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Abstract

This paper develops tests for comparing the accuracy of predictive densities derived from (possibly misspec-
ified) diffusion models. In particular, we first outline a simple simulation-based framework for constructing
predictive densities for one-factor and stochastic volatility models. Then, we construct accuracy assessment
tests that are in the spirit of Diebold and Mariano (1995) and White (2000). In order to establish the asymp-
totic properties of our tests, we also develop a recursive variant of the nonparametric simulated maximum
likelihood estimator of Fermanian and Salanié (2004). In an empirical illustration, the predictive densities
from several models of the one-month federal funds rates are compared.
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1 Introduction

Correct specification of models describing dynamics of financial assets is crucial for everything from pricing

bonds and derivative assets to designing appropriate hedging strategies. Hence, it is of little surprise that

there has been considerable attention given to the issue of testing for the correct specification of diffusion

models. In this paper, we do not construct specification tests in the usual sense, but instead assume that all

models are (possibly) misspecified and outline a simulation-based methodology for comparing the accuracy

of predictive densities based on alternative models.

To place this paper in the correct historical context, note that a first generation of specification testing

papers, initiated by the work of Äıt-Sahalia (1996), compares the marginal densities implied by hypothesized

null models with nonparametric estimates thereof, for the case of one-factor models (see also Pritsker (1998)

and Jiang (1998)). While one-factor models may in some cases provide a reasonable representation for short-

term interest rates, there is a somewhat widespread consensus that stock returns and term structures are

better modeled using multifactor diffusions. To take this into account, Corradi and Swanson (2005a) outline a

test for comparing the cumulative distribution (marginal or joint) implied by a hypothesized null model with

the corresponding empirical distribution. Their test can be used in the context of multidimensional and/or

multifactor models. Needless to say, tests based on the comparison of marginal distributions have no power

against iid alternatives with the same marginal, while tests based on the comparison of joint distributions do

not suffer from this problem. Nevertheless, correct specification of the joint distribution is not equivalent to

that of the conditional; and hence focus in the literature now centers on comparing conditional distributions.

When considering conditional distributions, a key difficulty that arises stems from the fact that knowledge of

the drift and variance terms of a diffusion process does not in turn imply knowledge of the transition density,

in general. Indeed, if the functional form of the transition density were known, one could test the hypothesis

of correct specification of a diffusion via the probability integral transform approach of Diebold, Gunther, and

Tay (1998); the cross-spectrum approach of Hong (2001), Hong, Li, and Zhao (2004), and Hong and Li (2005);

the martingalization-type Kolmogorov test of Bai (2003); or via the normality transformation approaches

of Bontemps and Meddahi (2005) and Duan (2003). Furthermore, for the case in which the transition

density is unknown, tests could be constructed by comparing the kernel (conditional) density estimator of

the actual and simulated data, as in Altissimo and Mele (2009) and Thompson (2008); by comparing the

conditional distribution of the simulated and of the historical data, as in Bhardwaj, Corradi, and Swanson

(2008); or by using the approaches of Äıt-Sahalia (2002) and Äıt-Sahalia, Fan, and Peng (2009), where closed

form approximations of conditional densities under the null are compared with data-driven kernel density

estimates.

All of the papers cited above deal with testing for the correct specification of a given diffusion model.

Nevertheless, and as alluded to above, we believe that all models are probably best viewed as approximations

of reality and, thus, are likely to be misspecified. Therefore, we focus on choosing the “best” model from

amongst (multiple) misspecified alternatives. Moreover, the “best” model is selected by constructing tests

that compare both predictive densities and/or predictive conditional confidence intervals associated with

alternative models.

Our approach is to measure accuracy using a distributional generalization of mean square error, as defined

in Corradi and Swanson (2005b). Namely, let F τ
k (u|Xt, θ

†
k) be the distribution of Xt+τ givenXt, evaluated at
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u, implied by diffusion model k, and let F τ
0 (u|Xt, θ0) be the distribution associated with the underlying and

unknown “true” model. Now, choose model k over model 1, say, if E

µ³
F τ
k (u|Xt, θ

†
k)− F τ

0 (u|Xt, θ0)
´2¶

<

E

µ³
F τ
1 (u|Xt, θ

†
1)− F τ

0 (u|Xt, θ0)
´2¶

. Our tests can be viewed as distributional generalizations of both

Diebold and Mariano (1995) and White (2000). Note that if we knew F τ
k (u|Xt, θ

†
k) in closed form, then

we could proceed as in Corradi and Swanson (2006a,b). However, the functional form of the model implied

conditional distribution is unknown in closed form, in general, and hence we rely on a simulation-based

approach to facilitate testing. As is customary in the out-of-sample evaluation literature, the sample of T

observations is split into two subsamples, such that T = R+P, where only the last P observations are used

for predictive evaluation. We first simulate P − τ τ−step ahead paths, using XR, ...,XR+P−τ as starting
values. Then, a scaled difference between the conditional distribution, estimated with historical as well as

simulated data, is used to construct our test statistic. One complication that arises in this setup is that

for the case of stochastic volatility (SV) models, the initial value of the volatility process is unobserved.

To overcome this problem, it suffices to simulate the process using different random initial values for the

volatility process. Thereafter, one simply constructs the empirical distribution of the asset price process for

any given initial value of the volatility process and takes an average over the latter. This integrates out the

effect of the volatility initial value.

The limiting distributions of the suggested statistics are shown to be (functional of) Gaussian processes

with covariance kernels that reflect the contribution of recursive parameter estimation error. In order to

provide asymptotically (first-order) valid critical values, we introduce a new bootstrap procedure that mim-

ics the contribution of parameter estimation error in a recursive setting. This is achieved by establishing

consistency and asymptotic normality of both simulated generalized method of moments (SGMM) and non-

parametric simulated quasi maximum likelihood (NPSQML) estimators of (possibly misspecified) diffusion

models, in a recursive setting, and by establishing the first-order validity of their bootstrap analogs.

The rest of the paper is organized as follows. In Section 2, we define the setup. Section 3 outlines the

testing procedure for choosing between m > 2 models and establishes the asymptotic properties thereof. In
Section 4, we develop a recursive version of the NPSQML estimator of Fermanian and Salanié (2004) and

outline conditions under which asymptotic equivalence between NPSQML and the corresponding recursive

QMLE obtains. An empirical illustration is provided in Section 5, in which various models of the effective

federal funds rate are compared. All proofs are collected in an appendix. Hereafter, let P ∗ denote the
probability law governing the resampled series, conditional on the (entire) sample, let E∗ and V ar∗ denote
the mean and variance operators associated with P ∗. Further, let o∗P (1) Pr−P denote a term converging to

zero in P ∗−probability, conditional on the sample except a subset of probability measure approaching zero.
Finally, assume that O∗P (1) Pr−P denotes a term which is bounded in P ∗−probability, conditional on the
sample, and for all samples except a subset with probability measure approaching zero.
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2 Set-Up

First, consider m one factor jump diffusion models. Namely, for k = 1, ...,m consider1:

X(t−) =
Z t

0

bk(X(s−), θ
†
k)ds− λkt

Z
Y

yφk(y)dy +

Z t

0

σk(X(s−), θ
†
k)dW (s) +

Jk,tX
j=1

yk,j ,

where Jk,t is a Poisson process with intensity parameter λk, λk finite, and the jump size, yk,j , is iid with

marginal distribution given by φk. Both Jk,t and yk,j are assumed to be independent of the driving Brownian

motion, W (t) . Also, note that
R
Y
yφk(y)dy denotes the mean jump size under model k, hereafter denoted

by μy,k. The case of no jumps corresponds to Jk,t = 0 for all t, and λk = 0. Note that over a unit time

interval, there are on average λk jumps; so that over the time span [0, t], there are on average λkt jumps.

The dynamics of X(t−) is then given by:

dX(t) =
³
bk(X(t−), θ

†
k)− λkμy,k

´
dt+ σk(X(t−), θ

†
k)dW (t) +

Z
Y

yp(dy, dt), (1)

where p(dy, dt) is a random Poisson measure giving point mass at y if a jump occurs in the interval dt.

Hereafter, let ϑk = (θk, λk, μy,k). If model k is correctly specified, then bk(X(t−), θ
†
k) = b0(X(t−), θ0),

σk(X(t−), θ
†
k) = σ0(X(t−), θ0), λk = λ0, and φk = φ0. Now, let F

τ
k (u|Xt, ϑ

†
k) = P τ

ϑ†k
(Xt+τ ≤ u|Xt) (i.e.,

F τ
k (u|Xt, ϑ

†
k) defines the conditional distribution of Xt+τ , given Xt, and evaluated at u, under the proba-

bility law generated by model k). Analogously, define F τ
0 (u|Xt, ϑ0) = P τ

ϑ0
(Xt+τ ≤ u|Xt) to be the “true”

conditional distribution. We measure model accuracy in terms of a distributional analog of mean square

error. In particular, model 1 is defined to be more accurate than model k if:

E

µ³
(F τ
1 (u2|Xt, ϑ

†
1)− F τ

1 (u1|Xt, ϑ
†
1))− (F τ

0 (u2|Xt, ϑ0)− F τ
0 (u1|Xt, ϑ0))

´2¶
< E

µ³
(F τ

k (u
τ
2 |Xt, ϑ

†
k)− F τ

k (u
τ
1 |Xt, ϑ

†
k))− (F τ

0 (u2|Xt, ϑ0)− F τ
0 (u1|Xt, ϑ0))

´2¶
.

This measure defines a norm and implies a standard goodness of fit measure (see, for example, Corradi

and Swanson (2005b). Recalling that E (1{u1 ≤ Xt+τ ≤ u2}|Xt) = F τ
0 (u2|Xt, ϑ0) − F τ

0 (u1|Xt, ϑ0), it is

straightforward to construct a sequence of P − τ τ−step ahead prediction errors under model k as 1{u1 ≤
Xt+τ ≤ u2} −

³
F τ
k (u2|Xt, bϑk,t,N,h)− F τ

k (u1|Xt, bϑk,t,N,h)´ , for t = R, ..., R + P − τ, where bϑk,t,N,h is an
estimator of ϑ†k computed using all observations up to time t, P + R = T , N is the number of simulation

paths used in estimation, and h is the discretization interval. Hence, prediction errors should be constructed

as follows. Simulate P − τ paths of length τ, using XR+1, ...,XR+P−τ as starting values and using the
recursively estimated parameters, bϑk,t,N,h, t = R, ..., R + P − τ. Then, construct the empirical distribution

of the series simulated under model k. Then, test statistics are constructed relying on the fact that, under

some regularity conditions, as discussed in Bhardwaj, Corradi and Swanson (2008):

1

N

NX
i=1

1
n
u1 ≤ X

ϑk,t,N,h
k,t+τ,i (Xt) ≤ u2

o
pr→ F

X
ϑ
†
k

k,t+τ (Xt)
(u2)− F

X
ϑ
†
k

k,t+τ (Xt)
(u1), t = R, ..., T − τ, (2)

1Hereafter, X(t−) denotes the cadlag (right continuous with left limit) for t ∈ R+, while Xt denotes the discrete skeleton

for t = 1, 2, ...
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where F
X
ϑ
†
k

k,t+τ (Xt)
(u) is the marginal distribution of X

ϑ†k
t+τ (Xt) implied by k model (i.e., by the model used to

simulate the series), conditional on the (simulation) starting valueXt. Furthermore, the marginal distribution

of Xϑ†
t+τ (Xt) is the distribution of Xt+τ conditional on the values observed at time t. Thus, F

X
ϑ
†
k

k,t+τ (Xt)
(u) =

F τ
k (u|Xt, ϑ

†
k). In the above expression, X

ϑk,t,N,h
k,t+τ,i (Xt) is generated according to a Milstein scheme, where

X
ϑk,t,N,h
(q+1)h −X

ϑk,t,N,h
qh

= bk(X
ϑk,t,N,h
qh , bθk,t,N,h)h+ σk(X

ϑk,t,N,h
qh , bθk,t,N,h) (q+1)h − 1

2
σk(X

ϑk,t,N,h
qh , bθk,t,N,h)0σk(Xϑk,t,N,h

qh , bθk,t,N,h)h
+
1

2
σk(X

ϑk,t,N,h
qh , bθk,t,N,h)0σk(Xϑk,t,N,h

qh , bθk,t,N,h) 2(q+1)h − bλkbμy,kh+ JkX
j=1

yk,j1 {qh ≤ Uj ≤ (q + 1)h} ,
(3)

with qh
iid∼ N(0, h), q = 1, . . . ,Q; and where σ0 is the derivative of σ(·) with respect to its first argument.

Additionally, the argument Xt in X
ϑk,t,N,h
k,t+τ,i (Xt) denotes that the starting value for the simulation is Xt.

Note that the last term on the right-hand-side (RHS) of (3) is nonzero whenever we have one (or more)

jump realization(s) in the interval [(q−1)h, qh]. Moreover, as neither the intensity nor the jump size is state
dependent, the jump component can be simulated without any discretization error, as follows. Begin by

making a draw from a Poisson distribution with intensity parameter bλkτ, say Jk. This gives a realization
for the number of jumps over the simulation time span. Then, draw Jk uniform random variables over

[0, τ ], and sort them in ascending order so that U1 ≤ U2 ≤ ... ≤ UJk . These provide realizations for the Jk
jump times. Then, make Jk independent draws from φk, say yk,1, ..., yk,Jk . An important feature of this

simulation procedure is that to generate X
ϑk,t,N,h
k,t+τ,i (Xt), i = 1, ..., N , for t = R, ..., T − τ, we must use (for

each t) the same set of randomly drawn errors as well as the same draws for numbers of jumps, jump times

and jump sizes. Thus, only the starting value used to initialize the simulations changes. More precisely, the

errors used in simulation are defined to be qh,i
iid∼ N(0, h), with Qh = τ , i = 1, ..., N .

