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'Annals of Economic and Social Measurement 5/4, 1976

NUMERICAL ASPECTS OF MULTIVARIATE NORMAL
PROBABILITIES IN ECONOMETRIC MODFEI §*

By I. E. Durr

The mf" _of Multivariate Normal Probabilities in Econometric Models has in the past been somewhat
restrictivé because of the unavailability of useful computational formulas. '
Using the author’s recent integral representations for the Multivariate Norma! Probability In
" ! ! tegral,
Dutt (1?73) and (1975), !lfghly accurate and efficient computational formulas are now (uz:'lmbl!c,S for
computing m;rmql probabilities of dimension up to 6. These formulas have direct application to the
Maximum Likelihood procedures which are of interest in econometric modelling.

1. INTRODUCTORY SUMMARY

Prior to 1972 and after years of considerable effort, the only kiown general
representation for multivariate normal upper and lower probabilities consisted of
Pearson’s tetrachoric series (Kendall, 1941) which is well-known to be computa-
tionally unattractive for dimension X >2. A reasonably complete bibliography
relating to multivariate normal probabilities up to 1972 can be found in Johnson
and Kotz (1972). Milton (1972) applied a method based on a multidimensional
iterated Simpson’s quadrature to the customary iterated form for either an upper
or lower probability integral. Miiton’s computerized procedure, however, appears

.to be at least one order of magnitude in running time slower than what is now
available.

In the recent paper Dutt (1973), this author obtained an integral transform
representation over (0, 00) for upper and lower multivariate normal probabilities
using Pearson’s tetrachoric or orthogonal series, Kendall (1941), as a starting
point. A simplified representation for the normal and an extension to the
multivariate ¢ are given in Duit (1975). The representations are for arbitrary
normal and ¢ probabilities of arbitrary dimension and correlation matrix.

The integral transform representation for muitivariate normal probabilities is
very useful when numerical evaluation is by the Gauss-Hermite quadrature
method. A short table based on the integral transform representation for the
quadravariate normal orthant probability P, which, except for nearly singular
correlation matrices, is accurate to 7 + significant digits, is found in Dutt and Lin
(1975). A more extensive table for P,, Dutt and Lin (1975a) and a short table for
the trivariate normal, Dutt, Lin and Desai (1976) will be available shortly.
Accurate computational formulas are also derived for the exponential, error and
arcsin functions, Dutt, Lin and Tao (1973). Integral transform representations
over (0, co) for arbitrary upper and lower multivariate probabilities with appllca
tion for computing bivariate and equicorrelated trivariate x probabilities is
discussed in Dutt and Soms (1976). A table of the trivariate ! for unequal
correlations is found in Dutt, Mattes, and Tao (1975).

* Presented at the NBER-NSF Conference on Decision Making Under Uncertainty, University
of Chicago, 16-17 May, 1975.
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Attention here is focused on properties of the integral transform répresenta-
tion over (0, o) for multivariate normal probabilitics which might be of interest jn
econometric madels. Numerical results are discussed for several correlation
structures and dimensions up to six.

2. INTEGRAL TRANSFORM REPRESENTATIONS OVER (0, ) FOrR Upper AND
Lower MuLTivARIATE ProBaBILITIES

Integral transform representations over (0, 0) are here summarized for an
arbitrary continuous multivariate distribution and in particular for the mul.
tivariate normal. The integral representation follows in the general case from 4
slight modification of a theorem of Gurland, Gurland (1948), Dutt and Soms
(1976). That such a modification was possible in general was only realized after
the integral representation for the multivariate normal was derived from the
tetrachoric series, Dutt (1973, 1975). Both approaches however, follow either
directly or indirectly from the Inversion theorem.

Let X1, .. .. Xk have the K dimensional cdf Fyix) and corresponding
characteristic function dx(t). For k <K, let iy .. i(t) be the characteristic
function corresponding to the marginal distribution of )(i,,...,/\’,h where
Jis- -, ji is a subset of the integers 1. . . , K.

