_{4}=\theta_{5}=\theta_{6}=\theta_{7}=\theta_{8}=0\right]$
$y_{j} \quad$ USYRQSN0 Real gross national product, SA,AR
UKYRQSD7 Real gross domestic product, SA,AR
CAYRQS70 Real gross national product, SA,AR
FRYRQS70 Real produit intérieur brut, SA,AR
GEYRQSN7 Real gross national product, SA,AR
ITYRQSD7 Real gross domestic product, SA,AR
JAYRQS70 Real gross national product, SA, AR
NEYRQSN7 Real gross national product, SA,AR
$y_{j}^{P} \quad$ See identities (R 11) and (N 11). All $\phi_{j 2} \equiv 0.025$; other parameters are:

Country	$\phi_{j 3} \equiv \phi_{j 1} / 0.975$	$\log y_{j,[1954 \mathrm{~V}]}^{P}$
US	0.00866	6.34717
UK	0.00670	3.34166
CA	0.01200	3.70432
FR	0.01379	5.68231
GE	0.01143	5.76526
IT	0.01218	10.15820
JA	0.02280	9.65613
NE	0.01161	3.97958

$y_{j}^{R} \quad$ See identities (R18) and (N18) table 5.7.
Notes. "Nominal" implies billions of domestic currency units (DCUs). "Real" implies billions of 1970 DCUs. The nature of each series is indicated following its description by SA if it is seasonally adjusted and any of the following which (generally) apply:

AR	flows at annual rates
EQ	end of quarter data
LMAD	average of daily data for last month of quarter
LMAW	average of weekly data for last month of quarter
QAD	quarterly average of daily data
QAEM	quarterly average of end-of-month data
QAM	quarterly average of monthy data
QAW	quarterly average of weekly data

${ }^{\dagger}$ The q in the descriptions of the ARIMA processes for \hat{g}_{j}, \hat{M}_{j}, and \hat{x}_{j} indicates the highest-order moving average term which was fitted; some θ_{i} (indicated in square brackets) were, however, constrained to equal 0 in the estimation.

Table 6.21 Dollar Price Index of Venezuelan Crude Oil (VPOIL; $1970=100$)

	Quarters			
Year	1			
1955	105.015	105.015	3	4
1956	103.052	104.034	105.015	103.052
1957	106.978	107.959	107.052	102.071
1958	107.959	107.959	107.959	107.959
1959	105.015	99.1264	99.1264	110.904
1960	100.	100.	100.	99.1264
1961	100.	100.	100.	100.
1962	100.	100.	100.	100.
1963	100.	100.	100.	100.
1964	100.	100.	100.	100.
1965	100.	100.	100.	100.
1966	100.	100.	100.	100.
1967	100.	100.	100.	100.
1968	100.	100.	100.	100.
1969	100.	100.	100.	100.
1970	100.	100.	100.	100.
1971	117.	126.	121.	127.
1972	137.	122.	132.	131.
1973	142.	215.	215.	215.
1974	550.	550.	550.	572.
1975	587.	587.	587.	633.
1976	633.	608.	614.	632.
1977	683.	683.	683.	

Sources

Basic data from International Financial Statistics.
1955-59 data (base 1953 = 100): February 1958-62 issues, respectively.
1960-65 data (base 1958=100): February 1963-68 issues, respectively.
1966-67 data (base $1963=100$): February 1970-71 issues, respectively.
1968-70 data (base $1963=100$): February 1972 issue.
1971-72 data (base $1971=100$): February 1975 issue.
1973-74 data (base 1971=100): February 1977 issue.
1975-77 data (base $1971=100$): December 1977 issue.
All of the above observations were rebased to $1970=100$ by repeated applications of the ratio method.

[^0]: 4. If, for example, the nonreserve central banks smoothed out the Federal Reserve System's erratic growth-rate changes via an effective sterilization policy, the actual variation in money shocks might be too small to estimate a significant coefficient even though a substantial monetary shock, if it were ever attempted, would have a substantial effect on real income. Although such effective sterilization appears consistent with results reported below, the authors are not agreed on its existence.
 5. The long-run parameter estimates are more stable, of course. For example, five of the long-run permanent income elasticities lie between 0.5 and 1.5 , with 0.2 for the United Kingdom and 3.0 for France as the extreme values.
[^1]: 6. The current troll system regression package has a program defect when 2SLS and correction for autocorrelation are used simultaneously. France, Germany, Italy, and Japan appear to have significant positive autocorrelation judging from Durbin's h statistic.
 7. See Darby (1980) and chapter 16.
[^2]: 8. Distributed lags of the military variables alone or in combination with the balance-ofpayments variables also failed to enter.
 9. The implications of sterilization (and hence endogenous domestic credit) are examined in chapters 10 and 11.
[^3]: 10. This may be because with relatively reliable import price data we can estimate separate import demand and supply equations while the export equation is a market equilibrium equation in which the exchange rate and foreign price level enter directly. That is, an increase in the relative price of imports-for given quantities of imports-increases the ratio of the value of imports to nominal income. An increase in the price level, ceteris paribus, increases the value of exports and nominal income proportionately.
[^4]: 11. We are indebted to Robert P. Flood, Jr., for suggesting this check.
 12. These 923 cross-correlations are the main potential dangers for omitted channels. Given the relatively clean bill of health reported below for these, we did not compute the other 3,989 cross-correlation coefficients.
[^5]: 14. In some cases, the data series names in the Data Appendix will differ slightly from those used here as an indication of such revisions; the correspondence will be obvious from the descriptions. We based our judgment of whether or not to reestimate the whole model on an examination of changes in reestimated regressions of only those equations in which the revised data or their transformations appeared. The only remaining differences are ones that passed this check.