Now, proceed by constructing X
ϑk,R,N,h
k,R+τ,i (XR), ...,X

ϑk,T−τ,N,h
k,T,i (XT−τ ), where T = R + P + τ − 1 and

i = 1, ..., N. This yields an NxP matrix of simulated values, where P = T − R − τ + 1 refers to the length

of the out-of-sample period. The key feature of this setup is that it enables the comparison of simulated

values X
ϑk,R+j,N,h
k,R+j+τ,i (XR+j) with actual values that are τ periods ahead (i.e., XR+j+τ ), for j = 1, ..., P . In this

manner, we are able to propose tests for simulation based on ex-ante predictive density comparison.

Turning now to the case of SV models, whenever both intensity and jump size are non state dependent,

a jump component can be simulated and added to either the return and/or the volatility process in the same

manner as above. Therefore, for the sake of simplicity, we consider SV models without jumps in the sequel.

Extension to general multidimensional and multifactor models both with and without jumps follows directly.

Finally, note that as we are considering the case of no jumps, parameters and estimators will be denoted by

θ instead of ϑ. Consider model k, k = 1, ...,m, defined as follows:µ
dX(t)
dV (t)

¶
=

µ
b1,k(X(t), θ

†
k)

b2,k(V (t), θ
†
k)

¶
dt+

µ
σ11,k(V (t), θ

†
k)

0

¶
dW1(t) +

µ
σ12,k(V (t), θ

†
k)

σ22,k(V (t), θ
†
k)

¶
dW2(t),

(4)
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where W1,t and W2,t are independent standard Brownian motions. Following a generalized Milstein scheme

(see, for example, equation (3.3), pp. 346 in Kloeden and Platen (1999)), for models k = 1, 2, ...,m, and forbθk,t,N,S,h an estimator of θ†k :
X

θk,t,N,S,h
(q+1)h = X

θk,t,N,S,h
qh +eb1,k(Xθk,t,N,S,h

qh , bθk,t,N,S,h)h+ σ11,k(V
θk,t,N,S,h
qh , bθk,t,N,S,h) 1,(q+1)h

+σ12,k(V
θk,t,N,S,h
qh , θk) 2,(q+1)h +

1

2
σ22,k(V

θk,t,N,S,h
qh , θi)

∂σ12,k(V
θk,t,N,S,h
qh , θk)

∂V
2
2,(q+1)h

+σ22,k(V
θk,t,N,S,h
qh , θk)

∂σ11,k(V
θk,t,N,S,h
qh , θk)

∂V

Z (q+1)h

qh

µZ s

qh

dW1,τ

¶
dW2,s (5)

V
θk,t,N,S,h
(q+1)h = V

θk,t,N,S,h
qh +eb2,k(V θk,t,N,S,h

qh , θk)h+ σ22,k(V
θk,t,N,S,h
qh , θk) 2,(q+1)h

+
1

2
σ22,k(V

θk,t,N,S,h
qh , θk)

∂σ22(V
θk,t,N,S,h
qh , θk)

∂V
2
2,(q+1)h (6)

where h−1/2 i,qh ∼ N(0, 1), i = 1, 2, E( 1,qh 2,q0h) = 0 for all q 6= q0, and

ebk(V, bθk,t,N,S,h) = Ã eb1,k(V, bθk,t,N,S,h)eb2,k(V, bθk,t,N,S,h)
!
=

Ã
b1,k(V, bθk,t,N,S,h)− 1

2σ22,k(V,
bθk,t,N,S,h)∂σ12,k(V,θk,t,N,S,h)∂V

b2,k(V, bθk,t,N,S,h)− 1
2σ22,k(V,

bθk,t,N,S,h)∂σ22,k(V,θk,t,N,S,h)∂V

!
.

The last terms on the RHS of (5) involve stochastic integrals and cannot be explicitly computed. However,

they can be approximated, up to an error of order o(h) by (see, for example, equation (3.7), pp. 347 in

Kloeden and Platen (1999)):Z (q+1)h

qh

µZ s

qh

dW1,τ

¶
dW2,s ≈ h

µ
1

2
ξ1ξ2 +

√
ρp (μ1,pξ2 − μ2,pξ1)

¶

+
h

2π

pX
r=1

1

r

³
ς1,r

³√
2ξ2 + η2,r

´
− ς2,r

³√
2ξ1 + η1,r

´´
,

where for j = 1, 2, ξj , μj,p, ςj,r, ηj,r are iid N(0, 1) random variables, ρp =
1
12 − 1

2π2

Pp
r=1

1
r2 , and p is such

that as h→ 0, p→∞.

In order to simulate paths for SV models, proceed as follows:

Step 1: Using the schemes in (5) and (6), simulate (P −τ)×S×N paths of length τ, setting the initial values

for the observable state variable equal to the initial value Xt, t = R+1, ..., R+P − τ, and for each Xt, using

the S different starting values for volatility (i.e., V
θk,t,N,S,h
j , j = 1, ..., S). Thus, there are S paths rather

than one, for each starting value of Xt. For any initial value Xt and V
θk,t,N,S,h
j , t = R+1, ..., R+P − τ and

j = 1, ..., S, generate N independent paths of length τ. Also, keep the simulated randomness (i.e., 1,qh, 2,qh,R (q+1)h
qh

³R s
qh
dW1,τ

´
dW2,s) constant across the different starting values for the unobservable and observable

state variables. Now, define X
θk,t,N,S,h
k,t+τ,i,j (Xt, V

θk,t,N,S,h
j ) to be the τ−step ahead value for the return series

simulated (under model k), at replication i, i = 1, ..., N, using initial values Xt and V
θk,t,N,S,h
j .

Step 2: Construct an estimator of F
X
θ
†
k
k,t+τ

(Xt)

(u2)− F
X
θ
†
k
k,t+τ

(Xt)

(u1) using

5



1
NS

PS
j=1

PN
i=1 1

n
u1 ≤ X

θk,t,N,S,h
k,t+τ,i,j (Xt, V

θk,t,N,S,h
k,t,j ) ≤ u2

o
, where V

θk,t,N,S,h
k,t,j denotes the value of volatility at

time t and at simulation j, simulated under model k, using parameters bθk,t,N,S,h.
The asymptotic results in the sequel require the following assumptions.

Assumption A1: (i) X(t), t ∈ <+, is a strictly stationary, geometric ergodic β−mixing diffusion; and (ii)R
Y
ypφk(y)dy <∞ for some p > 2.

Assumption A2: For k = 1, ...,m, bk(·, θ†) and σk(·, θ†), as defined in (1), are twice continuously differ-
entiable. Also, bk(·, ·), bk(·, ·)0, σk(·, ·), and σk(·, ·)0 are Lipschitz, with Lipschitz constant independent of θk,
where bk(·, ·)0 and σk(·, ·)0 denote derivatives with respect to the first argument of the function.
Assumption A2’: Let bk(·) and σk(·) (as defined in (4)) and σll0,k(V, θk)

∂σkι(V,θk)
∂V be twice continuously

differentiable, Lipschitz, with Lipschitz constant independent of θk, and assume that these terms grow at

most at a linear rate, uniformly in Θk, for l, l
0, j, ι = 1, 2 and k = 1, ...,m.

Assumption A3: For k = 1, ...,m: (i) for any fixed h and ϑk ∈ Θk, Θk compact set in Rdk , Xϑk
qh is

geometrically ergodic and strictly stationary; (ii) Xϑk
k,t+τ,i is continuously differentiable in the interior of Θk,

for i = 1, ..., N ; and (iii) ∇θkX
ϑk
k,t+τ,i is r−dominated in Θk, uniformly in i for r > 4.

Assumption A4: For each model k = 1, ...,m the parameters bϑk,t,N,h admit the following expansion:
1√
P

T−1X
t=R

³bϑk,t,N,h − ϑ†k
´
= A†k

1√
P

T−1X
t=R

ψk,t,N,h

³
ϑ†k
´
+ op(1)

and as P,R,N →∞ and h→ 0,

1√
P

T−1X
t=R

ψk,t,N,h

³
ϑ†k
´

d→ N
³
0, V †

k

´
,

where V †
k = limT,R,N,h−1→∞ V ar

³
1√
P

PT−1
t=R ψk,t,N,h

³
ϑ†k
´´

.

Assumption A4’: For each model k = 1, ...,m the parameters bϑk,t,N,S,h admit the following expansion:
1√
P

T−1X
t=R

³bϑk,t,N,S,h − ϑ†k
´
= A†k

1√
P

T−1X
t=R

ψk,t,N,S,h

³
ϑ†k
´
+ op(1)

and as P,R,N →∞ and h→ 0,

1√
P

T−1X
t=R

ψk,t,N,S,h

³
ϑ†k
´

d→ N
³
0, V †

k

´
,

where V †
k = limT,R,N,S,h−1→∞ V ar

³
1√
P

PT−1
t=R ψk,t,N,S,h

³
ϑ†k
´´

.

Assumption A1(i) requires the diffusion, X(t), to be geometrically ergodic and β−mixing. In the case
of no jumps, conditions for (geometric) β−mixing for (multivariate) diffusions that can be relatively easily
verified are provided by Meyn and Tweedie (1993). Such conditions also suffice for the case of jump diffusions,

when both the intensity parameters and the jump sizes are independent of the state of the system. Recently,

Masuda (2004) has extended the conditions for β−mixing to the case of jump diffusions in which the intensity
parameter is constant, but the size of the jumps is state dependent.

Assumptions A4 and A4’ require that the contribution of (recursive) parameter estimation error is√
P−consistent and asymptotically normal, regardless of whether or not the underlying model is misspeci-

fied. As outlined in detail in Section 4, a key point here is that E
³
ψk,t,N,h

³
θ†k
´´

and E
³
ψk,t,N,S,h

³
θ†k
´´

6



are o
¡
P−1/2

¢
, regardless of whether or not the model is misspecified. We shall show that NPSQMLE and

exactly identified SGMM satisfy this requirement. Needless to say, in some cases the transition density is

known in closed form and can be used to obtain QML estimators. For example, if the drift and variance terms

as well as the intensity of the jump process have affine structures, then there is no need to rely on simulation

methods and parameters can be estimated via use of the conditional empirical characteristic function (see,

for example, Singleton (2001)).

3 Test Statistics

3.1 One Factor Models

First, consider comparing the predictive accuracy of two possibly misspecified diffusion models. The hy-

potheses of interest are:

H0 : EX

ÃÃ
F
X
ϑ
†
1

1,t+τ (Xt)
(u2)− F

X
ϑ
†
1

1,t+τ (Xt)
(u1)

!
− (F τ

0 (u2|Xt)− F τ
0 (u1|Xt))

!2

−EX

ÃÃ
F
X
ϑ
†
k

k,t+τ
(Xt)

(u2)− F
X
ϑ
†
k

k,t+τ (Xt)
(u1)

!
− (F τ

0 (u2|Xt)− F τ
0 (u1|Xt))

!2
= 0

HA : negation of H0

Notice that the hypotheses are stated using a particular interval (i.e., (u1, u2) ∈ UxU)) so that the objective

is evaluation of predictive densities for a given range of values. The test statistic is:

Dk,P,N (u1, u2)

=
1√
P

T−τX
t=R

⎛⎝" 1
N

NX
i=1

1
n
u1 ≤ X

ϑ1,t,N,h
1,t+τ,i (Xt) ≤ u2

o
−1{u1 ≤ Xt+τ ≤ u2}

#2

−
"
1

N

NX
i=1

1
n
u1 ≤ X

ϑk,t,N,h
k,t+τ,i (Xt) ≤ u2

o
−1{u1 ≤ Xt+τ ≤ u2}

#2⎞⎠ .

Theorem 1: Let Assumptions A1-A4 hold. Also, assume that models 1 and k are nonnested. If as

P,R,N → ∞, h → 0, P/N → 0, h2P → 0, and P/R → π, where 0 < π < ∞, then: (i) Under

H0, Dk,P,N (u1, u2)
d→ N(0,Wk(u1, u2)), where Wk(u1, u2) is defined in the Appendix. (ii) Under HA,

Pr
³

1√
P
|Dk,P,N (u1, u2)| > ε

´
→ 0.

Note that Wk(u1, u2) reflects the contribution of recursive parameter estimation error. The intuitive

argument underlying the proof to Theorem 1 is the following. Note that:

1

N

NX
i=1

1
n
X

ϑk,t,N,h
k,t+τ,i (Xt) ≤ u

o
=
1

N

NX
i=1

1

½
X

ϑ†k
k,t+τ,i(Xt) ≤ u

¾

+E

Ã
f
X
θ
†
k
k,t+τ,i(Xt)

(u)∇θkX
ϑ†k
k,t+τ,i(Xt)

!
1√
P

TX
t=R

³bϑk,t,N,h − ϑ†
´
+ oP (1)
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= F
X
ϑ
†
k

k,t+τ
(Xt)

(u) +E

Ã
f
X
ϑ
†
k

k,t+τ,i(Xt)
(u)∇θkX

ϑ†k
k,t+τ,i(Xt)

!
1√
P

TX
t=R

³bϑk,t,N,h − ϑ†
´
+ oP (1) + oN (1),

where oN (1) denotes terms approaching zero, as N →∞. The statement follows by the same argument used

in the case in which the closed form of the conditional distribution is known. Note that as N/P → ∞, we

can neglect the contribution of simulation error in the asymptotic covariance matrix. Finally, it is easy to

see that if P/R→ π = 0, then the contribution of parameter estimation error vanishes.

