

### This is a postprint of:

### Totally balanced multi-commodity games and flow games

J.J.M. Derks & S.H. Tijs

Methods of Operations Research, 1986, vol. 54, pp. 335-347

#### For citation:

Please use the reference above

### Link to the postprint file:

http://arno.uvt.nl/show.cgi?fid=27037

### More information about this publication:

http://repository.uvt.nl/id/ir-uvt-nl:oai:wo.uvt.nl:154258

TOTALLY BALANCED MULTI-COMMODITY GAMES AND FLOW GAMES

Jean J.M. DERKS and Stef. H. TIJS, Nijmegen, The Netherlands

## **ABSTRACT**

Game situations are considered, where each coalition, by cooperating, can obtain and distribute commodity bundles from a prescribed suitable subset of the commodity space. Examples of such commodity games are multi-commodity flow games arising from controlled multi-commodity flow situations. In this paper conditions are given, guaranteeing that a commodity game can be represented by a controlled multi-commodity flow situation. The results can be seen as extensions of a result of Kalai and Zemel for one-commodity flow games.

## 1. INTRODUCTION

In a recent paper Kalai and Zemel [7] studied one-commodity flow situations where the arcs in the network are possessed by different owners. They proved that the corresponding side payment game (SP-game) is totally balanced using the well-known max-flow-min-cut theorem of Ford and Fulkerson [4]. In [7] they also showed that a totally balanced SP-game may be seen as a flow game by proving that each non-negative totally balanced SP-game can be expressed as a minimum of a finite collection of additive SP-games.

Totally balanced SP-games occur in many other optimization problems with a control system. Examples are market games (Shapley and Shubik [10]), linear production games (Owen [9]) and permutation games (Tijs et al. [11]). In Dubey and Shapley [3] and in Kalai and Zemel [6] sufficient conditions are given to guarantee the total balancedness of SP-games arising from a controlled optimization problem.

In this paper we consider multi-commodity games (MC-games). Contrary to SP-games, the pay-offs to coalitions in an MC-game consist of commodity bundles. In Derks and Tijs [2] multi-commodity flow situations, in which arcs are controlled by owners, are considered. Such flow situations give rise to MC-games which are totally balanced. In [2] it is proved that for such games there exists a stable outcome, i.e. a distribution over the owners of a Pareto optimal commodity bundle, attainable for the grand coalition, in such a way that no subcoalition has an incentive to split off. This extends the result of Kalai and

Zemel [7] that one-commodity flow games have a non-empty core. We note here that by adapting the proof of theorem 4.1 in [2] it is possible to show that all balanced multi-commodity games have a stable outcome.

In section 3 we start elaborating the question raised in [2]: Can totally balanced MC-games be represented by controlled multi-commodity flow situations? For totally balanced one-commodity games the answer is yes as was shown by Kalai and Zemel [7]. It turns out that the answer of the above question is yes if we consider totally balanced polyhedral MC-games or if we allow infinite networks.

In section 4 we introduce strictly balanced MC-games and prove that balanced polyhedral MC-games and two-commodity flow games are strictly balanced. It is shown that the strict balancedness property for two-commodity flow games asserts that not all totally balanced MC-games are MC-flow games if we exclude the use of infinite networks.

We conclude with an open problem and summarize the obtained results in section 5.

### 2. PRELIMINARIES

In the following we consider a network D (directed graph) with node set  $P := \{1,2,...,s\}$  and arc set  $L := \{1,2,...,t\}$ . In addition, N := {1,2,...,n} denotes the set of owners (player set) of arcs and G := {1,2,...,m} the set of commodities, which are involved in controlled transportations from the source  $1 \in P$  to the sink  $s \in P$ . The ownership function  $0: L \rightarrow N$  assigns to each arc  $\ell \in L$ , its controller or owner  $O(\ell) \in N$ . Finally,  $c : L \rightarrow \mathbb{R}^{m}$  is the capacity correspondence, which assigns to each arc & the non-empty subset c(&) of the commodity space  $\mathbb{R}^{m}_{+}$ . For the arc  $\ell$  the capacity set  $c(\ell)$  consists of the commodity bundles which can be transported through arc & in one unit of time. In this paper it is assumed that the capacity sets are suitable, i.e. are compact, convex and comprehensive. (A subset C of  $\mathbb{R}^{m}_{+}$  is called comprehensive if  $y \in \mathbb{C}$  for any element y of  $\mathbb{R}^{m}_{+}$ , whenever there is an  $x \in C$  such that y < x). For an interpretation we refer to [2]. Summarizing, a controlled multi-commodity flow situation (CMCF-situation) is described by the four-tuple  $\Gamma = \langle D,c,N,0 \rangle$ .

We now give a sequence of definitions together with some comments

and elementary results.

