Stochastic Games with one Big Action Space in Each State
S.H. Tij, Nijmegen

Abstract.
Non-cooperative stochastic games with a finite state space, a finite player set, metric action spaces and bounded reward functions are considered under the discounted payoff criterion. It is shown, under certain continuity assumptions with respect to reward functions and transition probability functions, that such a game possesses an ε-equilibrium point in stationary strategies for all $\varepsilon > 0$, if at each state at most one of the action spaces is topologically big and all other action spaces are topologically small (finite, compact, precompact metric). In the proofs of the ε-equilibrium point theorems use is made of appropriate subgames, for which ε-equilibria exist. The existence of these subgames is established with the aid of a result by Fréchet-Ascoli-Arzela.

1. Introduction.
Sequential competitive decision processes, such as stochastic games, play an increasing role as useful models for phenomena in the social sciences. We only mention, here, the papers of Deshmukh & Winston [1], Kirman & Sobel [8] and the book of Friedman [5], in which oligopoly situations are related with stochastic games.

The theory of stochastic games started with the fundamental paper of Shapley [13], in which two-person zero-sum stochastic games with finite state space and finite action spaces were considered. The results of Shapley were extended in various directions; for a survey, see [10].

Non-zero-sum stochastic games were studied in the papers [3], [4], [5], [7], [9], [11], [12], [14], [15], [16], [20] and [22]. In all these papers, in the (ε-)equilibrium point theorems only topologically small action spaces are considered (finite or compact action spaces, or action spaces with a compact closure). Central in this paper is the problem of the existence of ε-equilibrium points for all $\varepsilon > 0$ for infinite stage stochastic games, where some of the action spaces may be topologically big, while the state space is finite and where the players want to maximize their total expected rewards over all stages, discounted to the initial stage. The technique used in the proofs of the ε-equilibrium point theorems, derived in this paper, is the approximation of the game with
suitable subgames with small action spaces. A similar technique was also successful in the papers [17] and [18], where ϵ-equilibrium point theorems were derived for non-cooperative games in normal form.

The organization of this paper is as follows. In section 2 the stochastic game model is described and some definitions are given. In section 3 δ-approximations of stochastic games are introduced and some results are presented, which are used in section 4 for the derivation of the new ϵ-equilibrium point theorems.

2. Model and notation.

We deal with a dynamic system, which can be in a finite number of states $1, 2, \ldots, z$ and which is governed by n decision makers (players) $1, 2, \ldots, n$, who at the decision moments (stages) $0, 1, 2, \ldots$ observe the state of the system and then influence the development of the system by choosing one of their actions available at the observed state. At each stage two things happen:

1. each of the players obtains an immediate reward, dependent on the state of the system at stage k and the chosen actions
2. the system jumps to one of the states with probabilities also dependent on the state at stage k and the chosen actions, which new state is observed at the next stage $k+1$.

In the following let us denote
- the state space $\{1, 2, \ldots, z\}$ by S,
- the set of players $\{1, 2, \ldots, n\}$ by I,
- the set of stages $\{0, 1, 2, \ldots\}$ by K,
- the non-empty set of pure actions for player $i \in I$ in state $s \in S$ by A_{is}.
- the immediate reward for player i in state s, if the players choose pure actions $a_1 \in A_{1s}, a_2 \in A_{2s}, \ldots, a_n \in A_{ns}$ by $r_{is}(a_1, a_2, \ldots, a_n)$ or $r_{is}(a)$
- the probability that the system is in state $t \in S$ at stage $k+1$ by $p_{st}(a_1, \ldots, a_n)$, if the system is in state $s \in S$ at stage $k \in K$ and the players choose actions a_1, \ldots, a_n.

In the following β is a fixed real number in $(0, 1)$. We will assume that a reward of r units, received in stage $k \in K$, for a player has worth $\beta^k r$ at stage 0, and we call this the discounted reward. We assume that the players want to maximize their total discounted reward.

Summarizing and specifying what preceded, we obtain the following
DEFINITION 1. A stochastic game Γ is a five-tuple $\langle S, \{A_{is} : i \in I, s \in S\}, \{r_{is} : i \in I, s \in S\}, \{p_{st} : s, t \in S\}, \beta \rangle$, where

\equiv I and S are as above

$\equiv A_{is}$ is a non-empty metric space (the pure action space for player i in state s).

$\equiv r_{is}$ is a bounded real-valued Borel-measurable function on $X A_{is}$ (the reward function for player i in state s).

