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Abstract

We study, theoretically and quantitatively, the general equilibrium of an economy in
which households smooth consumption by means of both a riskless asset and unsecured
loans with the option to default. The default option resembles a bankruptcy filing
under Chapter 7 of the U.S. Bankruptcy Code. Competitive financial intermediaries
offer a menu of loan sizes and interest rates wherein each loan makes zero profits. We
prove the existence of a steady-state equilibrium and characterize the circumstances
under which a household defaults on its loans. We show that our model accounts
for the main statistics regarding bankruptcy and unsecured credit while matching key
macroeconomic aggregates and the earnings and wealth distributions. We use this
model to address the implications of a recent policy change that introduces a form of
“means-testing” for households contemplating a Chapter 7 bankruptcy filing. We find
that this policy change yields large welfare gains.
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vania, CAERP, CEPR, and NBER. We wish to thank Costas Meghir and three anonymous referees for very
helpful comments on an earlier version of this paper. We also wish to thank Nick Souleles and Karsten Jeske
for helpful conversations, and attendees at seminars at Complutense, Pompeu Fabra, Pittsburgh, Stanford,
Yale, and Zaragoza universities and the Cleveland and Richmond Feds, Banco de Portugal, the 2000 NBER
Summer Institute, the Restud Spring 2001 meeting, the 2001 Minnesota Workshop in Macro Theory, the
2001 SED, the 2002 FRS Meeting on Macro and Econometric Society Conferences. Ŕıos-Rull thanks the
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1 Introduction

In this paper we analyze a general equilibrium model with unsecured consumer credit that
incorporates the main characteristics of U.S. consumer bankruptcy law and replicates the
key empirical characteristics of unsecured consumer borrowing in the U.S. Specifically, we
construct a model consistent with the following facts:

• Borrowers can default on their loans by filing for bankruptcy under the rules laid
down in Chapter 7 of the U.S. Bankruptcy Code. In most cases, filing for bankruptcy
results in seizure of all (non-exempt) assets and a full discharge of household debt.
Importantly, filing for bankruptcy protects a household’s current and future earnings
from any collection actions by those to whom the debts were owed.

• Post-bankruptcy, a household has difficulty getting new (unsecured) loans for a period
of about 10 years.1

• Households that default are typically in poor financial shape.2

• There is free entry into the consumer loan industry and the industry behaves compet-
itively.3

• There is a large amount of unsecured consumer credit.4

• A large number of people who take out unsecured loans default each year.5

A key contribution of our paper is to establish a connection between the recent facts
on household debt and bankruptcy filing rates with the theory of household behavior that
macroeconomists routinely use. This connection is established by modifying the equilibrium
models of Imrohoroğlu (1989), Huggett (1993), and Aiyagari (1994) to include default and
by organizing the facts on consumer debt and bankruptcy in light of the model.

Turning first to the theory, we analyze an environment where households with infinitely
long planning horizons choose how much to consume and how much to save or borrow.
Households face uninsured idiosyncratic shocks to income, preferences, and asset position
and therefore have a motive to accumulate assets and to sometimes borrow in order to

1This is documented in Musto (1999).
2This is documented in, for example, Flynn (1999).
3See Ch.10 of Evans and Schmalensee (2000) for a compelling defense of the view that the unsecured

consumer credit industry in the U.S. is competitive.
4The Board of Governors of the Federal Reserve System constructs a measure of revolving consumer debt

that excludes debt secured by real estate, as well as automobile loans, loans for mobile homes, trailers, or
vacations. This measure is probably a subset of unsecured consumer debt which amounted to $692 billion
in 2001, or almost 7 percent of the $10.2 trillion that constitutes U.S. GDP.

5In 2001, 1.45 million people filed for bankruptcy in the U.S., of which just over 1 million were under
Chapter 7 (as reported by the American Bankruptcy Institute) and the rest filed under Chapter 13.
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smooth consumption. We permit households to default on their loans. This default option
resembles a Chapter 7 bankruptcy filing in which debts are discharged. We abstract from the
out-of-pocket expenses of declaring bankruptcy but assume that a bankruptcy remains on a
household’s credit record for some (random) length of time that, on average, is compatible
with the length of time mandated by law. We assume that while the bankruptcy filing
remains on a household’s record, it cannot borrow and incurs a (small) reduction in its
earning capability.

It should be clear from this basic setup that an indebted household will weigh the benefit
of maintaining access to the unsecured credit market against the benefit of declaring default
and having its debt discharged. Accordingly, credit suppliers who make unsecured loans will
have to price their loans taking into account the likelihood of default. We assume a market
arrangement where credit suppliers can link the price of their loans to the observable total
debt position of a household and to a household’s type. The first theoretical contribution
of the paper is to prove the existence of a general equilibrium in which the price charged on
a loan of a given size made to a household with given characteristics exactly compensates
lenders for the objective default frequency on loans of that size made to households with
those characteristics. This proof is challenging because the default option may result in a
discontinuity of the steady-state wealth distribution with respect to the rental rate on capital
and wages.

A second theoretical contribution of the paper is a characterization of default behavior
in terms of earnings for a given set of household characteristics. First we prove that for
each level of debt, the set of earnings that triggers default is an interval. Specifically, an
earnings-rich household (one with earnings above the upper threshold of the interval) is
better off repaying its debt and saving while an earnings-poor household (one with earnings
below the lower threshold of the interval) is better off repaying its debt and borrowing. This
result is important because it reduces the task of computing default probabilities to that
of computing default thresholds. Second, we prove that the default interval expands with
increasing indebtedness.