Now define 7, sr...n S the integral transform

O ey p=1/2mp[ " f:o{Real Ay sV T 1)
0 ( r=]

where 4, = Afe™ %, (0] and Alf(t, .. 8)] s the kih central
difference about Oof f(u,, . .. s )
Aclftt. .. a))=1,, .| S0 ft, 6, g
IR (V1 SN (=t 1y, 1, &)
MR o /1 G
and g is a continuity point of the distribution of Xiss o oo, X;

Then, from Dutt and Soms (1976, cquation 2.3), if a=(ay,....aq)isa

con‘tinuit) point of Fy, the integral transform representation over (0, oc) for an
arbitrary continuoys multivariate lower probability s

(2.2) FK(?):(%)K‘(%)KJZII(Q,‘)
+(§)K"ZZZ Iy(a;, a;)

- (%)K*J Z ZZ Ii(a, a; a,)

i<j<ik
+ ... +1K(a|, .. .,ah’).

Wl[h Il( Sheeefix = Ik (a,'|9 ey ajk)‘
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For upper probabilitics, the negative signs are simply changed to positive
ones. In Gurland’s work, Ix, . relates to the real part of

(23) (2-m‘)“‘§> . {‘ e"‘"“’[m;;..u.,,ﬂ.r) / rlill r,} dt,

where d is 2 continuity point of the marginal distribution of X;,, ..., X, and for
any function g(#), using the notation of Gurland (1948).

&---‘%g(_f)dzﬂigﬂ [ gy dt.

T,—»>00
’ e <lti<T,

r=1....k

As they stand, the Cauchy principal value integrals in equation (2.3) are
divergent. This can be scen in the case of the bivariate normal. One of the integrals
in equation (2.3) is of the form

.
(2.9 I cos a(ty + 1)@zt 625 p) dyydiz/ ity

€

which as e >0, T=>®© is divergent. On the other hand, using equation (2.1) the
integrand is bounded at the origin and the integrals can be used in numerical
integration.

The integral representation over (0, o0} for the multivariate normal may be
either treated as a special case of (2.2) or obtained from the tetrachoric series in

the following way.
The K dimensional normal probability integral is defined as

LK(xl,...,xK;R)———'{ [ nK(X‘O,R)dX

X1

for any real numbers Xy, .- -» xg. The integrand nK(X\O, Ry) denotes the K-
dimensional standardized normal density with correlation matrix R.
Consider the representatiou of Lx bythe tetrachoricseries (Kendail, 1941)

(2.5) L,((xl,...,xK;R)= y ... L Ajppr -+ - J-DK
jiz=90 jox-1yk =0

where

K ) K
= n (rl::/]mn ‘) nl (nk !)Tnk(xk))
mnu=1 k=



say, and 7,,,(x) is the mth tetrachoric function (Abramowit, & Stegun, 1964, p.
934).

(2.6) (%)= Z(x)He,, _,(x)/(m1)'?. = L2, ...
with
Zx) = (1/(2m)'"?) exp (~x2/2)

and He,(x) is the nth degree Hermite polynomial
d n
Hen)=[-01 200 ) 20, w01,

From the integral representation of the Hermite polynomial (Abramowitz &
Stegun, 1964, p. 786), an integral representation of the tetrachorjc function ,, (x)
is obtained as

Q.7 7,00 =(1/m(m n'?) JO exp (—52/2)s™ ! cos (xs = (m - 1)m/2) ds,

m=12
The direct substitution of 7 (X) given by (2.7) into the tetrachoric serieg (2.5)
yields after considerable manipulation Dutt (1973, 1975)

(2.8) Lg(xy, .. Xk R) =

K , K ~ K
Q*-@rty Di+@x* 2 ¥ DI +@3) > ¥ DY+ ...
i=}1

i<j=1} i<fek=1

The D* functions are defined by

(=] [+ , K
(2.9) D,"}(.x;R)=2(21r)‘Kf ds,...f dsKe"“/zd,"E(g;x;R)/ﬂsk,
0 0 k=1

where, for the first few, K,
d}"=sin,=sin(x,s,), df=e_,, CoS1-2— €y, cos,, ,,
di= €12+13423 Siﬂ1+2+3‘e-|2—13+23 Si11—1+2+3 T€ 12413223 S PPN T€12-13-238iN,,_;,
dfsk': e]2+13+23+14+24+34 COSy4p4344 tegn ;. 23-14--24434 COS_; -2+344

