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AnnaLs of l'cono,nic and Social Measurenient, 5/4, 1 V76

'THE COMMON Si'R1JCFLJR}: OF STA'HSTIC,\l, MODELS
OF TRUNCATION, SAMPLE SELECTION AND LIMITED I)FPFNDfTh41'

VARIABLES AND A SIMPLE ESTlMA'FOR FOR SUCH MODELS*

BY JAMES J. HLCKMAN

This paper presents a unified treatment of statistical nior/els [(JT trt4flc(41j0,J, sampleselection and limited
dependent variables. A simple estimator is proposed that permits estimation of those models by least
squares, and probil analysts. In an empirical example, it is shown that the estimator yields estimates close
to the maximum likelihood estimates.

This paper presents a unified sunimary of statistical models for sample selection,
truncation and limited dependent variables. The bias that arises from using least
squares when such models apply is characterized as a simple specificationerror or
omitted variable problem. A computationally simple estimator applicable to such
models is proposed that amounts to estimating the omitted variable and using
least squares including the estimated omitted variable as a regressor.

The estimator discussed in this paper is not new. A grouped dataversion of it
appears in papers on sample selection bias by Gronau (1974) and Lewis (1974).
This paper extends the analysis in those papers by developing the statistical
properties of the estimator and demonstrating that the method is applicable to a
wider class of models, and a more varied class of empirical settings, than the
original papers consider.

The paper is in three parts. First, I discuss the common structure of models of
sample selection, truncation and limited dependent variables. Then I discuss
specific models based on the assumption of normal disturbances in the equations
and propose an estimator for these models. Finally, I apply the estimator to
reestimate a model of female labor supply and wages. In this example, I demon-
strate that the consistent estimator discussed here closely approximates estimates
obtained from optimizing a computationally more complicated likelihood func-
tion.

I. A Two EQUATION MODEL

To simplify the exposition, I consider a two equation model. Few new points
arise in the multivariate case, and the multivariate extension is straightforward.

* This research was funded by a HEW grant to the Rand Corporation and a I)epartmcnt of Labor
ASPER grant to the National Bureau of Economic Research. Neither organization is responsible for
the contents of this paper. An earlier version oF this paper appeared a "Shadow Prices, Market Wages
and Labor Supply Revisited: Sonic Computational and Conceptual Simplifications and Revised
Estimates,' June 1975. 1 have received useful comments from T. Amensiya, Gary Chamberlin, John
Cogan. Zvi Griliches, Reuben Gronau, Ed Learner, Lung Fei Lee, H. Gregg i.ewis, Mark Killings-
worth T. Macurdy, Bill Rogers, and T. Paul Schultz at various stages of this research. None are
responsible for any errors that remain in this paper. Ralph Shneiva, performed the calculations
reported below.

'The Lewis paper s an extended comment on Gronau's paper. Thus credia for developing the
method belongs to (ironau alihough Lewis' paper considerably extends and clarifies Gronau's
analysis.
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For a random sample of I observatft)nS, equations for individual i may he written
as

(Ia) = 4-

(Ib) 2i = X,J3 + 1121

where X is a lxK1 vector of regressors, f3, is a K1x I vector of parameters,

E(U)0
= j',/=1,2, i=i'

11112 iiP.
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These assumptions are consistent with random sampling. The joint distribution ofU, U, is Ii (U11, 1121) which may he a singular distribution. Regressors are
assumed to be of full rank so that if data on all variables were available, each
equation could be estimated by least squares.

All of the models in the literature developed for limited dependent variables
and sample selection bias may be interpreted within a missing data framework
Suppose that we seek to estimate equation (la) hut that for some observations
from a larger random sample data are missing on Y1. In the case of a censored
sample, we have access to the larger random sample, hut we do not know Y1 for
censored observations. In a truncated sample, we do not have access to any
observations from the larger random sample except those for which data on Y1 is
available. In both cases, there is a sample of I complete observations. In
investigating the bias that arises from using an incomplete sample to estimate ,

we must know why the data are missing.
The population regression function for equation (Ia) may be written as

E( Y11 1X11) Xp1, I = I.....1
which under the assumptions postulated above would be estimable froni a random
sample. The regression function for the incomplete sample may be written as

E( Y11 X11, Sample Selecton Rule) = X1 + E(UI, ISample Selection Rule)

1=11...,!l
where without loss of generality the first 'I observations arc assumed to contain
data on Y1. If the conditional expectation of LI11 is zero, regressions fit on the sub-
sample yield unbiased estimates of i3.

