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EVALUATION OF ECONOMETRIC MODELS

Hypothesis Testing in Spectral Regression;
the Lagrange Multiplier Test
as a Regression Diagnostic

ROBERT F. ENGLE

DEPARTMENT OF ECONOMICS

UNIVERSITY OF CALIFORNIA, SAN DIEGO
LA JOLLA, CALIFORNIA

1. Introduction

Many tsts of the adequacy of the specification of a linear regression
have been proposed and used by econometricians. One of the commonly
used tests is to subdivide the sample period and test that the parameters
remain constant between the subperiods. A closely related test has recently
been formulated in the frequency domain by Engle (1974). In this test, the
regression is estimated on subsets of the spectrum so that, for example, a
regression could be estimated using only the low-frequency components
of the data. An exactly analogous test is available to determine whether
or not the parameters are the same for different frequency bands. Both
of these tests provide useful regression diagnostics, and they complement
each other in that they are powerful against different types of alternatives.
For example, the time domain test has little power against dynamic mis-
specification while the frequency domain test finds it easy to detect such
failures.

The frequency domain test has been applied to consumption functions
to test whether or not the permanent and transitory propensities are the
same (Engle, 1974) and to price equations to examine the timing of output
price responses to input price changes (Engle, 1978). However, these ap-
plications rely upon the assumption that the disturbances under the null
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310 ROBERT F. ENGLE

hypothesis be white noise and that there be no lagged dependent or jointly
endogenous variables. Engle (1980) has generalized the test for lagged
dependent variables, and this paper will examine the hypothesis testing
problem with a general stationary disturbance process.

This paper shows that the test of equality of parameters across frequency
bands is a linear hypothesis test. Likelihood ratio (LR), Wald (W), and
Lagrange multiplier (LM) tests are then developed for general linear hy-
potheses in this context. Following Savin (1976), Berndt & Savin (1977),
Breusch (1979), the test criteria are shown to satisfy a numerical inequality
even though they have the same asymptotic distribution. It is suggested
that the Lagrange multiplier statistic may be a particularly useful formulation
for testing for model misspecification. Examples are presented which show
the simplicity of this test.

2. Serial Correlation

Consider the model

y = xfJ + u, E(ulx) = 0, u N(0,a2C), trQ = T, (1)

where x is a T x K matrix of observations, f3 is a K x 1 vector of unknown
parameters, u is a T x 1 vector of disturbances, and y is a T x 1 vector of
observations on the dependent variable. Letting the matrix of Fourier
coefficients be defined by

Wik (1//)ei(2T, k 1,.. ., T,

the amplitudes of frequency components can be written as

5= Wy.
The square of the absolute value of the jth component of 5Y is defined

to be the periodogram of y, I(0), at frequency O, and the cross product
x3ty is defined to be the cross periodogram at frequency O between x and
y where the dagger represents the complex conjugate of the transpose and

= 2xj/T. The W matrix is unitary and has the useful property that it
will approximately diagonalize any convariance matrix. This approximation
becomes exact if either Q is defined as a circulantt or the sample size is

A stationary stochastic process is circular if the correlation between u1 and ut+. is the same
as between UT+j and for anyj where T is the end of the sample period. That is, the observa-
tions after the sample period are the same as those at the beginning.
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very large. These relations can be written for the exact case as

WtW = WWt = I, W1Wt = D = diagJ,(0)},

(2)

where D is the diagonal matrix with the spectrum of the disturbances at
the harmonic frequencies on the diagonal. Throughout this paper (2) will
be taken to be exactly true.

