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Annals of Economic and Social Measurement 5/4, 1976

NUMERICAL ASPECTS OF MULTIVARIATE NORMAL
PROBABILITIES IN ECONOMETRIC MODELS*

BY J. E. Durr

The role of Multivariate Normal Probabilities in Econometric Models has in the past been somewhat
restrictive because of the unavailability of useful computational formulas.

Using the author's recent integral representations for the Multivariate Normal Probability Integral,
ThaI (1973) and (1975), highly accurate and efficient computational formulas are now available for
computing normal probabilities of dimension up to 6. These formulas have direct application to the
Maximum Likelihood procedures which are of interest in econometric modelling.

1. INTRODUCTORY SUMMARY

Prior to 1972 and after years of considerable effort, the only known general
representation for multivariate normal upper and lower probabilities consisted of
Pearson's tetrachoric series (Kendall, 1941) which is well-known to be computa-
tionally unattractive for dimension K >2. A reasonably complete bibliography
relating to rnultivariate normal probabilities up to 1972 can be found in Johnson
and Kotz (1972). Milton (1972) applied a method based on a multidimensional
iterated Simpson's quadrature to the customary iterated form for either an upper
or lower probability integral. Milton's computerized procedure, however, appeais
to be at least one order of magnitude in running time slower than what is now
available.

In the recent paper DuIt (1973), this author obtained an integral transform
representation over (0, co) for upper and lower multivariate normal probabilities
using Pearson's tetrachoric or orthogonal series, Kendall (1941), as a starting
point. A simplified representation for the normal and an extension to the
multivariate t are given in Dutt (1975). Tne representations are for arbitrary
normal and t probabilities of arbitrary dimension and correlation matrix.

The integral transform representation for multivariate normal probabilities is
very useful when numerical evaluation is by the GaussHermite quadrature
method. A short table based on the integral transform representation for the
quadravariate normal orthant probability P4 which, except for nearly singular
correlation matrices, is accurate to 7+ significant digits, is found in Dutt and Lin
(1975). A more extensive table for P4, Dutt and Lin (1975a) and a short table for
the trivariate normal, Dutt, Lin and Desai (1976) will be available shortly.
Accurate computational formulas arc also derived for the exponential, error and
arcsin functions, Duu, Lin and Tao (1973). Integral transform representations
over (0, cx)) for arbitrary upper and lower multivariate probabilities with applica-
tion for computing bivariate and equicorrelated trivariate x2 probabilities is
discussed in Dutt and Soms (1976). A table of the trivariate t for unequal
correlations is found in Dutt, Mattes, and Tao (1975).

* Presented at the NBER-NSF Conference on 1)ecision Making Under Uncertainty, University

of Chicago, 16-17 May. 1975.
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Attention here is focused on properties of the integral transforni represcnta/ tion over (0, ) for mullivariate normal probabilities which might he of interest in/ econometric niodels. Numerical results are discussed for several correlation/ structures and dimensions up to six.

2. INTEGRAL TRANSFORM REPRESENTATiONS oVER (0, aD) FOiL UPPER ANDLOWER MULTI VARIATE PR0BABILrnES
Integral transform representations over (0, co) are here summarized for anarbitrary continuous multivariate distribution and in particular for the mul-tivaria(e normal. The integral representation follows in the general case from aslight modification of a theorem of Gurland, Gurland (1948), Dull and Soms(1976). That such a modification was possible in general was only realized afterthe integral representation for the multivariatc normal was derived from thetetrachoric series, Dint (1973, 1975). Iloth approaches however, follow eitherdirectly or indirectly from the Inversion theorem.Let X.,.... X, have the K dimensional cdl FK(x) and correspondingcharacteristic function /(). For k K, let j(f) be the characteristicfunction corresponding to the marginal distribution of X,, . . . , X,,, whereI1,..-,Jk isasubsetoftheintegers I,.. .,K.Now define 'kj,..... as the integral transform

k(2,1) 'kj1,.. = (1/2 j J {Real ,kj, fl fri dt,

where IXk;ji.......k[ek;f,,.. ,jk(b] and &[f(t .....1k)] is the kth centraldifference about 0 of f(t, .. . , t)

k{f(tl .....')]=f(t,... tk) f(-', t2.....4)
- 1(t, 1 ......- I, t)+f(t, 2, :4.....4)+ +(I)kf(:1,.. .