In genera!, it is not the case that selecioim Into the subsample is andom. For
example, in Tobin's justly celebrated paper on limited dependent variables, we
observe Y1 only if

where C is a constant.2 Y11 may be interpreted as an index of a eonsuiners inten-
sity of desire to purchase a durable. If the intensity is sufficiently great (Y11 > C)
the consumer expresses his desire and Y1, is observed. Otherwise, we cannot

2
Tobin actually assumes a separate known for each observation. Sec Tohin (1958).
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observe intensity and observed purchases are zero. Thus, in Tohin's model the
sample selection rule is given by (6>, and we may write

E(YIIFXh, Y,jO)=xii+E(uiIy1>o)
As noted by Cragg (1971) and Nelson (1975), the rule generating the

observed data need not be as closely related to the model of equation (I a) as Tohin
assumes. Consider the following decision rule: we obtain data on Y1, if another
random variable crosses a threshold, i.e., if

Y2e0
while if the opposite inequality holds we do not obtain data on Y11. The choice of
zero as a threshold is an inessential normalization. Also, note that we could define
a dummy random variable d = I with the properties

dl 1ff Y20, dO otherwise

and proceed to analyze the joint distribution of Y and d1, dispensing with Y2
altogether. The advantage in using selection rule representation (7) is that it
permits a unified summary of the existing literature.

Using this representation, we may write equation (5) as

E( Y1X11, 1'21 O) = X1J31 +E(U1111J21

If U1 is independent of U21, the conditional mean of. U1 is zero, and the sample
selection process into the incomplete sample is random. In the general case, the
conditional mean of the disturbance in the incomplete sample is a function of X2.
Moreover, the effect of such sample selection is that X2 variables that do not
belong in the population regression function appear to be statistically significant in
equations fit on selected samples.3

A good example of this phenomenon arises in the Gronau (1974)Lewis
(1974) wage selectivity bias problem. In their analyses Y1, is the wage rate which
is only observed for working women, and Y, is an index of labor force attachment
(which in the absence of fixed costs of work may be interpreted as the difference
between market wages and reservation wages). If the presence of children affects
the work decision but does riot affect market wages, regression evidence from
selected samples of working women that women with children earn lower wages is
not necessarily evidence that there is market discrimination against such women
or that women with lower market experienceas proxied by children--earn
lower wages. Moreover, regression evidence that such extraneous variables
"explain" wage rates may be interpreted as evidence that selection bias is present.

For a final example, I draw on my own work (Heckman, 1974). Letting Y0 be
the wage rate for woman 1, and Y2, be the difference between market wages and
reservation wages, a woman works if Y21 >0. Using results from the theory of
labor supply, one can show that under certain simplifying assumptions working
hours, h,, are proportional to 1'21. If this proportionality factor is l/y(> 0), we are

If the Ofli regressor in X2 is "1'., so that the probability of sample IflCIUSIOfl is the same for all

observations, only the intercept is biased.

[
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led to the following model:

(1 Oa) E(Y,X1. Y O) X E( UILJ.

(lOb) = 1 i/J Y, 0, d1 I otherwise

(1 Oc) E(h1 1x21, Y21 0) = x21, y21 o).

Equations (lOa) and (b) are as before. Equation (lOc) exploits the information
that we observe Y2 up to a positive factor of proportionality if Y21 is positive.

'These examples are not intended as a complete literature survey. Yet they
illustrate that the basic statistical models for limited dependent variables, censor
irtg and truncation may be summarized in a simple general model for missing data.

Regression estimates of (Ia) fit on a selected sample omit the final term on the
right hand side of equation (9). Thus the bias that arises from using least squares to
fit models for limited dependent variables or models with censoring or truncation
arises solely because the conditional mean of U1, is not included as a regressor.
The bias that arises from truncation or selection may be interpreted as arising
from an ordinary specification error with the conditional mean deleted as an
explanatory variable. In general, one cannot sign the direction of bias that arises
from omitting this conditional mean.4

A crucial distinction is the one between a truncated sample and a censored
sample. In a truncated sample one cannot use the available data to estimate the
probability that an observation has complete data. In a censored sample, one can.5
In the next section, I examine a technique that enables one to use this estimated
probability to estimate the missing conditional mean for each observation. The
estimated conditional mean may be utilized as a regressor in an ordinary regres-
sion analysis so that estimators with desirable large sample properties may be
derived from cotnputationally simple methods.

