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This paper offers an analysis of the optimal harvesting of a renewable resource 
when human activity other than harvesting plays a role in the growth process 
of the resource. The activity we have in mind is not related to pollution or 
exploration but refers to the ability to influence the growth process directly by 
means of creating favorable conditions. The analysis gives rise to results which 
differ substantially from the usual outcomes in the economics of renewable 
resources. For instance, in the examples under study an increase in the price 
of the harvested commodity will lead to an increase of the steady state stock 
of the renewable resource. 

1. Introduction 

Renewable resources are commonly  analyzed in the context of  models 
where the growth of the renewable resource under study is affected by 
two factors: the size of  the resource itself and the rate of  harvest. This 
specification does not take into account that human activities other than 
harvesting can have an impact on the growth of  the natural resource. 
There is, of  course, increasing awareness of  the possibility that pollution 
negatively affects the growth potential of  the resource (see Tahvonen, 
1990; Tahvonen and Kuuluvainen, 1991, on this issue). It is furthermore 
widely recognized that the available volume of natural resources can be 
increased by exploration activities (see, e.g., Long, 1977). However,  the 
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objective of the present paper is to allow for human efforts which have 
a positive impact on the growth potential itself of the existing resources. 
There is an abundance of examples illustrating these opportunities. In 
the case of forestry one could think of fertilizers or cleaning activities 
of the soil. With aquaculture, efforts can be directed towards optimal 
feeding schemes, optimal water temperature, optimal oxygen levels, and 
the like. Fish growth in lakes can benefit from keeping the lake purified. 
Also in the cases of raising cattle and chickens, human activities (like 
feeding) play a part. 

Hence there is clearly scope for modifying the classical growth 
equation so as to incorporate these effects. A rather general formulation 
would be 

J; = f ( X ,  V)  - H ,  

where X denotes the size of the renewable resource, H is the rate of 
harvest, and V is the rate of effort, which could be called management 
effort. This equation needs more structure in order to make it accessible 
for further investigation. Here, a large variety of possibilities arises, 
depending on the renewable resource under consideration, We shall 
focus on three cases. 

In the first case, the effect of efforts manifests itself through an 
increased growth potential as a consequence of efforts per capita: what 
matters is the effort per unit of the existing resource. In the second case, 
the increment of the growth potential is independent of the resource 
size. These cases will be treated in Sect. 3. In Sect. 4, it is assumed 
that efforts affect the growth potential in a much stricter sense: without 
efforts the resource will become extinct. This case refers, for instance, 
to aquaculture where feeding of the fish is necessary. In all cases we 
shall consider the optimal harvesting under competitive conditions. The 
optimal trajectories will be derived and a sensitivity analysis of the 
steady state, if any, will be carried out. A general conclusion of this 
paper is that, under the assumptions made, an increase of the price of 
the harvested commodity leads to an increase of the steady-state stock 
of the natural resource. Furthermore, with additive management efforts 
the steady-state stock of the renewable resource is larger than with no 
management efforts. 

2. The Simplified Traditional Model 

The standard model of the harvesting of a renewable resource in a 
competitive environment is the following (see, e.g., the textbooks by 
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Hartwick and Olewiler, 1986; Pearce and Turner, 1990): 

subject to 

fO ~ 
max exp ( - r t )  [pH - cE] dt 

Jf = g(X)  - H, X >_ O, X(O) = Xo given , 

H = h ( E , X ) ,  H>_O, E > _ O .  

Here, r is the given rate of interest, p is the constant market price of 
the harvested commodity, c is the constant price of effort, H is the 
harvest rate, X is the size of the renewable resource, E is the rate of 
effort, g denotes the natural growth function, and h relates the efforts 
and the resource stock to the harvest. The outcomes of the analysis are 
well-known and need not be repeated here. 