- (i) A flow in  $\Gamma$  (from source 1 to sink s) is a map  $f:L\to \mathbb{R}^m_+$  with the following properties:
  - (F.1)  $f(l) \in c(l)$  for each  $l \in L$  (Feasibility property).
  - (F.2)  $\Sigma\{f(\ell): \ell \text{ starts in node } p\} = \Sigma\{f(\ell): \ell \text{ ends in node } p\}$  for each  $p \in P-\{1,s\}$  (Conservation property).
  - (F.3)  $\Sigma\{f(\ell): \ell \text{ ends in the source 1}\} = 0$  (Source property).
  - (F.4)  $\Sigma\{f(\ell): \ell \text{ starts in the sink s}\} = 0$  (Sink property).
- (ii) The value v(f) of a flow f in  $\Gamma$  is the amount of commodity, leaving the source 1. Hence,  $v(f) := \Sigma\{f(\ell) : \ell \text{ starts in the source 1}\}$ . (iii) For any subset A of the arc set L the flow value set  $F_A(\Gamma)$  corresponding to A is the set of all possible values of flows in  $\Gamma$  which only use the arcs in A. Hence,
- $F_{A}(\Gamma) := \{y \in \mathbb{R}^{m} : y = v(f) \text{ for some flow } f \text{ in } \Gamma \text{ with } f(\ell) = 0 \text{ for all } \ell \in L-A\}.$  The set  $F(\Gamma) := F_{\Gamma}(\Gamma)$  is called the flow value set of  $\Gamma$ .

For each  $A \subset L$  the set  $F_A(\Gamma)$  is suitable. The proof is straightforward and therefore omitted.

For one-commodity flow situations one may use the already mentioned max-flow-min-cut theorem for characterizing the flow value set (Cf.[4], [2]). If more commodities are involved a similar theorem is not avail-

- able anymore. However, some generalizations to multi-commodity networks have been obtained. For a survey of these results and of algoritmic approaches we refer to Assad [1], Hu [5] and Kennington [8].
- (iv) Let  $S \subset N$  be a coalition of owners. Then L(S) is the set of arcs controlled by S. Hence, L(S) =  $\{\ell \in L : O(\ell) \in S\}$ .
- (v) The correspondence  $V_{\Gamma}: 2^N \rightarrow \mathbb{R}^m_+$ , which assigns to each coalition  $S \in 2^N$  the flow value set  $F_{L(S)}(\Gamma)$ , is called the *multi-commodity flow game* (MC-flow game) arising from  $\Gamma$ . It is a game, where the pay-off set  $V_{\Gamma}(S)$  of a coalition S consists of all those commodity bundles, which can be sent by the coalition S per unit of time from source 1 to sink S, without using arcs in the original network which are owned by agents outside the coalition.
- (vi) A correspondence  $V: 2^N \twoheadrightarrow \mathbb{R}^m_+$ , which assigns to each coalition  $S \in 2^N$  a suitable subset of the commodity space  $\mathbb{R}^m_+$ , is called a *multi-commodity game* (MC-game) if also  $V(\emptyset) = \{0\}$  is satisfied.

For each S  $\in$  2<sup>N</sup>, V(S) describes the possible commodity bundles

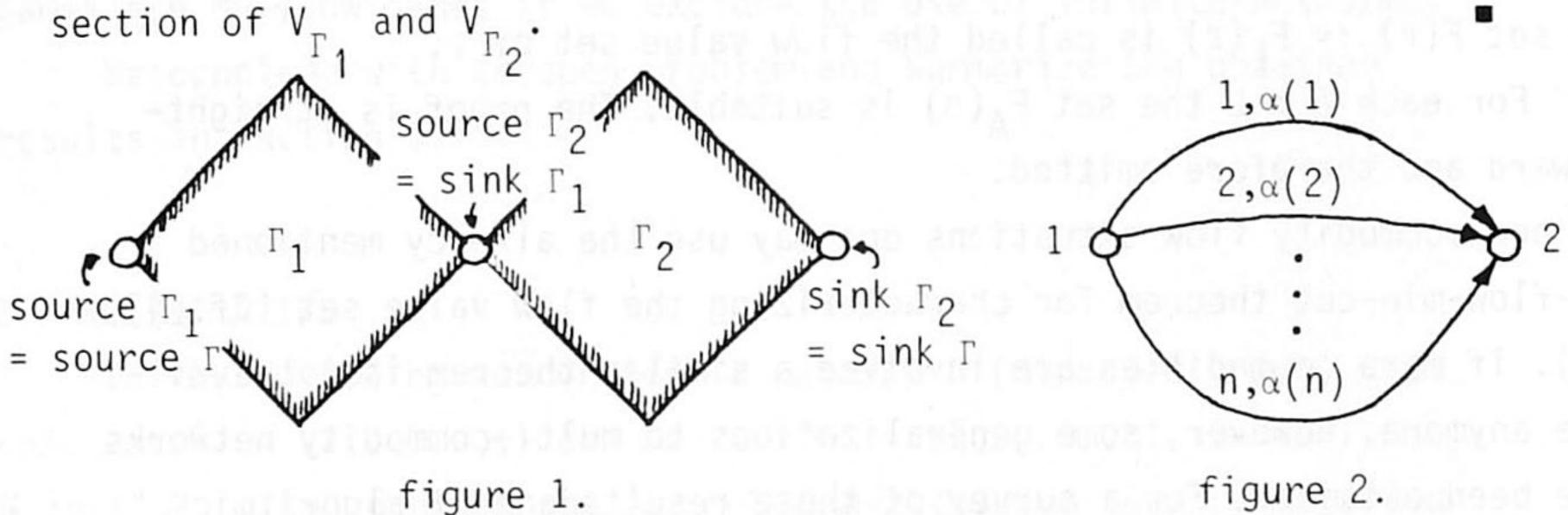
which can be obtained by S if the players in S cooperate. Examples of MC-games are MC-flow games. Note that one-commodity games can be identified with non-negative SP-games.