II. SIMPLE ESTIMATORS FOR THE CASE OF JOINT NORMAL DISTURBANCES

Suppose that h(U11, U21), the joint density of U1, and U21, is bivariate
normal. Using vell known results in the literature (see, e.g., Johnson and Kotz
(1972), pp. 112-113)

(TI2E(UI,Y2I >0) =E(U11U21 > X21/32) --
(o-27)

22
E(U211Y21 >0) = E(U211U21 > --X,12)= I/2Ik

(o22)

Goldberger (1975) has shown that if the X11 and U11 are normally distributed, regressiOn
estimates of Tobin's model are downward biased in abso'ute value for the true parameters. Clearly in
the case of a two variable model, or in a case of orthogonal regressors, one can unambiguously sign the
bias if one has a pnori information about signs of structural coefficients.

In both truncated and censored samples, V, may be a truncated or timited dependent variable.
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where

and f and F respectively are the density and distribution function of the standard
normal distribution. The Tobin model is a special case with It (U11, U1) a singular
density since U, U.

"A1" is the inverse of Mill's ratio and is known as the hazard rate in reliability
theory. There are several interesting properties of A1:

Its denominator is the probability that observation i has data for Y1.
The lower the probability that an observation has data on Y1 the greater

the value of A for that observation.
More precisely, using a result due to Feller (1968) and cited in Haberman's

proof of the concavity of the probit likelihood function, (Haberman, 1974, p.
309), it is straightforward to show that

>0,
ui4

and
lirn A=co urn A =0.

Thus in samples in which the selectivity problem is unimportant (i.e., the
sample selection rule ensures that all potential population observations are
sampled) A, becomes negligibly small so that least squares estimates of the
coefficients of (la) have optimal poperties.

Usingthese results, we may write

E(Y1X,1, Y210)=X1j31+ 1A1
(22)

E( Y211X21. Y21 0) = X2j32 + A1.

(4T22)

Thus if we know A1, or could estimate it, least squares could be applied to estimate

the parameters in equation (12a). Similarly, if we could measure Y2, when

Y21 >0, as in Tobin's model, knowledge of Y21 and A, would permit direct
estimation of 132 and (a22)h/2 by least squares without having to resort to
optimizing likelihood functions.

We may add disturbances to equations (12a) and (12b) to reach the model

YlI=X1J3!+ (112AV
(ff22)

Y21 =X21/32+.
u22 A+ V21(.r)

where E(V11)=E(V21)=O.

6 Note that I 'h2(U21/cr2), the normalized density of U21.
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and

(15) O1+A,A1
There are several distinctive features of this covariance structure. Clearly, theerror structure is heteroscedastic, if X21 (and hence ) contains variables apartfrom "1". Assuming that we know 4, and hence A, regression estimates of thevariances of V11 and V2, based on the least squares residuals from equations (l3a)and (13b) respectively are downward biased estimates of the true variances of U1,and U2 respectively. This is a consequence of inequality (15). Similarly, thestandard estimator of the covariance of disturbances across equations based onthe cross product of the least squares residuals from each equation yields anestimator of the population covariance that is biased towards zero.The heteroscedasticity present in the disturbances of each equation impliesthat a generalized least squares procedure (GLS) improves the precision of leastsquares estimates when they are possible. if data are available on Y, 1'2 and A,GLS should be applied to the system of equations (13a) and (13b). Alternativeestimators are possible if the information is utilized that the coefficients of A inequations (13a) and (13b) are functions of the population disturbance covariancestructure. However, asymptotic optimality for GLS cannot be claimed even if allavailable information is exploited because the resulting estimators possess acovarjance matrix that does not attain the Cramer Rao lower bound.The approximate GLS estimators possess the advantage of asymptoticnormality. The unweighted estimators are also asymptotically normal but theexpression for the residual variance is complex, and standard least squaresformulae do not apply.'

The GLS estimators have an interesting interpretation Unlikely observa-tions (i.e., those with a low probability of sample inclusion) receive greater weightthan likely observations This is a consequence of the readily confirmed fact thaieach element of the covarjance matrix for l" and V,1 is a monotonic function of

Thus, the estimated
residual varja,1ce for

course, the summation term can he estimated somodified. But the GLS
sampling variances For the

(14a) converges to (I +.A1A). Of
that the standard O1S variance Formulae may be
parametef-5 are lower and hence preferable.
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14a)

(14h)

(14c)

where

It is straightforward to demonstrate that the Covariance structure is given by

E( V,) ('22( I +fA, - A)

E(V11V,) ri,( I +q1A1 --As)

E(V1)=r11t(l p2)+p(l +q1A1A))

U1
/

/



,

nd ., f -- X', the probability of sample inclusion goes to zero, i'id

lim L'( V,) U

mi l"( "2i V1) ()

liiii E(V) '(l _i2r.