A distinctive feature of the above formulation is that the harvest 
not only depends on the efforts but also on the stock of the renewable 
resource. This is obviously a good description of reality in some cases. 
However, one can think of circumstances where the inclusion of the 
resource stock is not that relevant. Moreover, if the stock is left out 
the mathematical analysis gets more easily accessible and the points we 
wish to make in the sequel can conveniently be illustrated. We therefore 
analyze here the model in a version simplified in this respect. It can be 
stated as follows: 

subject to 

~a~  fo~176  - c(H)] dt 

2 = 9(X)  - H, X >_ O, X(O) = Xo given . (2.1) 

The following assumptions will be made and maintained throughout 
the paper: 
A1. c ( 0 ) = 0 ,  c ' ( 0 ) = 0 ,  c " > 0  

A2. there exist 0 < Xmi n < X r  < -/Y < Xmax such that 
g(X)  < 0 if 0 _< X < X m i  n o r  X > X m a x  , 

g(Xmin)  ~-~ g(Xmax)_ = 0, g t (Xr )  = r , 
g ' ( X ) > O i f X < X ,  g ' ( X ) < O i f X > f ( ,  g " < 0 .  

A3. g(_~) < / t ,  w he re / I  is defined by c'(/~ r) = p. 
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Assumptions A1 and A2 are self-evident and need no further comment. 
Assumption A3 says that the myopic profit maximizing harvest rate 
cannot be maintained indefinitely. 

The problem stated above is a simple optimal control problem with 
one state variable. Due to the continuity of the functions involved, 
the boundedness of the state variable (X  <_ max[X0, Xmax]) and the 
positive discount rate, the problem has a solution (see, e.g., Toman, 
1985). Furthermore, the solution is unique in view of the strict concav- 
ity/convexity of the functions involved. 

The Hamiltonian reads 

H = p H  - c(H) + #[9(X)  - H] . 

The necessary conditions are that (2.1) holds and that there exists 
a piece-wise differentiable function # such that 

p - c ' ( H ) _ < # ,  p - c ' ( H ) = # i f H > 0 ,  (2.2) 

- /2  = # [9 ' (X)  - r] . (2.3) 

Here, # is to be interpreted as the shadow price of the renewable re- 
source. Hence (2.2) says that along an optimum the marginal revenues 
of the harvested commodity should equal its marginal cost consisting of 
the direct harvest costs and the opportunity costs incurred by reducing 
the size of the resource. (2.3) is an arbitrage rule saying that the rate 
of change in net present value of the resource stock should equal the 
interest rate. 

It is clear from (2.3) that if #( t )  = 0 for some t it is equal to zero 
for all t and H(t )  = / ~  for all t as long as X > 0. 

Next consider the loci for which X and # are constant. 
# is constant if X = Xr  and if # = 0. If X > X~ then # increases. 
X is constant if 9 ( X )  = H. This occurs if X = Xmi n and H = 0, 
if X = Xma x and H = 0, and if -J~min < X < Xma x with 9(X)  = H 
> 0. In the latter interval, it is easily_ seen that d # / d X  = - c " 9 ' ( X  ). 
So d # / d X  > 0 if and only if X > X.  
These observations lead to the phase diagram depicted in Fig. 1. 

The optimal trajectory can now be sketched as follows. If  X0 is 
larger than Xmin the initial # is to be chosen on the stable branch 
leading to the steady state denoted by E. If Xmi n < X 0 but Xo is 
close to Xmi n then initially H = 0 until # reaches p. If  X0 is smaller 
than Xmin the resource will be exhausted within finite time along a 
trajectory where H = H with # = 0. 

The comparative statics are straightforward. A higher interest rate 
will decrease Xr  and hence the steady state will correspond to a smaller 
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,u y d*=O 

p . . . . . . . . .  - . . . .  

,T 
J ~ s f l  

X m i n  X r Xmax X 

Fig. 1 

size of the renewable resource. An increase in the market price of 
the harvested commodity does not affect the steady-state value of the 
resource. 

3. Additive Management Efforts 

In this section, we consider the effect on optimal harvesting when hu- 
man activities can positively influence the resource stock in an additive 
fashion. This can be modeled in a number of ways. The appropriate- 
ness depends on the type of resource under consideration. For some 
resources the important thing is how much effort is made in total, for 
others what matters is the effort per unit of the existing resource stock. 
We shall consider the latter possibility first. In order to avoid misun- 
derstanding "harvest efforts" will be termed "harvest" for short and the 
"managing efforts" will just be called "efforts." 