$\equiv p_{st}$ is a Borel-measurable function on $X A_{is}$ for each $s, t \in S$ (transition probability function) such that

$$p_{st}(a) \geq 0 \text{ and } \sum_{a \in X A_{is}} p_{st}(a) = 1 \text{ for all } a \in X A_{is}.$$

$\equiv \beta \in (0, 1)$ (the discount factor).

In view of the measurability assumptions in the above definition, we can also take mixed actions into consideration. Here a mixed action for player i at state s in the game Γ is a probability measure on the family of Borel sets A_{is} of A_{is}. The set of all such mixed actions is denoted by Π_{is}. Using such a mixed action $\pi_{is} \in \Pi_{is}$ implies that, for each $U \in A_{is}$, the probability that a pure action, lying in U, is chosen, equals $\pi_{is}(U)$. The elements of $\Pi = \prod_{s \in S} \Pi_{is}$ are called stationary strategies for player i.

Using a stationary strategy $\pi = (\pi_1, \pi_2, \ldots, \pi_n)$ means that in all stages player i uses his mixed action π_s, if the system is in state s.

In this paper we only consider stationary strategies (see section 4, remark 1). The set $\Pi = \prod_{s \in S} \Pi_{is}$ is called the outcome space of the game Γ.

In a natural way the reward functions r_{is} and transition probability functions p_{st} determine functions R_{is} and P_{st} on the outcome space as follows. For each outcome $\pi = (\pi_1, \pi_2, \ldots, \pi_n) \in \Pi$, $s, t \in S$ and $i \in I$ we define

$$R_{is}(\pi) = \int r_{is}(a_1, a_2, \ldots, a_n) d\pi_1_{is}(a_1) d\pi_2_{is}(a_2) \ldots d\pi_n_{is}(a_n)$$

$$P_{st}(\pi) = \int p_{st}(a_1, a_2, \ldots, a_n) d\pi_1_{is}(a_1) d\pi_2_{is}(a_2) \ldots d\pi_n_{is}(a_n).$$

$R_{is}(\pi)$ and $P_{st}(\pi)$, respectively, are the expected immediate reward for player i in state s and the expected probability that the system is in the next stage in state t, given that the system is presently in state s, and given that the players together choose the outcome π.

The reward vector $(R_{i1}(\pi), \ldots, R_{iz}(\pi))$ for player i, corresponding to
outcome \(\pi \), will be denoted by \(R_1(\pi) \). Note that \(P(\pi) = [P_{st}(\pi)]_{s=1,t=1}^{z,z} \) is a stochastic \(z \times z \)-matrix, describing the transition probabilities of the system, given the outcome \(\pi \).

If in the initial stage (stage 0) the system is in \(s \) and if the players choose outcome \(\pi \), then the \(\beta \)-discounted expected immediate reward at stage \(k \) for player \(i \) equals the \(s \)-th coordinate of the vector \(\beta^k P(\pi) R_1(\pi) \) in \(\mathbb{R}^z \). The total \(\beta \)-discounted expected payoff for player \(i \), if the system starts in \(s \) and if the players choose \(\pi \), is given by the \(s \)-th coordinate of the vector \(\sum_{k=0}^{\infty} \beta^k P(\pi) R_1(\pi) \) in \(\mathbb{R}^z \). In the sequel we use the following notation: \(v_i(\pi) = \sum_{k=0}^{\infty} \beta^k P(\pi) R_1(\pi) \), \(v_i(\pi) = (v_{i1}(\pi), v_{i2}(\pi), \ldots, v_{iz}(\pi)) \). For \(a = (a_1, \ldots, a_j-1, a_j, a_{j+1}, \ldots, a_n) \in X_A \) is \(i \) is and \(b \in A_j \) the vector \((a_1, \ldots, a_j-1, a_{j+1}, \ldots, a_n) \) is denoted by \(a_{-j} \) and the vector \((a_1, \ldots, a_j-1, b, a_{j+1}, \ldots, a_n) \) by \((a_{-j} + b) \).

Similarly, for \(\pi = (\pi_1, \pi_2, \ldots, \pi_n) \in \Pi \) and \(\rho \in \Pi_j \) the outcome \((\pi_1, \pi_2, \ldots, \pi_j-1, \rho, \pi_{j+1}, \ldots, \pi_n) \) is denoted by \((\pi_{-j} + \rho) \).