+€—-12+|3—23-14+24~34 COS.142-344+ 3—12—13+23+|4~~2a—34 €OS -3 344

- €-12—|3+23—14+24+34 COS_ 1424344~ €12413-234 14-24434 COSy_ 5,3, 4

€y 13-23414424-34 COS142 344 ‘612+13+23—m—24—34 COS142434;
and D}, . = Di(x,, ..., %;,). For notation,

ep.q.+...+p...qm = cXp ﬁ(rmqnsp:sqn . +rpmqmspn-sqm)}’

Sy, 4p =sin (6,85, + .. + XomSp,. ),
COSpy+....+p,, = COS (X8, + . . *+X,..5,.),

where R = ((ry))
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A negative sign on the index pidi corresponds 0 +7pq5p5n and —p,

con‘espﬂndS to -- xl’lspl'
The k dimensional normal cumulative probability is defined by

(2.10) d’k(x,,...,xk;R):i E n: (10, R) dy-

fn terms of the upper tail probability Li
(2.11) <1>k(x,,-..,xk;R)=Lk(—xh.--,*xk;R)

3. PROPERTIES OF D¥ FUNCTIONS

Consider again the integral representation over (0, o) for Ly

k k
28) m=erf®“ﬁgon+@“?z DEy+ -+ Dk

j<j=1

It is noted that in particular

(3.1 DH(x)=ber 61V2)
with

3.2 D*©0)=0

and

33) D) =7

Since D3(x) for k odd, is a sine transform with argument x's then equation (3.2
generalizes to
(39 pi(0)=0,fork odd.

Moreover, it can be shown easily with equation (2.8) that by mathematical

induction on k, equation (3.3) generalizes to

(3.5) D¥ ()= (-3, forany k= 1.

From a practical point of view, equations (3.5) means that to at least 3 digits of

accuracy
Di= (=b)¥ forany k> 1.

. . . . - for

In general, DXx),fork > 1 is non-negative and.monotomcally mcrgasmg
k even and, non-positive and monotonically decreasing for k odd. There 152 sl'lght
inconsistency for =1 in that D*(x) is defined in equation (3.1) as a positive

function for positive X. o . -
For the orthant case (i.e.x=0) in addition t0 identity (3.4),itwas previousiy

noted, Dutt (197 5) that
(3.6) DX(0,0;1)= (arcsin 1)/2T-
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P =1,0,...0)and D= DX0,...,0) then from equation (2.8)

k
P =) +(3)*? Y (arcsin r,)/ 2
ij=1
k 0
+(§|)k-4 Z D":.iliziji.t

N<lip<liy<iig=|

+.+DE

3.1 Transfer of Sign Changes from x, to Pii
For k =1 it is clear that
(3.1.1) D;"(~x)=~D;"(x)
For k> 1, attention need be focused on only d¥. For k =2, consider

;-‘t e+ 152 Cos (x,s, —XZSZ) —e T12%1%2 Cos (x,s, "‘XQSz)

for asingle sign change (i.e. either X3 01 x3) and then for a double sign change (i.c.
both x; and Xz).

For a single sign change

(3-1-2) D;:(“Xz, X35 1) = D’zk(xl, “Xy5rpy)= ‘D’zk(xl, X35 =ry;)
while for the double sign change
(3.1.3) D;‘(‘xh "-YzSﬂxe):Df(xhxz;Plz)-

Therefore, for a single sign change a negative sign is transferred from either X;or

X2 10 1y, with a negative sign in front of D¥. A double sign change of X; and x,
leaves D¥ unchanged.

For k =3 and considering a sign change of Xy to ~—x,,

(3-1-4) D’sk(“xh X2, X35r5, N3, ry) = *Df(xhxz,xs; T2, T3, 1),

For the double sign change x, » XX -y,
(3-1-5) D;(“xl» TX2 X357y, 15, ry)= D;E(xh X2, X35 1y3, =15, —ry;)
and the triple sign change
(3.1.6) fo(--x,, T X, T X35, 3, ry3)= — D}k(x,, X2, X35 1y3, 13, r23).

