This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 5, number 4
Volume Author/Editor: NBER

Volume Publisher: NBER
Volume URL: http://www.nber.org/books/aesm76-4
Publication Date: October 1976

Chapter Title: The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models

Chapter Author: James J. Heckman
Chapter URL: http://www.nber.org/chapters/c10491
Chapter pages in book: (p. 475-492)

THE COMMON SIRUCTURE: OI: STATISTICAI. MODELS OF TRUNCATION, SAMPLE SELLFCTION AND LIMITEI DFPENDENT VARIABLES AND A SIMPLE ESTIMATOR FOR SUCH MODELS*

by Jimes J. Hf:ckman

Abstract

This paper presents a unified treatment of statistical models for truncation, sample selection and limited dependent variables. A simple estimator is proposed that permits estimation of those molels by least squares. and probit analysis. In an empirical example, it is shown that the estimator yields estimates close to the maximum likelihood estimates.

This paper presents a unified summary of statistical models for sample selection, truncation and limited dependent variables. The bias that arises from using least squares when such models apply is characterized as a simple specification error or omitted variable problem. A computationally simple estimator applicable to such models is proposed that amounts to estimating the omitted variable and using least squares including the estimated omitted variable as a regressor.

The estimator discussed in this paper is not new. A grouped data version of it appears in papers on sample selection bias by Gronau (1974) and Lewis (1974).' This paper extends the analysis in those papers by developing the statistical properties of the estimator and demonstrating that the method is applicable to a wider class of models, and a more varied class of empirical settings, than the original papers consider.

The paper is in three parts. First, I discuss the common structure of models of sample selection, truncation and limited dependent variables. Then I discuss specific models based on the assumption of normal disturbances in the equations and propose an estimator for these models. Finally, I apply the estimator to reestimate a model of female labor supply and wages. In this example, I demonstrate that the consistent estimator discussed here closely approximates estimates obtained from optimizing a computationally more complicated likelihood function.

1. A Two Equation Model

To simplify the exposition, I consider a two equation model. Few new points arise in the multivariate case, and the multivariate extension is straightforward.

[^0]For a random sample of $/$ observations, equations for individual i may be written as

$$
\begin{align*}
& Y_{1 i}=X_{1 i} \beta_{1}+U I_{1 i} \tag{1a}\\
& Y_{2 i}=X_{2 i} \beta_{2}+U_{2 i} \tag{1b}
\end{align*}
$$

where $X_{i j}$ is a $1 x K_{j}$ vector of regressors, β_{j} is a $K_{i} x i$ vector of parameters,

$$
\begin{array}{rlrl}
E\left(U_{j i}\right) & =0 & & \tag{2}\\
E\left(U_{j i} U_{j^{\prime} i^{\prime}}\right) & =\sigma_{i j^{\prime}} & & j^{\prime}, j=1,2, \\
& =0 & & i=i^{\prime} \\
j^{\prime}, j=1,2, & i \neq i^{\prime} .
\end{array}
$$

These assumptions are consistent with random sampling. The joint distribution of $U_{1 i}, U_{2 i}$ is $h\left(U_{1 i}, U_{2 i}\right)$ which may be a singular distribution. Regressors ate assumed to be of full rank so that if data on all variables were available, each equation could be estimated by least squares.

All of the models in the literature developed for limited dependent variables and sample selection bias may be interpreted within a missing data framework. Suppose that we seek to estimate equation (1a) but that for some observations from a larger random sample data are missing on Y_{1}. In the case of a censored sample, we have access to the larger random sample, but we do not know Y_{1} for censored observations. In a truncated sample, we do not have access to any observations from the larger random sample except those for which data on Y_{1} is available. In both cases, there is a sample of I_{1} complete observations. In investigating the bias that arises fromi using an incomplete sample to estimate β_{1}, we must know why the data are missing.

The population regression function for equation (la) may be written as

$$
\begin{equation*}
E\left(Y_{1 i} \mid X_{1 i}\right)=X_{1 i} \beta_{1}, \quad i=1, \ldots, I \tag{4}
\end{equation*}
$$

which under the assumptions postulated above would be estimable from a random sample. The regression function for the incomplete sample may be written as

$$
\begin{equation*}
E\left(Y_{1 i} \mid X_{1 i}, \text { Sample Selection Rule }\right)=X_{1 i} \beta_{1}+E\left(U_{1 i} \mid \text { Sample Selection Rule }\right) \tag{5}
\end{equation*}
$$

$$
i=1_{1}, \ldots, I_{1}
$$

where without loss of generality the first I_{1} observations are assumed to contain data on Y_{1}. If the conditional expectation of $U_{1 i}$ is zero. regressions fit on the subsample yield unbiased estimates of β_{1}.

In general, it is not the case that selection moto the subsample is andom. For example, in Tobin's justly celebrated paper on limited dependent variables, we observe Y_{1} only if

$$
\begin{equation*}
Y_{1 i} \doteq C \tag{6}
\end{equation*}
$$

where C is a constant. ${ }^{2} Y_{1 ;}$ may be interpreted as an index of a consumer's intensity of desire to purchase a durable. If the intensity is sufficiently great ($Y_{1 i}>C$) the consumer expresses his desire and $Y_{1 ;}$ is observed. Otherwise, we cannot

[^1]observe intensity and observed purchases are zero. Thus, in Tobin's model the sample selection rule is given by (6), and we may write
$$
E\left(Y_{1 i} \mid X_{i i}, Y_{1 i} \geq 0\right)=X_{1 i} \beta_{1}+E\left(U_{1 i} \mid Y_{1 i} \geq 0\right) .
$$

As noted by Cragg (1971) and Nelson (1975), the rule generating the observed data need not be as closely related to the model of equation (1a) as Tobin assumes. Consider the following decision rule: we obtain data on $Y_{1 i}$ if another random variable crosses a thresheld, i.c., if

$$
\begin{equation*}
\boldsymbol{Y}_{2 i} \geq 0 \tag{7}
\end{equation*}
$$

while if the opposite inequality holds we do not obtain data on $Y_{i i}$. The choice of zero as a threshold is an inessential normalization. Also, note that we could define a dummy random variable $d_{i}=1$ with the properties

$$
\begin{equation*}
d_{i}=1 \text { iff } Y_{2 i} \geq 0, \quad d_{i}=0 \text { otherwise } \tag{8}
\end{equation*}
$$

and proceed to analyze the joint distribution of $Y_{1 i}$ and d_{i}, dispensing with $Y_{2 i}$ altogether. The advantage in using selection rule representation (7) is that it permits a unified summary of the existing literature.