(vii) Let  $V_1$  and  $V_2$  be two MC-games with the same player set N. Then  $V_1 \cap V_2$ , the *intersection of*  $V_1$  and  $V_2$ , is the correspondence which assigns to each coalition  $S \in 2^N$  the suitable set  $V_1(S) \cap V_2(S)$ .

Note that  $V_1 \cap V_2$  is an MC-game.

Lemma 2.1. A finite intersection of MC-flow games with the same player set is an MC-flow game.

Proof. It is sufficient to show that the intersection of two MC-flow games V and V is an MC-flow game. Consider the CMCF-situation  $\Gamma$  obtained by combining  $\Gamma_1$  and  $\Gamma_2$  as shown in figure 1, where the sink of  $\Gamma_1$  and the source of  $\Gamma_2$  have been melted together. It is easily verified that the MC-flow game V corresponding to  $\Gamma$  is the inter-



(viii) An MC-game V with player set N is called *additive* if there exists a correspondence  $\alpha: N \twoheadrightarrow \mathbb{R}^m_+$ , assigning to each player j the suitable set  $\alpha(j)$  of the commodity space  $\mathbb{R}^m_+$ , such that

 $V(S) = \sum_{j \in S} \alpha(j)$  for all non-empty coalitions  $S \in 2^{N}$ .

The sum on the right hand side is an algebraic sum of subsets of  $\mathbb{R}^m_+$ . We often identify the correspondence  $\alpha$  with the game V and write  $\alpha(S)$  instead of V(S) for all  $S \in 2^N$ .

Lemma 2.2. Additive MC-games are MC-flow games.

*Proof.* Let V be an additive MC-game corresponding to  $\alpha: N \rightarrow \mathbb{R}^m_+$ . Consider the CMCF-situation  $\Gamma$ , as shown in figure 2, with node set  $P = \{1,2\}$ , arc set N, capacity correspondence  $\alpha$  and where arc j belongs to player j for each j ∈ N. Of course, the MC-flow game  $V_\Gamma$  equals V. ■

## 3. TOTAL BALANCEDNESS FOR MC-GAMES

In this section we consider the family of totally balanced MC-games and show that the set of MC-flow games is a subset of this family. Furthermore, we give in theorem 3.3 a characterization of total balancedness in terms of additive MC-games. This characterization enables us to show that all totally balanced MC-games can be identified with an MC-flow game if we allow infinite networks. For polyhedral MC-games finite networks turn out to be sufficient. Definition 3.1. An MC-game V, with player set N, is called balanced if for each map  $\lambda: 2^N \to \mathbb{R}_+$ , with the balancedness property

$$\Sigma_{S \in 2^N, j \in S} \lambda(S) = 1 \text{ for all } j \in N,$$
 (3.1)

we have

$$\sum_{S \in 2^{N}} \lambda(S) V(S) \subset V(N). \tag{3.2}$$

V is called *totally balanced* if each subgame of V is balanced, i.e. for each coalition  $S \subset N$  the restriction of V to the family of subsets of S, which is an MC-game with player set S, is balanced.

Examples of totally balanced MC-games are additive MC-games. Also an intersection of totally balanced MC-games is totally balanced.

Moreover,

Theorem 3.2. An MC-flow game is totally balanced.

Proof. Let  $V_{\Gamma}$  be an MC-flow game corresponding to the CMCF-situation  $\Gamma$ . Any subgame of  $V_{\Gamma}$  is, again, an MC-flow game. Therefore, it is sufficient to show that  $V_{\Gamma}$  is balanced. Let  $\lambda: 2^N \to \mathbb{R}_+$  be a map with the balancedness property (3.1). We prove that  $V_{\Gamma}$  satisfies (3.2). For each  $S \in 2^N$ , consider an element  $y^S$  of  $V_{\Gamma}(S)$ . The set  $V_{\Gamma}(S)$  equals the flow value set  $F_{L(S)}(\Gamma)$  which implies that for each  $S \in 2^N$  there exists a flow  $f^S$  with value  $y^S$  and

$$f^{S}(\ell) = 0 \text{ for all } \ell \in L - L(S).$$
 (3.3)

Consider the map  $f: L \to \mathbb{R}_+$  with  $f(\ell) = \sum_{S \in 2^N} \lambda(S) f^S(\ell)$  for all  $\ell \in L$ . Trivially, f satisfies the flow conditions (F.2), (F.3) and (F.4). The only flow condition to check is the feasibility condition. Using (3.3), we obtain

$$f(\ell) = \sum_{S \in 2^N, 0(\ell) \in S} \lambda(S) f^S(\ell)$$
 for all  $\ell \in L$ .

Since  $\Sigma$   $\lambda(S) = 1$  and  $f^S(\ell) \in c(\ell)$  for all  $S \in 2^N$  with  $S \in 2^N$ ,  $O(\ell) \in S$  we conclude that  $f(\ell)$  is a convex combination of elements of  $c(\ell)$  for each arc  $\ell \in L$ . The convexity of  $c(\ell)$  yields  $f(\ell) \in c(\ell)$ . Hence, f is a flow in  $\Gamma$ . Of course, the value of f equals  $\sum_{S \in 2^N} \lambda(S) y^S$  implying that  $\sum_{S \in 2^N} \lambda(S) y^S$  is an element of  $V_{\Gamma}(N)$ .

Theorem 3.3. An MC-game is totally balanced if and only if it is a countable intersection of additive MC-games.