In some circumstances, one may be interested in comparing one (benchmark) model against multiple

competing models. In this case, the null hypothesis is that no model can outperform the benchmark model.2

More specifically, the hypotheses of interest are:

H 0
0 : max

k=2,...,m

⎛⎝EX

ÃÃ
F
X
ϑ
†
1

1,t+τ (Xt)
(u2)− F

X
ϑ
†
1

1,t+τ (Xt)
(u1)

!
− (F0(u2|Xt)− F0(u1|Xt))

!2

−EX

ÃÃ
F
X
ϑ
†
k

k,t+τ
(Xt)

(u2)− F
X
ϑ
†
k

k,t+τ (Xt)
(u1)

!
− (F0(u2|Xt)− F0(u1|Xt))

!2⎞⎠ ≤ 0
H 0
A : negation of H

0
0

The statistic for testing these hypotheses is:

DMax
k,P,N (u1, u2) = max

k=2,...,m
Dk,P,N (u1, u2).

Corollary 1: Let Assumptions A1-A4 hold. Also, assume that models 1 and k are nonnested for at least

one k = 2, ...,m. If as P,R,N →∞, h→ 0, P/N → 0, h2P → 0, and P/R→ π, where 0 < π <∞, then:

max
k=2,..,m

(Dk,P,N (u1, u2)− μk(u1, u2))
d→ max

k=2,...,m
Zk(u1, u2),

where, with an abuse of notation, μk(u1, u2) = μ1(u1, u2)− μk(u1, u2), and

μj(u1, u2) = E

⎛⎝ÃÃF
X
ϑ
†
j

j,t+τ (Xt)
(u2)− F

X
ϑ
†
j

j,t+τ (Xt)
(u1)

!
− (F0(u2|Xt)− F0(u1|Xt))

!2⎞⎠ ,

for j = 1, ...,m, and where (Z1(u1, u2), ..., Zm(u1, u2)) is an m−dimensional Gaussian random variable for

which the associated covariance matrix has kk element given by Wk(u1, u2), as in Theorem 1(i).

Critical values for these tests can be obtained using a recursive version of the block bootstrap. When

forming block bootstrap samples in the recursive case, observations at the beginning of the sample are used

more frequently than observations at the end of the sample. This introduces a location bias to the usual

block bootstrap, as under standard resampling with replacement, all blocks from the original sample have

the same probability of being selected. Also, the bias term varies across samples and can be either positive

or negative, depending on the specific sample. A first-order valid bootstrap procedure for non simulation

2See White (2000) for a discussion of a discrete time series analog to this case, whereby point rather than density-based loss

is considered; Corradi and Swanson (2007a) for an extension of White (2000) that allows for parameter estimation error; and

Corradi and Swanson (2006a) for an extension of Corradi and Swanson (2007a) that allows for the comparison of conditional

distributions and densities in a discrete time series context.
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based m−estimators constructed using a recursive estimation scheme is outlined in Corradi and Swanson
(2007a). Here we extend the results of Corradi and Swanson (2007a) by establishing asymptotic results for

cases in which simulation-based estimators are bootstrapped in a recursive setting.

In order to carry out the bootstrap, begin by resampling b blocks of length l from the full sample,

with lb = T. For any given τ, it is necessary to jointly resample Xt,Xt+1, ...,Xt+τ . More precisely, let

Zt,τ = (Xt,Xt+1, ...,Xt+τ ), t = 1, ..., T − τ. Now, resample b overlapping blocks of length l from Zt,τ . This

yields Zt,∗ = (X∗t ,X∗t+1, ...,X∗t+τ ), t = 1, ..., T − τ. Use these data to construct bϑ∗k,t,N,h. Recall that N is the

number of simulated series used to estimate the parameters. Note that as we shall assume N/R,N/P →∞,

simulation error vanishes and there is no need to resample the simulated series. Proceed by assuming that

first-order asymptotic validity of the bootstrap estimator can be established, as outlined in the following

assumption (in Section 4 we shall provide primitive conditions under which NPSQMLE and SGMM satisfy

this assumption).

Assumption A5: As P,R,N →∞ and h→ 0, for k = 1, ...,m:

P

Ã
ω : sup

v∈<

¯̄̄̄
¯P ∗T

Ã
1√
P

TX
t=R

³bϑ∗k,t,N,h − bϑk,t,N,h´ ≤ v

!
− P

Ã
1√
P

TX
t=R

³bϑk,t,N,h − ϑ†k
´
≤ v

!¯̄̄̄
¯ > ε

!
→ 0.

It can be seen immediately that A5 ensures that 1√
P

PT
t=R

³bϑ∗k,t,N,h − bϑk,t,N,h´ has the same limiting
distribution as 1√

P

PT
t=R

³bϑk,t,N,h − ϑ†k
´
, conditional on sample, and for all samples except a set with

probability measure approaching zero. Given this assumption, the appropriate bootstrap statistic is:

D∗k,P,N (u1, u2)

=
1√
P

T−τX
t=R

⎧⎨⎩
⎛⎝" 1

N

NX
i=1

1

½
u1 ≤ X

ϑ∗1,t,N,h
1,t+τ,i (X

∗
t ) ≤ u2

¾
− 1{u1 ≤ X∗t+τ ≤ u2}

#2

−
⎛⎝ 1
T

TX
j=1

"
1

N

NX
i=1

1
n
u1 ≤ X

ϑ1,t,N,h
1,t+τ,i (Xj) ≤ u2

o
− 1{u1 ≤ Xj+τ ≤ u2}

#2⎞⎠⎞⎠
−
⎛⎝" 1

N

NX
i=1

1

½
u1 ≤ X

ϑ∗k,t,N,h
k,t+τ,i (X

∗
t ) ≤ u2

¾
− 1{u1 ≤ X∗t+τ ≤ u2}

#2

−
⎛⎝ 1
T

TX
j=1

"
1

N

NX
i=1

1
n
u1 ≤ X

ϑk,t,N,h
k,t+τ,i (Xj) ≤ u2

o
− 1{u1 ≤ Xj+τ ≤ u2}

#2⎞⎠⎞⎠⎫⎬⎭ .

Note that each bootstrap term is recentered around the (full) sample mean. This is necessary because the

bootstrap statistic is constructed using the last P resampled observations, which in turn have been resampled

from the full sample. In particular, this is necessary regardless of the ratio, P/R. Thus, even if P/R→ 0, so

that there is no need to mimic parameter estimation error (and hence the above statistic can be constructed

using bϑk,t,N,h instead of bϑ∗k,t,N,h), it remains the case that recentering of all bootstrap terms around the
(full) sample mean is necessary.

Theorem 2: Let Assumptions A1-A5 hold. Also, assume that models 1 and k are nonnested. If as P,R,N →
∞, h→ 0, P/N → 0, h2P → 0, l→∞, l/T 1/4 → 0, and P/R→ π, where 0 < π <∞, then:

P

µ
ω : sup

v∈<

¯̄
P ∗T
¡
D∗k,P,N (u1, u2) ≤ v

¢− P (Dk,P,N (u1, u2)− μk(u1, u2) ≤ v)
¯̄
> ε

¶
→ 0.
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Corollary 2: Let Assumptions A1-A5 hold. Also, assume that at least one model is nonnested with model

1. If as P,R,N →∞, h → 0, P/N → 0, h2P → 0, l →∞, l/T 1/4 → 0, and P/R → π, where 0 < π < ∞,

then:

P

µ
ω : sup

v∈<

¯̄̄̄
P ∗T

µ
max

k=2,...,m
D∗k,P,N (u1, u2) ≤ v

¶
− P

µ
max

k=2,...,m
(Dk,P,N (u1, u2)− μk(u1, u2)) ≤ v

¶¯̄̄̄
> ε

¶
→ 0.

→ 0.

The above results suggest proceeding in the following manner. For any bootstrap replication, compute

the bootstrap statistic (i.e. D∗k,P,N (u1, u2) or maxk=2,...,mD∗k,P,N (u1, u2)). Perform B bootstrap replications

(B large) and compute the percentiles of the empirical distribution of the B bootstrap statistics. Reject H0,

if Dk,P,N (u1, u2) is less than the α/2th-percentile or greater than the (1−α/2)th-percentile of the bootstrap
empirical distribution. This provides a test with asymptotic size α and unit asymptotic power. Furthermore,

reject H 0
0 if maxk=2,...,mDk,P,N (u1, u2)) is greater than the (1 − α)th-percentile of the bootstrap empirical

distribution. Whenever μ1(u1, u2) = μk(u1, u2), for k = 2, ...,m (i.e., when all competitors are as good as

the benchmark), then the asymptotic size is α. However, whenever μk(u1, u2) > μ1(u1, u2) for some k, the

bootstrap critical values define upper bounds, and inference drawn on them is conservative.

3.2 Stochastic Volatility Models

The test statistic for comparing two models is:

DVk,P,S,N (u1, u2)

=
1√
P

T−τX
t=R

⎛⎜⎝
⎛⎝ 1

NS

SX
j=1

NX
i=1

1
n
u1 ≤ X

θ1,t,N,S,h
1,t+τ,i,j (Xt, V

θ1,t,N,S,h
1,j ) ≤ u2

o
−1{u1 ≤ Xt+τ ≤ u2}

⎞⎠2

−
⎛⎝ 1

NS

SX
j=1

NX
i=1

1
n
u1 ≤ X

θk,t,N,S,h
k,t+τ,i,j (Xt, V

θk,t,N,S,h
k,j ) ≤ u2

o
−1{u1 ≤ Xt+τ ≤ u2}

⎞⎠2
⎞⎟⎠ ,

and the bootstrap test statistic is:

DV ∗k,P,S,N(u1, u2)

=
1√
P

T−τX
t=R

⎧⎪⎨⎪⎩
⎛⎜⎝
⎡⎣ 1

NS

SX
j=1

NX
i=1

1

½
u1 ≤ X

θ∗1,t,N,S,h
1,t+τ,i,j (X

∗
t , V

θ∗1,t,N,S,h
1,j ) ≤ u2

¾
− 1{u1 ≤ X∗t+τ ≤ u2}

⎤⎦2

−

⎛⎜⎝ 1
T

TX
l=1

⎡⎣ 1

NS

SX
j=1

NX
i=1

1
n
u1 ≤ X

θ1,t,N,S,h
1,t+τ,i,j (Xl, V

θ1,t,N,S,h
1,j ) ≤ u2

o
− 1{u1 ≤ Xl+τ ≤ u2}

⎤⎦2
⎞⎟⎠
⎞⎟⎠

−

⎛⎜⎝
⎡⎣ 1

NS

SX
j=1

NX
i=1

1

½
u1 ≤ X

θ∗k,t,N,S,h
k,t+τ,i,j (X

∗
t , V

θ∗k,t,N,S,h
k,j ) ≤ u2

¾
− 1{u1 ≤ X∗t+τ ≤ u2}

⎤⎦2

−

⎛⎜⎝ 1
T

TX
l=1

⎡⎣ 1

NS

SX
j=1

NX
i=1

1
n
u1 ≤ X

θk,t,N,S,h
k,t+τ,i,j (Xl, V

θk,t,N,S,h
k,j ) ≤ u2

o
− 1{u1 ≤ Xl+τ ≤ u2}

⎤⎦2
⎞⎟⎠
⎞⎟⎠
⎫⎪⎬⎪⎭ .
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Note that we do not need to resample the volatility process, although volatility is simulated under bothbθm,t,N,S,h and bθ∗m,t,N,S,h m = 1, ..., k.

Also, maxk=2,...,mDVk,P,N (u1, u2) and maxk=2,...,mDV ∗k,P,N (u1, u2) are defined analogous to their one-factor
counterparts.

Assumption A5’: As P,R,N, S →∞ and h→ 0, for k = 1, ...,m:

P

Ã
ω : sup

v∈<

¯̄̄̄
¯P ∗T

Ã
1√
P

TX
t=R

³bϑ∗k,t,N,S,h − bϑk,t,N,S,h´ ≤ v

!
− P

Ã
1√
P

TX
t=R

³bϑk,t,N,S,h − ϑ†k
´
≤ v

!¯̄̄̄
¯ > ε

!
→ 0.

Theorem 3: Let Assumptions A1, A2’, A3, and A4’ hold. Also, assume that models 1 and k are nonnested.

If as P,R, S,N → ∞, h → 0, P/N → 0, P/S → 0, h2P → 0, and P/R → π, where 0 < π < ∞, then: (i)

under H0, DVk,P,N,S(u1, u2)
d→ N(0,fWk(u1, u2)), where fWk(u1, u2) has the same format as Wk(u1, u2) in

the statement of Theorem 1(i). Also,

max
k=2,..,m

(DVk,P,N,S(u1, u2)− μ(u1, u2))
d→ max

k=2,...,m
Zk(u1, u2),

where μ(u1, u2) and Zk(u1, u2) are defined as in the statement of Theorem 2; and (ii) under HA, for k =

2, ...,m, Pr
³

1√
P
|DVk,P,N,S(u1, u2)| > ε

´
→ 1.