Using this representation, we may write equation (5) as

$$
\begin{equation*}
E\left(Y_{1 i} \mid X_{1 i}, Y_{2 i} \geq 0\right)=X_{1 i} \beta_{1}+E\left(U_{1 i} \mid U_{2 i} \geq-X_{2 i} \beta_{2}\right) \tag{9}
\end{equation*}
$$

If $U_{1 i}$ is independent of $U_{2 i}$, the conditional mean of $U_{1 i}$ is zero, and the sample selection process into the incomplete sample is random. In the general case, the conditional mean of the disturbance in the incomplete sample is a function of $X_{2 i}$. Moreover, the effect of such sample selection is that X_{2} variables that do not belong in the population regression function appear to be statistically significant in equations fit on selected samples. ${ }^{3}$

A good example of this phenomenon arises in the Gronau (1974)-Lewis (1974) wage selectivity bias problem. In their analyses $Y_{1 i}$ is the wage rate which is only observed for working women, and $Y_{2 i}$ is an index of labor force attachment (which in the absence of fixed costs of work may be interpreted as the difference between market wages and reservation wages). If the presence of children affects the work decision but does not affect market wages, regression evidence from selected samples of working women that women with children earn lower wages is not necessarily evidence that there is market discrimination against such women or that women with lower market experience-as proxied by children-earn lower wages. Moreover, regression evidence that such extraneous variables "explain" wage rates may be interpreted as evidence that selection bias is present.

For a final example, I draw on my own work (Heckman, 1974). Letting $Y_{1 i}$ be the wage rate for woman i, and $Y_{2 i}$ be the difference between market wages and reservation wages, a woman works if $Y_{2 i}>0$. Using results from the theory of labor supply, one can show that under certain simplifying assumptions working hours, h_{i}, are proportional to $Y_{2 i}$. If this proportionality factor is $1 / \gamma(>0)$, we are
${ }^{3}$ If the only regressor in $X_{2 i}$ is " 1 ", so that the probability of sample inclusion is the same for all observations, only the intercept is biased.
led to the following model:

$$
\begin{gather*}
F\left(Y_{1:} \mid X_{1 i} \quad Y_{2 i} \geq 0\right)=X_{1} ; \beta_{1}+E\left(U_{1:} \mid U_{2 ;} \geq-X_{; i} \beta,\right) \tag{10a}\\
d_{i}=1 \quad \text { iff } \quad Y_{2 i} \geq 0, \quad d_{i}=1 \text { otherwise } \\
E\left(h_{i} \mid X_{2 i}, Y_{2 i} \geq 0\right)=E\left(\left.\frac{Y_{2 i}}{\gamma} \right\rvert\, X_{2 i}, Y_{2 i} \geq 0\right)
\end{gather*}
$$

Equations (10a) and (b) are as before. Equation (10c) exploits the information that we observe $Y_{2 i}$ up to a positive factor of proportionality if $Y_{2 i}$ is positive.

These examples are not intended as a complete literature survey. Yet they illustrate that the basic statistical models for limited dependent variables, censoring and truncation may be summarized in a simple general model for missing datã.

Regression estimates of (1a) fit on a selected sample omit the final term on the right hand side of equation (9). Thus the bias that arises from using least squares to fit models for limited dependent variables or models with censoring or truncation arises solely because the conditional mean of $U_{1 i}$ is not included as a regressor. The bias that arises from truncation or selection may be interpreted as arising from an ordinary specification error with the conditional mean deleted as an explanatory variable. In general, one cannot sign the direction of bias that arises from omitting this conditional mean. ${ }^{4}$

A crucial distinction is the one between a truncated sample ardi a censored sample. In a truncated sample one cannot use the available data to estimate the probability that an observation has complete data. In a censored sample, one can. ${ }^{5}$ In the next section, I examine a technique that enables one to use this estimated probability to estimate the missing conditional mean for each observation. The estimated conditional mean may be utilized as a regressor in an ordinary regression analysis so that estimators with desirable large sample properties may be derived from computationally simple methods.

II. Simple Estimators for the Case of Joint Normal Disturbances

Suppose that $h\left(U_{1 i}, U_{2 i}\right)$, the joint density of $U_{1 i}$ and $U_{2 i}$ is bivariate normal. Using well known results in the literature (see, e.g., Johnson and Kotz (1972), pp. 112-113)

$$
\begin{aligned}
& E\left(U_{1 i} \mid Y_{2 i}>0\right)=E\left(U_{1 i} \mid U_{2 i}>-X_{2 i} \beta_{2}\right)=-\frac{\sigma_{12}}{\left(\sigma_{22}\right)^{1 / 2}} \lambda_{i} \\
& E\left(U_{2 i} \mid Y_{2 i}>0\right)=E\left(U_{2 i} \mid U_{2 i}>-X_{2 i} \beta_{2}\right)=\frac{\sigma_{22}}{\left(\sigma_{22}\right)^{1 / 2}} \lambda_{i}
\end{aligned}
$$

[^2]where
\[

$$
\begin{align*}
& \lambda_{i}=\frac{f\left(\phi_{i}\right)}{1-F\left(\phi_{i}\right)} \tag{11}\\
& -\frac{X_{2 i} \beta_{2}}{\left(\sigma_{22}\right)^{1 / 2}}=\phi_{i}
\end{align*}
$$
\]

and f and F respectively are the density and distribution function of the standard normal distribution. ${ }^{6}$ The Tobin model is a special case with $h\left(U_{1 i}, U_{2 i}\right)$ a singular density since $U_{1 i} \equiv U_{2 i}$.
" λ_{i} " is the inverse of Mill's ratio and is known as the hazard rate in reliability theory. There are several interesting properties of λ_{i} :
(1) Its denominator is the probability that observation i has data for Y_{1}.
(2) The lower the probability that an observation has data on Y_{1} the greater the value of λ for that observation.

More precisely, using a result due to Feller (1968) and cited in Haberman's proof of the concavity of the probit likelihood function, (Haberman, 1974, p. 309), it is straightforward to show that

$$
\frac{\partial \lambda_{i}}{\partial \phi_{i}}>0,
$$

and

$$
\lim _{\phi_{i} \rightarrow \infty} \lambda_{i}=\infty \quad \lim _{\phi_{i} \rightarrow-\infty} \lambda_{i}=0
$$

Thus in samples in which the selectivity problem is unimportant (i.e., the sample selection rule ensures that all potential population observations are sampled), λ_{i} becomes negligibily small so that least squares estimates of the coefficients of (ia) have optimal properties.

Using these results, we may write

$$
\begin{align*}
& E\left(Y_{1 i} \mid X_{1 i}, Y_{2 i} \geq 0\right)=X_{1 i} \beta_{1}+\frac{\sigma_{12}}{\left(\sigma_{22}\right)^{1 / 2}} \lambda_{i} \tag{12a}\\
& E\left(Y_{2 i} \mid X_{2 i}, Y_{2 i} \geq 0\right)=X_{2 i} \beta_{2}+\frac{\sigma_{22}}{\left(\sigma_{22}\right)^{1 / 2}} \lambda_{i} \tag{12b}
\end{align*}
$$

Thus if we know λ_{i}, or could estimate it, least squares could be applied to estimate the parameters in equation (12a). Similarly, if we could measure $Y_{2 i}$ when $Y_{2 i}>0$, as in Tobin's model, knowledge of $Y_{2 i}$ and λ_{i} would permit direct estimation of β_{2} and $\left(\sigma_{22}\right)^{1 / 2}$ by least squares without having to resort to optimizing likelihood functions.