and is a continuity point of the distribution of x,......,Then, from Dutt and Sonis (1976, equation 2.3), if a (a1.....ak) is acontinuity point of FK, the integral transform representation over (0, co) for anarbitrary Continuous multivariate lower probability is
(2.2) FK(a)= (I)k (I)Kl I(a,)

(4)2
I2(a1, a)

IK-3- () 13(a1, a, ak)

+...+JK(aI,...,aK).with 'k;j,.....A Ik(aj.....,
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For upper probabilities, the negative signs are simply changed to positive

ones. In Gurland's work, 'k;ji 1k
relates to the real part of

(2.3)
(21)k r\ 4 dt,

where 4 is a continuity point of the marginal distribution of X,, .. , X and for

any function gW, using the notation of Outland (1948).

..gQ)dt=iimJ... J gQ)th.

l;

As they stand, the Cauchy principal value integrals in equation (2.3) are

divergent. This can be seen in the case of the bivariate normal. One of the integrals

in equation (2.3) is of the form

(2.4) J cos a(11 + t2)2(, t2; p) dt1 dt2/t1t2

which as E-O, T-co is divergent. On the other hand, using equation (2.1) the

integrand is bounded at the origin and the integrals can be used in numerical

integration.
The integral representation over (0, x) for the multivariate normal may be

either treated as a special case of (2.2) or obtained from thc tetrachoric series in

the following way.
The K dimensional normal probability integral is defined as

LK(xl,...,xK;R)=I ...j nK(I0,R)dy
Xi Xl.

for any real numbers x1, . . . , x,. The integrand nK(yj0, RK) denotes the K

dimensional standardized normal density with correlation matrix R.

Consider the representation of L by the tetrachoric series (Kendall. 1941)

(2.5)

where

LK(x!,...,xK;R) -..
fl2O )-t,i

K

1K J)K [1 (r'/j,!) II (nk!)rflk(xk),
kI

rn <n

K
K

1K; (iK), n,2ñ,
1=1
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I

I

say, and rm(x) is the rnth tetrachoric function (Ahiamowitz & Stegun, 1964, .
934).

(2.6) T,(x) Z(x)He11(x)J(rn !)2, in 1, 2,...,
with

Z(x) = (l/(27r)112) exp (/2)
and He(x) is the nth degree Hermite polynomial

He(x) = [(_-1y/Z(x)](-)Z(x) it = 0, 1,.
From the integral representation of the Hermite polynomial (Abramowitz &Stegun, 1964, p. 786), an integral representation of the tetrachoric function Tm(X)is obtained as

(2.7) Tm(X) = (1/(rn i)2)
J

exp (s2/2)s' cos (rs - (in -- 1)42) ds,
rn = 1,2.....The direct substitution oi Tm (x) given by (2.7) into the tetrachoric series (2.5)yields after considerable manipulation Dutt (1973, 1975)

(2.8) L(x1,. ..,xK;R)=

(!)X_(1)KL
D'.1+()2 D1+()"3ii i<j. 1ri*

The D functions are defined by

where, for the first few, K,

d'=sin1=sin(x1s1),
d=e_12cos1_2e12cos12,d

elZ.f13+23 sin1,23e121323
Sifl,243 e

-12+13-23 sin1_23e12323 sin123,= e1 2+13+23+14+2+34 COSI+2f3+4 +
12-Li- 23- 14--2434 COS_1 --2-f 34-4

+1241323_14+24_34 COS2_34
+e2_13231424_34 cos1234

e_12_1323_14f2434 Co5

+2+3+4eI?13_,l+1424f34 COS123f4e12
13-23+14+24-34 C0S1234

e1213+2314_2434 cos14234;and
D;j11k = D(x11

,...,xjk). For notation,
epq,+.p= { (rpjqispjsq +

. +rpqspsq,)},
sin1++=sin(x1s+ . . .