The log likelihood function for (1) can be written

L(u) = - log 2iw2 - log
- 2a2

UU. (3)

Using relations (2) it can be rewritten

L(i)= _-ilog27r2 logJ1(0) 212UtD1u

= _-ilog2ira2 - log J(0) - 2a2 J'(0)I,(0). (4)

If the spectrum of the disturbances is known, then (4) can be maximized
directly with respect to a2 and /3 noting from (1) that

J(0) = I,(0) + f3"(°)/3 - (fl"(°) + '(°)fl). (5)

This gives exactly the familiar generalized least squares (GLS) estimator

a I' -PGLS -

In general, the spectrum of the disturbance must also be estimated
assuming only that it is locally smooth. A convenient assumption which
turned out to be quite satisfactory in a Monte Carlo experiment (Engle
& Gardner, 1976) is to assume that f is constant within narrow mutually
exclusive bands B,,, h = 1,. . ., H with in,, elements in each band so that

= T. For asymptotic results H must grow with T but more slowly
than T. Hannan (1970, p. 442) and Espasa & Sargan (1975) assume mh = m
and urn T/H2 = 0 with x satisfying Grenander's conditions which essentially
require that x be stationary or only mildly explosive. These will be assumed
to hold for all asymptotic results but are not necessary for the finite sample
properties.

1x)'x'1y.
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Differentiating (4) with respect to J,(0) and using T = trQ =
the first-order conditions, which define maximum likelihood estimators,
become

j;(o) = l(o)/a2, (6a)

62 = 'c 1
= 1:) = = (6b)

1j0) for JEBh, h= 1,.. .,H, (6c)
m jeBh

where u is now interpreted as a vector of residuals. The second line of (6b)
is a consequence of the simple assumption made on the smoothness of the
spectrum.

Substituting (6) into (4), the concentrated log likelohood is

L = _i(1 + log2m) - j logY(0).

Maximizing (7) with respect to /3 gives the first order conditions

ôL _vr-1 03I(0)._0
ôJ3 2 -

= _(_2/3)tb1(j_/3)=O,

where ISis a T x T matrix with diagonal elements Y(0).
The result is clearly

(t15ly1t15-1jy (xi_1x)_1x1y,

where ' = WIS 1J'V The maximum likelihood estimator must satisfy
(6) and (8), and therefore an iterative procedure is usually followed. A check
of the second-order conditions would be recommended to insure that the
solution represents a maximum of the likelihood function.

This estimator is an approximate GLS estimator which will be asymptoti-
cally efficient under the conditions mentioned above. It is Hannan's (1963)
estimator in a slightly different form as pointed out by Engle & Gardner
(1976), and it is exactly maximum likelihood for finite samples. The variance
matrix of will be consistently estimated by

V(fl) = ê2(x' 'x)1 = 62 [ 7- 1(0)1(0)] (9)
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Band Spectrum Regression

The derivation of the maximum likelihood estimator makes it easy to
consider testing the hypothesis that the regression coefficients are constant
for all frequencies. Let A be a diagonal T x T matrix with ones for all fre-
quencies to be included and zeroes for those without ambiguity, let it also
represent the set of included frequencies. These frequency bands will be
assumed to be collections of Bhs. Instead of maximizing the likelihood
function of u or i in (4), the likelihood of Au is to be maximized to obtain
an estimate of /3A for this subset of frequencies. The first-order conditions
for this maximum are found in exactly the same fashion as for A = I and
are

13A =

= (1(0)I(0)) 1-(0)I(0) (10)
JEA jcA

JdiagI'(0), forj included by A
A otherwise,

'UA(0j) E 'ZJA(0j), for j included by A,
mh JEBh

= JA
IUA(Oj).rank A

Versions of this estimator are easy to calculate and the procedure is available
in the TROLL system. The variance matrix is consistently estimated by

V(flA) = a tD1y1
=

1(0)1(0)]
j A

Similar relations apply for flu - A the coefficients corresponding to frequencies
excluded by A. For further details and an extension to lagged dependent
variables see Engle (1980).

General Linear Hypothesis Test

The test of particular interest from the point of view of a general specifica-
tion test is the test that /3A = I3I-A That this is a general linear hypothesis
can be seen by examining the regression in the frequency domain. Multiply-
ing (1) by W gives
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where each observation is on a different frequency. Under the alternative
that the coefficients are different, the model can be rewritten as

[JA 1_[xA 0 1[fl 1[A
[I_A][0 XIA][131A] [ui_A

where yY is the vector of observations on JY included by A. Thus the null
hypothesis is just a linear restriction on this regression model. Premultiplying
now by Wt, the inverse Fourier transform, will convert the data back to
the time domain. Equation (11) then becomes

3) = + Xi_A/31_A + u,

where XA and XI_A are time domain data series after eliminating some
components. Because they correspond to mutually exclusive and collectively
exhaustive frequency bands, X'AXI_A = 0 and XA + Xi_A = x. The test in the
time domain is thus just a test of whether or not two sets of variables have
the same coefficients. Because the variables are orthogonal, there are many
equivalent ways to formulate the test.