DEFINITION 2. Let \(\varepsilon \geq 0 \) and let \(\# \in \Pi \). We say that \(\# \) is an \(\varepsilon \)-equilibrium point for the stochastic game \(\Gamma \), if for each \(i \in I \) and each \(\pi_i \in \Pi_i \) we have

\[
(2.1) \quad v_i(\pi_{-1} + \pi_i) \leq v_i(\#) + \varepsilon 1_z.
\]

(Here \(1_z \) is the vector in \(\mathbb{R}^z \) with all coordinates equal to 1). 0-equilibrium points are also called equilibrium points.

The main problem in this paper is that of the existence of \(\varepsilon \)-equilibrium points for all \(\varepsilon > 0 \). For zero-sum two-person stochastic games this problem coincides with the problem of the existence of a value (cf. [17] p. 756).

3. \(\delta \)-Approximations.

In the sequel, use is made of the norms on the space of \(z \times z \)-matrices of real numbers and on \(\mathbb{R}^z \), defined by

\[
||A|| = \max_{t=1}^{z} \{ \sum_{s=1}^{z} |a_{st}| : s = 1, 2, \ldots, z \}, \quad \text{where } A \text{ is the } z \times z \text{-matrix}
\]

\[
[a_{st}]_{s=1,t=1}^{z,z}
\]

\[
||(x_1, x_2, \ldots, x_z)|| = \max_{s} |x_s| \text{ for } x = (x_1, \ldots, x_z) \in \mathbb{R}^z.
\]
These norms satisfy the pleasant product properties:

\[(3.1)\] \[||AB|| \leq ||A|| \cdot ||B||, \quad ||Ax|| \leq ||A|| \cdot ||x||\] for all \(z \times z\)-matrices.

\(A\) and \(B\) and \(x \in \mathbb{R}^z\).

For a stochastic \(z \times z\)-matrix \(P = [p_{st}]_{s,t=1}^z\), for which \(p_{st} \geq 0\) for all \(s,t \in \{1,2,\ldots,z\}\) and \(\Sigma p_{st} = 1\) for all \(s \in \{1,2,\ldots,z\}\), the following properties hold:

\[(3.2)\] \[||F^k|| = 1\] for all \(k \in \mathbb{N}\)

\[(3.3)\] \[\Sigma \beta^k p^k\] equals \((I-\beta P)^{-1}\) if \(\beta \in (0,1)\) and \(k=0\).

\[(3.4)\] \[||\Sigma \beta^k p^k|| = (1-\beta)^{-1}||x||\]

The following lemma is useful, if for two different outcomes one wants to compare the corresponding total \(\beta\)-discounted expected payoff vectors.

Lemma 1. Let \(P\) and \(Q\) be stochastic \(z \times z\)-matrices, \(x,y \in \mathbb{R}^z\) and \(\beta \in (0,1)\).

Then

\[(3.5)\] \[||\Sigma \beta^k p^k x - \Sigma \beta^k q^k y|| \leq (1-\beta)^{-1}||x-y|| + \beta(1-\beta)^{-2}||P-Q||||x||\]

Proof. First we note that

\[(3.6)\] \[\Sigma \beta^k p^k x - \Sigma \beta^k q^k y = \Sigma \beta^k q^k (x-y) + \left(\Sigma \beta^k p^k - \Sigma \beta^k q^k\right)x\]

For the first term on the right-hand side of (3.6), we have, in view of (3.1) and (3.4),

\[(3.7)\] \[||\Sigma \beta^k q^k (x-y)|| \leq ||\Sigma \beta^k q^k|| ||x-y|| = (1-\beta)^{-1}||x-y||\]

and for the second term on the right-hand side of (3.6), we obtain, using (3.3), (3.1) and (3.4):

\[(3.8)\] \[||\left(\Sigma \beta^k p^k - \Sigma \beta^k q^k\right)x|| = ||((I-\beta P)^{-1} - (I-\beta Q)^{-1})x|| = \]

\[||I-\beta P||^{-1} \beta (P-Q)(I-\beta Q)^{-1} x|| \leq \beta ||I-\beta P||^{-1}||I-\beta Q||^{-1}||P-Q|| ||x|| = \beta (1-\beta)^{-2}||P-Q|| ||x||.

Combining (3.6), (3.7) and (3.8) yields (3.5)

Let \(\Gamma\) be the stochastic game

\[<S,\{A_{is}:i \in I, s \in S\},\{r_{is}:i \in I, s \in S\},\{p_{st}:s,t \in S\},\beta>\]
and put \(\rho(\Gamma) = \sup \{ |r_i(s)(a)| : i \in I, s \in S, a \in X A_i \} \in [0, \infty) \). Let \(\Gamma' \) be the subgame
\[
\langle S, \{ B_i : i \in I, s \in S \}, \{ r'_i : i \in I, s \in S \}, \{ p'_i : s, t \in S \}, \beta \rangle,
\]
where \(B_i \) is a Borel subset of \(\Lambda_i \) and where \(r'_i \) and \(p'_i \) are the restrictions of the maps \(r_i \) and \(p_{st} \) respectively, to the subset \(X B_i \) of \(X A_i \).

