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Recently Zangwill and Garcia introduced a general formulation of equilibrium problems. To

prove the existence of an equilibrium they discussed a path following procedure. In this note we
consider the application to the exchange economy problem. An economic equilibrium may be
found by applying a simplicial variable dimension algorithm developed by Van der Laan and
Talman.

We will show that when an appropriate triangulation and labelling rule 1s taken the limiting
path of this algorithm coincides with the adjustment process induced by the procedure of
Zangwill and Garcia. This process has a plausible economic interpretation and is an attractive
alternative for the well-known tatonnement process.
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1. The economic equilibrium problem

In this section we consider a path following procedure to obtain an economic
equilibrium. This procedure has been given by Zangwill and Garcia [7] as an
application to a general approach of equilibrium programming. In the next
section we show that the procedure coincides with the variable dimension
| approach of Van der Laan and Talman (see [1-3] and [6]).

L Consider an exchange economy of m agents with n commodities. Let w' =
(wi,...,w!)>0 be the endowment of agent i, and let the utility function of agent
i be givenby f':R" > R. Let w=3", w' be the total endowments.

Definition 1.1. A competitive equilibrium 1s a pair of vectors (X,p) where
x=(x",....,X™)ER™ and p € R" such that

(a) f'(x') = max f'(x’),

for ipxi=pPw: . andi 0=x'=s wivi=1:.m;
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(b) X =W (1.1)

(c) p=0 and p; = 1.
I

j:

To show the existence of a competitive equilibrium, Zangwill and Garcia [7]
introduced the following equilibrium program.

(a) Fori=1...,m;,given p,
max £'(x") for px'=pw' and O0=x =w. (1.2)
(b) Given x,

m

max p (E x' — w) for peS"”'(t)={pe S | p=p—(t+e)e},
=

where S" '={p R} |X",pi=1}, €e>0 is very small, e is a vector with all
components 1, 0=t =1, and p 1s some arbitrarily chosen initial price vector. For
given p, let z(p) be the excess demand, i.e. z(p) =3, x'(p) — w, where x'(p)
solves (1.2a). It is assumed that z:S" ' - R" is a continuous function.

Without loss of generality we can assume that the excess demand at p has a
maximum at a unique index, say k,. Clearly, for t = —¢€, (1.2) has a unique
solution (x(p), p), where x'(p) solves (1.2a) given p = p.

For € > 0 small enough we have that z.(p) 1s still the unique maximum excess
demand for t =0 and p satisfying the conditions of (1.2b). Therefore, given x(p)
with p € S"7'(t), the solution of (1.2b) is

pok — ﬁk -1 (n _— I)E,
5;21'3;““& ]?ék (13)

when t = 0. Hence (x(p), p) 1s the unique solution of (1.2) at t = 0. In their paper
Zangwill and Garcia prove the following theorem.

Theorem 1.2. Suppose for all i, f' is 3-differentiable and strictly concave. If the
equilibrium program (1.2) is regular, then starting from (x,p,t)=(x(p),p,0)
there is a path of solutions to (1.2) that reaches a solution to (1.1) att = 1.

As discussed by Zangwill and Garcia, the economic interpretation of this path
1s as follows. For small € >0, when t is increased from zero, the price of good k
having the largest excess demand is increased, whereas the other prices are
decreased, each by the same amount. In general the price vector p and the
variable t are adapted so as to try to decrease the usage of all goods with highest
demand. So, at any p, the process works on the worst cases, 1.e. on the markets with
highest excess demand, until an equilibrium price vector p with z(p) =< 01is reached.

Looking at the process in more detail, we first note that obviously t is not
necessarily increasing monotonically during the process. In [4], Scarf provides
some examples for which the classical titonnement does not converge. It can
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easily be checked that for these examples t does not increase monotonically in
the adjustment process. When we consider the projection of the path on the set
of prices S" ', the adjustment process behaves as follows. Define. for T C I, =

e mank
C(T)={p € S"' | z(p) = max z(p), k € T}

and, for0=t =1,

P(T.t)= {p e S" (1) ‘ p = E ajpj(t). a; =0, Z o = ]}.

{ET jET

where p’(t) is the vertex of S"'(t) such that the jth component 1s maximal. We
assume that for |T|# 0,n C(T) is an (n —|T|)-dimensional set, where |T| denotes
the cardinality of T.