We may add disturbances to equations (12a) and (12b) to reach the model

$$
\begin{align*}
& Y_{1 i}=X_{1 i} \beta_{!}+\frac{\sigma_{12}}{\left(\sigma_{22}\right)^{1 / 2}} \lambda_{i}+V_{1 i} \tag{13a}\\
& Y_{2 i}=X_{2 i} \beta_{2}+\frac{\sigma_{22}}{\left(\sigma_{22}\right)^{1 / 2}} \lambda_{i}+V_{2 i} \tag{13b}
\end{align*}
$$

where $E\left(V_{1 i}\right)=E\left(V_{2 i}\right)=0$.

[^3]It is straightforward to demonstrate that the covariance structure is given by

$$
\begin{gather*}
E\left(V_{2 i}^{2}\right)=\sigma_{22}\left(1+\phi_{i} \lambda_{i}-\lambda_{i}^{2}\right) \tag{14a}\\
E\left(V_{1 i} V_{2 i}\right)=\sigma_{12}\left(1+\phi_{i} \lambda_{i}-\lambda_{i}^{2}\right) \tag{14b}\\
E\left(V_{1 i}^{2}\right)=\sigma_{11}\left(\left(1-\rho^{2}\right)+\rho^{2}\left(1+\phi_{i} \lambda_{i}-\lambda_{i}^{2}\right)\right) \tag{14c}
\end{gather*}
$$

where

$$
\rho=\frac{\sigma_{12}}{\sqrt{\sigma_{11} \sigma_{32}}}
$$

and

$$
\begin{equation*}
0 \leq 1+\phi_{i} \lambda_{i}-\lambda_{i}^{2} \leq 1 . \tag{15}
\end{equation*}
$$

There are several distinctive features of this covariance structure. Clearly, the error structure is heteroscedastic, if $X_{2 i}$ (and hence ϕ_{i}) contains variables apart from " 1 ". Assuming that we know ϕ_{i} and hence λ_{i}, regression estimates of the variances of $V_{1 i}$ and $V_{2 i}$ based on the least squares residuals from equations (13a) and (13b) respectively are downward biased estimates of the true variances of $U_{1 i}$ and $U_{2 i}$ respectively. This is a consequence of inequality (15). Similarly, the standard estimator of the covariance of disturbances across equations based on the cross product of the least squares residuals from each equation yields an estimator of the population covariance that is biased towards zero.

The heteroscedasticity present in the disturbances of each equation implies that a generalized least squares procedure (GLS) improves the precision of least squares estimates when they are possible. If data are available on Y_{1}, Y_{2} and λ, GLS should be applied to the system of equations (13a) and (13b). Alternative estimators are possible if the information is utilized that the coefficients of λ_{i} in equations (13a) and (13b) are functions of the population disturbance covariance structure. However, asymptotic optimality for GLS cannot be claimed even if all available information is exploited because the resulting estimators possess a covariance matrix that does not attain the Cramer Rao lower bound.

The approximate GLS estimators possess the advantage of asymptotic normality. The unweighted estimators are also asymptotically normal but the expression for the residual variance is complex, and standard least squares formulae do not apply. ${ }^{\text { }}$

The GLS estimators have an interesting interpretation. Unlikely observations (i.e., those with a low probability of sample inclusion) receive greater weight than likely observations. This is a consequence of the readily confirmed fact thai each element of the covariance matrix for $V_{1 i}$ and $V_{2 i}$ is a monotonic function of

[^4]ϕ_{1}, and as,$\phi_{i} \rightarrow \infty$, the probability of sample inclusion goes to zero, atial
\[

$$
\begin{aligned}
& \lim _{4 \rightarrow \infty} l:\left(V_{31}^{\prime}\right)=0 \\
& \lim _{\phi_{1} \cdots w_{2}} I\left(V_{21} V_{13}\right)=0 \\
& \lim _{\phi=1} f\left(V_{1}^{2}\right)=\left(1-\rho^{2}\right) \sigma_{11} .
\end{aligned}
$$
\]

The weighting implicit in GIS S underscores the crucial nature of the assumption that all observations are drawn from the same population distribution.

As a practical matter, we do not know ϕ_{i} and λ_{i} and hence we cannot estimate equations (13ai) and (b) uriless there is prior information on λ_{i}. In the catie of a censored sample, it is possible to compute the probability that an observation has data missingon Y_{1} and hence it is pessible to ose probit analysis to estimate ϕ_{i} and λ_{i}. Thus, denoting d_{i} as a random variable with the value of one when Y_{i} is observed, the sample likelihood for the probit analysis is

$$
\mathscr{P}=\prod_{i=1}^{\prime}\left[F\left(\phi_{i}\right)\right]^{1-i_{i}}\left[1-\boldsymbol{F}\left(\phi_{i}\right)\right] d_{i} .
$$

Subject to the standard identification conditions in probit analysis. it is possible to maximize \mathscr{L} to obtain consistent estimates of β_{2}, ϕ_{i} and hence λ_{i}. These estimates of λ_{1} may be used in place of the true λ_{i} as regressors in equations (13a) and (b). When regression estimates of the coefficients in equations (13a) and (13b) are possible, they yield consistent estimates of the true parameters since λ_{t} estimated from probit analysis is a consistent estimator of the true λ_{i}, and Slutsky's theorem applies. More efficient estimates may be obtained from the approximate GL.S estimates which converge in distribution to the true GLS estimates by the Cramer convergence theorem (Cramer, 1946). Other estimates may be obtained from utilizing the information that the coefficients of λ_{i} are functions of the population covariance structure. Fach set of estimates may be used as initial consistent estimates for estimation of the likelihood furction. As Rothenberg and Leenders (1964) have shown, one Newton step toward optimizing the likelihood function produces estimates that are asymptotically cfficient in the sense that they attain the Cramer-Raolower bound. ${ }^{\text {B }}$

Consideration of three special cases will help to foems ideas. First consider Tobin's model which is presented in equation (13b) in the notation of this section. In 'Tobin's original model, we observe Y_{2} only if it is positive but for all observations in a random sample we know whether or not Y_{2} is possitive. In the two stage procedure proposed here, first estimate the probit model determining

[^5]The likelihood function for the other cases is straightforward.
the probability that Y_{2} is positive. This gives all estimate of $-\left(\beta_{2} X_{2 i} /\left(\sigma_{22}\right)^{1 / 2}\right)=\phi_{i}$ and hence λ_{i} for each observation. This estimate of λ_{i} may be inserted in equation (13b) and least squares estintates of the coefficients in (13b) may be oblained. Note that a weighted version of (13b) can be cstimited to eliminate the heteroscedasticity that arises from sample selection.