COs,+cos(xs+ ...
where R = ((z,))
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0
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I

A negative sign on the index q1
Corresponds to +rq,sp,sq, and p1

corresponds to x,,,s1,.

The k dimensional normal cumulative probability is defined by

xI

(2.10)
nk(y0,R)dy.

In terms of the upper tail probability Lk,

(2.11) 'lk(xl,...,xk;R)=Lk(xl
,Xk;R)

3. PROPERTIES OF D FUNCtiONS

Consider again the integral representation over (0, co) for Lk

(2.8) Lk (
_(1)k D.;+(2 ...

-
,;-, .,. .-.

It is noted that in particular

(3.1)
D(x)=4erf(x/'J)

with

(3.2)
D(0)=0

and

(3.3)
Dx) -

Since D(x) for k odd, is a sine transform with argument x's then equation (3.2)

generalizes to

(3.4)
D(0) 0, fork odd.

Moreover, it can be shown easily with equation (2.8) that by mathematical

induction on k, equation (3.3) generalizes to

(3.5)

1.

From a practical point of view, equations (3.5) means that to at least 3 digits of

accuracy
D(4)

(_)k, for any k > 1.

In general, D(x), for k > I is non-negative and monotonically
increasing for

k even and, non-positive and monotonicallydecreasing fork odd. There is aslight

inconsistency for k = I in that D1'(x) is defined in equation (3.1) as a positive

function for positive x.
For theorthant case (i.e. x =0) in addition to identity (3.4), it was previously

noted, Dutt (1975) that

(3.6)
D(0. 0; r) = (arcsin r)/2ir.
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;-,-c,,.-_,r-- ,--a,c

If P Lk(O,. . , 0) and D°= D(O,..., 0) then from equation (2.)

(arcsin,)/2rI+ ( D,1114I

3.1 Transfer of Sign changes from x, to
For Ic I it is clear that

(3.1.1)

For k> I, attention need be focused on only d. For k 2, consider
d' = e+'I2S cos (x1s1 x2s2) e l22 cos (x1s1 +XiS2)for a single sign change (i.e. either x1 orx2) and then for a double sign change (i.e.

both x1 andx2).
For a single sign change

(3.1.2) D(x1, x2; r12) D'(x1, X2; r12) = D(x1, x2; r12)while for the double sign change

(3.1.3) D(x1, x,; p) = D(x1, x2; p12).Therefore, for a single sign change a negative sign is transferred from either x, orx2 to r12 with a negative sign in front of D. A double sign change of x1 and x2leaves D unchanged.
Fork 3 and considering a sign change ofx to x1,

(3.1.4) D(----x1, x2. x3; r12, r13, r23) = D'(x1, x2, x3; r12, rfl, r23).The sign change is transferred to the correlation in which one of the subscripts1=1.
For the double sign change x - x1, x2 -*

(3.1.5) D'(x,, x2, x3; r,2, r13, r23) = D(x , x2, x3; r17, r13, r23)and the triple sign change
(3.1.6) D(-x1, -- x2, x3; r12, r13, r23)=z D(x1, x2, x; r12, r13, r23).From equation (3.1.3) and (3.1.6) it should be clear that in generalD(x; (l)kD(_x; rq).Moreover, for any r and k if x (xh,.. . , xJ) then

D*1k . . . , X1., + X1 ......+Xjk,
= (-1 )rDc(X; _r, . . . , r,, +r1,,, , . . . , +r)provided 1ik, ij, and 1int. In other words, a change of sign occurs

only among the r, for which one subscript is from the set 11.....j,.
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then

(3.2.1)

L(--x,,,. . . ,
-x1,, x1,,. . - ,

-r,,,, . . . ,

provided 1isk,ij,,, and irnt.
The results of Sections 3.1 and 3.2 would apply also to the mixed case.

3.2 Symmetry Considerations

For k = 2. observe that
x2; t)r D(x2, x; r12)

which implies that for fixed x1 and x2, there are two equivalent probabilities

x2;P12) = L2(x2, x1; p12).