DEFINITION 3. Let \(\delta \geq 0 \). We will say that the subgame \(\Gamma' \) of \(\Gamma \) is a \(\delta \)-approximation of the game \(\Gamma \) if there exists for each \((i, s) \in I \times S \) a measurable map \(\phi_i : A_i \to B_i \) such that for all \(b \in X B_i, a \in A_i \) and \(t \in S \) we have
\[
| r'_i(b + \phi_i(a)) - r_i(b + a) | \leq \frac{1}{2}(1 - \beta) \delta,
\]
\[
| p'_i(b + \phi_i(a)) - p_i(b + a) | \leq \frac{1}{2}(1 - \beta)^2 (1 + \rho(\Gamma)) - \delta.
\]

Let us denote the set of mixed actions of player \(i \) in state \(s \) in the game \(\Gamma' \) by \(\Pi' \), the set of stationary strategies of player \(i \) in \(\Gamma \) by \(\Pi_i \) and the set of outcomes by \(\Pi' \). Note that \(\Pi' \) can be identified with a subset of \(\Pi \) in a natural way. The maps \(\phi_i : A_i \to B_i \) induce maps \(\psi_i : \Pi_i \to \Pi_i \) as follows:
\[
\psi_i(\pi_i)(U) = \pi_i(\phi_i^{-1}(U)) \quad \text{for each } \pi_i \in \Pi_i \text{ and each Borel set } U \text{ in } B_i.
\]
\[
\psi_i(\pi_i)(\pi_{i1}, \ldots, \pi_{iz}) = (\psi_i(\pi_{i1}), \ldots, \psi_i(\pi_{iz})) \quad \text{for } (\pi_{i1}, \ldots, \pi_{iz}) \in \Pi_i.
\]

LEMMA 2. Let \(\delta \geq 0 \). Let \(\Gamma' \) be a \(\delta \)-approximation of \(\Gamma \) via the family of maps \(\{ \phi_i : i \in I, s \in S \} \). Let \(\psi_i, i \in I \), be as above. Then for all \(i \in I \), all \(\pi_i \in \Pi_i \) and all \(\pi' \in \Pi_i \) we have
\[
| |v'_i(\pi'_i + \psi_i(\pi_i)) - v'_i(\pi'_i + \pi_i) | | \leq \delta
\]
(Here \(v'_i(\pi') \) is the total \(\beta \)-discounted expected payoff vector, corresponding to \(\pi' \), in \(\Gamma' \)).

PROOF. Take \(i \in I \), \(\pi' \in \Pi_i \), \(\pi_i = (\pi_{i1}, \ldots, \pi_{i1}, \ldots, \pi_{iz}) \in \Pi_i \) and \(s \in S \). It follows from theorem C on p.163 in Halmos [6], that
\[
\int r_i(b, \ldots, b) d\psi_i(\pi_i)(b) = \int r_i(b, \ldots, b - 1) \phi_i(a_i),
\]
\[
B_i \quad B_i \quad A_i \quad B_i \quad B_i \quad A_i
\]
Hence, by (3.9), we have
\[| \int_{r_{is}} (b) d\psi_{is} (\pi_{is}) (b)_{i} - \int_{r_{is}} (b_{-i} a_{i}) d\pi_{is} (a_{i}) | = \]
\[= | \int_{r_{is}} (b) d\psi_{is} (\pi_{is}) (a_{i}) - \int_{r_{is}} (b_{-i} a_{i}) d\pi_{is} (a_{i}) | \leq \frac{1}{2} (1-\beta) \delta. \]

But then
\[(3.11) \quad | R_{is}^{(\pi_{is})} - R_{is}^{(\pi_{is})} | \leq \frac{1}{2} (1-\beta) \delta \]

where \(\pi_{is} = (\pi_{s}, \ldots, \pi_{i-1}, \pi_{i+1}, \pi_{s'}, \ldots, \pi_{ns}). \)

In a similar way, it follows from (3.10) that for all \(s, t \in S \)
\[(3.12) \quad | R_{st}^{(\pi_{st})} - R_{st}^{(\pi_{st})} | \leq \frac{1}{2} (1-\beta)^{2} z^{-1} (1+\rho (\Gamma))^{-1} \delta. \]