Theorem 4: Let Assumptions A1, A2’, A3, and A4’-A5’ hold. Also, assume that models 1 and k are

nonnested. If as P,R, S,N →∞, h→ 0, P/N → 0, P/S → 0, h2P → 0, l→∞, l/T 1/4 → 0, and P/R→ π,

where 0 < π <∞, then:

P

µ
ω : sup

v∈<

¯̄
P ∗T
¡
DV ∗k,P,N,S(u1, u2) ≤ v

¢− P (DVk,P,N,S(u1, u2)− μk(u1, u2) ≤ v)
¯̄
> ε

¶
→ 0,

and

P

µ
ω : sup

v∈<

¯̄̄̄
P ∗T

µ
max

k=2,...,m
DV ∗k,P,N,S(u1, u2) ≤ v

¶
− P

µ
max

k=2,...,m
(DVk,P,N,S(u1, u2)− μ(u1, u2)) ≤ v

¶¯̄̄̄
> ε

¶
→ 0,

where μk(u1, u2) is defined as in the statement of Corollary 1.

4 Recursive Nonparametric Simulated Quasi Maximum Likeli-

hood Estimators

In this chapter we develop a recursive version of the nonparametric simulated (quasi) maximum likelihood

(NPSQML) estimator of Fermanian and Salanié (2004) and outline conditions under which asymptotic

equivalence between the NPSQML estimator and the corresponding recursive QML estimator obtains, hence

ensuring that A4 and A4’ hold. Analogous results are also established for the bootstrap counterpart of the

recursive NPSQML estimators.

A previous version of this paper contains results analogous to those reported in this section for the case

of exactly identified simulated generalized methods of estimators of Duffie and Singleton (1993).3

3see http://econweb.rutgers.edu/nswanson/papers.htm

We conjecture that one could establish the asymptotic properties of recursive versions and bootstrap analogs for all other

simulation-based estimators, such as indirect inference (Gourieroux, Monfort, and Renault (1993), Dridi, Guay, and Renault

(2007)), efficient method of moment (Gallant and Tauchen (1996)) and simulated GMM with a continuum of moment conditions

(Carrasco, Chernov, Florens, and Ghysels (2007)). We leave this to future research.
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4.1 One Factor Models

The idea underlying the nonparametric simulated maximum likelihood estimator of Fermanian and Salanié

(2004) is to replace the unknown conditional density with a kernel estimator, constructed using simulated

data. Fermanian and Salanié (2004) focus on the case of exogenous conditioning variables, while Kristensen

and Shin (2008) consider extensions to (fully observed) Markov models. In the sequel, we extend the

estimator of Fermanian and Salanié (2004) and Kristensen and Shin (2008) to the recursive estimation case.

In a subsequent section, we outline a bootstrap version of the estimator and establish first-order validity

thereof.

Hereafter, let fk

³
Xt|Xt−1, ϑ

†
k

´
be the conditional density implied by model k. If we knew fk in closed

form, we could just estimate ϑ†t,k recursively, using standard QML as:
4

bϑt,k = arg max
ϑk∈Θk

1

t

tX
j=2

ln fk (Xt|Xt−1, ϑk) , t = R, ..., R+ P − 1.

Now, define:

ϑ†k = arg max
ϑk∈Θk

E (ln fk (Xt|Xt−1, ϑk)) . (7)

Following Kristensen and Shin (2008), generate T − 1 paths of length one for each simulation replication,
using X1, ...,XT−1 as starting values and hence construct Xϑ

k,t,j(Xt−1), for t = 2, ..., T −1, j = 1, ..., N. Note

that we keep the N random draws fixed across different initial values. Then, define the following estimator

of the conditional density:

bfk,N,h (Xt|Xt−1, ϑk) =
1

NξN

NX
i=1

K

Ã
Xϑk
t,i,h(Xt−1)−Xt

ξN

!
.

Further, define the recursive NPSQML estimator as follows:

bϑk,t,N,h = arg max
ϑk∈Θk

1

t

tX
s=2

ln bfk,N,h (Xs|Xs−1, ϑk) τN
³ bfk,N,h (Xs|Xs−1, ϑk)

´
, t ≥ R,

where the trimming function τN

³ bfk,N,h (Xt|Xt−1, ϑk)
´
is a positive and increasing function, such that

τN

³ bfk,N,h (Xt,Xt−1, ϑk)
´
= 0, if bfk,N,h (Xt,Xt−1, ϑk) < ξδN , and τN

³ bfk,N,h (Xt,Xt−1, ϑk)
´
= 1,

if bfk,N,h (Xt,Xt−1, ϑk) > 2ξδN , for some δ > 0.
5 The reason for the trimming parameter is that when the log

density is close to zero, the derivative tends to infinity and so even very tiny simulation errors have a large

impact on the likelihood. Our result in this subsection requires the following additional assumptions.

4Note that as model k is, in general, misspecified, T−1
t=1 fk (Xt|Xt−1, θk) is a quasi-likelihood and fk Xt|Xt−1, θ†k is not

necessarily a martingale difference sequence.
5As an example of a trimming function, Fermanian and Salanie (2004) suggest using:

τN (x) =
4(x− aN )

3

a3N
− 3(x− aN )4

a4N
,

for aN ≤ x ≤ 2aN .
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Assumption A3’: For k = 1, ...,m: (i)Xϑk
i (x) andX

ϑk
i,h(x) are geometrically ergodic and strictly stationary,

(ii)
∂X

ϑk
i (x)

∂ϑk
,
∂X

ϑk
i (x)

∂x ,
∂2X

ϑk
i (x)

∂ϑk∂ϑ0k
,
∂2X

ϑk
i (x)

∂ϑk∂x
and

∂X
ϑk
i,h(x)

∂ϑk
,
∂X

ϑk
i,h(x)

∂x ,
∂2X

ϑk
i,h(x)

∂ϑk∂ϑ0k
,
∂2X

ϑk
i,h(x)

∂ϑk∂x
are r−dominated on Θk

and on XT,a : {x : x ≤ T a) for r > 4 and a > 1.

Assumption 6: Let Nϑ†k
be a neighborhood of ϑ†k, E

µ
supϑk∈N

ϑ
†
k

°°°∂ ln fk(Xt|Xt−1,ϑk)
∂ϑk

°°°r¶ <∞,

E

µ
supϑk∈N

ϑ
†
k

°°°∂fk(Xt|Xt−1,ϑk)
∂ϑk

°°°r¶ <∞, E

µ
supϑk∈N

ϑ
†
k

°°°°∂Xϑk
i (Xt−1)
∂ϑk

°°°°r¶ <∞, E

µ
supϑk∈N

ϑ
†
k

°°°°∂Xϑk
i,h(Xt−1)
∂ϑk

°°°°r¶ <

∞, for k = 1, ...,m and for r > 4.

Assumption 7: For k = 1, ...,m : (i) ϑ†k is uniquely identified (i.e. E(ln fk (Xt|Xt−1, ϑk)) < E(ln fk

³
Xt|Xt−1, ϑ

†
k

´
)

for any ϑk 6= ϑ†k); (ii) bϑk,t,N,h and ϑ†k are in the interior of Θk, (iii) fk (x|x−1, ϑk) is s + 1−continuously
differentiable on the interior of Θk, fk (x|x−1, ϑk) , ∇s

xfk (x|x−1, ϑk) , ∇s
x∇ϑkfk (x|x−1, ϑk) are bounded on

R×R×Θk, for s ≥ 2; (iii) the elements of∇ϑkfk (Xt|Xt−1, ϑk),∇2ϑkfk (Xt|Xt−1, ϑk) ,∇ϑk ln fk (Xt|Xt−1, ϑk)
and ∇ϑk ln fk (Xt|Xt−1, ϑk) are r−dominated on Θk, with r > 4; and (iv) E

¡−∇2θ ln fk(ϑk)¢ is positive def-
inite, uniformly on Θk.

Assumption 8: The kernel, K, is a symmetric, nonnegative, continuous function with bounded support

[−∆,∆], s-time differentiable on the interior of its support and satisfies: R K(u)du = 1, R us−1(u)du = 0,
s ≥ 2. Let K(j) be the j − th derivative of the kernel. Then, K(j)(−∆) = K(j)(∆) = 0, for j = 1, . . . , s,

s ≥ 2.
Theorem 5: Let Assumptions A1-A2, A3’, and A6-A8 hold. Let T = R+ P, P/R→ π, where 0 < π <∞
and let N = T a a > 1. If as T, P,N → ∞, (a) T

r
2(r−1) ξδN |ln ξN |

r+1
2r−1 → 0, (b) T 1/2ξs−δN |ln ξN | → 0, (c)

T (1−a)ξ−4−2δN (ln ξ2N) lnT
a → 0, (d) T 1/2ξ

−(δ+3)
N h

¯̄
ln ξδN

¯̄→ 0. Then, for k = 1, ...,m: (i) supt≥R
³bϑk,t,N,h − ϑ†k

´
p→

0 and (ii) 1√
P

PT
t=R

³bϑk,t,N,h − ϑ†k
´

d→ N(0, 2ΠA†kV
†
kA

†
k),where A†k = E

³
−∇θkfk

³
Xt|Xt−1, ϑ

†
k

´´
, V †

k =P∞
i=−∞E

µ
∇θkfk

³
X2|X1, ϑ

†
k

´
∇θkfk

³
X2+i|X1+i, ϑ

†
k

´0¶
and Π = 1− π−1 ln(1 + π).

As 0 < π <∞, P grows at the same rate as T, for sake of simplicity, we have stated the rate conditions

(a)-(d) in terms of T, instead of a combination of T and P. Note that if we simulate the process using

the Euler scheme, instead of the Milstein scheme, the rate condition in (d) should be strengthened to

T 1/2ξ
−(d+3)
N h1/2 |ln ξN |→ 0.

From Theorem 5 is can be seen immediately that the NPSQML estimator satisfies Assumption 4 and

is asymptotically equivalent to the unfeasible QML estimator, which is constructed by maximizing the

likelihood of model k. An interesting alternative nonparametric simulated maximum likelihood estimator

has recently been suggested by Altissimo and Mele (2005). Their estimator is based on the minimization of

a properly weighted distance between kernel conditional density estimators based on historical and simulated

data. For fully observable systems, it is asymptotically equivalent to the maximum likelihood estimator.

Under the rate conditions in Theorem 5, the contribution of simulation error is asymptotically negligible,

and thus there is no need to resample the simulated observations. In particular, let Zt,∗ = (X∗t ,X
∗
t+1, ...,X

∗
t+τ ),

t = 1, ..., T − τ be as outlined in Section 3. For each simulation replication, generate T − 1 paths of length
one, using as starting values X∗1 , ...,X∗T−1, and so obtaining Xϑk

k,t,j(X
∗
t−1), for t = 2, ..., T − 1, j = 1, ..., N.

Further, let: bf∗k,N,h ¡X∗t |X∗t−1, ϑk¢ = 1

NξN

NX
j=1

K

Ã
Xϑk
t,j,h(X

∗
t−1)−X∗t
ξN

!
,
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Now, for t = R, ..., R+ P − 1, define:

bϑ∗k,t,N,h = arg max
ϑk∈Θk

1

t

tX
l=2

³
ln bfk,N,h ¡X∗l |X∗l−1, ϑk¢ τN ³ bfk,N,h ¡X∗l |X∗l−1, ϑk¢´

−ϑ0k
Ã
1

T

TX
l0=2

∇ϑkfk,N,h
(Xl0 |Xl0−1, ϑk)bfk,N,h (Xs0 |Xt−s0 , ϑk)

¯̄̄
ϑk=ϑk,t,N,h

τN

³ bfk,N,h ³Xl0 |Xl0−1, bϑk,t,N,h´´
+τ 0N

³ bfk,N,h ³Xl0 |Xl0−1, bϑk,t,N,h´´∇ϑk
bfk,N,h (Xl0 |Xl0−1, ϑk)

¯̄̄
ϑk,t,N,h

ln bfk,N,h ³Xl0 |Xl0−1, bϑk,t,N,h´´´ ,
where τ 0N (·) denotes the derivative of τN (·) with respect to its argument. Note that each term in the

simulated likelihood is recentered around the (full) sample mean of the score, evaluated at bϑk,t,N,h. This
ensures that the bootstrap score has mean zero, conditional on the sample. The recentering term requires

computation of ∇θk
bfk,N,h ³Xl0 |Xl0−1, bϑk,t,N,h´ , which is not known in closed form. Nevertheless, it can be

computed numerically, by simply taking the numerical derivative of the simulated likelihood.

Theorem 6: Let Assumptions A1-A2, A3’, and A6-A8 hold. Let T = R+ P, P/R→ π, where 0 < π <∞
and letN = T a a > 1. If as T,N, l→∞, l/T 1/4 → 0, (a) T

r
2(r−1) ξδN |ln ξN |

r+1
2r−1 → 0, (b) T 1/2ξs−δN |ln ξN |→ 0,

(c) T (1−a)ξ−4−2δN (ln ξ2N ) lnT
a → 0, (d) T 1/2ξ

−(δ+3)
N h

¯̄
ln ξδN

¯̄→ 0. Then, for k = 1, ...,m:

P

Ã
ω : sup

v∈<

¯̄̄̄
¯P ∗T

Ã
1√
P

TX
t=R

³bϑ∗k,t,N,h − bϑk,t,N,h´ ≤ v

!
− P

Ã
1√
P

TX
t=R

³bϑk,t,N,h − ϑ†k
´
≤ v

!¯̄̄̄
¯ > ε

!
→ 0,

where P ∗T denotes the probability law of the resampled series, conditional on the (entire) sample.
Thus, 1√

P

PT
t=R

³bϑ∗k,t,N,h − bϑk,t,N,h´ has the same limiting distribution as 1√
P

PT
t=R

³bϑk,t,N,h − ϑ†k
´
,

conditional on sample, and for all samples except a set with probability measure approaching zero, and A5

is satisfied by bootstrap NPSQML estimator.