For k = 3, there are the following six equivalent Di's:

x2, x3; r12, r13, r23)

=D(x1, x3, x2; r13, r12, r23)

D(x2, X1, x; r12, 23 r13)

= D(x2, X3, X1; p23, p12, r13)

x; r13, r23, r12)

x1; r23, r13, r12).

The six equivalent Dr's lead to six equivalent L3's.

Fork = 4, the general pattern is readily apparent. For a fixed x1, x2, x3 and x4

and fixed {rq}, there are 4! 24 equivalentDi's relating to the permutations of (1,

2, 3, 4). However, for a given set of the six correlation coefficients there are

6! 720 corresponding Di's which taken together with the above mentioned 24

yields a total of 30 distinct Dr's with each occurring in 24 equivalent ways. The

permutations of {p,j yield, therefore, the total number of probabilities and the

permutations of {x1}, the subset of equivalent probabilities.

3.3 Mixed (Upper and Lower) Probability Integral

If the mixed probability integral is defined as

fx, (X1 f
.fk =J . . . J ' J .. . J

{r,}) dy

-c A

4. SUMMARY OF COMPUTING
FORMS FOR L,

There are a variety of different options in computing the D7 functions

depending on the primary needs of the user. There may be, forexample, interest

in high accuracy (of the order of 7-8 digits) for a relatively small list of prob-

abilities (less than 100), or moderate accuracy (of the order of 3-4 digits) for a

large number of iterations (1,000+), or interest in dimensions greater than five

where overflow can be a problem. Clearly, the more specific the case of interest
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the greater would be the advantages in computer running time and accuracy.Moreover, it would not be prudent to use the geneal form of Lk lot- theequcorrelated case or for one of the orthant cases.A summary of the computing formulas for L1 are therefore presented in theitmost general form with the integration coefficients specified SO as to anticipateoverflow in the higher dimensions.
For k I in equation (2.8)

(4.1) L1(x1)D1
where

DT1 (1/v) f sin (x1s1) ds/s1.
Application of the Gaussian quadrature formula (Abraniowitz and Stegun,1964, p. 924) yields the computing formula for D'.1 uS

(/) Y sin (Ax1)
where y. w1/A, A1 = {w1} are the Christoflel weight factors, and {z1} are thezeros of the Mth degree i-termite polynomial. With M even, N = MJ2 so that Ndenotes only the positive zeros. The {yJ and {Aj are used for all D. The { z1) and{w1} are found in Stroud and Secrest (1966).For k = 2, equation (2.8) yields

(4.2)

where

For k 4
(4.4)

L2(x1,x2;p,2)=H-[D.1 +D;2}+D;17

D';i2=(1/ir2) y1y,d'i=1 j-1
d=

exp[p12A1A2]cos(x1A2x2A2)

exp[--p12AA2cos(x1A1 +x2A2).For k =3
(4.3) L(x1, x2. x1; P12, P13, P23) 1/8{D1 +D;2+D:1]

+

1where

YY,Y d.i I j I k

L4(x1, x2, x3; P12, . . . ,f234)
= 1/16[D1+D'2+D'3+D4]

±1[D'12 + D;13 + D';23+ D4 + D;24 + D'.14]ir,-* r* r-i* r*21'-'3;123 T '-'3;124 LI3;134 ' '3;234r*TL4;1234
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where

where

D1234 = (1/2ir4) f YIYfYkY,d.
I I j = I k I t I

Fork'S,
(4.5)

L5(x1, x2, x3, x4, x; P12, . . . P4s)

1/32 [D'.1 t + D;3 + D't4 +DJ

+ LF5.12345

YiYjY&YrYsd'
i1 j1 k1 rl s1

d(A1, A,, Ak, 'r A5 x1, x,, x3, x4, x5)

Jsin(-f+±++)

exp[++-- +-- + ]sin(-- ++++)