For at least two reasous this procedure does not utilize all of the available information. The first reason is that the procedure ignores the information that the probit function estimates β_{2} up to a factor of proportionality. One could utilize this information to write (13b) as

$$
Y_{2 i}=\left(\sigma_{22}\right)^{1 / 2}\left(-\phi_{i}+\lambda_{i}\right)+V_{2 i} .
$$

Estimates of (13b) are guaranteed to produce a positive estimate of $\left(\sigma_{28}\right)^{1 / 2}$, a feature not guaranteed in direct estimation of (13b) with the λ_{i} estimated from probit as a regressor. ${ }^{9}$ One can estimate both weighted and unweighted versions of ($13 b^{\prime}$) with the weights estintated front (14a).

Still, these estimates are not fully efficient. Consider the weighted estimator of ($13 \mathbf{b}^{\prime}$). The residual variance and the regression coefficient each provide an estimator of $\left(\sigma_{22}\right)^{1 / 2}$. One can use this information to constrain the squared regression coefficient in the weighted regression to equal the residual variance.

Thus one can solve the foliowing quadratic equation for $\left(\sigma_{22}\right)^{1 / 2}$,

$$
\frac{1}{I_{1}} \sum_{i=1}^{I_{1}} \frac{\left(Y_{2 i}-\left(\sigma_{22}\right)^{1 / 2}\left(\lambda_{i}-\phi_{i}\right)\right)^{2}}{\left(1+\phi_{i} \lambda_{i}-\lambda_{i}^{2}\right)}=\sigma_{22}
$$

where, as before, the first I_{1} observations are assumed to have $Y_{2 i}>0$, and estimated values of λ_{i} and ϕ_{i} are used in place of actual values. The left hand side of the equation is the error sum of squares from the weighted regression. This estimate of $\left(\sigma_{22}\right)^{1 / 2}$ is consistent and is guaranteed to produce a positive estimate of $\left(\sigma_{22}\right)^{1 / 2}$ if the quadratic equation possesses a real root, but is not necessarily more efficient than the previous estimator. ${ }^{10}$

[^6]None of these two step estimators of $\left(\sigma_{22}\right)^{1 / 2}$ attains the Cramer-Rao lower bound so that use of the Rothenberg one siep estimator is recommended when possible. An advantage of the multiplicity of estimators for β_{2} and $\left(\sigma_{22}\right)^{1 / 2}$ is that they allow a cheek on the appropriateness of the model. For example, if the probabiity of the event $Y_{2 i}>0$ is not as closely linked to the equation for $Y_{2 i}$ as Tobin assumed, the β_{2} estimated from (13b) will not be proportional to the $\beta_{2} /\left(\sigma_{22}\right)^{1 / 2}$ estimated from probit analysis.

Finally, note that unconstrained estimates of equation (13b) are likely to be imprecise because λ and its estimate are nonlinear functions of the X_{2} regressors that appear in that equation. Since ϕ and λ are positively correlated (often strongly so) multicollinearity may be a problem and for that reason constrained estimators can produce more reasonable results.

The procedure for more general models is similar to that outlined for Tobin's model. In our second example, suppose that we observe Y_{1} only when $Y_{2}>0$, that we do not observe actual values of Y_{2}, but we know whether or not $Y_{2}>0$ for all observations from a random sample. This is the model of Gronau and Lewis.

As before, we inay estimate ϕ and λ from probit analysis. The estimated λ is then used as a regressor in equation (13a). Regression estimates of the parameters are consistent estimators. To estimate the approximate generalized least squares version of (13a), we may use the residuals from this regression to estimate the weights given in equation (14c). ${ }^{11}$

An alternative procedure uses the information from (14c) in conjunction with (13a) to simultancously estimate β_{1}, ρ, and σ_{11}. From the definition of ρ given below equation (14c) note that equation (13a) may be written as

$$
Y_{1 i}=X_{1 i} \beta_{1}+\rho\left(\sigma_{11}\right)^{1 / 2} \lambda_{i}+V_{1 i} .
$$

The weighted estimator that utilizes the information that the coefficient of λ_{i} is a parameter of the population variance, chooses β_{1}, ρ, and $\sigma_{1!}$ to minimize

$$
\sigma_{11}=\frac{1}{I_{1}} \sum \frac{\left(Y_{1 i}-X_{1 i} \beta_{1}-\rho\left(\sigma_{11}\right)^{1 / 2} \lambda_{i}\right)^{2}}{1+\rho^{2}\left(\phi_{i} \lambda_{i}-\lambda_{i}^{2}\right)}
$$

with the λ_{i} estimated from probit analysis used in place of the true λ_{i}. As before, we cannot be sure that in small samples this estimator exists although in large samples it must exist. Asymptotically, this procedure yields estimators that are consistent but are inefficient compared to maximum likelihood estimators.

As a final example that is the topic of the empirical work reported below, consider the model of equations (10a)-(10c) with normality assumed for $U_{1 i}$ and $U_{2 i}$, and censored sampling assumed. Y_{2} is observed up to an unknown factor of proportionality when $Y_{2}>0$, and Y_{1} is observed only when $Y_{2}>0$. This example combines aspects of the two previous examples.

[^7]For specificity, let Y_{1} be the market wate that woman i could earn were she to work. Y_{2} is the difference between market wages $Y_{1 ;}$ and reservation wages $Y_{3 i}$. Hours of work are propentional to the difiference between market wages and reservation wages when this difference is positive with the factor of proportionality denoted by $1 / \gamma$. This proportionality factor must be positive if the model is to accord with economic theory.

In this model, the parameters of the functions determining $Y_{3 i}$ and $Y_{1 i}$ are of direct interest. The equation for reservation wages $Y_{3 i}$ may be written as

$$
\begin{align*}
& Y_{3 i}=X_{3 i} \beta_{3}+U_{3 i} \tag{15a}\\
& Y_{1 i}=X_{1 i} \beta_{1}+U_{1 i} \tag{15b}
\end{align*}
$$

hence

$$
\begin{equation*}
Y_{2 i}^{\prime}=X_{1 i} \beta_{1}-X_{3 i} \beta_{3}+U_{1 i}-U_{3 i}=X_{2 i} \beta_{2}+U_{2 i} \tag{15c}
\end{equation*}
$$

where

$$
X_{2 i}=\left(X_{1 i} \cdot X_{3 i}\right) \quad \text { and } \quad U_{2 i}=U_{1 i}-U_{3 i}
$$

The hours of work equation is given by

$$
\begin{equation*}
h_{i}=\frac{1}{\gamma}\left(Y_{1 i}-X_{3 i} \beta_{3}\right)-\frac{1}{\gamma} U_{3 i} \tag{15~d}
\end{equation*}
$$

or, in reduced form,

$$
\begin{equation*}
h_{i}=\frac{1}{\gamma}\left(X_{1 i} \beta_{1}-X_{3 i} \beta_{3}\right)+\frac{1}{\gamma}\left(U_{\mathrm{t}}-U_{3 i}\right) . \tag{15e}
\end{equation*}
$$

$U_{3 i}$ and $U_{1 ;}$ are assumed to be joint normal variates with zero mean and the covariance structure is unconstrained.