4.2 Stochastic Volatility Models

Since volatility is not observable, we cannot proceed as in the single factor case when estimating the SV model

using NPSQML estimator. Instead, let V θk
s be generated according to (4), setting qh = s, q = 1, ..., 1/h, and

s = 1, ..., S. For each model k = 1, ..m, and at each simulation replication, i = 1, ..., N, generate S paths of

length one, using Xt−1 as the starting value for the observable, and using S different starting values for the

unobservable volatility (i.e., V θk
s , s = 1, ..., S). Thus, for any t = 1, ..., T − 1, and for any set i, i = 1, ...,N

of random errors 1,t+(q+1)h,i and 2,t+(q+1)h,i, q = 1, ..., 1/h, generate S different values for the observable

at time t+ 1, each of them corresponding to a different starting value for the unobservable. Note that it is

important to use the same set of random errors 1,t+(q+1)h,i and 2,t+(q+1)h,i across different initial values

for volatility. Using (5) and (6), generate Xθk
t,i (Xt, V

θk
s ) for t = 2, ..., T, i = 1, ..., N and s = 1, ..., S. Now,

define: bfk,N,S,h (Xt|Xt−1, θk) =
1

S

SX
s=1

1

NξN

NX
i=1

K

Ã
Xθk
t,i,h(Xt−1, V θk

s )−Xt

ξN

!
,

and note that by averaging over the initial values for the unobservable volatility, its effect is integrated out.

Finally, define:

bθk,t,N,S,h = arg min
θk∈Θk

1

t

tX
l=2

ln bfk,N,S,h (Xl|Xl−1, θk) τN
³ bfk,N,S,h (Xl|Xl−1, θk)

´
, t ≥ R.
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Before establishing the asymptotic properties of bθk,t,N,S,h, we need another assumption:
Assumption 9: Let Nϑ†k

be a neighborhood of ϑ†k, E
µ
supϑk∈N

ϑ
†
k

°°°°∂Xϑk
i (Xt−1,V

ϑk
j )

∂ϑk

°°°°r¶ <∞,

E

µ
supϑk∈N

ϑ
†
k

°°°°∂Xϑk
i,h(Xt−1,V

ϑk
j )

∂ϑk

°°°°r¶ <∞, for k = 1, ...,m and for r > 4.

Theorem 7: Let Assumptions A1,A2’-A3’, and A6-A9 hold. Let T = R+ P, P/R→ π, where 0 < π <∞.

Let N = P a, for ε > 0 arbitrarily small, h1−εN → 0, a > 1. If as T,N → ∞, (a) T
r

2(r−1) ξδN |ln ξN |
r+1
2r−1 →

0, (b) T 1/2ξs−δN |ln ξN | → 0, (c) T (1−a)ξ−4−2δN (ln ξ2N ) lnT
a → 0, (d) T 1/2(1−a)ξ−(δ+3)N h

¯̄
ln ξδN

¯̄ → 0, (e)

T 1/2S−1/2ξ−(1+3δ)N → 0. Then for k = 1, ...,m :

(i) supt≥R
³bθk,t,N,S,h − θ†k

´
p→ 0 and (ii) 1√

P

PT
t=R

³bθk,t,N,S,h − θ†k
´

d→ N(0, 2ΠA†kV
†
kA

†
k), where A†k =

E
³
−∇θkfk

³
Xt|Xt−1, θ

†
k

´´
, V †

k =
P∞

i=−∞E

µ
∇θkfk

³
X2|X1, θ

†
k

´
∇θkfk

³
X2+i|X1+i, θ

†
k

´0¶
, and Π = 1 −

π−1 ln(1 + π).

Note that in this case, Xt is no longer Markov (i.e., Xt and Vt are jointly Markovian, but Xt is not).

Therefore, even in the case in which model k is the true data generating process, the joint likelihood cannot

be expressed as the product of the conditional and marginal distributions. Thus, bθk,t,N,S,h is necessarily a
QML estimator. Furthermore, note that ∇θkf(Xt|Xt−1, θ

†
k) is no longer a martingale difference sequence;

therefore, we need to use HAC robust covariance matrix estimators, regardless of whether k is the “correct”

model or not.

Note that for the bootstrap counterpart of bθk,t,N,S,h, since S/T →∞ and N/T →∞, the contribution of

simulation error is asymptotically negligible. Hence, there is no need to resample the simulated observations

or the simulated initial values for volatility. Define:

bfk,N,S,h ¡X∗t |X∗t−1, θk¢ = 1

S

SX
s=1

1

Nξ

NX
i=1

K

Ã
Xθk
t,i (X

∗
t−1, V

θk
s0−1)−X∗t

ξ

!
.

Now, for t = R, ..., R+ P − 1, define:
bθ∗k,t,N,S,h

= arg max
θk∈Θk

1

t

tX
l=2

³
log bfk,N,S,h ¡X∗l |X∗l−1, θk¢ τN ³ bfk,N,S,h ¡X∗l |X∗l−1, θk¢´

−θ0k
Ã
1

T

TX
l0=2

∇θk
bfk,N,S,h (Xl0 |Xl0−1, θk)bfk,N,h ¡X∗s0 |X∗t−s0 , θk¢

¯̄̄
θk,t,N,h

τN

³ bfk,N,S,h ³Xl0 |Xl0−1, bθk,t,N,S,h´´
+τ 0N

³ bfk,N,Sh ³Xl0 |Xl0−1, bθk,t,N,S,h´´∇ϑk
bfk,N,S,h (Xl0 |Xl0−1, θk)

¯̄̄
θk,t,N,h

ln bfk,N,S,h ³Xl0 |Xl0−1, bθk,t,N,h´´´ ,
where τ 0N (·) denotes the derivative with respect to its argument. We have:
Theorem 8: Let Assumptions A1,A2’-A3’, and A6-A9 hold. Let T = R+ P, P/R→ π, where 0 < π <∞
and letN = T a a > 1. If as T,N, l→∞, l/T 1/4 → 0, (a) T

r
2(r−1) ξδN |ln ξN |

r+1
2r−1 → 0, (b) T 1/2ξs−δN |ln ξN |→ 0,

(c) T (1−a)ξ−4−2δN (ln ξ2N ) lnT
a → 0, (d) T 1/2ξ

−(δ+3)
N h

¯̄
ln ξδN

¯̄ → 0, (e) T 1/2S−1/2ξ−(1+3δ)N → 0. Then, for

k = 1, ...,m:

P

Ã
ω : sup

v∈<

¯̄̄̄
¯P ∗T

Ã
1√
P

TX
t=R

³bθ∗k,t,N,S,h − bθk,t,N,S,h´ ≤ v

!
− P

Ã
1√
P

TX
t=R

³bθk,t,N,S,h − ϑ†
´
≤ v

!¯̄̄̄
¯ > ε

!
→ 0,

where P ∗T denotes the probability law of the resampled series, conditional on the (entire) sample.
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5 Empirical Illustration: Choosing Between CIR, SV, and SVJ

Models

In this section, we choose between Cox-Ingersoll-Ross (CIR), stochastic volatility (SV ) and stochastic

volatility with jumps (SV J) models by comparing the models’ predictive performance across two different

sample periods. Our primary objective is to illustrate the implementation of our tests statistics and our

secondary objective is to assess whether the choice of model is impacted by the choice of sample period.

There are many precedents in the empirical literature suggesting that evaluation of subsample robustness is

an important issue when evaluating models. For example, see Bandi and Reno (2008), who compare their

semiparametric estimates of a jump diffusion for S&P500 returns to a less general affine model estimated

by Eraker, Johannes, and Polson (2003). In their analysis, the alternative models are rather similar, but

they use different sample periods and different variance filtering methods. In our example, we use the same

estimation method for different models across different estimation periods. In particular, we consider two

samples of weekly data, one from January 6, 1989 - December 31, 1998 (526 observations) and one from

January 8, 1999 - April 30, 2008 (491 observations), chosen arbitrarily. The variable that we model is the

effective (or market) federal funds rate (i.e., the interbank interest rate), measured at the close.

In our analysis, we use the three models implemented in Bhardwaj, Corradi, and Swanson (2008). Other

than considering similar models, our empirical illustration is quite different from theirs. Namely, they report

on in-sample Kolmogorov type consistent specification tests for individual models, while we report the model

selection type test statistics and related forecast error measures discussed in this paper. More specifically, we

jointly compare the out-of-sample predictive accuracy of various models using recursively estimated models

and recursively constructed predictive densities. The three models that we examine are:

CIR: dX(t) = κ1 (α1 −X(t)) dt+ γ1
p
X(t)dW1(t), where κ1 > 0, γ1 > 0 and 2κ1α1 ≥ γ21 ,

SV: dX(t) = κ2 (α2 −X(t)) dt+
p
V (t)dW1(t), and dV (t) = κ3 (α3 − V (t)) dt+ γ2

p
V (t)dW2 (t) , where

W1 (t) and W2 (t) are independent Brownian motions, and where κ2 > 0, κ3 > 0, γ2 > 0, and 2κ3α3 ≥ γ22 .

SVJ: dX(t) = κ4 (α4 −X(t)) dt +
p
V (t)dW1(t) + Judqu − Jddqd, and dV (t) = κ5 (α5 − V (t)) dt +

γ3
p
V (t)dW2 (t) , where Wr (t) and Wv (t) are independent Brownian motions, and where κ4 > 0, κ5 > 0,

γ3 > 0, and 2κ5α5 ≥ γ23 . Further qu and qd are Poisson processes with jump intensity λu and λd, and are

independent of the Brownian motionsW1 (t) andW2 (t) . Jump sizes are iid and are controlled by jump mag-

nitudes ζu, ζd > 0, which are drawn from exponential distributions, with densities: f (Ju) =
1
ζu
exp

³
−Ju

ζu

´
and f (Jd) =

1
ζd
exp

³
−Jd

ζd

´
. Here, λu is the probability of a jump up, Pr (dqu (t) = 1) = λu, and jump up

size is controlled by Ju; while λd and Jd control jump down intensity and size. Note that the case of Poisson

jumps with constant intensity and jump size with exponential density is covered by the assumptions stated

in the previous sections.

The tests that we construct are DMax
k,P,N (u1, u2) and DVMax

k,P,S,N (u1, u2). In our tables, we also report the

so-called “predictive density” mean square forecast error (PDMSFE) terms in these statistics, which are

constructed using the following formulae:

1

P

T−τX
t=R

⎛⎝ 1

NS

SX
j=1

NX
i=1

1
n
u1 ≤ X

θ1,t,N,S,h
1,t+τ,i,j (Xt, V

θ1,t,N,S,h
1,j ) ≤ u2

o
−1{u1 ≤ Xt+τ ≤ u2}

⎞⎠2
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and

1

P

T−τX
t=R

Ã
1

N

NX
i=1

1
n
u1 ≤ X

ϑ1,t,N,h
1,t+τ,i (Xt) ≤ u2

o
−1{u1 ≤ Xt+τ ≤ u2}

!2
,

depending upon whether we are predicting using one factor or SV models. We define the CIR model to

be our “benchmark”, against which the other models are compared. For the estimation of parameters as

well as the construction of predictive densities, data were generated using the Milstein scheme discussed

above, with h = 1/T , where T is the sample size. The jump component in our SV J model was simulated

without any error because of the constancy of the intensity parameter. The three models fall in the class of

affine diffusions. Therefore, it is possible to compute parameter estimates using the conditional characteristic

function (see Singleton (2001) for the CIR model, Jiang and Knight (2002) for the SV model, and Chacko

and Viceira (2003) for the SV J model). We leave analysis of the predictive accuracy of the models discussed

herein under different estimation methods to future research. All parameters are estimated recursively, all

empirical bootstrap distributions are constructed using 500 bootstrap replications, and critical values are

reported for the 95th, 90th, 85th, and 80th percentiles of the relevant bootstrap empirical distributions. For

the bootstrap, block lengths of 5 and 10 are reported on. Additionally, we set S = 1000, and for model

SV and SV J we set N = S. Tests were carried out based on the construction of τ − step ahead predictive

densities and associated confidence intervals, for τ = {1, 2, 3, 4, 5, 6, 12}. We set (u1, u2) equal to X± 0.5σX ,
and X ± σX , where X and σX are the mean and variance of an initial sample of data.

Test statistic values, PDMSFEs, and bootstrap critical values are reported for various u1, u2 combina-

tions, forecast horizons, and bootstrap block lengths in Tables 1-4. The first two tables report results for the

sample period January 6, 1989-December 31, 1998, while Tables 3 and 4 report results for the sample period

January 8, 1999-April 30, 2008. Interestingly, a number of very clear-cut conclusions emerge. In particular,

PDMSFEs are lower for the SV J model in 12 of 14 cases in Table 1. Moreover, in the two cases where SV J

is not “PDMSFE-best”, there is little to choose between the PDMSFEs of the different models. Perhaps

not surprisingly, then, the null hypothesis that the CIR model yields predictive densities at least as accurate

as the two competitor models is rejected in almost all cases, at a 95% level of confidence. (Starred entries in

the tables denote rejection using CVs equal to the 95th percentile of the empirical bootstrap distributions.)