The weighting implicit in (11 S underscores the crucial nature of the assumption
that all observations are drawn from the same population distribution.

As a practical matter, we do not k flow and X, and hence we cannot estimate
equations (I 3a) and (h) unless there is prior information on A1. In the case of a
censored .samplc, it is possible to compute the probability that an observation has
data missing on Y1 and hence ills possible to use probit analysis to estimate I and
A1. Thus, denoting d1 as a ran(lom variable with the value of one when Y is
observed, the sample likelihood for the probil analysis is

.= [j [F(1)}' 1"W)Jd,.

Subject to the standard identification conditions in probit analysis. it is possible to
maximize f to obtain consistent estimates 01 f3, and hence A. These estimates
of A, may be used in place of the true A1 as regressors in equations (I 3a) and (b).
When regression estimates of the coefficients In equations (13a) and (l3h) al-c
possible, they yield consistent estimates of the true parameters since A, estimated
from probit analysis is a consistent estimator of the true A, and Slutsky's theorem
applies. More efficient estimates may be obtained from the approximate GLS
estimates which converge in distribution to the true (LS estimates by the Cramer
convergence theorem (Cramer, 1941)). Other estimates may he obtained from
utilizing the information that the coefficients of A, are functions of the population
covariance structure. Each set of estimates may he used as initial consistent
estimates for estimation of the likelihood furction. As Rothenberg and Leenders
(1964) have shown, one Newton step toward Optimizing the likelihood function
produces estimates that arc asymptotically efficient in the sense that they attain
the ('ramcrRao lower hound.

Consideration of three special cases will help to focus ideas. First consider
Tohin's model which is presented in equation ( 13h) in the notation of this section.
In Tohin's original model, we observe Y2 only if it is positive hut for all
observations in a random sample we know whether or not Y, is positive. In the
two Stage procedure proposed here, first estimate the probit model determining

1 he IikIihood fUilCtI()Il is straight fI)Iward - Using the flotation in the text br the case of V1
observed when Y, 0, Y nut obsersed otherwise, and V2 not continuously measured, the likelihood
becomes

j [Jxh( V11 LI21) htL] [J..h7(U2) dU2Er'[J:i2 h2(U2) dU2Y

The likelihood (unction for the other eases is straightforward.
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the probability that Y2 is positive. This gives an estimate of (fX,/((r2,) 1/2)
and hence A1 for each observation. This estimate of A, may be inserted in equltin
(I 3b) and least squares estimates of the coefficients iii (I 3b) may he itbiajijed
Note that a weighted version of (I 3h) can he estimated to eliminate the hetero_
scedasticity that arises from sample selection.

For at least two reasons this procedure does not uliliie all of the available
information. The first reason is that the proCedure ignores the information that the
probit function estimates up to a factor of proportionality. One could Utilize
this information to write (1 3h) as

(13b') (r22)If2(_ +A1)-i- "2i

Estimates.of (13b') are guaranteed to produce a positive estimate of (o.2)u/2, a
feature not guaranteed in direct estimation of (13b) with the A1 estimated from
probit as a regressor.9 One can estimate both weighted and unweighted versions
of (13b') with the weights estimated from (14a).

Still, these estimates are not fully efficient. Consider the weighted estimator
of (131)'). The residual variance and the regression coefiucient each provide an
estimator of (ff22)2. One can use this information to constrain the squared
regression coefficient in the weighted regression to equal the residual variance.

Thus one can solve the following quadratic equation for (T22)2,

(Y21(22)'"2(A1-41))2
'iiI (1+41A1A)

-(T22

where, as before, the first J observations are assumed to have Y21 >0, and
estimated values of A and 4, are used in place of actual values. The left hand side
of the equation is the error sum of squares from the weighted regression. This
estimate of (a22)1"2 is consistent and is guaranteed to produce a positive estimate
of (a22)"2 if the quadratic equation possesses a real root, but is not necessarily
more efficient than the previous estimator.'"