Now we apply lemma 1, where the roles of \(P, Q, x \) and \(y \) are played by
\[[p_{st}^{(\pi_{st})}]^{z} z_{s=1, t=1}, [p_{st}^{(\pi_{st})}]^{z} z_{s=1, t=1}, R_{i}^{(\pi_{i+1})} \text{ and} \]
\[R_{i}^{(\pi_{i+1})}, \text{respectively.} \]

Using (3.11), (3.12) and the inequality \(|| R_{i}^{(\pi_{i+1})} || \leq \rho (\Gamma) \), we obtain
\[\begin{align*}
| | v_{i}^{(\pi_{i+1})} - v_{i}^{(\pi_{i+1})} | | & = \\
& = | | \sum \beta (p^{(\pi_{i+1})}) R_{i}^{(\pi_{i+1})} + \\
& - \sum \beta (p^{(\pi_{i+1})}) R_{i}^{(\pi_{i+1})} || \leq \frac{1}{2} \delta + \frac{1}{2} (1+\rho (\Gamma))^{-1} \rho (\Gamma) \leq \delta. \quad \square
\end{align*} \]

The importance of \(\delta \)-approximations lies in the following

THEOREM 1. Let \(\delta \geq 0, \epsilon \geq 0. \) Let \(\Gamma' \) be a \(\delta \)-approximation of the game \(\Gamma \)
(via \(\psi_{i} : i \in I, s \in S \)). Let \(\pi' \in \Pi' \) be an \(\epsilon \)-equilibrium point of the game \(\Gamma' \).
Then \(\pi' \) is an \((\epsilon+\delta) \)-equilibrium point of \(\Gamma \).

PROOF. Take \(i \in I \) and \(\pi_{i} \in \Pi_{i} \). We have to prove that
\[(3.13) \quad v_{i}^{(\pi_{i+1})} \leq v_{i}^{(\pi')} + (\epsilon+\delta) z. \]

holds. In view of lemma 2, we have
\[(3.14) \quad v_{i}^{(\pi_{i+1})} \leq v_{i}^{(\pi_{i+1})} + \delta z. \]

Since \(\pi' \) is an \(\epsilon \)-equilibrium point in \(\Gamma' \), we also have
\[(3.15) \quad v_{i}^{(\pi_{i+1})} \leq v_{i}^{(\pi')} + \epsilon z. \]

Combining (3.14) and (3.15) yields (3.13). \[\square \]

Theorem 1 will be very useful in proving the existence of \(\epsilon \)-equilibrium points for various classes of games. If, namely, for a stochastic
game Γ for each $\delta > 0$ a δ-approximation can be found, which has ε-equilibria for each $\varepsilon > 0$, then the game Γ also has ε-equilibrium points for each $\varepsilon > 0$. The following lemma, which is a well-known extension of Fréchet of the Arzela-Ascoli theorem (cf. [2] p. 266, theorem 4.7 and p. 382), will be useful in finding suitable δ-approximations.

Lemma 3. Let E be a compact topological space, let F be a bounded and equicontinuous family of maps from E into \mathbb{R}^m and let $\eta > 0$. Then there exists a finite subfamily G of F such that G η-covers F i.e.

\[(3.16) \quad \forall f \in F \exists g \in G \forall e \in E [||f(e) - g(e)|| \leq \eta].\]

The finite version of lemma 3 is given in the following

Lemma 4. Let E be a finite set, let F be a bounded family of maps from E into \mathbb{R}^m and let $\eta > 0$. Then there exists a finite subfamily G of F such that (3.16) holds.

4. Some new ε-equilibrium point theorems for stochastic games.

We start with a

Definition 4. Let Γ be an n-person stochastic game and $k \in \{1,2,\ldots,n\}$. Then we call Γ a k-finite (k-compact) game if for each state s at least k of the n action spaces A_{is} are finite (compact).

An n-finite game is also called a finite game and an n-compact game is called a compact game.

For later use, we recall now two well-known equilibrium point theorems.

Each finite stochastic game Γ possesses an equilibrium point.

Let Γ be a compact stochastic game and suppose that the reward functions r_{is} and the transition probability functions p_{st} are continuous for all $i \in I$ and $s,t \in S$. Then Γ possesses an equilibrium point.

Now we are ready to formulate some new ε-equilibrium point theorems.

Theorem 4. Let Γ be an $(n-1)$-finite stochastic game. Then Γ possesses an ε-equilibrium point for each $\varepsilon > 0$.