+ }sin[± --I- + +)

exp[+ + --+-- +Jsin(++--- +4-)

exp[-- ++ + ----+]sin(-f-+++)

exp[
+exp[ + ++ + ± + ---}sin(

+exp[+++++--+--]sin(+-4-+)
+exp{.+ + ++ ++ ]sin(+ ---++)

+exp[+--++--+---++Jsin(-f-
++)

+exp{ -f ++ + +]sin(+ + --4-)

+exp[+ +-4- -----++ +Jsin(+++)
+exp[+ -4-- + + + ±}sin(+ ++)
+exp[_- 4--f +4-4--- ]sin(+++)
+exp[ ++ + ++ + ]sin(+ ++ )}

555

10 terms

1r* im* r* ir*
4tL 3;123 '-'3;I24 -'3;I34 '-'3;234 L3;J25

D*+ 313S
*
3;235

* j * *
3; 145 3;245 3;345

Jr r * * * im*

21-'4;I234 -'4;1235 -'4;I245 '-'4;I345 -'4;2345



where the order of correlalion is
P12' P13, P23 Pl4 P24 P34, P15' P25' P35' P4

5. NUMERICAL. Rtsurs
As was mentioned in the Introduction, a variety of tables and numericalresults are now available based on integral transform representations of mul-tivariate probabilities. In the normal case, these evaluations cover primarily L3,L4, P4 and P5 and, are probably far more accurate than necessary for moststatistical applications. An accuracy of four significant digits seems reasonableparticularly for higher dimensions. It is also clear that for higher dimensionsexcessive computer running time becomes a serious problem and some alternateapproach is needed.

The value of N, the number of positive Hermite zeros, needed for a specifiedaccuracy depends to a large degree on the determinant IR! of the correlationmatrix R and the limits (x1} of the probability integral. A guide for choosing Nbased on jR and max x, so as to achieve 4 digit accuracy (i.e., four correct digitsafter the decimal point) in D is available in Table 5. 1. Any rule based solely onRj would not be completely adequate. However, for a given accuracy, therequired N does not seem to vary significantly for Di,. . . , D although larger x1require higher N. Somewhat larger N are needed for D while generally smaller Nwould be more satisfactory for D than for D, and more satisfactory forD thanforD'.
In the four variateorthant case, a table of P4 is available for the 21 correlationsets of Bacon (1963) as a function of N and IRI, Dutt (1973). An enlargement ofthat table to include 4)4 for x, = 1, 2 and 3, as a function of IRI and the J%T which aresufficient for fourdigit accuracy appears in Table 5.2. The required N appears inparentheses. It is also noted that a given N is satisfactory for both +x, and x1 sothat the 4)47s could be replaced by a corresponding set of upper tail probabilities,L4's.

TABLE 5.1
A GUIDE Bisnn ON AN!) max X FOR CHoosING N IND'(k >2)FOR FouR DIGITACCURACY

* For the orthant case (x = 0), D =D 0
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maxx1
IR - 0

1 2 3

0.7<IR 1 1-2 2-3 3-4 5-6
0.5<IRI0.7 2-3 2-3 3-4 5-6
O.3<IRIsO.5 2-4 3-4 3-4 5-b
0.2<IRIs0.3 3-4 3-4 4-6 5-ti
0.1<IRI0.2 3-6 4-6 4-8 6-5

O.05<jRaQ.1 4-6 4-6 4-8 6-8
0<fRc0.05 4-12 4-12 4-12 6-12
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Work is now in progress to Complete the Computer routines for D and Dwhich would then permit computation of the general normal probability Lk for allk 8 and for the orthant probability Pk for all k 9. The approach then would beto look for sinipic approximations for Di,..., D which would he accurate toabout three or four digits and which would he generally useful in iterativemaximum likelihood procedures Numerical properties of D',... D' areexamined graphically in an appendix available on request from the author for fourcorrelation matrices which are identified as EquicorreJae Markov, Toeplitz andNested. The corresponding probabilities L2,. . . , L for the first three matrices areavailable in that paper.

