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In this paper we introduce the concept of random game in order to incorporate the possible random
structure of a game in an explicit way. Two definitions of maximum likelihood Nash equilibrium
(MLNE) are given depending on the random structure of the game. Existence theorems of MLNE are
proved in both setups. )
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1. INTRODUCTION

In many practical situations, a group of agents have to take strategical decisions in
an environment of risk. The traditional approach of game theory to this problem is
to embody such a risk (and the attitude of the players in front of it) in the utility
functions of the players and, then, to solve the problem as a deterministic one
(obtaining, for instance, the Nash equilibria—see 1 for the details about the Nash
equilibrium concept-). Although this is the right approach in a number of occasions,
sometimes it is also interesting to address the situation in a way which pays more
attention to its random structure and to explicitily incorporate such a structure in
the proposed solution (in Section 3 we develope a significant example that motivates
the introduction of the new concept).

The approach we are adopting here is the following: it is conceivable that, in some
conflictive situations, players are willing to play a combination of strategies if it is an
equilibrium with a (fixed) considerably high probability (note that, in such a case,
they only have an incentive to deviate with a negligible probability). Hence, it is
interesting to study these random games from a probabilistic point of view. This
study is only initiated in the present work. In fact, we mostly concentrate on a
remarkable issue for random games: the existence of maximum likelihood Nash
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equilibria (combinations of strategies which are the most likely ones to be Nash
equilibria looking at the random structure of the situation).

There are several reasons to consider this as an interesting problem. First, because
the existence of an MLNE in a certain random game implies that players can
measure the probability of the least probable piece of the sample space that they
have to drop for the MLNE to be a standard Nash equilibrium (a Nash equilibrium
of the expected payoff game). This is a useful information for the players because, in
view of it, they may jointly decide to take the risk and agree on the MLNE. In other
cases the maximum risk that players jointly accept to take can be fixed a priori.
Even in this case the measure mentioned above is still interesting because it reveals if
the MLNE is acceptable or not for the players (in this case, perhaps other combina-
tions of strategies are acceptable, if the risk associated to them is small enough;
however an MLNE seems to be an optimal suggestion for the players).

Another reason why studying the existence of MLNE in random games is an
interesting issue is the following. An important problem in non-cooperative game
theory is that of defining selfenforcing combinations of strategies (combinations of
strategies from which the players do not have incentives to unilateraly deviate). One
of the first approaches to this problem is 1. In this paper, the Nash equilibrium
concept is proposed to select selfenforcing combinations of strategies in normal form
games. However, in 3, Selten showed that not all Nash equilibria are really selfen-
forcing. For instance, in the bimatrix game

B b
A (L) (00)
a (0,0) (0.0)

(a,b) is a Nash equilibrivm which is not selfenforcing because player 1 knows that
choosing A instead of a is never bad for him and could be good if player 2 also
deviates and thus, he will deviate; an analogous reasonement can be done by player
2, who will play B instead of b (in fact the only selfenforcing Nash equilibrium of this
game is (4, B)). Hence, the Nash condition seems to be not sufficient in order to
select rest-points in a non-cooperative game in a sensible way. Many possible refine-
ments of the Nash equilibrium concept have been proposed in the last years (4
contains a good survey on the topic) because this is an important (and still not
exhausted) problem in game theory. Now, our concept of MLNE can be useful to
refine the Nash equilibrium concept. Namely, in the example above, if we consider a
sequence of random games (each of them being slightly payoff-perturbed versions of
the original one) which converges to the initial bimatrix game, the only combination
of strategies which is a limit point of MLNE of games in the sequence is (4, B). This
suggest that, in a non-cooperative game, we can select (as more selfenforcing) those
Nash equilibria which are limit of a sequence of MLNE of a corresponding sequence
of random games converging to the original game. These ideas are first stated and
analyzed in 5 using very simple classes of random games. However, the development
of the study of MLNE in more general classes of random games (as we do in this
paper) would be very helpful for further applications of this probabilistic approach
to the theory of refinements.
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2. RANDOM GAMES AND MAXIMUM LIKELIHOOD EQUILIBRIA

In this section we present and study a solution concept for random games.
We begin introducing our model.