Notice also that although bootstrap CVs increase in magnitude when a longer block length is used (see Table

2), the number of rejections of the null hypothesis remains the same, suggesting that our findings, thus far,

are somewhat robust to bootstrap block length.

Turning now to Table 3, note that it is now the SV model that yields the “PDMSFE-best” predictive

densities in all but two cases. Moreover, in the two cases that SV does not “win”, the SV J model “wins”,

albeit with only marginally lower PDMSFEs. However, significant rejection of the null only occurs in 8 of

14 cases based on the more recent sample of data used in construction of the statistics reported in Tables 3

and 4, rather than 10 cases, as in Tables 1 and 2. Moreover, when the block length is increased from 5 to 10,

the number of rejections of the null deceases almost to zero (see Table 4). Thus, while the point PDMSFE

is lower in 12 of 14 cases, it is more difficult to discern a statistically significant difference between the SV

and the CIR model when using data from 1999-2008. Two points are worth mentioning in this regard.

First, in Tables 3 and 4, the absolute magnitude of the SV PDMSFEs are actually substantively lower

than those for the CIR model, when comparing CIR and SV models, just as they were when comparing

CIR and SV J models in Tables 1 and 2, suggesting that the reduction in rejections when increasing the
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block length in Table 4 may be due in part to size bias in the case of the longer block length. Second,

and more important, regardless of the above findings, it is very clear that the selection of PDMSFE-best

model is indeed dependent upon the sample period used to construct predictive densities. While the one

factor model generally performs worse than the other two models, whether or not jumps improve model

performance depends on the sample period being investigated. Thus, different sample periods do not result

in the same model being chosen, which is not surprising, given that the extant empirical evidence concerning

which model to use when examining interest rates is rather mixed.6

In Figures 1 and 2, predictive densities are plotted for various evaluation points given a particular set

of recursively estimated parameters (chosen to illustrate the variety of predictive densities that arise, in

practical applications). Evaluation points are chosen to be equal to the mean of the data and various points

around the mean. Figure 1 reports densities for our first sample period and Figure 2 for our second sample

period. Notice that a model yielding a density centered around the evaluation point is preferred, assuming

that it yields predictions with equal or less dispersion than its competitor model. Interestingly, in Figure

1 it is quite apparent that the SV J model is preferred, although none of the models are particularly well

centered for evaluation points not equal to the mean of 0.055. In Figure 2, where results are reported for

the second sample period, the models are well centered around the evaluation point, even for points that are

relatively distant from the mean (see Figures 1a and 1c). Moreover, in this particular set of plots, the SV

model is clearly dominant, as it yields densities that are better centered and exhibit much less dispersion.

6One might be tempted to think that the SV J model should always be selected because it “nests” the other models.

However, as we are performing true ex-ante prediction experiments using predictive densities, this is clearly not the case;

more parsimonious models should be expected to perform better, particularly if they are “better approximations” of the true

underlying DGP.
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6 Appendix

Proof of Theorem 1:

(i) We begin by analyzing the term in the test statistic that is associated with model 1. Without loss of

generality and for the sake of brevity, set u1 = −∞ and u2 = u. Consider:

1√
P

T−τX
t=R

Ã
1

N

NX
i=1

1
n
X

ϑ1,t,N,h
1,t+τ,i (Xt) ≤ u

o
−1{Xt+τ ≤ u}
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By arguments similar to those used in the proof of Proposition 1 in Corradi and Swanson (2005b), the first

term of the last equality on the RHS of (9) is oP (1). Now, by taking a mean value expansion around ϑ†1, it
is easy to see that the second term of the last equality on the RHS of (9) can be written as:
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where f1(·|Xt) denotes the conditional density under model 1.

Finally, IIP,N,h is oP (1), given that it is of smaller order than the other two terms on the RHS of (8).

By treating model k in the same manner as model 1, we have that,
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, where EX denotes expectation with

respect to the probability measure governing the data and EN denotes expectation with respect to the
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probability measure governing the simulated data. Thus, given Assumption A4:
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It then follows that Dk,P,N (u)
d→ N(0,Wk(u)), where

Wk(u) = C(u) + V (u) + CV (u) + P11(u)
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!2⎞⎠ diverges at rate

√
P. This drives the statistic to either plus or minus infinity.

Proof of Corollary 1: For any given k, the limiting distribution of Dk,P,N (u1, u2)−μk(u1, u2) follows from
inspection of Theorem 1(i). Also, by the Cramer-Wold device,

((D2,P,N (u1, u2)− μ2(u1, u2)) , ..., (Dm,P,N (u1, u2)− μm(u1, u2)))

converges to a m−dimensional mean zero Gaussian random variable with covariance matrix that has kk

element given by Wk(u1, u2), as defined in the statement of Theorem 1(i). The statement in the corollary

then follows as a straightforward consequence of the Cramer-Wold device and the continuous mapping

theorem.

Proof of Theorem 2: As before, set u1 = −∞ and u2 = u. We begin by analyzing the term in the test

statistic that is associated with model 1, which can be written as:
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First, note that:
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Also, by the same arguments as those used in the proof of Theorem 4 in Bhardwaj, Corradi, and Swanson

(2008),
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Thus, from Theorem 3.5 in Künsch (1989), it follows that the first term on the RHS of the last equality in

(11) has the same limiting distribution as:
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By the same argument as that used in the proof of Theorem 1(i):

=
1√
P

T−τX
t=R

ÃÃ
1

N

NX
i=1

1

½
X

ϑ1,t,N,h
1,t+τ,i (Xt) ≤ u−

µ
X

ϑ∗1,t,N,h
1,t+τ,i (Xt)−X

ϑ1,t,N,h
1,t+τ,i (Xt)

¶¾
−F

X
ϑ1,t,N,h
1,t+τ

µµ
u−

µ
X

ϑ∗1,t,N,h
1,t+τ,i (Xt)−X

ϑ1,t,N,h
1,t+τ,i (Xt)

¶¶
|Xt

¶¶
−
Ã
1

N

NX
i=1

1
n
X

ϑ1,t,N,h
1,t+τ,i (Xt) ≤ u

o
− F

X
ϑ1,t,N,h
1,t+τ

(u|Xt)

!!
= oP∗(1) Pr−P.

Finally, the last term on the RHS of (12), conditional on the sample, and for all samples except a set with

probability measure approaching zero, has the same limiting distribution as:
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and the statement then follows by the same argument as that used in Theorem 1(i).

Proof of Corollary 2: Given Theorem 2, the result follows directly upon application of the Cramer-Wold

device and the continuous mapping theorem.

Proof of Theorem 3: We begin by analyzing the term in the test statistic that is associated with model

1. Without loss of generality and for the sake of brevity, we yet again set u1 = −∞ and u2 = u. Consider:
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The statement follows by the same argument as that used in Theorem 1, as by Proposition 5 in Bhardwaj,

Corradi, and Swanson (2008),
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Proof of Theorem 4: Since S/T →∞, we do not need to resample the initial value of volatility, and the

statement thus follows by the same argument as that used in Theorem 2.

For notational simplicity, in the proof of Theorems 5-8 below, we drop the subscript k, as the arguments

used in this proof are the same for all k.

Proof of Theorem 5: Define,

bfN (Xt|Xt−1, ϑ) =
1

NξN

NX
i=1

K

Ã
Xϑ
t,i(Xt−1)−Xt

ξN

!
,

where Xϑ
t,i(Xt−1) is the i−th simulated value, when starting the path at Xt−1, for the case in which there

is no discretization error (i.e. for the case in which we could generate continuous paths), and define:

LNt,h (ϑ) =
1

t

tX
j=1

ln bfk,N,h (Xj |Xj−1, ϑ) τN
³ bfk,N,h (Xj |Xj−1, ϑ)

´
, (13)

LNt (ϑ) =
1

t

tX
j=1

ln bfk,N (Xj |Xj−1, ϑ) τN
³ bfk,N (Xj |Xj−1, ϑ)

´
, (14)

and

Lt (ϑ) =
1

t

tX
j=1

ln f (Xj |Xj−1, ϑ) , (15)

where Lt (ϑ) is the pseudo true density under Pθ.

We organize the proof into four steps. Steps 1 and 2 suffice for the statement in (i) to hold.

Step 1:

sup
ϑ∈Θ

sup
t≥R

¯̄
LNt (ϑ)− Lt (ϑ)

¯̄
= op(1).

Step 2:

sup
ϑ∈Θ

sup
t≥R

¯̄
LNt,h (ϑ)− LNt (ϑ)

¯̄
= op(1).

Step 3:

sup
ϑ∈Nϑ†

1√
P

TX
t=R

¯̄∇ϑL
N
t (ϑ)−∇ϑLt (ϑ)

¯̄
= op(1).

Step 4:

sup
ϑ∈N

ϑ
†
k

1√
P

TX
t=R

¯̄∇ϑL
N
t,h (ϑ)−∇ϑL

N
t (ϑ)

¯̄
= op(1).

Proof of Steps 1 and 3: We first need to show that our assumptions imply the assumptions in Theorems

1.1 and 1.2 in Fermanian and Salanié (FS: 2004), and then we outline which steps in their proofs have to be

modified in order to take into account the fact that Xt is β−mixing (instead of iid) and the fact that our
estimator is recursive. Then, the statements in Steps 1 and 3 will follow directly from their Theorems 1.1 and

1.2. Now, A8 implies K0, in FS (2004). A1(ii)-(iii) and A6-A7 imply L1 and L2, with β = r, and L3, with

γ = γ0 = r > 4 in FS (2004). A3’ implies M1 with s0 = 0, and M2 with r0 = s1 = 0 and p0 = ζ = r > 4, in FS
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(2004). It remains to check that the rate conditions T1, R1, T2, R2 and R3 in FS (2004) are implied by the

rate conditions in the statement of the theorem. First, recall that T,R, P grow at the same rate, given 0 <

π <∞ and N = T a, a > 1. Given A1(iii), Pr (supt |Xt| > εT a) ≤PT
t=1 Pr (|Xt| > εT a) ≤ 1

εr T
1−arE(|Xt|r),

and as a > 1 and r > 4, (c) in the statement of the theorem implies T2 (and hence T1) in FS (2004) for

v = 1 and γ = γ0 = ζ = r > 4. As Pr

µ
infϑ∈N

ϑ
†
k

f (Xj |Xj−1, ϑ) < ξδN

¶
= O

¡
ξδN
¢
, it follows that (a) is

equivalent to R3 in FS (2004), for γ = r. Finally, (c) and (b) are equivalent to R2 in FS (2004), for m = 1

and r0 = 0.

As the proof in FS (2004) is based on the rate at which

1{kXt,Xt−1k < N} supϑ∈Θ
¯̄̄
ln bfN (Xt|Xt−1, ϑ)− ln f (Xj |Xj−1, ϑ)

¯̄̄
and 1{kXt,Xt−1k > N} supϑ∈Θ

¯̄̄
ln bfN (Xt|Xt−1, ϑ)

¯̄̄
approach zero, the fact that we are estimating parameters in a recursive manner plays no role. On the other

hand, the iid assumption is used in the exponential inequalities in the proof of Lemma 1 and Theorem 1.1

in FS (2004). However, given the geometric β−mixing assumption in A1(i), the rate in the exponential
(Bernstein and Hoeffding) inequalities is slower than in the iid case, only up to a logarithmic term (see e.g.

Doukhan, 1995, p.33-36). Thus, consistency follows from their Theorem 1.1 and asymptotic normality from

their Theorem 1.2. Moreover, Step 2 follows by the same argument. Hence, it remains to prove Step 4.

Proof of Step 4:

sup
ϑ∈N

ϑ
†
k

1√
P

TX
t=R

¯̄∇ϑL
N
t,h (ϑ)−∇ϑL

N
t (ϑ)

¯̄ ≤ sup
ϑ∈N

ϑ
†
k

1√
P

TX
t=R

⎛⎝¯̄̄̄¯̄1t
tX

j=1

τN

³ bfN (Xj |Xj−1, ϑ)
´ 1bfN (Xj|Xj−1, ϑ)

×
Ã
∂ bfN,h (Xj |Xj−1, ϑ)

∂ϑ
− ∂ bfN (Xj |Xj−1, ϑ)

∂ϑ

!¯̄̄̄
¯

+

¯̄̄̄
¯̄1t

tX
j=1

⎛⎝τN

³ bfN,h (Xj |Xj−1, ϑ)
´

bfN,h (Xj |Xj−1, ϑ)
−

τN

³ bfN (Xj |Xj−1, ϑ)
´

bfN (Xj|Xj−1, ϑ)

⎞⎠ ∂ bfN,h (Xj |Xj−1, ϑ)
∂ϑ

¯̄̄̄
¯̄

+

¯̄̄̄
¯̄1t

tX
j=1

τ 0N
³ bfN,h (Xj |Xj−1, ϑ)

´ ∂ bfN,h (Xj |Xj−1, ϑ)
∂ϑ

ln bfN,h (Xj |Xj−1, ϑ)

¯̄̄̄
¯̄

+

¯̄̄̄
¯̄1t

tX
j=1

τ 0N
³ bfN (Xj |Xj−1, ϑ)

´ ∂ bfN (Xj |Xj−1, ϑ)
∂ϑ

ln bfN (Xj |Xj−1, ϑ)

¯̄̄̄
¯̄
⎞⎠

= A1,T,N,h +A2,T,N,h +A3,T,N,h +A4,T,N,h.