Note that

$$
\begin{aligned}
& E\left(U_{1 i}^{2}\right)=\sigma_{11}, \quad E\left(U_{1 ;} U_{2 i}\right)=\sigma_{12}=\frac{1}{\gamma}\left(\sigma_{1!}-\sigma_{1,3}\right) \\
& E\left(U_{2 i}^{2}\right)=\frac{1}{\gamma^{2}}\left(\sigma_{1!}-2 \sigma_{13}+\sigma_{33}\right)
\end{aligned}
$$

where

$$
E\left(U_{j i} U_{3 i}\right)=\sigma_{i 3} \quad j=1,2,3 .
$$

In this notation,

$$
E\left(Y_{1 i} \mid h_{i}>0\right)=X_{1 i} \beta_{1}+\frac{\sigma_{12}}{\left(\sigma_{22}\right)^{1 / 2}} \lambda_{i}
$$

$$
E\left(h_{i} \mid h_{i}>0\right)=\frac{1}{\gamma}\left(X_{1 i} \beta_{1}-X_{3 i} \beta_{3}\right)+\frac{\sigma_{22}}{\left(\sigma_{22}\right)^{1 / 2}} \lambda_{i}
$$

or, equivalently,

$$
E\left(h_{i} \mid h_{i}>0\right)=\frac{1}{\gamma}\left(E\left(Y_{1 i} \mid h_{i}>0\right)-X_{3 i} \beta_{3}\right)-\frac{1}{\gamma} \frac{\left(\sigma_{33}-\sigma_{13}\right) \lambda_{i}}{\left(\sigma_{22}\right)^{1 / 2}} .
$$

The two stage procedure applicable to this model is (1) to estimate the probit function determining whether or not a woman works. This yields an estimate of λ_{i}. (2) Use the estimated λ_{i} as a regressor in ($15 b^{\prime}$), and ($15 \mathrm{e}^{\prime}$). Alternatively, the hours of work equation may be estimated from ($15 \mathrm{~d}^{\prime}$) using the predicted value from wage function given by ($1.5 b^{\prime}$) as a regressor. The advantage of this procedure is that it permits estimation of a unique value of $1 / \gamma$ whereas if the model is overidentified, equation ($15 \mathrm{e}^{\prime}$) leads to a multiplicity of estimates for γ. Note that the usual rank and order restrictions apply for identifiability of γ. For example, if $X_{1 i}$ contains one variable not contained in $X_{3 i}$, and the rank condition applies, γ and hence the vector β_{3} are estimable parameters.

As in the other cases, approximate GLS estimators may be developed. The procedure for developing such estimators follows exactly along the lines discussed in the simpler models, and so will not be elaborated here.

The analysis for truncated samples is identical to the previous analysis for censored samples provided that an estimate of λ is available. This estimate may come from other data sets or from subjective notions. Clearly the quality of the resulting estimator depends on the quality of the estimate of λ. Amemiya (1974) has proposed an initial consistent estimator for the Tobin model that is applicable to the case of truncated samples. Moreover, a straightforward extension of his estimator leads to initial consistent estimators for the Gronau-I ewis model. and the expanded model just discussed. The advantage of Amemiya's estimator is that it is based on sample evidence. While Amemiya's estimator is more cumbersome to apply, it is clearly an alternative to the one proposed here, and has the advantage that it can be used in truncated samples.

III. Empirical Performance of the Estimator

In this section, I report the results of an empirical analysis of the joint model of labor force participation, wages and hours of work presented in the last section. Elsewhere (Heckman, 1976) I present a more extensive empirical analysis of this model and demonstrate that the proportionality assumption of equations (10c) and (15d) and (15e) may be inappropriate because of worker and employer fixed costs. Here, 1 assume this model is correct and report the results of using the computationally simple estimator to estimate the parameters of the sample likelihood function. ${ }^{12}$ As we shall see, the initial consistent estimator proposed here locates the optimum rather precisely. This exercise is of more than methodological interest. In an earlier paper (Heckman, 1974) I estimated this model using data on female labor force experience that was erroneously coded by the primary data source. Thus the analysis here permits an examination of the effect of this coding error on the estimates presented in the earlier paper.

[^8]The data source is the National Longitudinal Survey tape of women $30-44$ interviewed in 1967. From an original sample of 5,083 women, a working sample of 2,253 white, married spouse present women with usable data was constructed. The reasons for sample exclusion are given in Appendix A-1. Sample means for the data used in the empirical analysis are reported in Appendix A-2. The measure of labor supply used in this paper is annual hours worked defined as the product of weeks, worked with average hours per week. A woman works if she has nonzero hours of work in 1967.

Estimates for the probit model predicting the probability that a woman works are given in Column $!$ of Table 1 . The variables used in the analysis are self explanatory. These estimates are to be compared with the estimates of this probability derived from the sample likelihood function. The agreement is rather close.

TABHLE 1
Probit Estimates

	Origimal Probit Estimater of $\beta_{2}\left(\sigma_{22}\right)^{1 / 2}$		Estimates from the
	$(\cdots \cdots$ stat. in	entheses)	Likelihood Function
Number of children less than 6	-0.44968	(-9.987)	-0.4410
Assets	-0.6880×10^{-5}	(-3.01)	-0.7157×10^{-5}
Husband's hourly wage rate	-0.01689	(-1.16)	-0.0366
Wife's Labor market experience*	0.07947	(16.67)	0.0774
Wife's education	0.0302	(2.306)	0.0406
Constant	-1.1553	(7.569)	-1.1331
Log ikelihood: - 1 186.8 Probability that a woman works is	$3_{2} x_{2 i}\left(\left(\sigma_{2}\right)\right)^{1 / 2} \frac{1}{\sqrt{2 \pi}}$	$2 d!$	

701 women work of a sample of 2,253 women.

[^9]Next, I report estimates of the parameters of equations (15b) and (15c) obtained from regressions with and without " λ " variables to correct for sample censoring bias. The natural logarithm of the hourly wage rate is used for $Y_{1 \text { i }}$. Annual hours worked are used as the measure of labor supply, h_{i}.

The top portion of Table 2 records the empirical resulis for the coefficients of the hourly wage function. Column 1 records the results of estimating the wage function by least squares on the subsample of working women without correcting for censoring bias. Column 2 records the resuit of estimating the same function entering the estimated λ_{i} as a regressor. Note that in this sample we cannot reject the null hypothesis that sample censoring for wage functions is an unimportant phenomenon. This result stands in marked contrast to the empirical results in Gronau (1974) who found significant selectivity bias.