°
Note that the estimated A1 - 4l and the actual Y, are positive numbers. Hence the least squares

estimate of (o.22)I2 is positive.

l'he equation for (if)'12 is given by

(if22) ='/2 i l+MA l+1AJ l+A,A) 1, l+,A1-A

I )11112 +'! V1 I (A)2

__i (A,-,)2
ft (! +,A1-A)

1 (A-12for! -=dO.
1, l4-,A--A1

When the last condition does not hold, it is straightforward to develop the appropriate expression fr(if22)1t2
In either case consistency is readily verified. Nothing guarantees that d is positive. For

example, if all observations have a probability of sample inclusion that exceeds 15 percent, d <0, and
no real root need exist in a small sample although in a large sample, one must exist. It is interesting tonote that nonexistence is most likely in samples with observations for which the probability of sample
inclusion is high, i.e., precisely in those circumstances when least squares is an appropriate estimator,
the raneof variation in A1 is small, and we would place little weight on the regression estimateOf(o)
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None of these two step estimators of (0.22)1/2 attains the Cramer-Rao lower
bound so that use of the Rothcnherg one step estimator is recommended when
possible. An advantage of the multiplicity of eStiiflitors for 13 and ((r,,)2 is that
they allow a check on the appropriateness of the model. For example, if the
probability ot the event Y > U is not itS closely linked to the equation for Y21 as
'Fobin assumed, the 132 estimated from (l3h) will not be proportional to the
131/(0.22)1/2 estimated from probit analysis.

- Finally, note that unconstrained estimates of equation (13b) are likely to he
imprecise because A and its estimate are nonlinear functions of the X2 regressors
that appear in that equation. Since and A are positively correlated (often
strongly so) multicollinearity may be a problem and for that reason constrained
estimators can produce niore reasonable results.

The procedure for more general models is similar to that outlined for Tohin's
model. In our second example, suppose that we observe Y, only when Y, >0, that
we do not observe actual values of Y7, but we know whether or not Y2 >0 for all
observations from a random sample. This is the model of Gronau and Lewis.

As before, we may estimate çb and A from probit analysis. The estimated A is
then used as a regressor in equation (I 3a). Regression estimates of the parameters
are consistent estimators. To estimate the approximate generalized least squares
version of (l3a), we may use the residuals from this regression to estimate the
weights given in equation (14c).'

An alternative procedure uses the information from (1 4c) in conjunction with
(13a) to simultaneously estimate 13, p, and o. From the definition of p given
below equation (14c) note that equation (13a) may be written as

(1 3a') = A11131 -t--p(a1 1)A1 + V11.

The weighted estimator that utilizes the information that the coefficient of A, is a
parameter of the population variance, chooses 13, p. and 0.ii to minimize

- 1_
(Y - X1J31 P(0.i 1)'"2A1)2

2 2I-I-p (A1A1)

with the A1 estimated from probit analysis used in place of the true A1. As befre,
we cannot be sure that in small samples this estimator exists although in large
samples it must exist. Asymptotically, this procedure yields estimators that are

consistent but are inefficient compared to maximum likelihood estimators.
As a final example that is the topic of the empirical work reported below,

consider the model of equations (lOa)(lOe) with normality assumed for U1, and

(J2, arid censored sampling assumed. Y2 is observed up to an unknown factor of

proportionality when Y2>O, and Y1 is observed only when Y2>O. This 3xample

combines aspects of the two previous examples.

Simply regress each squared residual from the unweighted reress1on V on "A1 --A" and
an intercept. The intercept estimates while the slope estimates p o. Under general conditions,

these estimates are consistent for the true parameters and permit estimation of the weights required in
the weighted regression. Nothing in the procedure ensures that the estimated vasiance is positive or

that the estimate ot p2 lies in the unit interval.
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lor specifierty, Jet Y, be the market wage that woman i could earn were sheto work. Y2, is the difference between market vages h and reservation Wages
Y. I louis of work arc piooi tional to the diiieiciice between niarkc wages and
reservation wages when this difference is positive with the factorof proportionality denoted by I /y. This proportionality factor lutist be positive if the model is toaccord with economic theory.

In this model, the parameters of the functions determining Y and Y1 are ofdirect interest. The equation for reservation wages may be written as

(ISa)

(1 5b)

hence

(!5c)

where

= (X1X31) and U, = - U.
The hours of work equation is given by

y
or, in reduced form.

h1 =--(XIpI-x11$3)+!(u11_ U11)
V V

U31 and U11 are assumed to he joint normal variates with zero mean and the
covariance structure is unconstrained

Note that

(I Sb')

(15e')

Y3t = X J3 + (T1,

YIi = XllPi + U1,

Y21 = X1J3 - X3j31 + U U3 = X2113, + LI2,

E(U1) =(o, 2O1+o33)

where

E(Li1tJ31)=,3 1=1,2,3.
In this notation,

(T12 (Tii)

E( Y111h1 >0) = .X1j3 + (1I2

(u-22)'

(122E(h1h1 >0)=_!(X,1,31 Xfl3)+ A1
V (o22)
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or, equivalently.