One formulation of the model is

3) = X/3 + XAI3A + U (12)

so that under the null hypothesis XA does not belong in the regression. Clearly,
if there are variables whose coefficients are not assumed to vary under the
alternative, these can be included directly into (12).

This formulation makes clear the type of alternative models for which
this test would have substantial power. The omitted variable XA might be
the high-frequency component of x and therefore would be highly correlated
with series such as the first different in x. Therefore, the test should be power-
ful against misspecification of the dynamics of a model. These are exactly
the types of alternatives that the time domain partition or Chow test would
be ineffective at detecting if the relation between included and omitted
variables remains stable between the two periods.

To develop tests of these hypotheses it is sufficient to consider the general
linear restriction R/3 = r. While the theory and practice of testing linear
restrictions is well known when the variancecovariance matrix of the
disturbances is known, there are several possible asymptotically equivalent
tests when the disturbance covariances must also be estimated. The differ-
ence between the procedures lies in the choice of an estimated covariance
or distance matrix. Wald (1943) proposed estimating the disturbance matrix
Q jointly with the parameters under the alternative hypothesis and then
comparing the parameter estimates with the linear restriction. The likelihood
ratio method estimates the disturbance process under both the null and the
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alternative hypothesis and forms the ratio of the likelihoods. The less well
known Lagrange multiplier test, originally suggested by Rao (1947) and
more recently proposed by Silvey (1959) and Aitchison & Silvey (1958),
estimates only under the null hypothesis. This procedure is closest to the
spirit of a regression diagnostic. Only one regression need be run, and from
manipulation of the output, it is possible to test whether or not the speci-
fication should be rejected in favor of a more general model.

5. A Comparison of Test Criteria

Three criteria will be developed for testing the hypothesis that Rf3 = r
against the alternative RJ3 r. Under the alternative hypothesis, the maxi-
mum likelihood estimator will be given by the solution to equations (6) and
(8) which will generally require an iterative procedure. This solution will
be denoted

, c, 2

corresponding to log likelihood value L from equation (7) and residual
periodogram I.

Under the null hypothesis, the constraint Rf3 = r is assumed to hold.
It can always be rewritten as f3 = c + Cy where y is a vector of unknown
parameters with dimension K - rank(R) when f3 has dimension K. The
model (1) can therefore be rewritten as

y=xf3+u=xc+xCy+u,
Yo oy + U, (13)

where Yo = y - xc and x0 = xC.
The maximum likelihood estimators of (13) can be found in exactly the

same fashion and will be denoted

fP0' 0,

where $ = c + C53, and the value of the log likelihood and the smoothed
periodogram of the residuals are L0 and I,,,, respectively.

The likelihood ratio ). is therefore given by

logL) = L0 - L.

The asymptotic distribution of LR = 2 log(2) is well known to be Xnk(R)
under the null hypothesis, and therefore the likelihood ratio criterion will



be defined as

LR = log (14)

The Wald test criterion can be easily formulated. From a direct un-
restricted regression, the parameter distribution is known to be asymptoti-
cally normal with variance given by (9). The distribution does not depend
upon the method for estimating Q, as long as a consistent method is used
(see, for example, Maddala (1971)); however, in deriving the inequalities
between criteria, it will be assumed that the maximum likelihood procedure
is used. The test statistic

= (R - r)'[R(x''x)R']'(Rfi - r)/ê2 (15)

is asymptotically distributed as Zk(R) when H0 is true.
In practice this statistic is commonly calculated by running both a

restricted and unrestricted regression using the 1 matrix estimated under
the alternative. Letting 1SSRO and 1SSR1 be the sums of squared residuals
under the null and alternative regressions, respectively, each evaluated using
the distance metric from the alternative (e.g., 1SSR1 = (y - x) 1( y - xfl)),
the statistic can be written as

= (1SSRQ - lSSR)/(1SSR[/T). (16)

This relation is true for any distance metric and is shown in Maddala (1977).