*Proof.* The "if" statement is trivial. Therefore, we confine ourselves to the proof of the "only if" statement. Let V be a totally balanced MC-game with player set N and commodity set {1,2,...,m}. Let M be a real number such that

 $V(S) \subset B_M := \{x \in \mathbb{R}_+^M : x_i \le M \text{ for all } i \in \{1,2,\ldots,m\}\}.$  (3.4) Consider for each  $z \in \mathbb{Q}_+^m$  the non-negative SP-game  $v_z$  defined by

$$v_z(S) = \max_{x \in V(S)} z \cdot x \text{ for all } S \in 2^N.$$

For each S  $\in$  2  $^{\text{N}}$  the comprehensiveness and closedness of V(S) yield

$$V(S) = \bigcap_{z \in \mathbb{Q}_{+}^{m}} \{x \in \mathbb{R}_{+}^{m} : z \cdot x \le v_{z}(S)\}.$$
 (3.5)

The SP-game  $v_z$  is totally balanced (cf.[2]) for each  $z \in \mathbb{Q}_+^m$  and, therefore, it can be expressed as a minimum of a finite collection, say  $\{v_{z,i}: i \in I_z\}$ , of additive SP-games (see Kalai and Zemel [7]). Hence,

$$v_z(S) = \min_{i \in I_z} v_{z,i}(S) = \min_{i \in I_z} \sum_{j \in S} v_{z,i}(\{j\}) \text{ for all } S \in 2^N.$$
(3.6)

Consider for each  $z \in \mathbb{Q}_+^m$  and  $i \in I_z$  the additive MC-game  $\alpha_{z,i} : N \nrightarrow \mathbb{R}_+^m$  defined by

$$\alpha_{z,i}(j) = \{x \in \mathbb{R}_+^m : z \cdot x \leq v_{z,i}(\{j\})\} \cap B_M \text{ for all } j \in \mathbb{N}. (3.7)$$

(The set  $B_M$  assures the boundedness of  $\alpha_{z,i}(j)$  whenever z has zero components. The boundedness property is needed to state that  $\alpha_{z,i}$  is an additive MC-game.)

From (3.5) and (3.6) we have

Using (3.4) and (3.7) we obtain

$$V(S) = \bigcap_{z \in \mathbb{Q}_{+}^{m}} \bigcap_{i \in I_{z}} \alpha_{z,i}(S) \text{ for all } S \in 2^{N}.$$

Now the set U  $z \in \mathbb{Q}_+^m$  Iz is countable. Therefore, the theorem is proved.

Definition 3.4. An MC-game V is called polyhedral if for each S  $\in$  2 N the set V(S) is polyhedral.

Let V be a totally balanced polyhedral MC-game. For each S  $\in$  2  $^{N}$ there is a finite subset  $Z_S$  of  $\mathbb{R}^m_+$  and scalars  $b_7$  of  $\mathbb{R}^n_+$  for all  $z \in Z_{\varsigma}$ , such that

$$V(S) = \bigcap_{z \in Z_S} \{x \in \mathbb{R}^m_+ : z \cdot x \leq b_z\}.$$

By adapting the proof of theorem 3.3 such that the role of  $\mathbf{Q}_{+}^{\mathrm{m}}$  is now taken over by the finite set  $U_{S\in 2}N$   $Z_{S}$ , one shows that V is a finite intersection of additive MC-games. Using the lemmas 2.1 and 2.2, this implies

Theorem 3.5. Totally balanced polyhedral MC-games are MC-flow games.

Not each totally balanced MC-game can be expressed as a finite intersection of additive MC-games as the following example shows.

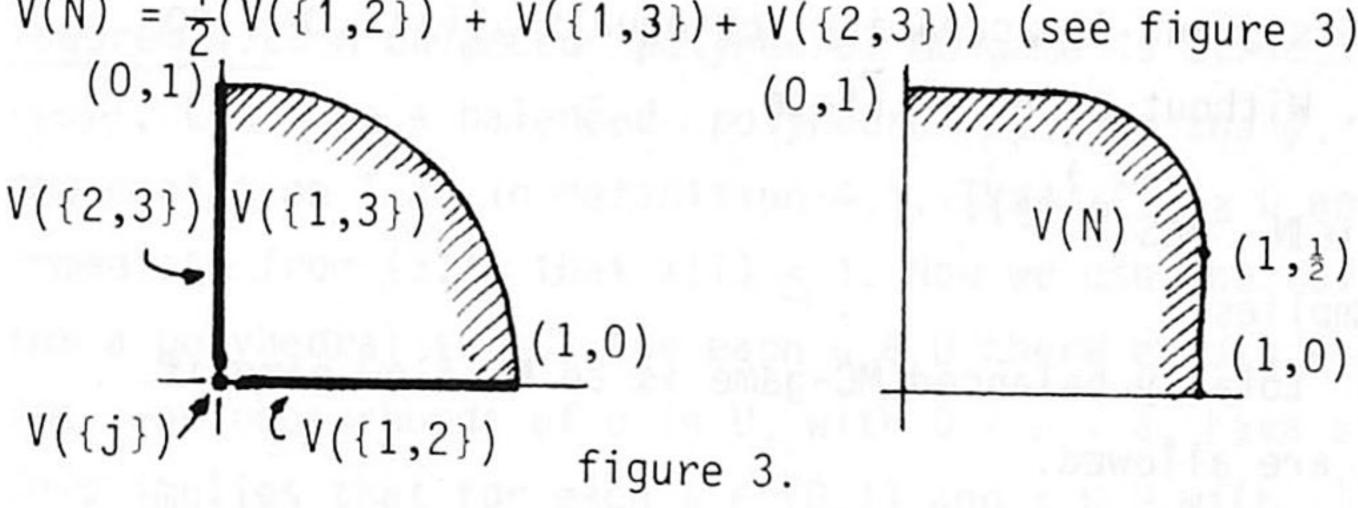
Example 3.6. Let V be the two-commodity game with 3 players where  $V({j}) = {(0,0)} \text{ for each } j \in N = {1,2,3},$ 