The growth equation is now modified as follows: 

= 9 ( X ) + X f ( V / X ) - H ,  X > O, X(O) = Xo given. (3.1) 
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Here, V is the total effort. About f we shall assume 

A4. f ( 0 ) = 0 ,  f ' > 0 ,  f ' ( 0 ) = o o ,  f f ( o c ) = 0 ,  f " < 0 .  

So, f is a strictly increasing concave function. 
Per unit effort costs are assumed to be given and constant. They 

are denoted by q. 
The Hamiltonian is 

H = ; H  - - q V  + U [ g ( X )  + X f ( V / X )  - H] 

Again there exists a unique solution. 
Defining Y as the per unit effort V / X  we find as necessary condi- 

tions (3.1) and 

p - c ' ( H ) < _ # ,  p - c ' ( H ) = / z i f H > O ,  (3.2) 

q = # f ' ( Y )  , (3.3) 

-/2 = #[g'(X) + f ( Y )  - Y f ' ( Y )  - r] . (3.4) 

The interpretation of (3.3) is that the marginal cost (q) of additional 
effort should equal its marginal benefit consisting of the value of the 
additional increase of the size of the renewable resource. 

We next analyze the loci for which the shadow price and the m- 
source size are constant. This is only slightly more complicated than 
in the previous case. 

Consider first/2 = 0 for # > 0. We have the following system of 
equations: 

9 ' (X)  + f ( Y )  - Y f ' ( Y )  = r 

and (3.3). If # tends to zero, so does Y according to (3.3). Then 
f ( Y ) - Y f ' ( Y )  also tends to zero and X tends to Xr. Furthermore, the 
locus is easily seen to be increasing in the (#, X)-space. It cannot be 
ruled out that for # large there is no X for which the above conditions 
are satisfied. If /z goes to infinity, Y goes to infinity, according to 
(3.3). If 9 ' (X)  is bounded from below then the locus /2=0 is more 
likely to be undefined for large X the smaller is the lower bound on 
9 ' (X) .  However, this poses no problem for the phase diagram analysis, 
because then # decreases for every sufficiently large # and X. 

The locus X = 0  is determined by (3.2), (3.3), and 9(X)  + X f ( Y )  
= H. Since we have not fully specified the behavior of 9 and f for 
extreme X and Y values several possibilities occur. For example, if 
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f ( Y )  --+ oo as Y ---+ oo and 9 ( X ) / X  ~ -oo  as X --* 0% the )~--0 
locus has the it-axis as an asymptote, and if (it, X)  is on the locus 
then it --+ o~ as X -+ oo. And if g ( X ) / X  is bounded from below for 

all large X with the assumption on f maintained, the _~=O-locus will 
have a positive it as an asymptote when X ---+ oc. On the other hand, 

if f ( Y )  is bounded the X = O  curve may have a positive X < Xmin as 
an asymptote as it goes to infinity. Since our interest is mainly focused 
on the steady state, these observations do not cause too much problems 
in view of the following. 

Consider the locus X=O for it < P. Then we have 

di t /dX = [g ' (X) + f (U)] /[( -1/c"  ) + X f ' f ' / f " i t  ] 

from the implicit function theorem. Therefore the ~2=0 locus is de- 
creasing in the (it, X)-space if and only if 9'(X) + f ( Y )  > 0. It 
follows from (3.4) that/2 < 0 ( fo r / t  ~ 0) if and only if 

g'(X) + f ( Y )  > Y f ' ( Y )  + r > O. 

Consequently, the _~=0 curve is decreasing in points (it, X )  where 
/2 < 0, so that there exists a unique steady state. 

Piecing everything together we find the phase diagram as depicted 
in Fig. 2. 

kt 

p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

x~ ~ x 
Fig.  2 
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As in the previous case there exists a unique steady state which 
is asymptotically approached for X0 sufficiently large (possibly just 
X0 > 0); otherwise the renewable resouce is exhausted within finite 
time. The steady-state size of the resource is larger than in the case 
where efforts do not play a part. The intuition behind this result is that 
the net rate of change in the value of the resource is augmented now 
by the marginal productivity of efforts. 

With regard to the comparative statics of the steady state the fol- 
lowing results emerge. 