Definition 1: A random game is a three-tuple
{(Q,+,P),X,»
where:

1. (9, o, P) is a probability space,
2. X is the set of combination of strategies of the n players. It has the form

X=1[x,
i=1
where each X,, the set of strategies of player i, is a separable topological space
(i.e., each X, is a topoligical space containing a countable subset S; which verifies
that S;= X} and
3. H is the payoff function given by:

H:X xQ-R"
(x, @)= H(x, 0): = (H(x, ), Hy(x, w), ... H, (x, ®))

where, for every ie{l,...,n}, xe X and weQ, H, (x,w) is the payoff for the i-th
player if x is played and the state of nature is w. We suppose that H is measurable
as a function of w, for all x, and lower semicontinuous as a function of x, for all w,
(i.e., the sets {x/H(x,w) >r} are open in R*, for every r € R and all w).

Observe that the model described above is quite general. The condition of separ-
ability for the X, is only a technical one. The properties of measurability and
semicontinuity of H are not very restrictive but necessary il we want the model to be
reasonably handy. On the other hand, observe that a random game is a very
peculiar incomplete information game where no player has private information.
Note that, in this situation, the bayesian analysis is not really useful for the players.

For every w € Q, we denote by H,, the function which assigns H(x,w) to every
x € X. Obviously, (X,H,» is a normal form game for every w. Remind that x is a
Nash equilibrium of (X,H_> if H{x,w) = H((x_,x),») for all x;e X, and all
ie{1,2,...,n}. Here (x_,x';)} denotes the combination of strategies (x;,...,%;_;,X;,
X;41s...,%,). Bearing all this in mind, we give the following definition.

Definition 2: For every x € X, the Nash equilibrium indicator of x is the function
N.: Q—{0,1} given by:

1 if and only if x is a Nash equilibrium of <X, H,»
0 otherwise

Nyw) = {

This Nash equilibrium indicator function describes the possibilities of a particular
combination of strategies x to be a Nash equilibrium. In fact, it would be desirable
that N, = 1. If such an x exists, it would be a good solution for the random game.
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Nevertheless, that will rarely be the case. Then, as we have argued in the introduc-
tion, it is interesting to introduce and study a concept which picks up, for a random
game, the combinations of strategies having the largest possibilities of being Nash
equilibria. This is what we do next but first let us prove that, in a random game as in
Definition 1, the set {we Q/N(w)=1} is in o/ (for all xeX). Namely, fix xe X.
Now, taking into account the lower semicontinuity of every H,,, we can write:

{weQ/N (w)=1}
={weQNie{l,..,n},VxX' X, H{x,0) 2 H; (x_, x}),w)}
={weQ/Vie{l,..,n},Vx' €S, H{x,0)

ZH{(x_.x)o)=N N{weQ/Hx,w)>H((x_,x/),0).

i=1 x;eS,-

which clearly belongs to &7 because H is measurable as a functional of w and every
S, is a countable set.
Now we can define our new concept.

Definition 3: A combination of strategies x € X is said to be a maximum likelihood
Nash equilibrium ( MLNE) if and only if

N(x)=zN(y)VyeX,
where the function N: X —[0,1] is given by:
N(x):=P{we Q/N w)=1}.

Clearly, the only MLNE in the example proposed in the introduction of this paper
is, as desired, (4, B). Next we present a more elaborated example concerning an
infinite game.

Example 1: Take the two-person game G** = (X, Y, H,*# H,**), given by:
a) X=Y=[0,1]
b) H{x,y)=(x—a)y—f),V{x,y)eX x Y,Vie{l,2}, where & and f are unknown

random parameters independently distributed according to a U(—a,a) dis-
tribution and to a U(— b, b) distribution respectively (¢ < 1 and b < 1).

If we take the expected payoff function we can construct a standard two-person
normal form game G=(X,Y, H, H,), where H,(x,y) = H,(x,y) =xp¥(x,))eX x X.
G has two Nash equilibria: (0,0) and (1, 1).

If we analyze G*# as a random game, we observe that N(0,0) <1 and that
N(1,1)=1. It is also easy to check that (1,1) is the only MLNE.