$$V(\{1,2\})=\{(x_1,x_2) \in \mathbb{R}^2 : 0 \le x_1 \le 1, x_2 = 0\},\$$

$$V(\{2,3\}) = \{(x_1,x_2) \in \mathbb{R}^2 : x_1 = 0, 0 \le x_2 \le 1\},\$$
 $V(\{1,3\}) = \{(x_1,x_2) \in \mathbb{R}^2 : x_1 = 0, 0 \le x_2 \le 1\},\$ 

$$V(\{1,3\}) = \{(x_1,x_2) \in \mathbb{R}^2_+ : x_1^2 + x_2^2 \le 1\}$$
 and

$$V(N) = \frac{1}{2}(V(\{1,2\}) + V(\{1,3\}) + V(\{2,3\}))$$
 (see figure 3).



One can easily verify that V is totally balanced.

Claim. V is not the intersection of a finite number of additive twocommodity games.

 $\mathit{Proof.}$  Suppose  $\{\alpha^l: i \in I\}$  is a finite collection of additive twocommodity games with

$$V(S) = \prod_{i \in I} (\Sigma_{j \in S} \alpha^{i}(j))$$
 for all  $S \in 2^{N}$ .

We note first that if for an  $i \in I$  the set  $\alpha^i(N)$  contains an element  $(1+\delta,0)$ , with  $\delta>0$ , then from  $\{(1+\delta,0)\}$  U  $V(N)\subset\alpha^i(N)$  and the convexity of  $\alpha^i(N)$  it follows that  $\alpha^i(N)$  contains an element  $(1,\frac{1}{2}+\epsilon)$  with  $\epsilon>0$ . This implies that there is a  $k\in I$  such that

$$\alpha^{k}(N) \cap \{x \in \mathbb{R}^{2} : x_{1} \geq 1, x_{2} \geq 0\} = \{x \in \mathbb{R}^{2} : x_{1} = 1, 0 \leq x_{2} \leq \frac{1}{2}\}$$
 (3.8) use  $V(N) = \bigcap_{i \in I} \alpha^{i}(N)$  and I is finite. From (3.8) and

because  $V(N) = \bigcap_{i \in I} \alpha^i(N)$  and I is finite. From (3.8) and  $\{(1,0)\} + \alpha^k(3) \subset V(\{1,2\}) + \alpha^k(3) \subset \alpha^k(N)$  it follows that

$$\alpha^{k}(3) \subset \{x \in \mathbb{R}^{2} : x_{1} = 0, 0 \le x_{2} \le \frac{1}{2} \}.$$
 (3.9)

Similarly, from  $\{(1,0)\}$  +  $\alpha^k(2)$   $\subset$   $V(\{1,3\})$  +  $\alpha^k(2)$   $\subset$   $\alpha^k(N)$  we conclude that

$$\alpha^{k}(2) \subset \{x \in \mathbb{R}^{2} : x_{1} = 0, 0 \le x_{2} \le \frac{1}{2} \}.$$
 (3.10)

From (3.9), (3.10) and  $V(\{2,3\}) \subset \alpha^k(2) + \alpha^k(3) \subset \{x \in \mathbb{R}^2 : x_1 = 0, 0 \le x_1 \le 1\} = V(\{2,3\})$  we obtain  $\alpha^k(2) = \alpha^k(3) = \{x \in \mathbb{R}^2 : x_1 = 0, 0 \le x_2 \le \frac{1}{2}\}$ . Since  $(1,0) \in V(N) \subset \alpha^k(N) = \alpha^k(1) + \{x \in \mathbb{R}^2 : x_1 = 0, 0 \le x_2 \le 1\}$  the set  $\alpha^k(1)$  contains (1,0) and, therefore,  $\alpha^k(N)$  contains (1,0) + (0,1) = (1,1) which is in contradiction with (3.8). Hence, we have proved the claim.

If we allow an infinite number of nodes and arcs in a network, the intersection of the countable collection  $\{\alpha^i:i\in\mathbb{N}\}$  of additive MC-games with player set N can be seen as an MC-flow game as follows. Consider the CMCF-situation  $\Gamma$  with node set  $\mathbb{N}$  and arc set L =  $\{\ell_{ij}:i\in\mathbb{N},\ j\in\mathbb{N}\}$ , where  $\ell_{ij}$  starts at node i and ends at i+1, its owner is j and its capacity set equals  $\alpha^i(j)$ . In  $\Gamma$  no sink is specified. Without proof we state

$$F_{L(S)}(\Gamma) = \bigcap_{i \in \mathbb{N}} \sum_{j \in S} \alpha^{i}(j).$$

Theorem 3.3 now implies

Theorem 3.7. Each totally balanced MC-game is an MC-flow game if infinite networks are allowed.