Generalized least squares estimates of the wage equation are given in Column 3. ${ }^{13}$ The weights for the GLS estimator were derived from regressions on

[^10]Least Souares System for annual Hours Worked
("t" STATISTICS IN FARENTHESES)

Variable	(1) Traditional Regression	(2) Traditional Regression Corrected for Censoring	Wage Rate (3) Single Equation Generalized Least Squares Esimates	(4) Maximum Likelihood Estimates	
Wife's labor market exp.	$0.01509(8.24)$	$0.029(5.2)$	0.0203(5.2)	$0.02018 .23)$	
Wife's education	$0.0678(13.3)$	$0.0687(13.0)$	$0.0686(13)$	$0.0679(13.3)$	
λ_{i}	-	0.0992 (1.52)	$0.1002(1.52)$	-	
Intercep:	-0.2718	-0.437(1.45)	-0.435(3.4)	-0.412(5.3)	
R^{2}	0.254	0.257	0.83		
Annual Hours Worked					
	(1)		(3)	(4)	(5)
			Implied Marginal Effect	Single Equation	
		Regression	from Estimates of (2)	GLS Estimates	Maximum
	Traditional	Corrected for	Evaluated at Sample	for Heckman	Likelihood
	Regression	Censoring	Mean	Model	Estimates
Nbr. of children	$-140.78(-2.92)$	$511.18(2.3)$	-96.81	60812.51	-290
$\text { less than } 6$	$-6.61 \times 10^{-4}(-2.81)$	$8.463 \times 10^{-3}(2.25)$	-8.39×10^{-4}	$1.08 \times 10^{-4} 9.6$	-4.71×10^{-4}
Assets Husband ${ }^{\text {a }}$ weekly	-6.61×10 $-.54 .34(-3.64)$	-3.463.31(-195)	-55.14	-17.96(-2.94)	$-2+0.78$
wage rate	-.5.34-3.64)				
Wife's labor market exp.	35.55i8.76)	$-65.077(-1.98)$	42.37	$-79(-2)$	504.2
Wife's education	37.66(3.12)	--6.794(0.3)	34.17	-14.6(0.7)	267.1
λ_{i}	-	-2020.7(3)	-	-2311(3.2)	
Intercept	899.45	4009.5		$2769.2(4.33)$	7.46×10^{3}
R^{2}	0.1354	0.1444		0.7862	

the first stage residuals using the procedure reported in footnote 11 in the previous section. Note that the GLS equation is very similar to the least squares equation reported in Column 2. The R^{2} shown in Columen 3 is the R^{2} for the regression using weighted variables.

Finally, estimates of the wage function obtained from optimizing the likelihood function are reported in Column 4. Note that the GLS estimates closely approximate the maximum likelihood estimates.

The results in the bottom row of Table 2 are less reassuring. Column 1 records estimates of reduced form equation (15 e) that ignore the possibility of selection bias. ${ }^{14}$ Column 2 records estimates of this equation with λ_{i} included as a regressor. Note that the coefficient on λ_{i} is statistically significant and negative, and that this result remains in the GLS estimates, so that there is considerable evidence that there is pronounced selection bias in estimating hours of work functions on sub-samples of working women.

The estimated negative coefficient on λ_{i} is disturbing since if the model of equations (10 a)-(10c) is true, this coefficient yields an estimate of the standard deviation $\left(\sigma_{22}\right)^{1 / 2} / \gamma$ (sec equation ($\left.15 \mathrm{e}^{\prime}\right)$) and should be positive. Further, the negative coefficient on the wife's labor market experience, taken in conjunction with the positive effect of experience on her wages, implies that the estimated value of γ is negative, contrary to the premises of the model. ${ }^{15}$ Finally, inspection of Column 5 shows that the maximum likelihood estimates do not correspond to the estimates of Column 2 or Column 4.

These empirical results have led me to develop a more general model in which the hours of work equation is not as closely related to the participation equation as it is postulated to be above. Such a model arises naturally when there are fixed time and money costs of work and child care, and is reported in another paper. (Heckman, 1976).

An alternative estimator of the model under discussion that avoids an embarrassing confrontation with data is obtained by noting that if the model were true, probit coefficients for the work-no work decision would estimate the coefficients of β_{2} in the hours of work equation (15 c) up to a factor of proportionality. In the notation of this section, the factor of proportionality is simply given by $\sigma_{22}^{1 / 2} / \gamma$. In an obvious way, we may adapt the estimator for the Tobin model proposed in equation (13b') and write

$$
\begin{equation*}
h_{i}=\frac{\sigma_{22}^{1 / 2}}{\gamma}\left(-\phi_{i}+\lambda_{i}\right)+\frac{V_{2 i}}{\gamma}, \quad i=1, \ldots, I_{1} \tag{16}
\end{equation*}
$$

where

$$
\phi_{i}=-\frac{\beta_{2} X_{2 i}}{\left(\sigma_{22}^{1 / 2} / \gamma\right)}
$$

[^11]Probit analysis yields estimates of ϕ_{i} and λ_{i}. Hence we may estimate $\left(\sigma_{22}\right)^{1 / 2} / \gamma$ by regressing h_{i} on $\left(-\phi_{i}+\lambda_{i}\right)$. This estimate is guaranteed to be positive. ${ }^{16}$ Thus, we can estimate equation (15 c) and hence we can estimate the effect of experience on hours of work. Using the coefficient on the experience variable from the wage

TABLE 3
Maximum Likeithood Estimates and Initial. Consistent Estimates of the Heckman (1974) Mode:I

Annual Hours
(" t '" statistics in parentheses)

	Likelihood Optimum	Estimates in Original Paper	Initial Consistent Estimates	First Step Iterate
Natural Logarithm of Market Wage Equation $Y_{1 t}$ (Coefficients of β_{1})				
Intercept	$\begin{aligned} & -0.412 \\ & (5.28) \end{aligned}$	$\begin{gathered} -0.982 \\ (8.931 \end{gathered}$	-0.435	-0.593
Education	0.0679	0.0761	0.0686	(8.70)
	(13.58)	(10.15)	O.068	(17.20)
Experience	0.0200	0.048	0.0205	0.025
	(10.00)	(12.00)		(1.14)
Natural Logarithm of Reservation Wage $Y_{3 i}$ (Coefficients of β_{3})				
Intercept	$\begin{gathered} -0.1191 \\ (1.77) \end{gathered}$	$\begin{aligned} & -0.623 \\ & (32.28) \end{aligned}$	-0.103	$\begin{gathered} -0.0964 \\ 0109 \end{gathered}$
Effect of hours on reservation wage (y)	$\begin{gathered} 0.152 \times 10^{-3} \\ (7.96) \end{gathered}$	$\begin{gathered} 0.63 \times 10^{-1} \\ (12.60) \end{gathered}$	0.9×10^{-3}	$\begin{gathered} 0.148 \times 10^{3} \\ (1383.18) \end{gathered}$
Husband's wage	0.00946	0.051	0.00418	0.0238
	(2.49)	(7.29)		(4.76)
Wife's education	0.0574	0.0534	0.061	0.0548
	${ }_{0}^{(10.14)}{ }^{-5}$	(7.63)		(13.70)
Assets	0.185×10^{-5}	0.135×10^{-5}	0.1702×10^{-6}	0.285×10^{-5}
				(0.41)
Nbr. children 6	0.114	0.179	0.115	0.116
	(6.48)	(52.63)		(7.25)
Std. Deviation in Mkt. Wage Equation $\sigma_{11}^{1 / 2}$	$\begin{gathered} 0.329 \\ (32.90) \end{gathered}$	$\begin{gathered} 0.452 \\ (37.36) \end{gathered}$	0.320	$\begin{gathered} 0.253 \\ (23.00) \end{gathered}$
Std. Deviation in Reservation Wage Eq. $\sigma_{33}^{1 / 2}$	0.363	0.532	0.351	0.259
	(24.20)	(28.00)		(26.16)
Interequation Correl.$\frac{\sigma_{13}}{\sqrt{\sigma_{11} \sigma_{33}}}$	0.725	0.6541	0.353×10^{-4}	0.317
	(11.69)	(14.22)		(4.23)
Log Likelihood Log Likelihood under null hypothesis of no selection bias	-5,778	-	-6,414	-6,102
	-5,783			