Proof. Let $\varepsilon > 0$. Take $\eta > 0$ such that

\[(4.1) \quad \max\{2n(1-\beta)^{-1},2n\beta(1-\beta)^{-2}\lambda(1+p(\Gamma))\} \leq \varepsilon.\]

(a) We start with the construction of a finite subgame Γ' of Γ with ac-
tion sets B_i ($i \in I, s \in S$) and measurable maps $\phi_{is}: A_{is} \rightarrow B_{is}$ such
that Γ is an ε-approximation of Γ via the maps $\phi_{is}: i \in I, s \in S$.
For all $(i,s) \in I \times S$ such that A_{is} is a finite set, we take $B_{is} = A_{is}$
and $\phi_{is} = A_{is} \rightarrow B_{is}$ the identity map. For infinite action sets we pro-
cceed as follows. Let A_{is} be an infinite set. Then $A_{is} = \bigcap_{j \neq i} A_{js}$ is a fin-
ite set, because Γ is an $(n-1)$-finite game. We consider the bounded family

$$F = \{ a_{is} \rightarrow (r_{is}, p_{s1}, p_{s2}, \ldots, p_{sz}) : x \in A_{is} \}$$

defines maps from the finite set A_{is} into R_{z+1}, where each function corre-
sponds to an element of A_{is}. Now lemma 4 implies that we can find a fin-
ite subset B_{is} of A_{is} such that the subfamily

$$G = \{ a_{is} \rightarrow (r_{is}, p_{s1}, p_{s2}, \ldots, p_{sz}) : y \in B_{is} \}$$

of F covers F. Let the elements of the finite set B_{is} be y_1, y_2, \ldots, y_p. We define $\phi_{is}: A_{is} \rightarrow B_{is}$ as follows. For each $x \in A_{is}$ let $\phi_{is}(x) = y_r$ if r is the smallest number in $\{1, 2, \ldots, p\}$ for which the following inequalities hold:

\[
| r_{is}(a_{is}^{t+y}) - r_{is}(a_{is}^{t+x}) | \leq \eta \\
| p_{s1}(a_{is}^{t+y}) - p_{s1}(a_{is}^{t+x}) | \leq \eta
\]

for all $a_{is} \in A_{is}$ and all $t \in S$.

Such an r exists because G_{is} covers F_{is}.

Obviously, ϕ_{is} is measurable. It follows from (4.1), (4.2) and (4.3) that

\[
| r_{is}(a_{is}^{t+\#}) - r_{is}(a_{is}^{t+x}) | \leq \eta \leq \frac{1}{2}(1-\beta)\varepsilon \\
| p_{s1}(a_{is}^{t+\#}) - p_{s1}(a_{is}^{t+x}) | \leq \eta \leq \frac{1}{2}(1-\beta)\varepsilon
\]

Comparing (4.5) and (4.6) with (3.9) and (3.10), we see that the game Γ'
with action sets B_{is} as chosen above is the desired ε-approximation of Γ
via $\phi_{is}: i \in I, s \in S$.

(b) By theorem 2 the finite game Γ' has an equilibrium point. Then Γ has
an ε-equilibrium point, in view of theorem 1.

The following example shows that there exist $(n-2)$-finite stochastic games,
for which there exists no ε-equilibrium point for all sufficiently
small positive ε.

EXAMPLE 1. Let Γ be the 2-person zero-sum stochastic game
\[<S, \{A_{11}, A_{12}, \ldots, A_{1n}\}, \{B_{11}, B_{12}, \ldots, B_{1n}\}, \{p_{11}, p_{12}, \ldots, p_{1n}\}, \beta> \text{ with } S = \{1\} \text{ (one state), } A_{11} = A_{21} = \mathbb{IN}, \beta \in (0,1), p_{1j}(a_{1}, a_{2}) = 1 \text{ for all } (a_{1}, a_{2}) \in A_{11} \times A_{21} \text{ and} \]
\[r_{1j}(a_{1}, a_{2}) = -r_{2j}(a_{1}, a_{2}) = \begin{cases} 1 & \text{if } a_{1} \geq a_{2} \\ 0 & \text{if } a_{1} < a_{2} \end{cases} \]
Then the lower value \[\inf_{\pi_{1} \in \Pi_{1}} \sup_{\pi_{2} \in \Pi_{2}} v(\pi_{1}, \pi_{2}) \text{ equals 0 and the upper value} \]
\[\inf_{\pi_{2} \in \Pi_{2}} \sup_{\pi_{1} \in \Pi_{1}} v(\pi_{1}, \pi_{2}) \text{ equals } (1-\beta)^{-1}. \text{ This implies that } \Gamma \text{ has no } \epsilon\text{-equilibrium.} \]