6. APPLICATrONS

Two applications where computational formulas of multiyariate normalprobabilities would be useful are briefly discussed. The first application relates to amodel of contraception discussed by Heckman and Willis (1973) in which themathematical details are here presented in a slightly more general way. Thesecond application pertains to the mtiltivariate probit probleni Ashford andSowden (1970). Other applications might be inferred from McFadden (1974).The maximum likelihood method is used for illustration purposes although otherestimation methods are available, Amemiya (1972). See also Tobin (1955, 1958)for an application in economics

6.1 Application # 1A Model ofContraception
Consider a set of Continuous dependent random variables S1, S2, .. wherethe index refers to time. Specifically, let S1 denote a woman's "level of contracep-tion" at month j and consider M relevant economic variables E1,. . ., E1. E1 mayrelate to education level, E2 to income level, etc. The event that a woman becomespregnant in thejth month and leaves the sample is defined under this model by<A, where A =ao±MiaE and {a1J are unknown parameters relating tofor example, first pregnancies only. The a1} would presumably change for second,third, etc. pregnancies The inequality IS reversed when shc does not becomepregnant, and hence remains in the sample.The Probability of a Woman becoming pregnant in the kth month is

(6.1.1) Pf{Si>A .Skl>A;Sk<A]_(A)
If now there is an independent sample of such Women with different birthintervals the method of maximum likelihood in principle may be used to estimatea, a1,. . by choosing those parameter values which maximize the joint probabil-ity of observing the sample distribtition of birth intervals. To carry out the MLmethod, it is necessary to specify a Probability dstribution fo S1, . . . , S.To put this in a somewhat more general framework, let 5 be represented asthe sum of two independent random variables S = U1 + E, where (U1,..., Uk) isdistributed as the mulfivariate normal k (/LIO {o..}) and e as n1(e O, o). It thenfollows that (S1, .. , S) is distribrited as the multivariate

normal ilk(SIO, {o +
558



o}). In particular the correlation coefficient between S and S5 is given by

Ph = (o +u)/'Jo1 + o)(o-, +o)
=ôI'94

In this context then the probability in equation (6.1. 1) would he conditional
on e and interest would be in the probability

JOD

-,
which in terms of the Lk notation takes the appearance

(6.1.2)
J

L(x1,.. .,XkI,Xk)flj(E)dE

withx=(A--e)/o-1fori=1,...,k.

6.2 Application #2Multivariate Probit Model
Consider k response systems S1,.. . , S,, in which the reaction of system S1 is

defined to be of the form

y1x1(z)/i1 fori=1,...,k
where x-(z) is a suitable response and i/i is referred to as the tolerance for system
S1. In other words, if x, (z) > a toxic effect occurs.

It is reasonable to assume that the tolerance vector !/' = (i .....1/1k)' is
distributed as multivariate normal. The response functions x.(z) are so chosen
that all univariate inarginals associated with 1/i are standardized normals.

Let lFk(xl,. . . , xk)Lk(---xI, ... , b) where the subscript is dropped for
k = 1. Then the probabilities of quantal response (+) and non-response (--) for
system 5, are

p(z) =
pT(z)F[xa(z)] 1t'[x1(z)J.

The probabilities that systems S1 and S1 both have positive responses is

p(z) = 42[x1(z), x.(z)].

In the bivariate case the other three probabilities of interest are

p(z) I2[xl(z), x(z)] p'(z)p(z)
p(z) = F2[x1(z), x(z)] = p7(z) - p(z)

and
I (p+p+p).

For the k dimensional case, interest is in an expression of the form

pr,.....
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CONCLUDING REMARKS

The computational formulas based on integral transform representations
over (0, ) fo multivariate normal probabilities have been summarized with
specific emphasis given to properties of the D* functions in the representations. In
an appendix available on request from the author, numetical aspects of

are examined for four important correlation matrices identified as
Equicorrelated, Markov, Toeplitz and Nested. Thegeneral curve shapes of D in
these four cases suggest the possibility of obtaining simple approximations in
more general cases.

A variety of numerical results, most of whichwere previously unavailable are
given for the multivariate normal probabilities L2.....L4, in an appendix avail-
able on request from the author. Two specific applications to econometric models
are noted.
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