The Lagrange multiplier procedure tests the hypothesis by maximizing
the log likelihood subject to restrictions. The Lagrange multipliers associated
with the restrictions indicate the cost or shadow price of the constraints,
and one would therefore reject the null if the multiplier.s were too large.

Maximizing (4) subject to R/3 = r will give the estimate of the restricted
maximum likelihood estimator as well as the Lagrange multipliers. Savin
(1976, p. 1307) gives the expression for the multipliers

= [R(x 'x)1R']1(r - Rb), (17)

where b is the estimate of the full, unrestricted parameter vector, fi using the
disturbance process estimated under the null hypothesis c. The test
criterion is then shown to be

'LM /L[R(x0X)R]/A/T0, (18)

which is asymptotically distributed as Xnk(R) under the null hypothesis.
Substituting (17) into (18) gives

LM = (Rb - r)[R(x 1x)1R']1(Rb - r)/&. (19)

This can therefore also be rewritten in terms of sums of squared residuals
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Letting OSSR, and 0SSR0 be the sums of squared residuals under the alter-
native and the null hypotheses, each using as the distance metric, the
statistic can be written as

LM (OSSRO - OSSR,)/(OSSRO/T). (20)

One useful form of the statistic is obtained by rewriting 0SSR, in terms
of the residuals from the fit under the null hypothesis, e0 = - x0y. In this
form the test appears to be a way of analyzing the residuals for particular
types of nonrandomness. In this sense the test is in the same spirit as those
of Ramsey (1969).

LetM0 = (I - xo(x'xo)_lxo1)andM = (1 - x(xx)x1).
Because x0 is a subspace of x, M0M = M. Thus

0SSR, = (y - xb)'C - xb) = y'M'1My = yM'1My0
= y'M'0MC 1MM0y0 = e'0M'C 'Me0

since Yo = y - xc and Mx = 0. This is therefore also the sum of squared
residuals from a regression of e0 on x using as the distance metric. Letting

be the fitted values of this regression the LM test is therefore simply

,LM - e0 o e01e00 e0(i 1 / lii-1 (21)

where B2 is the multiple correlation coefficient of this regression.2 The
procedure therefore is to estimate the model and under the null hypothesis
and save the (untransformed) residuals. These are then regressed on the
full set of xs under the alternative being considered, using the estimated

matrix. The 2 of this regression times the sample size is the LM statistic.
Based upon this model, Breusch (1979) extends Savin's (1976) Theorem

1, proving that the three test statistics developed for the general linear
hypothesis test satisfy a numerical inequality

LM LR (22)

Since all three have asymptotically the same distribution under the null
hypothesis, all three will have the same critical values, and thus the tests
may give conflicting inference. Statistical grounds on which to choose among
the tests would be finite sample size and power calculations, not asymptotic
properties. As these are not yet known, the main implication is that the
Lagrange multiplier test is the least stringent so that rejection of this criterion
would imply rejection by all three, and conversely, the Wald test is the most
stringent.

2 This assumes that the computer reports the of the transformed regression. See Buse 1973
for a discussion of this point.



6. A Time Domain Example

As an example, consider an equation presented in Engle (1979) which
explains employment in Boston's textile industry as a function of the U.S.
demand and prices, the stock of fixed factors in Boston, and the Boston
wage rate. The equation is a reduced form derived from a simple production
model with capital as a fixed factor and a constant price elasticity of demand.
The variables are specific combinations of logarithms of the original data.
Denote the dependent variable by y, and the independent variables by x1,
x2, and include an intercept. The hypothesis to be tested is whether or not
a time trend should also be introduced to allow technical progress in the
sector. There is substantial serial correlation in the disturbance and several
methods of parameterizing it are given in the original paper; however, it
will here be assumed to follow a first order autoregressive process. There
are 22 annual observations.