An interesting point is when a certain random game has at least one MLNE. This
is what we deal with next. First we prove the following lemma.

Lemma 1: Let < (Q, 7, P), X, H > be a random game as in Definition I and {x,} 5,
a sequence in X such that lim,_, _ x, = xqe X. Then, if the sequence {N(x,)} converges,

H~- 20 "N

N(XO) ; 1im N(xn)

n—=g
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Proof: Forallne {0,1,2,...} define 4,: = {we Q/N_ (w) =0}, and take w, € 4,.
Clearly, x, is not an equilibrium of the game G, =<{X,H, »>. Besides, the lower
semicontinuity of H, implies that the set of Nash equilibria of G,, is closed in X
and, hence, there exists a neighbourhood E,, of x, such that

g
Ny(wg)=0 Vxek,.
On the other hand, the convergence of {x,} to x, implies that

dkeN/nz k=x,ekE

0,
Now, the last two conditions lead to
dkeN/nzk =N, (0,)=0.

In summary:
VweeAy Ik(wy)eN/n = klwg) = wye A,

This means that
o I
AU NMA,=liminf 4,,
k=1 n=k n—v s

which implies that

1 — N{xg) = P(4,) < P(liminf 4,) =liminf P(4,)= I — lim N(x,).

n— L H—r s N~

From this fact the result can be immediately derived. [
Now we are able to prove the following theorem.

Theorem 1: Every random game {(,.</, P),X, H) satisfying that X is compact has
at least one MLNE.

Proof: Since the image of N is bounded, it has a supremum M. Hence, we can
construct a sequence {x,} in X such that lim,_, N(x,)= M. The compactness of X

ensures the existence of a subsequence {x, } and a point xo€ X such that lim,_,
X, =Xg. Then, applying Lemma 1 we conclude:

e

N(xo) 2 lim N{(x,,) = M = N(x) for every xe X.
k=

In other terms, x4 is an MLNE. [J

Summarizing, we have introduced the MLNE and proved its existence for a
special class of random games. In this process, we have defined a function N which
measures the possibilities of every combination of strategies x to be a Nash equilib-
rium. Such a function allows, for instance, to give not only an MLNE but also its
level of likelihood.

However there are situations where the function N is identically equal to zero. In
that case, every xe X is trivally an MLNE. In the following theorem we present two
conditions sufficient to assure that this is not the case.

Theorem 2: If{(Q,.«/,P), X, H) is a rundom game and one of following two condi-
tions is verified
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1. X is countable and the event A: = {weQ/{X H_ ) has at least one Nash equilib-
rium} satisfies that P(A) >0,

2.Q is finite and, for an weQ with P({w})>0,{X,H,Yhas at least one Nash
equilibrium,

then the function N, as in Definition 3, is not identically equal to zero.
Proof: If Condition 1 is fulfilled then

0<P(A)=J

A

dPSf Y, N (w)dP(w)=Y | N (w)dP(w)
A 4

xeX xeX J 4

=Y P{weA/N (w)=1}< ) N(x)
xeX xeX
and hence we can conclude that there exists x € X such that N(x) > 0. If Condition 2
is fulfilled then, if x is an equilibrium of <X, H > and P({w})> 0, we can obviously
assure that N(x)>0. [

So, in Theorem 2 above, we have proved that, in many practical situations, the
concept of MLNE is not a trivial one (in fact, we will often deal with random games
of type “one game is going to be played out of a finite list of games (with Nash
equilibria) each of them having a positive and known probability of being played”
which clearly falls in Condition 2. However, it is convenient to modifiy the Defini-
tion 3 if, in the corresponding random game, N is identically equal to zero. A
nontrivial case when this can happen is when some of the random variables H, (we
denote by H, the function which assigns H(x, w) to every weQ) are absolutely
continuous. Observe that, although in these situations N(x) =0 for all xe X, some x
can be such that their corresponding events {weQ/N (w) =1} bear more density of
probability than others’ corresponding events do and, hence, still makes sense to
select a maximum likelihood Nash equilibrium. In the next section we present the
redefinition of the MLNE when N =0.