A higher market price of the harvested commodity calls for a larger 
steady-state resource stock. This is in sharp contrast to the result in 
the previous case. The proof is by contradiction. Suppose that follow- 
ing a rise in p the steady-state # decreases. Then H increases and 
Y decreases. As a consequence g'(X) increases and X decreases. On 
the other hand, g ( X )  decreases because the steady-state X is smaller 
than )(. But then (3.4) cannot hold. Therefore # increases and hence 
X increases. The intuition behind this result is that the higher mar- 
ket price of the harvested commodity not only makes harvesting more 
profitable but increases the value of the existing stock as well. The 
latter effect dominates the former. A higher market price of efforts 
decreases the efforts and the steady-state stock of the resource. This 
can be seen as follows. Suppose that a higher q gives a larger Y. Then 
we have a larger #. Therefore the steady-state harvest must be smaller. 
This can only be obtained through a smaller stock of the resource. But 
this contradicts 9'(X) : r - f ( Y )  + Y f ' ( Y ) .  Finally, an increase in 
the interest rate will, as before, .yield a smaller stock of the resource. 
It is worth pointing out what happens on the trajectory towards the 
steady state as, unexpectedly, the market price of the harvest increases. 
The/2=0 locus is not affected and the )(--0 locus shifts upward. As a 
consequence, # jumps upward and the rate of efforts increases. 

An alternative growth specification in the class of additive efforts 
is the following 

f( : 9(X) + f(V) - H . (3.6) 

Here, one can think of V as for example the water temperature, with 
V properly scaled. With this example in mind, a plausible assumption 
with resPect to f is 

A5. There exist Vmax > V > 0 such that 

f(o) : f(Vmax) : O, 
I'(V) > 0 (< O) for V < Y (V > V), 
f'(0)=aforsomea>0, f"<0.  
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Here, V = 0 corresponds to the natural temperature. So, the temperature 
should not be too high to have a positive influence on growth. In order 
to have an interesting problem it will be assumed that ap > q. If  this 
inequality would not hold, it is never worthwhile to make any effort 
because the marginal costs exceed even the myopic revenues. 

The necessary conditions for an interior solution are 

p - c ' ( H )  = # ,  (3.7) 

q = # f ' ( V )  , (3.8) 

- /2  = # [9 ' (X)  - r] , (3.9) 

2 = g ( X )  + f ( V )  - H .  (3.10) 

The locus of points for which /2 = 0 is given by X = X~. It is 

easily verified that the locus of points for which Jf  = 0 is upward 
sloping for X > J~ and downward sloping elsewhere. For # equal 
to p the corresponding X ' s  are well defined provided that 9 ( X )  can be 
made sufficiently negative. Hence, essentially the same phase diagram 
results as in the case with no efforts. (Mathematically, the present model 
strongly resembles Long's,  1977, which deals with exploration.) The 
effect of  the presence of efforts manifests itself only on the trajectory 
to the steady state, but not in the steady state itself. Also, changes in 
the market price of efforts have no impact on the steady state itself. 
A higher input price just reduces the efforts in the same magnitude 
as the harvest rate. One difference with the no-effort case is that if 
the effort price is sufficiently low, the resource may be preserved now 
whereas in the first case it would be exhausted. The differences between 
this and the previous model need not to be stressed. 

4. Multiplicative Management Efforts 

It has been assumed in the previous section that efforts contribute to 
the growth process in an additive fashion. In the first case dealt with 
the marginal effect of efforts on the growth process is increasing in the 
resource stock, whereas in the second case the marginal effect of efforts 
is independent of  the resource stock. In those settings, it was assumed 
away that there can be circumstances where efforts have increasing as 
well as decreasing returns according to the resource size. It is the aim 
of the present section to take this into account. There are several ways 
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to do so. We shall consider here the following growth process: 

= g ( X ) f ( V )  - -  H Xmin < X < Xma x ] 

= g ( X )  - H elsewhere / ' 

X _> 0, X(0) = X0 given 

(4.1) 

where g and f satisfy A2 and A4, respectively. So, there exist bounds 
on the resource stock within which growth is feasible; however, even 
within this range efforts are necessary and for stocks close to the bound- 
ary the marginal product of efforts is small, whereas in the "middle" 
the marginal product is large. For stocks outside the favorable range 
the stock is necessarily decreasing. One of the implications is that the 
resource gets exhausted once a critical low level is reached, irrespective 
of efforts. The Hamiltonian reads 

H = [ p H  - - q V ]  + - H ] .  