From equation (3.1.3) and (3.1.6) it should be clear that in general

D 1) = (-1 D~y y)-
Moreover, forany r and k if x= (x,,..., X; ) then
DZ‘(-xh, e Xty +x, ; r;)

=(-1YD¥x; vy ooy —F 4p

o Jrag - <y +’l[k)
Provided 1< <g, I# ) and 1< =t In other words, a change of sign occurs
only among the r, for Which one subscript is from the setj,, . .. > I
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3.2 Symmelry Considerations
For k = 2, observe that
D;(xh X2 ra) = Dg(xz, X1 712)
which implies that for fixed x; and X2, there are two equivalent probabilities
L(xy, X2 p12)= Lo(xa, X135 p12)-
Fork=3 there are the following six equivalent D¥’s:
D3(xy, X2, X35 N2 LAk r23)
= D¥(xy, X3, X2 N3 T2, r23)
= D¥(x3, X1, X3: 2> 23, rs)
= D¥(x3, X3, X3 23 N2> ri3)
= D¥(x3, X1, X2 113 I3 o)
= D¥(x3, X20 X13723 s ra)-

The six equivalent D¥’slead to six equivalent Ly's.

Fork =4,the general pattern is readily apparent. For a fixed xy, X2: %3 and x4
and fixed {r;}, there are 4! =24 equivalent D?’s relating to the permutations of (1,
2,3, 4). However, for a given set of the six correlation coefficients there are
6!=720 corresponding D¥'s which taken together with the above mentioned 24
yields a total of 30 distinct p¥'s with each occurting in 24 equivalent ways. The
permutations of {pii} yield, therefore, the total number of probabilities and the
permutations of {x;}, the subset of equivalent probabilities.

3.3 Mixed (Upper and Lower) Probability Ingegral
If the mixed probability integral is defined as

Jk=r‘ lm f r ni(y/o, (1) dy

—00 X
s+l ’k

then
(321) J= Lk(ﬂxf" ey T Xjp Xjprrr - 00 Xjis

—Tijyr -0 ~Tispp1? = * rijk)

provided 1=isk, i#]jm and 1=mst

The results of Sections 3.1 and 3.2 would apply also to the mixed case.

4. SUMMARY OF CoMPUTING Forms FOR L;

. . * .
There are a variety of diffcrent options in computing the D} functions

depending on the primary needs of the usef- There may be, for example, interest
in high accuracy (of the order of 7-8 digits) for 2 relatively small list of prob-

abilities (less than 1€0), or moderate accuracy (of the order of 34 digits) for a
terest in dimensions greater than five

large number of iterations (1,000 +), or in ' :
where overflow can be a problem. Clearly, the more specific the case of interest
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the greater would be the advantages in computer running time ang accuracy,
~ Moreover, it would not be prudent to use the geneal form of [, fo, the
€qucorrelated case or for one of the orthant cases.

A summiary of the computing formulas for L; are therefore presented in thej,
most general form with the integration coetlicients specified so as (o anticipate
overflow in the higher dimensions.

Fork =1 in equation (2.8)

4.1) Ll(xl):zl-DT:l
where

D}, = (l,’frr)f sin (x;s5,) ¢ 5172 ds,/s,.
(4]

Application of the Gaussian quadrature formula (Abramowity and Stegun,
1964, p. 924) yields the computing formula for DY, as

DY =(V2/m) )j’ Y sin (Ax,)

where y, =w, /A, Ai=z2, {w,} are the Christoffel weight factors, and {z;} arc the
zeros of the Mth degree Hermite polynomial. With A even, N =M/2 so that N
denotes only the positive z¢ros. The {y;} and {A;} are used forall D¥. The {z:}and
{w;} are found in Stroud and Secrest (1966).
For k =2, equation (2.8) yields

(4-2) LZ(xhxz;pl2):4l-5l[Dtl+DT;2}+D;;I2

where N N
D;;lz = (1/”2) z ) Yiy; dy

i=1j=1

d7=expp12A,A,] cos (x14,-x,4,)
—exp[—~ppA 1A2] cos (x4A, tx34,).

Fork=3
4.3) La(x,, *2: X33 P12, P13, Pp3) = I/S*Zl[DT;: +DY,+D},]
+:}{D§‘;,2+D;,3+D§";23
+D;:123
where
. s W N NN
03;123=(1/‘/27T') 2 ) Y YiY;¥i d3.
i=1j=1g=]
Fork=4
Ld.(xl:XZ; X322, ..., P34)
(44

= 1/16‘51[DT;! + DY, +DY, +D},
+}[D’2";u +D§;|3+D§;23 +D3%, +D7%,, +D%3]
+il[D:3";l23 +D3 0+ D134 +D3534]