[^12]equation divided into the experience coefficient for the hours of work equation, we may estimate $1 / \gamma$, and hence $\left(\sigma_{22}\right)^{1 / 2}$. For these datat these estimates are positive.

Unweighted estimates of equation (16) are used io develop the initial consistent estimate of the natural logarithm of the reservation wage function that are displayed in Cohimn 3 of Table 3. The estimates of the population wage function are taken from the estimates reported in the second column of the first row of Table 2. ${ }^{17}$

The initial consistent estimates displayed in Table 3 are to be compared with the coefficients displayed in Column 1 obtained from optimizing the likelihood function. For most coefhcients, the agreement between the two estimates is rather close. The only exceptions come in the estimate of γ and in the estimate of the intercorrelation between the disturbances of the market wage equation ($U_{1 i}$) and the reservation wage equation ($U_{3 i}$). Note that a comparison of Columns 1 and 2 suggests that the coding error that appeared in the original Parnes tapes introduced considerable error in the estimated coefficients. In particular, the effect of experience on wages was overstated in my previous paper while the effect of wages on labor supply ($1 / \gamma$) was understated. Finally, note that the first step iterate of the initial consistent estimator, an asymptotically efficient estimator, is numerically close to the maximum likelihood estimator but for most coefficients is not as close as the initia! consistent estimator.

Summary and Conci.usions

This paper discusses the bias that arises from sample selection, truncation and limited dependent variables within the familiar specification error framework of Griliches and Theil. A simple estimator for censored samples, due to Gronau and Lewis, is discussed and applicd to reestimate a model of female labor supply, wages and labor force participation. The estimates compare quite closely to the estimates obtained from maximum likelihood.

The estimator discussed here is viewed as a complement to Amemiya's estimators (1973, 1974) for related models. No comparison of relative efficiency has been performed. Neither estimator is efficient compared to maximum likelihood, but both are computationally more flexible than maximum likelihood and for that reason both are more useful in exploratory empirical work. ${ }^{18}$

University of Chicago

[^13]
Appendix A-1

Sample Selection Criteria

In the original National Longitudinal Survey tape of women 30-44 interviewed in 1967, 5,083 observations were available. The following rejection criteria were employed io reach the working sample of 2,253 total women, 701 of whom are working in the survey year. For a description of the data source, sce Shea, et al., 1970
(1) Nonwhite
(2) Nonmarried spouse present
(3) Husband has no income
(4) Wife has a job, but not working in survey week
(5) Wife's work experience not available
(6) Education of wife not available
(7) Unknown wage rate for working woman

Note that observations may be rejected for any of the seven reasons listed. Assets were assigned in 176 cases from the equation fit on the subsample of working women.

$$
\begin{aligned}
\text { Assets }(1967)= & -9,205+171.80 \text { (husband's wage rate) } \\
& -53.29 \text { (wife's experience) }+2,034 \text { (wife's education) }
\end{aligned}
$$

Appendix A-2

DESCRIPTION OF DATA

(1967 National Longitudinal Survey of Women 30-44) 701 working women; 2,253 women

	Mean for Woiking Women	Mean for all Women
Nbr. of children less than 6	0.252	0.5512
Assets ($\$$)	12.466	13.963
Husband's income ($\$$)	6.531	6.924
Wife's annual nours	1,527	-
Weekly wage (\$/wk.)	75.92	-
Weeks worked	41.2	-
Labor force experience (years)	11.5	7.75
Wife's education	11.3	11.33
Husband's wage rate	3.02	3.16
Log of wife's weekly wage	4.12	-
Hours per week of wife	36.3	-
Selection factor (λ_{i})	1.033	1.585
Participation rate	1.0	0.373

Reherfenctes

Amemiya, T . "Muitivariate Regression and Simultaneous R:quation Models When the Dependent Variables are Truncated Normal," Econometrica 42 No. 6. November 1974: 999-1011.
. "Regression Analysis When the Dependent Viriable is Truncated Normal., Econometrica 41. No. 6: 997-1017.

Cragg, J., "Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods." Econometrica 39, No. S. September, 1971: 829-844.
Cramer, H. Mathematical Methods in Statistics. Princeton, 1946.
Feller, W., An Introduction to Probability Theory and Its Applications, Vol. 2. Wiley, New York, 1971.
Goldberger, A., "Linear Regression in Truncated Samples," Social Systems Research Institute, University of Wisconsin-Madison, May 23, 1975.
Gronau, Reuberi, "The Effect of Children on the Housewife's Valuc of Time." Journal of Political Economy, March/April, 1973.
———. "Wage Comparisons-A Selectivity Bias," Journal of Political Economy, November/December. 1974.
Haberman, Sheiby, The Analysis of Frequency Data. University of Chicago Press, 1974.
Heckman, James J., "Shadow Prices, Market Wages and Labor Supply," Econometric a. July 1974.
-. "Sample Selection Bias as a Specification Error." Unpublished Manuscript, Rand Corporation. April 1976.
Johnson, N. and S. Kotz, Distributions in Statistics: Continhous Multivariate Distrihutiosts. Wiley, New York, 1972.
Lewis. H. Gregg, "Comments on Selectivity Biases in Wage Comparisons," Journal of Political Economy, November/December 1974.
—_Unionism: and Relative Wages. University of Chicago Press, 1963.
Nelson. Forrest, "Censored Regression Models with Unobserved Stochastic Censoring Thresholds," National Bureau of Economic Research Working Paper No. 63, 1975.
Rothenberg, 'T. and C. Leenders, "E:fficient Estimation of Simultaneous Equation Systems," Econometrica 32. No. 1. January 1964: 57-76.
Shea, et al. Dual Careers: A I.ongitudinal Study of Labor Market Experience. Coltsmbus. Ohio: Cetter for Human Resource Research, Ohio State University, May 1970.
Tobin, J., "Estimation of Relationships for Limited Dependent Variables." Econometrica 26, 1958: 24-36.