Along a solution trajectory the necessary conditions are (4.1) and 

p - c ' ( H ) < _ # ,  p - c ' ( H ) = p o f H > O ,  (4.2) 

q = # 9 ( X ) f ' ( V )  , (4.3) 

- f~  = # [ g ' ( X ) f ( V )  - r] . (4.4) 

In the (#, X)-space the locus of points where/2 = 0 and # > 0 can 
be depicted as in Fig. 3. For X tending to X, g ' ( X )  tends to 0 so that 
V goes to infinity, which, according to (4.3), is possible only if # goes 
to infinity. If X approaches Xmin, we must have g ' ( X m i n ) f ( V )  = r, 
so that V and hence f ' ( V )  are bounded; this can only happen if # tends 
to infinity again. In Fig. 3 is also depicted the locus of points for which 

= 0. For # > p we must have X = Xmin or X = Xm~• The locus 
is decreasing for X < J{ and increasing for X > J~. 

The figure displays two steady states, namely A and B. It is worth 
stressing, however, that this need not be the case in general. It could 
well be that the loci do not intersect, for example when the output 
price p is small. Also, the possibility of a single steady state cannot 
be excluded. Finally, without further knowledge of the properties of f 
and g it could even be that there is an arbitrary number of steady 
states. It will be assumed in the sequel that there are just two steady 
states, as in Fig. 3. The first thing to note is that only point B is locally 
asymptotically stable. This is easily seen from the arrows in the figure, 
but it can also be derived in a more formal way. 
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Xmin X Xma x X 

Fig. 3 

For X0 smaller than X m i  n it is optimal to put # equal to zero and 
H = / 7  until X = 0. If -32o > Xmin it is optimal to converge to the 
stable steady state by properly choosing # on the stable branche. 

The comparative statics analysis, departing from the stable steady 
state, yields the following results. An increase in the output price p 
shifts the X = 0  locus upward. Thereby, the steady-state value of the 
resource stock increases as well as the steady-state value of the shadow 
price #. This implies that both the steady-state rate of harvest and the 
effort rate are increased. So higher output prices will lead to conser- 
vation. A higher price of efforts leads to a decrease in the effort rate. 
In spite of the fact that this statement is intuitively clear, its proof is 
not straightforward; at least it cannot proceed as easily as the previous 
ones. Since in a neighborhood of the steady state H > 0 and V > 0 
and due to the properties of c, f ,  and g, we can write H = H ( # )  [from 
(4.2)] and V = V(X, #; q) [from (4.3)]. Upon insertion into (4.4) and 
(4.5) we find 

i~ = - ~ [ g ' ( x ) f ( v ( x , ~ ;  q)) - ~] =: F~(X, ~; q ) ,  

2 = g ( X ) f ( V ( X ,  ~; q)) - H ( ~ )  =: F~(X, ~; q ) .  
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Putting/~ = 2( = 0 and using the implicit function theorem, we obtain 

(F2xFlu - F2uFlx)  d X  = (F2uFlq - FluF2q) dq . 

Since we are in a stable steady state the first factor on the left hand 
side is negative. The first factor on the right hand side equals 

, ,OV OH 
#g f -~p O# #g' f ' / e " # g f "  > 0 

because c" > 0, f "  < 0, g/ > 0, f /  > 0. Therefore an increase in 
the input price will lead to a decrease in the steady-state value of the 
stock. It follows from (4.4) that effort will decrease, as well as the 
steady-state harvest rate. 

5. Conclusions 

We have investigated the effect of the introduction of efforts to manage 
renewable natural resources so as to influence the growth potential. 
It is found, among other things, that an increase of the price of the 
harvested commodity entails an increase of the steady-state stock of 
the natural resource. This result is obtained in a partial equilibrium 
setting and for specific functional forms representing the impact of 
efforts. Nonetheless, it is clearly not the case that price increases will 
certainly cause overexploitation, as false intuition would suggest. Future 
research could be directed to a general equilibrium analysis. It could 
also be interesting to reincorporate the existing size of the resource into 
the cost of harvesting. 
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