3. AN ALTERNATIVE MAXIMUM LIKELIHOOD EQUILIBRIUM
CONCEPT

Let us consider a random game{(Q, &, P), X, H ) such that its corresponding N, as in
Definition 3, is identically equal to zero. Now, let us make the following suppositions:

S1 Each X, is a metric space (with distance d;) which verifies that, if we denote the
open and closed balls with center x; and ratio § by B(x;,0) and B[x;d]
respectively, B(x,0) = B[x,, 8], for all x; e X; and § > 0. We denote by C(x,d)
and C[x,d] the sets IT"_, B(x;, ) and IT!_ | B[x;, §] respectively.

S2 There is a measure (X — [0,00] satisfying:

1. u(C[x,8]) > 0 for every xe X and every ¢ > 0, and

2. For every & > 0, there exist p >0 and r > 0 such that, for every 5€(0, p]
and every x, ye X verilying that

max d;(x;, y) <1,
1<ign



RANDOM GAMES 83

it results that

W(CIx0D
H(CLy. ) 4<

The existence of a measure defined on X is a necessary supposition to define a
kind of probability density fuction containing the information about the Nash
equilibria. Apart from that, SI and S2 are only technical conditions and not very
restrictive; for instance, if the sets X are euclidean spaces and p is the Lebesgue
measure, S| and §2 are fulfilled.

Now we can redefine the MLNE for this particular case.

Definition 4: Let us consider a random game R ={(Q, .7, P), X, H > satisfying S1
and S2 and such that its corresponding N, as in Definition 3, is identically equal to
zero. Assume that X is compact. Then, xe X is an MLNE of R if

fx)=f(») VyeX,

where

e P(CDx0T
Joe):=lmsup= ey

(being Y*: = {weQ/3yeY,N (w) = 1} for any Y= X).

Note that it is not evident that C[x, d]* € o. Similarly to the arguments used shortly
before Definition 3, the separability of every X; and the semicontinuity of H can be
used to prove it, provided the compactness of X.

Now we are able to prove an existence theorem for this version of the MLNE.

Theorem 3: Every random game, R, in the conditions of Definition 4 and verifying
that X is compact has at least one MLNE as introduced in that definition.

Proof: Using the same arguments as in Theorem 1, it suffices to prove that if
{x,},>1 @ sequence in X such that lim,_, x, = x,€ X and verifying that the sequence
{f(x,)} converges, then

fxg) = lim f (x,).

n— X

To prove this fix 6 >0, 6> 0 and w¢C[x,d +¢e]* It is straightforward to prove
that ke N/n = k= w¢C[x,, 6%, An alternative form for this result is that

M UC[x,, 61* = Cfx,,0 +&]%,

k=1n=k
for every &> 0. Since M),.,C[xg, d + &]* = C[x,, 61* we conclude that

fre) Q0

N U C[x,,0]* = Cxq, 0]*

k=1n=k
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The monotonicity of the probability implies that

P(C[xq 01%) 2 limsup P(C[x,,6]%) = lim sup lim sup P(C [x,. 11%).

e -0

As a consequence,

. P(C[xy,0]%) _ .. . P(C[x,,d]*)
lim sup~——=>— = lim sup lim sup ———— =",
‘?lfﬁ‘p (C[xg.0]1) - }lp 11511:&113 WC[xq, 07

Hence,

fxg)=lim squ > <

. . P(C[x,,51%)
- limsup limsup ——2% =~
s=0t J(C[x,.0]) PSP

n=r o0 (Clx,, 8]

. Clx..0
X (lim sup lim sup M)

:1. "-
P P W CTg 0y ) T

n—r

Now, using the compactness of X, we can immediately conclude the proof. [

Observe that the revised definition is only suitable for random games with N'-=0.
Namely, if there exists xe X such that N(x)> 0, then

, . P(C[x,0]%) _ . P({x}*)
J(x)=limsup ———=— z limsup———=
)=l Clx 0]~ P .0

N(x) .
= = if y{xH)y =0.
/l({\}) L8 J)

This means that, il x is a non-atomic measure, for every veX with N(X)> 0,
f(x) = oc. Hence, in this case, [ is not a good criterium to select the MLNE.
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