# 4. STRICTLY BALANCED NC-GAMES

In this section we introduce a new property for balanced MC-games. We show that this property holds for balanced polyhedral MC-games. It is interesting that all two-commodity flow games also turn out to have this property. From this we conclude that not all totally balanced two-commodity games are two-commodity flow games.

Definition 4.1. Let V be a balanced MC-game with player set N and y an element of V(N). V is called *strictly balanced in* y if for each map  $\lambda: 2^N \to \mathbb{R}_+$  with the balancedness property (3.1) and elements y of V(S) for all S  $\in 2^N$ , such that y equals  $\Sigma$   $N^{\lambda}(S)y^S$ , the following holds:

for each  $T\in 2^N$  with  $\lambda(T)>0$ , there exists an  $\epsilon>0$  such that for all  $x\in V(T)$  with  $||x-y^T||<\epsilon$ , we have

$$y + x - y^T \in V(N)$$
.

V is called  $strictly\ balanced$  if it is strictly balanced in each element of V(N).

It follows directly from the definition that a balanced MC-game V is strictly balanced in each element of the interior of V(N). The balanced two-commodity game V in example 3.6 doesn't possess the strict balancedness property. To show this consider  $y=(1,\frac{1}{2})\in V(\{1,2,3\})$ . Consider also the map  $\lambda$  with  $\lambda(S)=\frac{1}{2}$  if |S|=2 and  $\lambda(S)=0$  otherwise, and  $y^{\{1,2\}}=y^{\{1,3\}}=(1,0),\ y^{\{2,3\}}=(0,1)$  and  $y^S=0$  otherwise. Of course,  $y=\Sigma_{S\in 2}N$   $\lambda(S)y^S$ . Let  $T=\{1,3\}$  and  $x^E:=(\sqrt{1-(\frac{1}{2}\epsilon)^2},\frac{1}{2}\epsilon)\in V(T)$  and  $u^E:=\frac{1}{2}((1,0)+(\sqrt{1-\epsilon^2},\epsilon)+(0,1))=(\frac{1}{2}+\frac{1}{2}\sqrt{1-\epsilon^2},\frac{1}{2}+\frac{1}{2}\epsilon)\in V(N)$  with  $\epsilon\in(0,1]$ . For all  $\epsilon\in(0,1]$  we have  $||x^E-y^T||<\epsilon$  and  $y+x^E-y^T=(\sqrt{1-(\frac{1}{2}\epsilon)^2},\frac{1}{2}+\frac{1}{2}\epsilon)\geq u^E$ . (4.1)

From (4.1),  $y + x^{\varepsilon} - y^{\mathsf{T}} \neq u^{\varepsilon}$  and the Pareto optimality of  $u^{\varepsilon}$  in V(N) we conclude that  $y + x^{\varepsilon} - y^{\mathsf{T}} \notin V(N)$  for all  $\varepsilon \in (0,1]$ . Hence, V is not strictly balanced in  $(1,\frac{1}{2})$ .

Theorem 4.2. A balanced polyhedral MC-game is strictly balanced. 
Proof. Let V be a balanced polyhedral MC-game and y,  $\lambda$ ,  $y^S$  with  $S \in 2^N$ , and coalition T as in definition 4.1. Thus  $\lambda(T) > 0$  and it is immediate from (3.1) that  $\lambda(T) \leq 1$ . Now we use the following property for a polyhedral set U. For each  $u \in U$  there exists a  $\delta > 0$  such that the  $\epsilon$ -neighbourhoods of u in U, with  $0 < \epsilon \leq \delta$ , have similar shape. This implies that for each  $\mu \in (0,1]$  and  $x \in U$  with  $||x-u|| \leq \mu \delta$  there exists an  $\widetilde{x} \in U$ , with  $||\widetilde{x} - u|| \leq \delta$ , such that  $x = \mu \widetilde{x} + (1-\mu)u$ . Applying this property to the polyhedral set V(T) and  $y^T \in V(T)$  we obtain that there exists an  $\epsilon > 0$  such that for all  $x \in V(T)$ , with  $||x-y^T|| \leq \epsilon$ , there is an  $\widetilde{x} \in V(T)$  such that  $x = \lambda(T)\widetilde{x} + (1-\lambda(T))y^T$ . Hence,

$$y + x - y^{T} = y + \lambda(T)\tilde{x} - \lambda(T)y^{T} = \Sigma_{S \in 2N - \{T\}}^{\lambda}(S)y^{S} + \lambda(T)\tilde{x}.$$
 (4.2)

From (4.2), the balancedness of V and  $\widetilde{x} \in V(T)$  we conclude that  $y + x - y^T \in V(N)$ .