E(h111i1 >0) = Y11h1 >0) --X) I (u -
Y y (u2,) -

The two stage procedure applicable to this model is (1) to estimate the pi-obit
function determining whether or not a woman works. This yields an estimate of A.
(2) Use the estimated A as a regressor in (15b'), and (15e'. Alternatively, the
hours of work equation may be estimated from (15d') using the predicted value
from wage function given by (1 5h') as a regressor. The advantage of thisprocedure
is that it permits estimation of a unique value of 1/y whereas if the model is
overidentified. equation (I Se') leads to a multiplicity of estimates for y. Note that
the usual rank and order restrictions apply for identifiability of y. For example, if
X11 contains one variable not contained in X31, and the rank condition applies, y
and hence the vector P are estimable parameters.

As in the other cases, approximate GLS estimators may be developed. The
procedure for developing such estimators follows exactly along the lines discussed
in the simpler models, and so will not be elaborated here.

The analysis for truncated samples is identical to the previous analysis for
censored samples provided that an estimate of A is available. This estimate may
come from other data sets or from subjective notions. Clearly the quality of the
resulting estimator depends on the quality of the estimate of A. Amemiya (1974)
has proposed an initial consistent estimator for the Tobin model that is applicable
to the case of truncated samples. Moreover, a straightforward extension of his
estimator leads to initial consistent estimators for the GronauLewis model, and
the expanded model just discussed. The advantage of Amemiya's estimator is that
it is based on sample evidence. While Amemiya's estimator is more cumbersome
to apply, it is clearly an alternative to the one proposed here, and has the
advantage that it can be used in truncated samples.

IlL EMPIRICAL PERFORMANCE OF THE ESTIMATOR

in this section, I report the results of an empirical analysis of the joint model
of labor force participation, wages and hours of work presented in the last section.
Elsewhere (Heckman, 1976)1 present a more extensive empirical analysis of this
model and demonstrate that the proportionality assumption of equations (lOc)
and (15d) and (15e) may be inappropriate because of worker and employer fixed
costs. 1-lere, I assume this model is correct and report the results of using the
computationally simple estimator to estimate the parameters of the sample
likelihood function. L As we shall see, the initial consistent estimator proposed
here locates the optimum rather precisely. This exercise is of more than
methodological interest. In an earlier paper (Heckman, 1974) I estimated this
model using data on female labor force experience that was erroneously coded by
the primary data source. ThUS the analysis here permits an examination of the
effect of this coding error on the estimates presented in the earlier paper.

I 2 A derivation of the sample likelihood function for this model is provided in Heckman (1974).
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The data source is the National Longitudinal Survey tape of WOmen 30-44
interviewed in 1967. From an original sample of 5,03 women, a working sample
of 2,253 white, married spouse present women with usable data was COflStr1Ictej
The reasons for sample exclusion are given in Appendix A- I Sample means for
the data used in the empirical analysis are reported in Appendix A2. The
measure of labor supply used in this paper is annual hours worked defined as the
product of weeks worked with average hours per week. A woman works if she has
nonzero hours of work in 1967.

Estimates for the probit model predicting the probability that i Woman works
are given in Column I of Table 1. The variables used in the analysis are self
explanatory. These estimates are to be compared with the estimates f this
probability derived from the sample likelihood function. The agreement is rather
close.

TABLE I
l'ROfllF EsrIMAils

Original Prhit Estimaic; of

("1 stat. in parentheses)

* The number of years the woman worked full time since marriage.

Next, I report estimates of the parameters of equations (ISb) and (15c)
obtained from regressions with and without "A" variables to correct for sample
censoring bias. The natural logarithm of the hourly wage rate is used for Y1
Annual hours worked are used as the measure of labor supply, h.

The top portion of Table 2 records the empirical results for the coefficients of
the hourly wage function. Column I records the results of estimating the wage
function by least squares on the subsample of working women without correcting
for censoring bias. Column 2 records the iesult of estimating the same function
entering the estimated A, as a regressor. Note that in this sample we cannot reject
the null hypothesis that sample censoring for wage functions is an unimportant
phenomenon. This result stands in marked contrast to the empirical results in
Gronau (1974) who found significant selectivity bias.

Generalized least squares estimates of the wage equation are given in
Column 313 The weights for the GLS estimator were derived from regressions on

ll These estimates only use the information available on the wage equation, and do not exploit the
Interequation covariance structure.
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Estimates from
Ihe

Likelihood Function

Number of children less than 6 -0.44968 (-9.987) -0.4410
Assets -0.6880x (-3.01) -0.7157x
Husband's hourly wage rate -0.01689 (-1.16) --0.0366
Wife's Labor market cxpericnce* 0.07947 (16.67) 0.0774
Wife's education 0.0302 (2.306) 0.0406
(onstant -1.1553 (7.569) -1.1331
Log likelihood: -I 186.8
Probability that a woman works is: I -= e dJ-fiX2i/lo2) 'J2ir
701 women work of a sample of 2.253 women.
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the first stage residuals using the procedure reported in footnote 11 in the previous
section. Note that the GLS equation is very similar to the least squares equation
reported in Column 2. The R2 shown in Column 3 is the R lot Ilie regression
using weighted variables.