Now, note that X
ϑ

j,i,h(Xj−1) ∈
³
Xϑ
j,i,h(Xj−1),Xϑ

j,i(Xj−1)
´
, and recall by Theorem 2.3 in Pardoux and Talay
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(1985) that E

µ³
Xϑ
j,i,h(Xj−1)−Xϑ

j,i(Xj−1)
´2¶

= O(h2). Thus,

A1,T,N,h

≤ ξ−δN
√
P sup

t≥R
sup

ϑ∈N
ϑ
†
k

¯̄̄̄
¯̄1t

tX
j=1

1

NξN

NX
i=1

Ã
∇ϑK

Ã
Xϑ
j,i,h(Xj−1)−Xj

ξN

!
−∇ϑK

Ã
Xϑ
t,i(Xj−1)−Xj

ξN

!!¯̄̄̄
¯̄

≤ ξ
−(δ+3)
N

√
P sup

t≥R
sup

ϑ∈N
ϑ
†
k

¯̄̄̄
¯̄1t

tX
j=1

1

N

NX
i=1

∇2ϑK
Ã
Xϑ
j,i,h(Xj−1)−Xj

ξN

! ¯̄̄
X
ϑ
j,i,h(Xj−1)¡

Xϑ
j,i,h(Xj−1)−Xϑ

j,i(Xj−1)
¢¯̄
= Op

³√
Pξ
−(δ+3)
N h

´
, (16)

and given A6,

A2,T,N,h

≤
√
P sup

t≥R
sup

ϑ∈N
ϑ
†
k

¯̄̄̄
¯̄1t

tX
j=1

τN

³ bfN (Xj |Xj−1, ϑ)
´³ bfN,h (Xj |Xj−1, ϑ)− bfN (Xj |Xj−1, ϑ)

´
bfN,h (Xj |Xj−1, ϑ)

∂ ln bfN (Xj |Xj−1, ϑ)
∂ϑ

¯̄̄̄
¯

+
√
P sup

t≥R
sup

ϑ∈N
ϑ
†
k

¯̄̄̄
¯̄1t

tX
j=1

⎛⎝τN

³ bfN (Xj |Xj−1, ϑ)
´
− τN

³ bfN,h (Xj |Xj−1, ϑ)
´

bfN,h (Xj |Xj−1, ϑ)

⎞⎠
× bfN (Xj |Xj−1, ϑ)

∂ ln bfN (Xj |Xj−1, ϑ)
∂ϑ

¯̄̄̄
¯ = Op

³√
Pξ
−(δ+3)
N h

¯̄
ln ξδN

¯̄´
. (17)

Given the rate conditions in (a),(b), and (c), A3,T,N,h and A4,T,N,h are oP (1), by the same argument as

used in the study of the term A4 in FS (2004).

Proof of Theorem 6: Define,

L∗Nt,h (θ) =
1

t

tX
j=1

Ã
ln bfN,h ¡X∗j |X∗j−1, ϑ¢ τN ³ bfN,h ¡X∗j |X∗j−1, ϑ¢´− ϑ0

1

T

TX
i=1

∇ϑL
N
i,h

³bϑt,N,h´!

L∗t (θ) =
1

t

tX
j=1

Ã
ln f

¡
X∗j |X∗j−1, ϑ

¢− ϑ0
1

T

TX
i=1

∇ϑLi

³bϑt´! .

and let bϑ∗t = argminϑ∈Θ L∗t (θ) . We organize the proof into two steps.
Step 1:

sup
ϑ∈Θ

sup
t≥R

¯̄
L∗Nt,h (ϑ)− L∗t (ϑ)

¯̄
= op∗(1).

Step 2:

sup
ϑ∈N

ϑ†

1√
P

TX
t=R

¯̄∇ϑL
∗N
t,h (ϑ)−∇ϑL

∗
t (ϑ)

¯̄
= o∗p(1).

Given Steps 1 and 2, the desired outcome follows from Theorem 1 in Corradi and Swanson (2007).
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Proof of Step 1: Given the definition of L∗Nt,h (ϑ) and L∗t (ϑ) , and recalling that Θ is a compact set, it

suffices to show that:

arg max
ϑ∈Θk

sup
t≥R

¯̄̄̄
¯1t

tX
l=2

³
ln bfN,h ¡X∗l |X∗l−1, ϑ¢ τN ³ bfN,h ¡X∗l |X∗l−1, ϑ¢´− ln f ¡X∗l |X∗l−1, ϑ¢´

¯̄̄̄
¯

= op∗(1) (18)

and

sup
t≥R

1

T

TX
i=1

³
∇ϑL

∗N
i,h

³bϑt,N,h´−∇ϑL
∗
i

³bϑt´´ = op∗(1). (19)

Now, (18) follows from Steps 1 and 2 in the proof of Theorem 5, given that the only difference is that we

evaluate the likelihood at the resampled observations. Note also that (19) is majorized by:

sup
t≥R

¯̄̄̄
¯ 1T

TX
i=1

³
∇ϑL

∗N
i,h

³bϑt,N,h´−∇ϑL
∗
i

³bϑt,N,h´´
¯̄̄̄
¯+ supt≥R

¯̄̄̄
¯ 1T

TX
i=1

³
∇ϑL

∗
i

³bϑt,N,h´−∇ϑL
∗
i

³bϑt´´
¯̄̄̄
¯ .

The first term above is op∗(1) as a direct consequence of Steps 3 and 4 in the proof of Theorem 5. The

second term is majorized by

sup
t≥R

¯̄̄̄
¯ 1T

TX
i=1

³
∇2ϑL∗i

¡
ϑt,N,h

¢ ³bϑt,N,h − bϑt´´
¯̄̄̄
¯ ≤ supt≥R

1

T

TX
i=1

¯̄∇2ϑL∗i ¡ϑt,N,h¢¯̄ sup
t≥R

³bϑt,N,h − bϑt´ = Op∗(1)op(1).

Proof of Step 2: Follows directly from (19) and from Steps 2 and 4 in the proof Theorem 5.

Proof of Theorem 7: Let:

LN,St,h (θ) =
1

t

tX
l=2

ln bfN,S,h (Xl|Xl−1, θ) τN,S
³ bfN,S,h (Xl|Xl−1, θ)

´
.

We show that:

sup
θ∈Θ

sup
t≥R

¯̄̄
LN,St,h (θ)− LNt,h (θ)

¯̄̄
= op(1) (20)

and

sup
θ∈N

θ
†
k

1√
P

TX
t=R

¯̄̄
∇θL

N,S
t,h (θ)−∇θL

N
t,h (θ)

¯̄̄
= op(1). (21)
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The desired outcome then follows from Theorem 5. Note first that (20) can be written as:

sup
θ∈Θ

sup
t≥R

¯̄̄
LN,St,h (θ)− LNt,h (θ)

¯̄̄
= sup

θ∈Θ
sup
t≥R

¯̄̄̄
¯1t

tX
l=2

³
ln bfN,S,h (Xl|Xl−1, θ) τN,S

³ bfN,S,h (Xl|Xl−1, θ)
´

− ln bfN,h (Xl|Xl−1, θ) τN
³ bfN,h (Xl|Xl−1, θ)

´´¯̄̄
≤ sup

θ∈Θ
sup
t≥R

¯̄̄̄
¯1t

tX
l=2

τN,S

³ bfN,S,h (Xl|Xl−1, θ)
´³
ln bfN,S,h (Xl|Xl−1, θ)− ln bfN,h (Xl|Xl−1, θ)

´¯̄̄̄¯
+ sup

θ∈Θ
sup
t≥R

¯̄̄̄
¯1t

tX
l=2

³
τN,S

³ bfN,S,h (Xl|Xl−1, θ)
´
− τN

³ bfN,h (Xl|Xl−1, θ)
´´
ln bfN,h (Xl|Xl−1, θ)

¯̄̄̄
¯

= sup
θ∈Θ

(IT,N,S,h + IIT,N,S,h) .

Let fN,S,h (Xl|Xl−1, θ) ∈
³ bfN,S,h (Xl|Xl−1, θ) , bfN,h (Xl|Xl−1, θ)

´
, and note that for all i, j

K

Ã
Xθ
l,i,h(Xl−1)−Xl

ξN

!
=

Z
V

K

Ã
Xθ
l,i,h(Xl−1, vθ)−Xl

ξN

!
fϑ(v)dv

= ES

Ã
K

Ã
Xθ
l,i,h(Xl−1, vθ)−Xl

ξN

!!
,

where ES denotes the expectation with respect to the simulated initial values of volatility. By a mean value

expansion,

IT,N,S,h ≤ ξ−δN

¯̄̄̄
¯1t

tX
l=2

³
ln bfN,S,h (Xl|Xl−1, θ)− ln bfN,h (Xl|Xl−1, θ)

´¯̄̄̄¯
= ξ

−(δ+1)
N

¯̄̄̄
¯1t

tX
l=2

1

N

NX
i=1

Ã
1

S

SX
s=1

K

Ã
Xθ
l,i,h(Xj−1, V θ

s )−Xj

ξN

!
−K

Ã
Xθ
l,i,h(Xj−1)−Xj

ξN

!!¯̄̄̄
¯

= Op

³
ξ
−(δ+1)
N S−1/2

´
, uniformly in t and θ.

Also,

IIT,N,S,h

≤
¯̄̄̄
¯1t

tX
l=2

τ 0N,S
¡
fN,S,h (Xl|Xl−1, θ)

¢
ln efN,h (Xl|Xl−1, θ)³ bfN,S,h (Xl|Xl−1, θ)− bfN,h (Xl|Xl−1, θ)

´¯̄̄
= Op

³
ξ
−(δ+1)
N S−1/2

¯̄
ln ξ−δN

¯̄´
, uniformly in t and θ.

Given the rate condition in (e), this proves (20). Turning now to (21), note that after few simple manipula-

tions:

sup
θ∈N

θ†
IT,N,S,h ≤
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sup
θ∈Nθ†

1√
P

TX
t=R

⎛⎝¯̄̄̄¯̄1t
tX

l=2

τN,S

³ bfN,S,h (Xl|Xl−1, θ)
´

bfN,S,h (Xl|Xl−1, θ)

Ã
∂ bfN,S,h (Xl|Xl−1, θ)

∂θ
− ∂ bfN,h (Xl|Xl−1, θ)

∂θ

!¯̄̄̄
¯̄

+

¯̄̄̄
¯̄1t

tX
l=2

τN,S

³ bfN,S,h (Xl|Xl−1, θ)
´ ∂ bfN,h (Xl|Xl−1, θ)

∂θ

³ bfN,h (Xl|Xl−1, θ)− bfN,S,h (Xl|Xl−1, θ)
´

bfN,S,h (Xl|Xl−1, θ) bfN,h (Xl|Xl−1, θ)

¯̄̄̄
¯̄

+

¯̄̄̄
¯1t

tX
l=2

³
τN,S

³ bfN,S,h (Xl|Xl−1, θ)
´
− τN

³ bfN,h (Xl|Xl−1, θ)
´´ ∂ ln bfN,h (Xl|Xl−1, θ)

∂θ

¯̄̄̄
¯

+

¯̄̄̄
¯1t

tX
l=2

τN,S

³ bfN,S,h (Xl|Xl−1, θ)
´³
ln bfN,S,h (Xl|Xl−1, θ)− ln bfN,h (Xl|Xl−1, θ)

´¯̄̄̄¯
+

¯̄̄̄
¯1t

tX
l=2

τ 0N,S
³ bfN,S,h (Xl|Xl−1, θ)

´Ã∂ bfN,S,h (Xl|Xl−1, θ)
∂θ

−
bfN,h (Xl|Xl−1, θ)

∂θ

!
ln bfN,h (Xl|Xl−1, θ)

¯̄̄̄
¯

+

¯̄̄̄
¯1t

tX
l=2

³
τ 0N,S

³ bfN,S,h (Xl|Xl−1, θ)
´
− τ 0N

³ bfN,h (Xl|Xl−1, θ)
´´

×
bfN,h (Xl|Xl−1, θ)

∂θ
ln bfN,h (Xl|Xl−1, θ)

¯̄̄̄
¯
!

= sup
θ∈Nθ†

(V1,T,N,S,h (θ) + V2,T,N,S,h (θ) + V3,T,N,S,h (θ) + V4,T,N,S,h (θ) + V5,T,N,S,h (θ) + V6,T,N,S,h (θ)) .

Now, recalling A9,

sup
θ∈Nθ†

V1,T,N,S,h (θ)

≤ sup
θ∈N

θ†
ξ
−(δ+2)
N

1√
P

TX
t=R

¯̄̄̄
¯1t

tX
l=2

1

N

NX
i=1

Ã
1

S

SX
s=1

Ã
∂Xθ

l,i,h(Xj−1, V θ
s )

∂θ
K0
Ã
Xθ
l,i,h(Xj−1, V θ

s )−Xj

ξN

!