Theorem 4.3. Each two-commodity flow game is strictly balanced. Proof. Let  $V_{\Gamma}$  be a two-commodity flow game corresponding to the CMCF-situation  $\Gamma$  with player set N and commodity set  $G = \{1,2\}$  and suppose that  $V_{\Gamma}$  is not strictly balanced in an element y of  $V_{\Gamma}(N)$ . Then there exist a map  $\lambda: 2^N \to \mathbb{R}_+$ , satisfying (3.1) and elements  $y^S$  of  $V_{\Gamma}(S)$  for each  $S \in 2^N$ , such that  $y = \Sigma_{S \in 2^N} \lambda(S) y^S$  and there is a coalition T with  $\lambda(T) > 0$  and a sequence  $x^1, x^2, \ldots$  in  $V_{\Gamma}(T)$  with  $\lim_{N \to \infty} x^n = y^T$  and

$$y + x^n - y^T \notin V(N)$$
 for all  $n \in \mathbb{N}$ . (4.3)

Let  $f^1$ ,  $f^2$ , ... be a sequence of flows in  $\Gamma$  such that  $v(f^n) = x^n$  and  $f^n(\ell) = 0$  for all  $\ell \in L-L(T)$  and  $n \in IN$ . Without loss of generality we suppose that there is a flow  $f^T$  such that

$$f^{T}(l) = \lim_{n \to \infty} f^{n}(l)$$
 for all  $l \in L$ . (4.4)

Of course, (4.4) implies  $v(f^T) = y^T$  and  $f^T(\ell) = 0$  for all  $\ell \in L-L(T)$ . For each  $S \in 2^N-\{T\}$  let  $f^S$  be a flow in  $\Gamma$  with value  $y^S$  and  $f^S(\ell) = 0$  for all  $\ell \in L-L(S)$ . Then  $f := \Sigma_{S \in 2^N} \lambda(S) f^S$  is a flow with value  $y = \Sigma_{S \in 2^N} \lambda(S) y^S$  (see the proof of theorem 3.2).

For each  $n \in \mathbb{N}$  the map  $g^n := f + f^n - f^T$  on the arc set L is not a flow in  $\Gamma$  since otherwise  $v(g^n) = v(f) + v(f^n) - v(f^T) = y + x^n - y^T \in F(\Gamma) = V_{\Gamma}(\mathbb{N})$  which is in contradiction with (4.3). However,  $g^n$  satisfies the flow conditions (F.2), (F.3) and (F.4) and it also satisfies the feasibility property (F.1) for all  $\ell \in L - L(T)$  since for these arcs  $g^n(\ell) = f(\ell) + f^n(\ell) - f^T(\ell) = f(\ell) + 0 - 0 \in c(\ell)$ . Therefore, for each  $n \in \mathbb{N}$  there is an arc, say  $\ell^n$ , in L(T) such that  $g^n(\ell^n) \notin c(\ell^n)$ . Because the arc set L(T) is finite, there is an arc, say  $\ell^n$ , in L(T) such that  $g^n(\ell^n) \notin c(\ell^n)$  infinitely often. Again, without loss of generality, we suppose that

$$q^{n}(\ell^{*}) \notin c(\ell^{*})$$
 for all  $n \in \mathbb{N}$ . (4.5)

In the sequel of the proof we need the existence of an M  $\in$  IN such that

$$g^{n}(\ell^{*}) > 0 \text{ for all } n > M.$$
 (4.6)

To prove (4.6) we distinguish two cases.

(i) Suppose  $(f(l^*))_r > 0$  for an  $r \in G = \{1,2\}$ . Choose  $M_r \in IN$  such that  $(f^T(l^*))_r - (f^n(l^*))_r \le (f(l^*))_r$  for all  $n \ge M_r$ . This is

possible since  $\lim_{n\to\infty}f^n(\ell^*)=f^T(\ell^*)$ . Hence,  $(g^n(\ell^*))_r\geq 0$  for all  $n\geq M_r$ .

(ii) Suppose  $(f(\ell^*))_r = 0$  for an  $r \in G$ . Then  $\Sigma_{S \in 2^N} \lambda(S) (f^S(\ell^*))_r = 0$ , yielding  $(f^S(\ell))_r = 0$  for all  $S \in 2^N$  with  $\lambda(S) > 0$ . Especially,  $(f^T(\ell^*))_r = 0$ . Hence,  $(g^n(\ell^*))_r = (f^n(\ell^*))_r \geq 0$ .

Choosing M  $\geq$  min  $\{M_r: r \in G, (f(\ell^*))_r > 0\}$  we obtain (4.6). Now we proceed with the proof in such a way that we will derive two different elements u and w from  $c(\ell^*)$  with the property that, for n sufficiently large,  $g^n(\ell^*)$  is majorized by a convex combination of u and w. Applying now (4.6) and the convexity and comprehensiveness of  $c(\ell^*)$  we obtain a contradiction with (4.5).

From (4.5), (4.6) and  $\lim_{n\to\infty} g^n(\ell^*) = f(\ell^*) \in c(\ell^*)$  we conclude that  $f(\ell^*)$  is weak Pareto optimal in the set  $c(\ell^*)$ . Because  $c(\ell^*)$  is compact and convex, there exists a  $z \in \mathbb{R}^2_+$ , ||z|| = 1, such that

$$z \cdot f(\ell^*) = \max_{x \in C(\ell^*)} z \cdot x. \tag{4.7}$$

Moreover, it is possible to express  $f(\ell^*)$  as a strict convex combination of two weak Pareto optimal elements, say u and w, of  $c(\ell^*)$ . To prove this let  $u:=f^T(\ell^*)$  and  $w:=(1-\lambda(T))^{-1}\sum_{S\in 2}N_{-\{T\}}\lambda(S)f^S(\ell^*)$ . Now w is properly defined because if  $\lambda(T)=1$  then  $y+x^n-yT=\sum_{S\in 2}N_{-\{T\}}\lambda(S)y^S+\lambda(T)x^n\in V_\Gamma(N)$ , using the balancedness of  $V_\Gamma$  and  $x^n\in V_\Gamma(T)$  for all  $n\in IN$ . This is in contradiction with (4.3). Therefore,  $\lambda(T)\neq 1$ . The balancedness property (3.1) asserts  $0\leq \lambda(T)\leq 1$ . Hence,

$$0 < \lambda(T) < 1.$$
 (4.8)