Finally, estimates of the wage function obtained from Optimizing the like!i-
hood function are reported in Column 4. Note that the GLS estimates closely
approximate the maximum likelihood estimates.

The results in the bottom row of Table 2 are less reassuring. Column I
records estimates of reduced form equation (15e) that ignore the possibility of
selection bias.'4 Column 2 records estimates of this equation with A, included as a
regressor. Note that the coefficient on A. is statistically significant and negative,
and that this result remains in the GLS estimates, so that there is considerable
evidence that there is pronounced selection bias in estimating hours of work
functions on sub-samples of working women.

The estimated negative coefficient on A1 is disturbing since if the model of
equations (lOa)(lOc) is true, this coefficient yields an estimate of the standard
deviation (o2)2/y (see equation (15e')) and should be positive. Further, the
negative coefficient on the wife's labor market experience, taken in conjunction
with the positive effect of experience on her wages, implies that the estimated
value of y is negative, contrary to the premises of the model. Finally, inspection
of Column 5 shows that the maximum likelihood estimates do not correspond tothe estimates of Column 2 or Column 4.

These empirical results have led me to develop a more general model in
which the hours of work equation is hot as closely related to the participation
equation as it is postulated to be above. Such a model arises naturally when there
are fixed time and money costs of work and child care, and is reported in another
paper. (l-Ieckman, 1976).

An alternative estimator of the model under discussion that avoids an
embarrassing confrontation with data is obtained by noting that if the model were
true, probit coefficients for the work-no work decision would estimate the
coefficients of 2 in the hours of work equation (I Sc) up to a factor of proportion-
ality. In the notation of this section, the factor of proportionality is simply given byo2/y In an obvious way, we may adapt the estimator for the Tobin model
proposed in equation (13b') and write

(16) hI=2(_1A1)+X,
i=1,...,I,,

where

f32X2,
/ l/2j

22 ,y)

The labor supply equation is just identified because the only variable that appears in the wagefunctjo that does not appear in the reservation wage equation is labor market experience. Hence thechoice between estimating equations (lSd') and (15e') is immaterial.15
The estimate of I/y is obtained by dividing the coefficient for experience iii the female wageequation (0.0203 in the GLS estimates)into the coefficient for experience in the hours of workequation (-79). The resulting estimate is 3891.6.
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Probit analysis yields estimates of and A1. Hence we may estimate (°22)112/y byregressing h, on(f1 +A,).This estimate is guarantec(I tOt)Cf)OSItIVC.1t' Thus, wecan estimate equation (I 5c) and hence we can estimate the effect of experience onhours of work. Using the coefficient On the experience variable from the wage

TABLE 3
MAXIMUM LIKELII-ioot) ESTIMATES ANt) INITIAL CONSISTENT ESTIMATES OF TIlE

HECKMAN (1974) MODEI

Annual Hours
("t" statistics in parentheses)

Log Likelihood -5,778
Log Likelihood under -5,783

null hypothesis of no
selection bias

Initial
Likelihood Estimates in Consistent First Step
Optimum Original Paper Estimates Iterate

Natural Logarithm or
Market Wage Equation Yie
(Coefficients of i3)

Intercept -0.412 -0.982 -0.435 -0.593
(5.28) (8.93) (8.70)

Education 0.0679 0.076! 0.0686 (1.0688
(13.58) (10.15) (17.20)

Experience 0.0200 0.048 0.0205 0.025
(10.001 (12.00) (1.14)

Natural Logarithm of
Reservation Wage Y3
(Coefficients of f33)

Intercept -0.1191
(1.77)

Effect of hours on 0.152x io
reservation wage (796)
(1)

Husband's wage 0.00946
(2.49)

Wife's education 0.0574
(10.44)

Assets 0.185x 10
(3.14)

Nbr. children 6 0.114
(6.48)

Std. Deviation in 0.329
Mkt. Wage Equation (32.90)

Std. Deviation in 0.363
Reservation Wage Eq. (24.20)
(133

Interequation Correl. 0.725
(11.69)

0.051
(7.29)
0.0534
(7.63)

0.135x io-
(2.45)
0.179
(52.63)
0.452
(37.36)

16 Either weighted or unweighted estimators may be used, and as discussed in Section II, a more
effictent estimator exploits the information that the regression coefficient is the square root of the
population variance.