[^0]: * This research was funded by a HEW granl to the Rand Corporation and a Department of Labor ASPER grant to the National Bureau of Economic Research. Neither organization is responsible for the contents of this paper. An earlier version of this paper appeared as: "Shadow Prices, Market Wages and Labor Supply Revisited: Some Computalional and Conceptual Simplifications and Revised Estimates, " June 1975. I have received useful comments from T. Amemiya, Gary Chamberlin, John Cogan. Zvi Griliches, Reuben Gronau, Ed Leamer, Lung Fei Lee. H. Gregg Lewis. Mark Killingsworth, T. Macurdy, Bill Rogers, and T. Paul Schultz at various stages of ihis research. None are responsible for any errors that remain in this paper. Ralph Shneival performed the calculations reported below.
 ${ }^{1}$ The Lewis paper :s an extended comment on Gronau's paper. Thus credit for developing the method belongs lo Gironau alihough Lewis' paper considerably extends and clarifies Gronau's analysis.

[^1]: ${ }^{2}$ Tobin actually assumes a separate known C_{i} for each observation. See Tobin (1458).

[^2]: ${ }^{4}$ Goldberger (1975) has shown that if the $X_{1 i}$ and $U_{1 i}$ are normally disiributed, regression estimates of Tobin's model are downward biased in absolule value for the true parameters. Clearly in the case of a two variabie model, or in a case of orthogonal regressors, one can unambiguously sign the bias if one has a priori information about signs of structural coefficients.
 ${ }^{5}$ In both truncated and censored samples, Y_{1} may be a Iruncaled or iimited dependent variable.

[^3]: ${ }^{6}$ Note that $f=h_{2}\left(U_{2 i} / \sigma_{22}^{1 / 2}\right)$, the normalized density of $U_{2 i}$.

[^4]: ${ }^{7}$ Thus, the estimated residual variance for (14a) converges to $\sigma_{22} \frac{1}{l_{1}} \sum_{i=1}^{\prime}\left(i+\phi_{i} \lambda_{i}-\lambda_{i}^{2}\right)$. of course, the summation term can be estimated so that the standard OLS variance formulae may be modified. But the GLS sampling variances for the parameters are lower and hence preferabie.

[^5]: *The likelihood function is straightforward. Using the notation in the text for the cesse of Y_{1} observed when $Y_{2}=0, Y_{1}$ not observed otherwise, and γ_{2} not continuously measured, the likeliheod becomes

[^6]: ${ }^{9}$ Note that the estimated $\lambda_{i}-\phi_{i}$ and the actual $Y_{2 i}$ are positive numbers. Hence the leasisquares estimate of $\left(\sigma_{22}\right)^{1 / 2}$ is positive
 ${ }^{10}$ The equation for $\left(\sigma_{22}\right)^{1 / 2}$ is given by
 $\left(\sigma_{22}\right)^{1 / 2}=\frac{\left.-\frac{1}{I_{1}} \sum \frac{\left(Y_{2 i}\right)\left(\lambda_{i}-\phi_{i}\right)}{1+\phi_{i} \lambda_{i}-\lambda_{i}^{2}}+\sqrt{\left[\frac{1}{I_{1}} \sum \frac{\left(Y_{2 i}\right)\left(\lambda_{i}-\phi_{i}\right.}{1+\phi_{i} \lambda_{i}}\right]_{i}^{2}}\right]^{2}}{\left.1-\frac{1}{I_{1}} \sum \frac{(1}{I_{i}} \sum \frac{\left.\Lambda_{i}-\phi_{i}\right)^{2}}{1+\phi_{2 i} \lambda_{i}-\lambda_{i}^{2}}\right)\left(1-\frac{1}{I_{1}} \sum \frac{\left(\lambda_{i}-\phi_{i}\right)^{2}}{1+\phi_{i} \lambda_{i}-\lambda_{i}^{2}}\right)}$. for $1-\frac{1}{I_{1}} \Sigma \frac{\left(\lambda_{i}-\phi_{i}\right)^{2}}{1+\phi_{i} \lambda_{i}-\lambda_{i}^{2}}=d \neq 0$.

 When the last condition does not hold, it is straightforward to develop the appropriate expression fer $\left(\sigma_{22}\right)^{1 / 2}$. In either case consistency is readily verified. Nothing guarantees that d is posilive. For example, if all observalions have a probability of sample inclusion that exceeds 85 percent, $d<0$, and no real root need exist in a smalt sample alihough in a large sample, one must exist. It is interestingto note that nonexistence is most likely in samples with observations for which the probability of sample inciusion is high, i.e., precisely in those circumstances when least squares is an apprepriate estimator, the range of variation in λ_{i} is small, and we would place little weight on the regression estimate
 of $\left(\sigma_{22}\right)^{!/ 2}$.

[^7]: ${ }^{11}$ Simply regress each squared residual from the unweighted regression $V_{1 i}^{2}$ on " $\phi_{1} \lambda_{i}-\lambda_{i}^{2 "}$ and an intercept. The intercept estimates σ_{11} while the slope estimates $\rho^{2} \sigma_{11}$. Under general conditions, these estimates are consistent for the true parameters and pe-mit estimation of the weights required in the weighted regression. Nothing in the procedure ensures that the estimated variance is pesitive or that the estimate of ρ^{2} lies in the unit interval.

[^8]: ${ }^{12}$ A derivation of the sample likelihood function for this model is provided in Heckman (1974).

[^9]: * The number of years the woman worked full time since marriage.

[^10]: ${ }^{13}$ These estimates only use the information available on the wage equation, and do not exploit the interequation covariance structure.

[^11]: ${ }^{14}$ The lator supply equation is just identified because the only variable that appears in the wage function that does not appear in the reservation wage equation is labor market experience. Hence the choice between estimating equations ($15 \mathrm{~d}^{\prime}$) and ($15 \mathrm{Se}^{\prime}$) is immaterial.
 ${ }^{15}$ The estimate of $1 / \gamma$ is obtained by dividing the coefficient for experience in the female wage equation (0.0203 in the GLS estimates) into the coefficient for experience in the hours of work equation (-79). The resulting estimate is -3891.6 .

[^12]: ${ }^{16}$ Either weighted or unweighted estimatiors may be used, and as discussed in Section II, a more efficient estimator exploits the information that the regression coefficient is the square root of the population variance.

[^13]: ${ }^{17}$ Estimates of the covariance structure are obtained from the inter-equation residua! correlation between the residuals from equation (16) and the wage function ($15 b^{\circ}$). Note that the estimate of $\sigma_{22}^{1 / 2} / \gamma$ taken from the regression coefficient of equation (16) is 583.01 .
 ${ }^{18}$ An example of the potential in cost saving may be useful. liicost $\$ 700$ to produce estimates of the likelihood function reported in Table 3 and $\$ 15$ to produce the initial consistent estimates and the GLS estimates.