The basic estimate of the relation is

= 4.4 + .165x1 + .669x2, p = .901, q2 = .339.
(.92) (2.45) (3.11)

The estimate is not particularly good, but it has the right signs and signifi-
cant t statistics (shown in parentheses). Rho was estimated by searching over
the unit interval, and the estimate is generalized least squares.

The residuals from this estimate were then regressed upon the expanded
set of regressors to obtain

= 49.2 - .185x1 - .045x2.025 time; p=.9Ol, 2=.171.
(1.90) (-1.61) (.22) (1.93)

The same value of rho was imposed upon this estimate. The Lagrange
multiplier statistic is (22)(.171) = 3.76 which is slightly below the 95% level
for but above the 90% level so it rejects at 90% but not at 95%.

For comparison, the full regression was estimated, including a reopti-
mization of rho. The results were

= 59.9 - .05x1 + .6l1x2 - .028 time; p = .970, .q2 .480
(2.26) (- .45) (3.18) (2.13)

The Wald test involves merely looking at the t-statis tic on time; however, the
asymptotic formulation would estimate the standard error using 22 degrees
of freedom rather than 18. In this case the t statistic is 2.35 so the test
rejects at 95% but not 99%.

In this example the two test statistics give conflicting inference at the
95% level with the Wald statistic rejecting the null hypothesis and the La-
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grange multiplier statistic accepting. However, at both the 90% and the
99% level, they agree. The numerical results illustrate the algebraic inequality
given above. The benefits from using the Lagrange multiplier test lie primarily
in the avoidance of a recalculation of rho. This may appear a rather minimal
saving for the first-order autoregressive case; for models postulated to have
autoregressive, moving-average (ARMA) disturbance processes or general
stationary error processes, the interative procedures may be substantially
more expensive and may require model identification for each alternative.
In the next section, more complicated error processes are considered.

7. A Frequency Domain Example

In this section frequency domain and time domain partitions are used
to test for the stability of the model. In both cases the LM technique proves
to be highly valuable in simplifying computational procedures.

For the time domain partition the same value of the first-order autoregres-
sion is used in estimating the model for the 1950s and for the 1960s. The
expression (20) is used in evaluating the outcome of the test. The statistic is
6.33 which is a x2 with 3 degrees of freedom and is not significant at the
95% level since the critical value is 7.81.

For the band spectrum regression test the procedures described in Section
3 are followed. The spectrum of the residuals is estimated under the null
hypothesis using the procedures of Engle & Gardner (1976). The spectrum
is generally downward sloping but turns upward for higher frequencies.

This spectrum is then used to estimate the model for each frequency
band. The bands are defined to be from 0 to .25 and from .25 to .5 so that
oscillations with periods longer than 4 years are considered low frequency
and tested against shorter periodicities.

The model was estimated in the form of (12) with the high-frequency
parts of x1 and x2 included as additional variables (the high-frequency part
of the constant is zero). Using the same spectrum the results are

27.6 + .51x1 + 2.12x2 31hih 57ih 2 = .58.
(-2.11) (3.81) (3.59) (-2.01) (-2.37)

The LM test statistic is 6.01 which is very slightly above the 95% point for
a chi square with two degrees of freedom (5.99). It appears from the statistics
that the dynamics of both variables could be improved. Since the LM test
rejects, one can be certain that the likelihood ratio and Wald tests will reject
by (21) and there i no need to reestimate the spectrum of the residuals of
the model under the alternative hypothesis.
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This example illustrates the computational saving involved in the use
of the LM test when there are substantial costs to reestimating the disturbance
covariance matrix. The result is particularly clear here since one would be
very unlikely to cease the investigation by accepting the alternative model
that the frequency bands differ. Thus it is unlikely that the residual spectrum
for this situation would ever be of interest. The implication of the test is that
the dynamics are possibly faulty. This is attractive from an economic point
of view since one might expect short-run and long-run price elasticities
to differ. In Engle (1979) a dynamic model is therefore estimated to improve
this relationship and allow a difference in the price elasticities.
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