+ D3 1234 '
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where

For k=5,

4.5)

where

N N

N N
D:-.l?.?-d:(l/z'n’d) _; z ) 3 )’i)’j)’k}’rd:-

i=\ =1 r=1

Eo(xy, X2 X3, X4 X5y 12y - -9 P45)
— 1 ; %
- 1/32~ﬁ[DT1+DT.2+DT,3+DT,4+DT_S]
1 *
+8[D2:12+D§:l3+- ..+ D%asl
;_‘_’_————"’V‘____'__———-——_‘_J
10 terms
1 *
+4[D3;|23+D=§-_|24+ D¥.5at D§:234+D§:|25

* * g :
4+ DYast Diaas™ D¥.1ast D% 45t D¥.145]

1 * *
+3 Diaoaat Diaost D% a5t D isast D§;2345]

*
+ D5.123a5

N N N N

N
Dl = (/227" L L L L B sl

j=rk=1r=1s=1
d¥(Ap, Ajs Ao An A,;xl,xg,xg,x4,x5)
=lexpl-———" """ 777 Jsin (+++++)
—exp[++-—+-——+—-——]sin(—++++)
—exp[+~+—+——-—+-—f]s'm[+-—+++)
—exp[—++——+——+—]s'm(++—++)
—exp[———+++——--—+]sin(+++—+)
—expl———— 7~ + +++]sin(++++—)
+exp[-—++++——++-—-]sin(——+++)
+exp[+—++—++—+~]sin(-—+~++)
+exp[_++-——-++—++——]sin(+-—-—++)
+exp[++———+++——+]sin(«++— +)
+exp[+—-++—+—+»+}sin(+ —4—+)
+exp[—++++———++]sin(++——+')
+exp[++—+———/++ +]sin(——+++-—)
+exp[+»—+—+-+—++]sin(+—++—)
+exp[—++——~+++-—+]sin(++—+-—)
+exp[———++++++—]sin(+++——)}
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where the order of correlation is
P12, P13y P23, Pra, Pag, P34, P1s, P2s, P3s, Pus.

5. NUMERICAL REsuits

approach is needed.
The value of N, the number of positive Hermite zeros, needed for a specifieq
accuracy depends to g large degree on the determinant |R| of the correlation

[R| would not be completely adequate. However, for a given accuracy, the
required N does not seem to vary significanily for D¥, » D¢ although larger x,
require higher N. Somewhat larger N are needed for D% while generally smaller N
would be more satisfactory for D¥ than for DY, and more satisfactory for D¥ than
for D¥.

In the four variate orthant case, a table of P, isavailable for the 21 correlation
sets of Bacon (1963) as a function of N and !Rl, Dutt (1973). An enlargement of
that table to include ®, for %;=1,2and 3, as a function of [R| and the N which are

TABLE 5.1

A GUIDE Baskp oN IR| AND max x, For CHOOSING N IN
Dk >2)For Four DiGIT Accuracy

max x;
|R| o* 1 2 3

:
0.7<|R|<1 1-2 2-3 34 5-6
05<|R|=0.7 2-3 2-3 34 5-6
a5

03<|R|=<05 24 34 34 5-6
—4

oo s
0.2<|R|<0.3 34 3 4-6 56

0.1<|R|<02 3-6 4-6 4-8 6-8
—_— T 68
0.05<|R!<0 4-6 4-6 4-8 6-8

~.\_~~\_\
0<|Rj=<0.05 4-12 4-12 4-12 6-12
—_—

—_——

—_—
* For the orthant case (x;=0), D}¥= D¥=0
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Work is now in progress to complete the computer routines for D¥ and D}
which wouid then permit computation of the general normal probability L, for a|
k =8 and for the orthant probability P, for all k <9. The approach then would pe
to look for simple approximations for D3, ..., D} which would be accurate o
about three or four digits and which would be generally useful in iterative
maximum likelihood procedures. Numerical properties of D¥ .. DY are

Nested. The corresponding probabilities £ ,, . . . s L for the first three matrices are
available in that paper.

6. APPLICATIONS

Two applications where computational formulas of multivariate normal
probabilities would be useful are briefly discussed. The first application relates to 3
model of contraception discussed by Heckman and Willis (1973) in which the
mathematical details are here presented in a slightly more gencral way. The
second application pertains to the multivariate probit problem, Ashford and
Sowden (1970). Other applications might be inferred from McFadden (1974).
The maximum likelihood method is used for illustration purposes although other
estimation methods are available, Amemiya (1972). See also Tobin (1955, 1658)
for an application in econormnics.