−∂X
θ
l,i,h(Xj−1)
∂θ

K0
Ã
Xθ
l,i,h(Xj−1)−Xj

ξN

!!!¯̄̄̄
¯

= Op

³
P 1/2ξ

−(δ+2)
N S−1/2

´
sup
θ∈N

θ†
V2,T,N,S,h (θ)

≤ sup
θ∈N

θ†

1√
P

TX
t=R

¯̄̄̄
¯̄1t

tX
l=2

τN,S

³ bfN,S,h (Xl|Xl−1, θ)
´

bfN,S,h (Xl|Xl−1, θ) bfN,h (Xl|Xl−1, θ)

∂fN,S,h (Xl|Xl−1, θ)
∂θ³³ bfN,h (Xl|Xl−1, θ)− bfN,S,h (Xl|Xl−1, θ)

´´¯̄̄
+ sup

θ∈Nθ†

1√
P

TX
t=R

¯̄̄̄
¯̄1t

tX
l=2

τN,S

³ bfN,S,h (Xl|Xl−1, θ)
´

bfN,S,h (Xl|Xl−1, θ) bfN,h (Xl|Xl−1, θ)

Ã
∂ bfN,h (Xl|Xl−1, θ)

∂θ

−∂f (Xl|Xl−1, θ)
∂θ

¶³bfN,h (Xl|Xl−1, θ)− bfN,S,h (Xl|Xl−1, θ)
´¶¯̄̄̄

(22)

Given Steps 2 and 4 in the proof of Proposition 2, it can be seen immediately that the second term on the
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RHS of (22) is of smaller order than the first. Now, the first term on the RHS of (22) is majorized by:

ξ−2δN sup
θ∈N

θ†
sup
t≥R

¯̄̄̄
¯1t

tX
l=2

Ã
∂ bfN,h (Xl|Xl−1, θ)

∂θ

!r ¯̄̄̄
¯
1/r

×

sup
θ∈N

θ†

1√
P

TX
t=R

¯̄̄̄
¯̄
Ã
1

t

tX
l=2

³ bfN,h (Xl|Xl−1, θ)− bfN,S,h (Xl|Xl−1, θ)
´(r−1)/r!1−1/r ¯̄̄̄¯̄

= OP

³√
PS−1/2ξ−(1+2δ)N

´
,

and so

sup
θ∈N

θ†
V3,T,N,S,h (θ)

≤ sup
θ∈N

θ†

1√
P

TX
t=R

¯̄̄̄
¯1t

tX
l=2

³
τN,S

³ bfN,S,h (Xl|Xl−1, θ)
´
− τN

³ bfN,h (Xl|Xl−1, θ)
´´

∂ ln f (Xl|Xl−1, θ)
∂θ

¯̄̄̄
+ term of smaller order

= Op

³√
PS−1/2ξ−(1+δ)N

´
.

By a similar argument as that used in the proof of (20), supθ∈N
θ†
V4,T,N,S,h (θ) = Op

³
ξ
−(δ+1)
N

√
PS−1/2

´
;

V5,T,N,S,h (θ) , (other than a log term), can be treated as V1,T,N,S,h (θ) , and so supθ∈Nθ†
V5,T,N,S,h (θ) =

Op

³
P 1/2ξ

−(δ+2)
N S−1/2

¯̄
ln ξ−δN

¯̄´
. Finally, by a similar argument as that used to examine V3,T,N,S,h (θ) :

sup
θ∈N

θ†
V5,T,N,S,h (θ)

≤ sup
θ∈Nθ†

1√
P

TX
t=R

¯̄̄̄
¯1t

tX
l=2

³
τ 0N,S

³ bfN,S,h (Xl|Xl−1, θ)
´
− τ 0N

³ bfN,h (Xl|Xl−1, θ)
´´

×f (Xl|Xl−1, θ)
∂θ

ln bfN,h (Xl|Xl−1, θ)
¯̄̄̄¶
+ terms of smaller order

= Op

³√
PS−1/2ξ−(1+2δ)N

´
.

Proof of Theorem 8: Follows immediately, given Theorem 7, and by the same arguments as those used

in the proof of Theorem 6.
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Table 1: Predictive Density Model Selection Test Results

Sample period January 6, 1989 - December 31, 1998

(CIR model is the benchmark, bootstrap block length=5)

τ u1, u2 DMax
k,P,S,N (u1, u2) PDMSFECIR PDMSFESV PDMSFESV J 5% CV 10% CV 15% CV 20% CV

1 X ± 0.5σX 2.82927∗ 5.66205 3.62009 2.83278 1.76793 1.65848 1.59048 1.53149

X ± σX 1.31996 1.58636 0.3691 0.2664 1.78705 1.64695 1.57157 1.5188

2 X ± 0.5σX 1.57134∗ 4.13194 2.62781 2.56061 0.95374 0.85015 0.81374 0.77364

X ± σX 0.53925 0.85434 0.34105 0.31509 0.88404 0.8354 0.7433 0.67953

3 X ± 0.5σX 0.80223∗ 4.26257 3.87959 3.46034 0.23338 0.20535 0.19317 0.16539

X ± σX 1.19189∗ 1.82012 0.93572 0.62823 0.48909 0.40461 0.36703 0.30468

4 X ± 0.5σX 1.23058∗ 4.32896 3.82788 3.09838 0.34424 0.28591 0.22947 0.21701

X ± σX 0.48079∗ 1.02194 0.76792 0.54115 0.32672 0.28204 0.22131 0.20073

5 X ± 0.5σX -0.00077 3.71976 3.72053 3.97788 0.25028 0.2032 0.17763 0.16541

X ± σX 0.18502 1.09725 1.01962 0.91223 0.2864 0.2164 0.19567 0.14872

6 X ± 0.5σX 1.52213∗ 4.949 3.83724 3.42687 0.11366 0.08187 0.07064 0.05948

X ± σX 0.58406∗ 1.63659 1.05253 1.18955 0.16156 0.12362 0.11468 0.10462

12 X ± 0.5σX 0.56293∗ 4.58393 4.37846 4.021 0.03752 0.03085 0.02742 0.01931

X ± σX 0.41295∗ 1.30048 1.5585 0.88753 0.02381 0.01912 0.01574 0.01425

(∗) Notes: Numerical entries in the table are test statistics, predicitve density type PDMSFEs (see Section 7 for further
discussion), and associated bootstrap critical values, constructed using intervals given in the second column of the table, and
for predictive horizons, τ =1, 2, 3, 4, 5, 6, 12. Starred entries denote rejection of the null hypothesis that the CIR model yields
predictive densities at least as accurate as the competitor SV and SVJ models. Weekly data are used in all estimations, and
the sample period across which predictive densities are constructed is T/2, where T is the sample size. Predictive densities
are constructed using simulations of length S = 10T . Empirical bootstrap distributions are constructed using 100 bootstrap
replications, and critical values are reported for the 95th, 90th, 85th, and 80th percentiles of the bootstrap distribution. X
and σX are the mean and variance of an initial sample of data used in the first in-sample estimation, prior to the construction
of the first predictive density (i.e., using T/2 observations). Finally, the predictive density type “mean square forecast errors”
(MSFEs) reported in the fourth through sixth columns of the table are defined above and reported entries are multiplied by
P 1/2, where P = T/2 is the ex-ante prediction period.

Table 2: Predictive Density Model Selection Test Results

Sample period January 6, 1989 - December 31, 1998

(CIR model is the benchmark, bootstrap block length=10)

τ u1, u2 DMax
k,P,S,N (u1, u2) PDMSFECIR PDMSFESV PDMSFESV J 5% CV 10% CV 15% CV 20% CV

1 X ± 0.5σX 2.82927∗ 5.66205 3.62009 2.83278 2.00777 1.87189 1.79275 1.74894

X ± σX 1.31996 1.58636 0.3691 0.2664 2.04287 1.94914 1.92829 1.82353

2 X ± 0.5σX 1.57134∗ 4.13194 2.62781 2.56061 1.20729 1.12574 1.09287 1.01652

X ± σX 0.53925 0.85434 0.34105 0.31509 1.18983 1.12383 1.02568 0.93639

3 X ± 0.5σX 0.80223∗ 4.26257 3.87959 3.46034 0.30797 0.26336 0.23572 0.21822

X ± σX 1.19189∗ 1.82012 0.93572 0.62823 0.72656 0.61716 0.5816 0.5347

4 X ± 0.5σX 1.23058∗ 4.32896 3.82788 3.09838 0.39022 0.31387 0.28829 0.27063

X ± σX 0.48079∗ 1.02194 0.76792 0.54115 0.52736 0.45501 0.41484 0.37745

5 X ± 0.5σX -0.00077 3.71976 3.72053 3.97788 0.20617 0.18285 0.16524 0.13619

X ± σX 0.18502 1.09725 1.01962 0.91223 0.36255 0.29925 0.2721 0.22753

6 X ± 0.5σX 1.52213∗ 4.949 3.83724 3.42687 0.11792 0.10103 0.08588 0.08082

X ± σX 0.58406∗ 1.63659 1.05253 1.18955 0.1695 0.14107 0.12773 0.09614

12 X ± 0.5σX 0.56293∗ 4.58393 4.37846 4.021 0.05866 0.04347 0.03611 0.03507

X ± σX 0.41295∗ 1.30048 1.5585 0.88753 0.03615 0.03183 0.02711 0.02122

(∗) Notes: see Table 1
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Table 3: Predictive Density Model Selection Test Results

Sample period January 8, 1999 - April 30, 2008

(CIR model is the benchmark, bootstrap block length=5)

τ u1, u2 DMax
k,P,S,N (u1, u2) PDMSFECIR PDMSFESV PDMSFESV J 5% CV 10% CV 15% CV 20% CV

1 X ± 0.5σX 3.36528∗ 3.93191 0.56663 2.35979 2.4573 2.31001 2.17511 2.05169

X ± σX 0.39113 0.39172 0.00059 0.13535 2.09495 1.99902 1.93683 1.84544

2 X ± 0.5σX 1.8218∗ 2.32377 0.50197 2.04596 1.82588 1.71781 1.64691 1.55461

X ± σX 0.59514 0.60979 0.01464 0.26331 2.182 2.09447 1.99572 1.93641

3 X ± 0.5σX 1.2709 1.86856 0.59766 2.29788 1.47533 1.33248 1.19701 1.11857

X ± σX 0.97425 1.04645 0.0722 0.46272 1.98624 1.77604 1.71385 1.63308

4 X ± 0.5σX 1.33461∗ 1.86611 0.5315 2.50816 1.18714 1.03895 0.92443 0.74572

X ± σX 0.59446 0.78217 0.18771 0.23341 1.44947 1.31151 1.23566 1.18198

5 X ± 0.5σX 1.55731∗ 1.92318 0.36586 2.3208 0.94807 0.72157 0.63611 0.56305

X ± σX 0.62454∗ 0.92698 0.30244 0.42899 1.12818 0.91251 0.81989 0.69776

6 X ± 0.5σX 1.07981 1.5355 0.45569 2.23224 0.90627 0.81358 0.58599 0.49386

X ± σX 1.0877∗ 1.3928 0.39654 0.3051 1.11448 0.88946 0.69749 0.57532

12 X ± 0.5σX 1.06647∗ 1.72738 0.66091 2.59892 0.96992 0.7709 0.65347 0.54271

X ± σX 0.74472∗ 0.9282 0.43853 0.18348 0.93258 0.73613 0.59269 0.4251

(∗) Notes: see Table 1

Table 4: Predictive Density Model Selection Test Results

Sample period January 8, 1999 - April 30, 2008

(CIR model is the benchmark, bootstrap block length=10)

τ u1, u2 DMax
k,P,S,N (u1, u2) PDMSFECIR PDMSFESV PDMSFESV J 5% CV 10% CV 15% CV 20% CV

1 X ± 0.5σX 3.36528∗ 3.93191 0.56663 2.35979 3.22922 2.79456 2.66332 2.49582

X ± σX 0.39113 0.39172 0.00059 0.13535 2.49945 2.30575 2.18381 2.15431

2 X ± 0.5σX 1.8218 2.32377 0.50197 2.04596 2.97083 2.41921 2.29894 2.2163

X ± σX 0.59514 0.60979 0.01464 0.26331 2.82514 2.67829 2.64444 2.55817

3 X ± 0.5σX 1.2709 1.86856 0.59766 2.29788 2.51858 2.25422 2.06351 1.93476

X ± σX 0.97425 1.04645 0.0722 0.46272 2.98617 2.8359 2.75257 2.59837

4 X ± 0.5σX 1.33461 1.86611 0.5315 2.50816 2.14655 1.91697 1.73401 1.59074

X ± σX 0.59446 0.78217 0.18771 0.23341 2.72152 2.56512 2.49455 2.37684

5 X ± 0.5σX 1.55731 1.92318 0.36586 2.3208 1.9112 1.80572 1.4376 1.33975

X ± σX 0.62454 0.92698 0.30244 0.42899 2.57883 2.30651 2.14454 1.96686

6 X ± 0.5σX 1.07981 1.5355 0.45569 2.23224 2.11693 1.64939 1.47409 1.34432

X ± σX 1.0877 1.3928 0.39654 0.3051 2.37199 2.08945 1.83042 1.71404

12 X ± 0.5σX 1.06647∗ 1.72738 0.66091 2.59892 1.36719 1.00359 0.8389 0.57706

X ± σX 0.74472 0.9282 0.43853 0.18348 1.77444 0.98574 0.75872 0.54984

(∗) Notes: see Table 1
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Figure 1a: Evaluation point = 0.035
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Figure 1b: Evaluation point = 0.055
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Figure 1c: Evaluation point = 0.075
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Figur e 1: Pre dictive Densities  for CIR, SV and SVJ Mode ls - 01:1989-12:1998
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Figure 1a: Evaluation point = 0.020
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Figure 1b: Evaluation point = 0.035
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Figure 2: Pr edictive Densitie s for CIR, SV and SVJ Models - 01:1999-04:2008
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