Now we want to look at (n-1)-compact stochastic games, for which the following continuity conditions hold:
(C) for all \((i,s) \in I \times S\) for which \(A_{is} \) is compact, the family \(\{a_{is} \mapsto (r_{i}s_{1}, p_{s1}, \ldots, p_{sz})(x \cdot a_{is}) : x \in A_{is} \} \) of maps from \(A_{is} \) into \(\mathbb{IR}^{z+1} \)
is an equicontinuous family.

THEOREM 5. Let \(\Gamma\) be an (n-1)-compact game, satisfying property (C). Then \(\Gamma\) possesses an \(\epsilon\)-equilibrium point for each \(\epsilon > 0.\)

PROOF. Let \(\epsilon > 0. \) Take \(\eta > 0\) such that \(\eta < (1-\beta)^{-1}\)
\[
\frac{\max\{4\eta(n(1-\beta)^{-1}), 4n\beta(1-\beta)^{-2}z(1+\rho(\Gamma))\}}{\epsilon} \leq \epsilon.
\]
We will construct, for each \((i,s) \in I \times S,\) a subset \(B_{is} \) of \(A_{is} \) and a measurable function \(\phi_{is} : A_{is} \to B_{is} \) such that the subgame \(\Gamma_{is} \) with the action
spaces \(\{B_{is} : i \in I, s \in S\} \) is an (n-1)-finite subgame, which \(\epsilon\text{-approximates} \)
\(\Gamma \) via the maps \(\phi_{is} \).
For all \((i,s) \in I \times S,\) with \(A_{is} \) non-compact, we take \(A_{is} = B_{is} \) and \(\phi_{is} : A_{is} \to B_{is}\)
the identity map.
Now let \((i,s) \in I \times S\) be such that \(A_{is} \) is compact. Denote the function \(a_{is} \mapsto (r_{i}s_{1}, p_{s1}, \ldots, p_{sz})(x \cdot a_{is}) \) on \(A_{is}, \) where \(x \in A_{is}, \) by \(f_{x}\) and the ball of all points in \(A_{is} \) with distance to \(a \in A_{is} \) at most \(\delta\) by \(B(a, \delta).\)
The equicontinuity property of the family \(\{f_{x} : x \in A_{is}\} \) and the compactness of \(A_{is}\) imply that there is a finite subset \(B_{is} \) of \(A_{is}\) such that
\[
\forall b \in B_{is} \exists (\delta(b) > 0 \forall a_{is} \in B(b, \delta(b)) \forall x \in A_{is} : \left| f_{x}(a_{is}) - f_{x}(b) \right| \leq \eta \}
\]
and
\[
\bigcup_{b \in B_{is}} B(b, \delta(b)) = A_{is}.
\]
To construct the measurable map $\psi_{is} : A_{is} + B_{is}$, suppose that $B_{is} = \{p_1^i, p_2^i, \ldots, p_{k_i}^i\}$. For $a_{is} \in A_{is}$ put $\psi_{is}(a_{is}) = p_k^i$ if $a_{is} \in B(p_k^i, \delta(b_k^i))$ and $k_i = a_{is} \not\in \bigcup_{m=1}^\infty B(p_m^i, \delta(b_m^i))$. Then ψ_{is} satisfies the desired properties. Now it follows from (4.7) and (4.8) that for all $b_{-i} \in B_{-is}$, $a_{is} \in A_{is}$ and $t \in S$ we have

$$|r_{is}(b_{-i} + \psi_{is}(a_{is})) - r_{is}(b_{-i} + a_{is})| \leq \eta \leq \eta e(1 - \beta),$$

$$|p_{st}(b_{-i} + \psi_{is}(a_{is})) - p_{st}(b_{-i} + a_{is})| \leq \eta \leq \eta e(1 - \beta)^2 z^{-1}(1 + \rho(\Gamma))^{-1}.$$

By (4.9) and (4.10) the constructed game $\tilde{\Gamma}$ is a $\eta \varepsilon$-approximation of Γ. Since $\tilde{\Gamma}$ is an (n-1)-finite game, $\tilde{\Gamma}$ possesses an $\eta \varepsilon$-equilibrium point by theorem 4; this point is an ε-equilibrium point of Γ, in view of theorem 1.