6.1 Application #1—a Model of Contraception

Consider a set of continuous dependent random variables 81,8, .. where
the index refers to time. Specifically, let S; denote a woman’s “level of contracep-
tion” at month j and consider M relevant economic variables I, . ., Eyy. E, may
relate to education level, E, toincome level, etc. The event that a woman becomes
pregnant in the jth month and leaves the sample is defined under this model by
S; <A, where A = ao*‘rz,:':, a,E, and {a;} are unknown parameters relating to
for example, first pregnancies only. The {a;} would presumably change for second,
third, etc. pregnancies. The inequality is reversed when she does not become
Pregnant, and hence remains jn the sample.

The probability of a woman becoming pregnant in the kth month s

(611) P,[S]>/\,...,Sk__|>A;Sk <A]:pk(/\)

tl:]e s.um‘of two independent random variables Si = U, +¢, where (Uy,...,U)is
distributed as the multivariate norma] m (1|0, {o;)) and € as n(e|0, ¢2). It then
follows that (S1,...,8,) is distributed as the multivariate norma| m (80, {o; +
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o2}). In particular the correlation coefficient between §; and ; is given by

_ 2
p‘i = ((T,'l' + 0")/\/(0}; +03)(UJI +0';2)
= &ij/&ia)'

In this context then the probability in equation (6.1.1) would be conditional
on € and interest would be in the probability

I pk(A]E)"](E) dE

which in terms of the L, notation takes the appearance

(612) J Lk(xl,...,xk_l, —xk)nl(e) de

with x; =(A —€}/a, fori=1,.. ., k.

6.2 Application # 2—Multivariate Probit Model

Consider k response systems S, . . ., S in which the reaction of system §; is
defined to be of the form

yi=x(z)-y¢; fori=1,...,k

where x,(z) is a suitable response and ¢, is referred to as the tolerance for system
S.. In other words, if x;(z) > ¥;,a toxic effect occurs.

It is reasonable to assume that the tolerance vector ¢ = (¢, ..., ¢) is
distributed as multivariate normal. The response functions x;(z) are so chosen
that all univariate marginals associated with ¢ are standardized normals.

Let @, (x;,. .., x)=Ly(—xy, ..., —x¢) where the subscript is dropped for
k = 1. Then the probabilities of quantal response (+) and non-response () for
system S; are

pi(z)=®[x;(2)]
pi(z)=¥-x(2)]=1-P[x(2)]
The probabilities that systems §; and S; both have positive responses is
Py (z) = Palxi(2), x;(2)]
In the bivariate case the other three probabilities of interest are
pii(z) = ®,xi(2), —x,(2)]=pi (2) =Py (2)
pit(z) =B, —x,(2), x;(2)]=p; (D) —py " (2)
and
py (2)=1-(;" +pj +py )
For the k dimensional case, interest is in an expression of the form
it ] £2 21 ¢ R +x,.(2)].
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7

Now, let each responsc function x;{z) be of the form
x(z)=8:C, fori=1,... k

where C, is a k-dimensicnal vector of known constants and Bi for i fixed, is a
k-dimensional vector of unknown parameters. Let riw denote the number of
organisms in which the systems §,, . .., S, exhibit the responses (+, ..., +). The
parameter vectors 3,, . . ., B, can then be estimated by the log likelihood function

of a given sct of independent samples,

¢ Fox *....%
x'_— Z Z ry,... k logpl, ...k +constant -
(all groups) all sets of
*,...4%

7. CONCLUDING REMARKS

The computational formulas based on integral transform representations
over (0, o) for multivariate normal probabilities have been summarized with
specific emphasis given to properties of the D * functionsin the representations. In
an appendix available on request from the author, numerical aspects of
D3, ..., D are examined for four important correlation matrices identified as
Equicorrelated, Markov, Toeplitz and Nested. The general curve shapes of Df in
these four cases suggest the possibility of obtaining simple approximations in
more general cases.

A variety of numerical results, most of which were prcviously unavailable are
given for the multivariate normal probabilities L,, ..., L, in an appendix avail-
able on request from the author. Two specific applications to econometric models
are noted.
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