Then, a point (x, p, t) on the path of solutions to (1.2) has the property that for
some I C1I,, p e C(T)N P(T,t). The projection of this path on the price space
S" ' is illustrated in Fig. 1. In Fig. la the procedure starts in C({2}) and hence p,
1s 1increased until C({3}) is reached. Then the 1-manifold C{2,3}) =
C({2h) N C({3}) is followed until the equilibrium price p is obtained. Observe that
t increases monotonically. In Fig. 1b again we have that the procedure starts in
C({2}), however in a subset of C({2}) which is surrounded by C({3}). Now t in-
creases on the path from p (p) to p', decreases from p' to p> and increases
again on the path from p- to the equilibrium price p.

Fig. 1. The path of solution points projected on S” ' have been drawn heavily. C({j}) is indicated by j.

2. The variable dimension approach

In this section we show that the projection on the price space S"' of the
adjustment process of Zangwill and Garcia coincides with the l[imiting path of
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the simplicial variable dimension algorithm developed by Van der Laan and
Talman, provided an appropriate labelling rule and triangulation underlying the
algorithm.

To do so, for T C I, let the sets A(T) be defined by

ACT) = {p eS"'|p=p+ > Au(i). A, = 0}, (2.1)
=
where u(j),j=1,...,n, 1s the jth column of the n X n matrix

Ff(n—1) =1 =

— ] (h — 1) |

e g

. =1
b ] = (n=—1).]

(see Van der Laan and Talman [3, p. 282]). For p €int S"', A(T) is a |T|-
dimensional subset of S"'. So, under some regularity conditions, we have that
the set of points p with

p€ L) (A(E)YNC(T)

TCH

n

1s a collection of paths and loops. The set of endpoints of the paths is the set of
points p € | Jr1=0.. (A(T) N C(T). Clearly, the point p 1s the unique endpoint for
T = 0. For all other endpoints p we have T = I, and hence, p € C(I,), i.e. p is an
equilibrium price. So, from p a path can be followed leading to an economic
equilibrium. Since P(T,t)={p € A(T) | > et A; = t}, this path yields the pro-
jection of the adjustment process described by Zangwill and Garcia on the set
S"' when € > 0 small.

On the other hand, the path in | (A(T) N C(T)) originated in p is the limiting
path of the simplicial variable dimension algorithm on S" ' developed by Van
der Laan and Talman [2], when the U triangulation of S" ' proposed by the
same authors in [3] underlies the algorithm and the following labelling rule is
used. In case of vector labelling each point p € S" ' is labelled according to z(p)
and 1n case of integer labelling p is labelled with the index k of the commodity
with the highest excess demand. In both cases the same limiting path in
U (A(T)N C(T) is obtained, as discussed in Van der Laan [1, pp. 72, 73 and 83,
84]. Observe that the computational results in [1] were obtained for these
labelling rules and in both [1] and [6] also for the U triangulation.

Therefore the adjustment path of Zangwill and Garcia can be traced by the
variable dimension algorithm. Starting in an arbitrarily chosen price vector
p € S" 'with T = @the algorithm generates for varying T a path of prices p in A(T)
such that all goods j have highest excess demand z;(p), for j € T. As soon as good i,
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iZ T, has an excess demand z;(p) equal to the highest one, the algorithm continues
in A(T U{i}) with prices such that z,(p)=max;z(p) for all he T U{i}. If,
however, the algorithm generates a price p in A(T —{k}) for some k€T, it
continues in A(T —{k}) with prices p such that z,(p) = max; z;(p) forall k E T -
{k}. The latter step happens when A, in (2.1) becomes equal to zero. So, for (x, p, t) a
solution generated by the adjustment process and letting T, |T| < n, be the unique
index set such that

=p+ > Au(g), A;>0,
p—=p j;_ u(y) j

we have, p € A(T) N C(T), i.e. the complementarity conditions
\=0 and z(p)<max;z(p), if j&T

and .
A, >0 and z(p)=max;z(p), HjET.

hold.
Concluding, the variable dimension algorithm can be utilized as a simplicial

path following scheme for the projection on S"™' of the path of solutions to
(1.2). Moreover, the limiting path of the algorithm generates the path of points of
the adjustment process proposed by Zangwill and Garcia. This adjustment
process both converges to a price equilibrium and can start anywhere.
Moreover, it has an plausible economic interpretation. Therefore the process is
rather attractive. Firstly it avoids the disadvantage of the classical tatonnement
process which can start anywhere but does not converge necessarily (see e.g.
Scarf [4]). On the other hand it avoids the disadvantage of the global Newton
adjustment process, (see Smale [5]), which always converges but must start on
the boundary of the unit simplex.
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