Of course,  $f(\ell^*) = \lambda(T)u + (1-\lambda(T))w$  and  $u \in c(\ell^*)$ . Also  $w \in c(\ell^*)$  because w is a convex combination of elements of the convex set  $c(\ell^*)$  since  $(1-\lambda(T))^{-1}\Sigma_{S\in 2}N_{-\{T\}}\lambda(S) = 1$  and  $f^S(\ell^*) \in c(\ell^*)$  for all  $S \in 2^N_{-\{T\}}$ .

Now  $u \neq f(\ell^*)$  because otherwise  $g^n(\ell^*) = u + f^n(\ell^*) - u = f^n(\ell^*) \in c(\ell^*)$  for all  $n \in \mathbb{N}$ , contradicting (4.5).

Using  $u \neq f(\ell^*)$ ,  $f(\ell^*) = \lambda(T)u + (1 - \lambda(T))w$  and (4.8) we obtain  $w \neq f(\ell^*)$ . Furthermore, we have  $z \cdot f(\ell^*) = \lambda(T)z \cdot u + (1 - \lambda(T))z \cdot w \leq z \cdot f(\ell^*)$ , using (4.7) and  $u, w \in c(\ell^*)$ . Hence,  $z \cdot f(\ell^*) = z \cdot u = z \cdot w$  which implies the weak Pareto optimality of u and w in  $c(\ell^*)$ .

Consider  $a^n := g^n(\ell^*) + (z \cdot f(\ell^*) - z \cdot g^n(\ell^*))z$  for each  $n \in \mathbb{N}$ . Since ||z|| = 1, we have  $z \cdot a^n = z \cdot f(\ell^*)$ . Moreover,  $g^n(\ell^*) < a^n$  for all  $n \in \mathbb{N}$ , (4.9)

The totally balanced two-commodity game in example 3.6 is not strictly balanced as we saw earlier. So for that MC-game there doesn't exist a CMCF-situation corresponding to that MC-game. Hence Corollary 4.4. The family of totally balanced MC-games properly contains the set of MC-flow games.

## 5. CONCLUSION

We have proved that multi-commodity flow games are totally balanced and that totally balanced MC-games can be seen as an intersection of countable many additive MC-games which implies that such games can be represented as MC-flow games if we allow infinite networks.

To summarize our other results let TBMC denote the family of totally balanced MC-games, FMC the family of MC-flow games on finite networks, FIA the family of MC-games which are a finite intersection of additive MC-games and PMC the family of totally balanced polyhedral MC-games. Then we have

PMC  $\subset$  FIA  $\subset$  FMC  $\subset$  TBMC.  $\neq$   $\neq$  0pen is

Problem 5.1. Coincides FIA with FMC?

Or: Is it possible to express each multi-commodity flow game as a finite intersection of additive multi-commodity games?

If the answer is yes, this will imply that the strict balancedness is not a sufficient condition for an MC-game to assure that such a game is an MC-flow game. To see this, consider the two-commodity game V'

with V'(S) = V(S) for  $S \neq \{1,3\}$ , where V is defined in 3.6, and  $V'(\{1,3\}) = \{x \in \mathbb{R}^2 : 0 \le x_1 \le 1, x_2 = 0\}$ . The MC-game V' is strictly balanced but in a similar way as in 3.6 one shows that  $V' \notin FIA$ .

## References

- [1] A.A. Assad (1978): Multicommodity Network Flows A Survey. Networks 8, 37-91.
- [2] J.J.M. Derks, S.H. Tijs (1985): Stable Outcomes for Multi-Commodity Flow Games. Methods of Operations Research (to appear).
- [3] P. Dubey, L.S. Shapley (1984): Totally Balanced Games Arising from Controlled Programming Problems. Math. Programming 29,245-267.
- [4] L.R. Ford, D.R. Fulkerson (1956): Maximal Flow Through a Network. Canad. J. Math. 8, 399-404.
- [5] T.C. Hu (1963): Multi-Commodity Network Flows. Open. Res. 11, 344-360.
- [6] E. Kalai, E. Zemel (1982): Generalized Network Problems Yielding Totally Balanced Games. Oper. Res. 30, 998-1008.
- [7] E. Kalai, E. Zemel (1982): Totally Balanced Games and Games of Flow. Math. Oper. Res. 7, 476-478.
- [8] J.L. Kennington (1978): A Survey of Linear Cost Multicommodity Network Flows. Oper. Res. 6, 209-236.
- [9] G. Owen (1975): On the Core of Linear Production Games. Math. Programming 9, 358-370.
- [10] L.S. Shapley, M.Shubik (1969): On Market Games. J. Econ. Theory 1, 9-25.
- [11] S.H. Tijs, T. Parthasarathy, J.A.M. Potters, V. Rajendra Prasad (1984): Permutation Games: Another Class of Totally Balanced Games. OR Spektrum 6, 119-123.

Jean J.M. Derks and Stef H. Tijs
Department of Mathematics
University of Nijmegen
Toernooiveld
6525 ED Nijmegen, The Netherlands