-0.623
(32.28)

0.63x io-
(12.60)

0.532
(28.00)

-0.103 -0.0964
(2.10)

0.9xl0 0.l4SxI()
(1383.18)

0.00418 0.0238
(4.76)

0.061 0.0548
(13.70)

0.1702x 106 0.285x 10
(0.41)

0.115 0.116
(7.25)

0.320 0.253
(23.00)

0.351 0.259
(26.16)

0.6541 0.3.53x i0 0.3 17
(14.22) (4.23)

-6,414 -6,102



equation divided into the experience coefficient for the hours of work equationwe may estimate l/y, and hence (u22)". For these data these estimates arepositive.
Ltnweighted estimates of equation ( 6) arc used to develop the initial

consistent estimate of the natural logarithm of the reservation wage function that
are displayed in Column 3 of Table 3. The estimates of the population wage
function arc taken from the estimates reported in the second column of the first
row of Table 2.17

The initial consistent estimates displayed in Table 3 are to be Compared with
the coefficients displayed in Column I obtained from optimizing the likelihood
function. For most coefficients, the agreement between the two estimates is rather
close. The only exceptions come in the estimate of y and in the estimate of the
intercorrelation between the disturbances of the market wage equation (U,1) and
the reservation wage equation (U). Note that a comparison of Columns 1 and
2 suggests that the coding error that appeared in the original Parnes tapes
introduced considerable error in the estimated coefficients. In particular, the
effect of experience on wages was overstated in my previous paper while the effect
of wages on labor supply (l/y) was understated. Finally, note that the first step
iterate of the initial consistent estimator, an asymptotically efficient estimator, is
numerically close to the maximum likelihood estimator but for most coefficients is
not as close as the initia! consistent estimator.

SUMMARY ANt) CONCLUSIONS

This paper discusses the bias that arises from sample selection, truncation and
limited dependent variables within the familiar specification error framework of
Griliches and Theil. A simple estimator for censored samples, due to Gronau and
Lewis, is discussed and applied to reestimate a model of female labor supply,
wages and labor force participation. The estimates compare quite closely to the
estimates obtained froni maximum likelihood.

The estimator discussed here is viewed as a complement to Amemiya's
estimators (1973, 1974) for related models. No comparison of relative efficiency
has been performed. Neither estimator is efficient compared to maximum likeli-
hood, but both are computationally more flexible than maximum likelihood and
for that reason both are more useful in exploratory empirical work.'8

University of chicago

7
Estimates of the covari;:nce structure are obtained from the inter-equation residual correlation

between the residuals froni equation (16) and the wage function (I5b). Note that the estimate of
taken from the regression coefficient of equation (16) is 53.Ol.

An example ot the potential in cost saving may be useful, It cost $700 to produceestimates of the likelihood function reported in Table 3 and $15 to produce the initial consistent
estimates and the GLS estimates.
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Sample SeleCtion Criteria

In the original National Longitudinal Survey tape of women 30-44 inter-
viewed in 1967, 5,083 observations were available. The following rejection
criteria were employed to reach the working sample of 2,253 total women, 701 of
whom are working in the survey year. For a description of the data source, see
Shea, etal., 1970

Nonwhite (1,552)
Non married spouse present (1,971)
Husband has no income (194)
Wife has a job, but not working in survey week (107)
Wife's work experience not available (357)
Education of wife not available (7)
Unknown wage rate for working woman (177)

Note that observations may be rejected for any of the seven reasons listed. Assets
were assigned in 176 cases from the equation fit on the subsample of working
women.

Assets (l967)= 9,205+ 171.80 (husband's wage rate)
53.29 (wife's experience) + 2,034 (wife's education)

APPENDiX A-2

DESCRIPTION OF DATA

(1967 National Longitudinal Survey of Women 30-44)
701 working women; 2,253 women

APPENDIX AI
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Mean for
Working Women

Mean for
all Women

Nbr. of children
less than 6

0.252 0.5512

Assets(S)
Ht'sband's income(S

12,466
6,531

13,963
6,924

Wife's annual hours 1,527 -
Weekly wage ($/wk.) 75.92
Weeks worked 41.2 -
Labor force experience (years) 11.5 7.75

Wife's education
Husband's wage rate

11.3
3.02 -

11.33
3.16

Log of wife's weekly wage 4.12 -
Hours per week of wife
Selection factor (A,)
Participation rate

36.3
1.033
1.0

-
1.585
0.373
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