Now we look at (n-1)-compact games Γ satisfying the following continuity conditions:

(D.1) All reward functions r_{is} and transition probability functions p_{st} $(i \in I, s, t \in S)$ are continuous.

(D.2) For each $(i, s) \in I \times S$ with A_{is} non-compact the family $F_{is} = \{a_{-is} \mapsto (r_{i_s} p_{s1}^i, \ldots, p_{sz}^i)(a_{-is} + y) : y \in A_{is}\}$ is an equicontinuous family of maps from A_{-is} into \mathbb{R}^{z+1}.

THEOREM 6. Let Γ be an (n-1)-compact game, satisfying (D.1) and (D.2). Then Γ possesses an ε-equilibrium point for each $\varepsilon > 0$.

PROOF. Let $\varepsilon > 0$. Take $\eta > 0$ satisfying (4.1). In view of theorems 3 and 1, it is sufficient to show that Γ possesses an η-compact ε-approximation Γ' with continuous reward functions and transition probability functions.

We construct the action spaces $\{B_{is} : i \in I, s \in S\}$ for Γ' as follows. If A_{is} is compact, take $B_{is} = A_{is}$ and $\phi = \psi$, the identity map. For A_{is} non-compact, condition (D.2) and lemma 3 imply the existence of a finite subset B_{is} of A_{is} such that the family $G_{is} = \{a_{-is} \mapsto (r_{i_s} p_{s1}^i, \ldots, p_{sz}^i)(a_{-is} + y) : y \in B_{is}\}$ η-covers the family F_{is}. As in the proof of theorem 4, we can, in a similar way, also find a measurable $\phi_{is} : A_{is} + B_{is}$, such that (4.5) and (4.6) hold. Now Γ', with the action spaces $\{B_{is} : i \in I, s \in S\}$ is a compact game, ε-approximating Γ via $\{\phi_{is} : i \in I, s \in S\}$.

\square
We conclude this paper with some

REMARKS.

1. In the foregoing we restricted our attention to stationary strategies. This is motivated by the fact that, as in Vrieze [20], it can be shown that an ε-equilibrium point in the class of stationary strategies is also an ε-equilibrium point in the class of history dependent strategies (cf. [5] p.281).

2. For the stochastic games, described in theorems 4, 5 and 6, there exists for each ε > 0 an ε-equilibrium point (θ_1,θ_2,...,θ_n) such that, for each i ∈ I and s ∈ S, the mixed action θ_is uses only a finite number of pure actions. This follows from the proofs of these theorems.

3. As in theorem 5, one can prove that an (n-1)-precompact stochastic game, for which the families of maps, described in (C), are uniform e-quicontinuous families, possesses an ε-equilibrium point for each ε > 0.

4. Also Whitt used in [22] an approximation technique to obtain ε-equilibrium point theorems. But in his theorems, the action spaces all have compact closures, so they are topologically small.

5. In a forthcoming paper [19], O.J. Vrieze and the author extend some of the results of this paper in various directions.

Acknowledgement.

The author wishes to thank O.J. Vrieze for helpful discussions.

REFERENCES.

[9] PARTHASARATHY, T., Discounted, positive and non-cooperative stochas-

Theory and Related Topics, D. Moeschlin, D. Pallaschke (eds.), North-

[12] ROGERS, P.D. Nonzero-sum stochastic games, Report ORC 69-8, Opera-
tions Res. Center, Univ. of California, Berkeley (1969).

(1953).

(1973).

[16] TAKAHASHI, M. Equilibrium points of stochastic non-cooperative n-

[17] TIJS, S.H. ε-Equilibrium point theorems for two-person games, Opera-

[18] TIJS, S.H. Nash equilibria for non-cooperative n-person games in nor-
mal form, Report 7907, Department of Mathematics, Catholic University,

[19] TIJS, S.H. & VRIEZE O.J. Nash equilibria for non-cooperative stochas-
tic games— a survey, Department of Mathematics, Nijmegen, The Nether-

[20] VRIEZE, O.J. The stochastic non-cooperative countable-person game with
countable state space and compact action spaces under the discounted
payoff criterium, Report BW 66/76, Department of Operations Research,
Mathematical Centre, Amsterdam (1976).

[21] WALD, A. Generalization of a theorem by von Neumann concerning zero-
sum two person games, Ann. of Math. 46, 281-286 (1945).

[22] WHITT, W. Representation and approximation of non-cooperative sequen-
tial games, Operations Research Center Report, Bell Laboratories,

Address:
Department of Mathematics
Catholic University
Toernooiveld
6525 ED Nijmegen
The Netherlands