A third theoretical contribution is to show that our equilibrium loan price schedules
determine, endogenously, the borrowing limit facing each type of household. This is theoret-
ically significant since borrowing constraints often play a key role in empirical work regarding
consumer spending. Thus, we believe it is important to provide a theory of borrowing con-
straints that derives from the institutional and legal features of the U.S. unsecured consumer
credit market.

Turning to our quantitative work, we first organize facts on consumer earnings, wealth,
and indebtedness from the 2001 Survey of Consumer Finances (SCF) in light of the reasons
cited for bankruptcy by Panel Study of Income Dynamics survey participants between 1984
and 1995. Our model successfully generates statistics that closely resemble these facts. To
accomplish this, we model shocks that correspond to the reasons people give for filing for
bankruptcy and which replicate the importance (for the filing frequency and debt) of each
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reason given. One of the three shocks is a standard earnings shock that captures the job-loss
and credit-misuse reasons. A second shock is a preference shock that captures the effects
of marital disruptions. The third shock is a liability shock that captures motives related to
unpaid health-care bills and lawsuits. This last shock is important because it captures events
that create liabilities without a person having actually borrowed from a financial intermediary
– a fact that turns out to be important for simultaneously generating large amounts of debt
and default. To incorporate this liability shock the model had to be expanded to incorporate
a hospital sector.

We use our calibrated model to study the effects of a recent change in bankruptcy law
that discourages above-median-income households from filing under Chapter 7. We find that
the policy change has a substantial impact. There is a roughly two-fold increase in the level
of debt extended without a significant increase in the total amount defaulted. We also find a
significant welfare gain from this policy: households are willing (on average) to pay around
1.6 percent of annual consumption to implement this policy.

Our paper is related to several recent strands of literature on unsecured debt. One
strand, starting with Kehoe and Levine (1993), and more recently Kocherlakota (1996), Ke-
hoe and Levine (2001), and Alvarez and Jermann (2003), studies environments in which
agents can write complete state-contingent contracts with the additional requirement that
contracts satisfy a participation constraint – a constraint that comes from the option to
permanently leave the economy (autarky) rather than meet one’s contractual obligations.
Since the participation constraint is always satisfied, there is no equilibrium default.6 To
model equilibrium default on contractual obligations that resembles a Chapter 7 filing, we
depart from this literature in an important way. In our framework a loan contract between
the lending institution and a household specifies the household’s next-period obligation in-
dependent of any future shock but gives the household the option to default. The interest
rate on the contract can, however, depend on such things as the household’s current total
debt, credit rating, and demographic characteristics that provide partial information on a
household’s earnings prospects (such as its zip code). This assumption is motivated by the
typical credit card arrangement.7 Because of the limited dependence of the loan contract on
future shocks, our framework is closer to the literature on default with incomplete markets
as in Dubey, Geanokoplos, and Shubik (2005), Zame (1993), and Zhang (1997). Zame’s work
is particularly relevant because he shows that with incomplete markets, it may be efficient
to allow a bankruptcy option to debtors.

In innovative work, Athreya (2002) analyzes a model that includes a default option
with stochastic punishment spells. But in his model financial intermediaries charge the

6Kehoe and Levine (2006) suggest that one can interpret the incentive constrained allocation as arising in
an economy where individuals simultaneously lend and borrow from each other, where some agents default,
and the bankruptcy penalty includes a mixture of a Chapter 7-style seizure of assets and a Chapter 13-style
of garnishment of earnings.

7For more detail on the form of the standard credit card ”“contract” see Section III of Gross and Souleles
(2002).
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same interest rate on loans of different sizes even though a large loan induces a higher
probability of default than a small loan. As a result, small borrowers end up subsidizing
large borrowers, a form of cross-subsidization that is not sustainable with free entry of
intermediaries.8 Enforcing zero profits on loans of varying sizes complicates our equilibrium
analysis because there is now a schedule of loan prices to solve for rather than a single
interest rate on loans.9

The paper is organized as follows. In Section 2 we describe our model economy and
characterize the behavior of agents. We the prove existence of equilibrium in Section 3
and characterize properties of the equilibrium loan schedules. We describe and discuss our
calibration targets in Section 4. We discuss the properties of the calibrated economies in
Section 5. In Section 6, we pose and answer our policy question. All proofs are given in the
Appendix.

2 The Model Economy

We begin by specifying the legal and physical environment of our model economy. Then
we describe a market arrangement for the economy. This is followed by a statement of the
decision problems of households, firms, financial intermediaries, and the hospital sector.

2.1 Legal Environment

We model the default option to resemble, in procedure and consequences, a Chapter 7
bankruptcy filing. Consider a household that starts the period with some unsecured debt.
If the household files for bankruptcy (and we permit a household to do so irrespective of its
current income or past consumption level) then the following things happen:

1. The household’s beginning of period liabilities are set to zero (i.e., its debts are dis-
charged) and the household is not permitted to save in the current period. The latter
assumption is a simple way to recognize that U.S. bankruptcy law does not permit those
invoking bankruptcy to simultaneously accumulate assets: a bankrupt must relinquish
all (non-exempt) assets to creditors at the time that discharge of debt is granted by a
bankruptcy court.10

8Lehnert and Maki (2000) have a model with competitive financial intermediaries who can precommit to
long-term credit contracts in which a similar type of cross-subsidization is also permitted.

9Livshits, MacGee, and Tertilt (2003) follow our approach where the zero profit condition is applied to
loans of varying size. However, they assume that creditors can garnish wages of a bankrupt person in the
period in which that person files for bankruptcy and that a person has unrestricted access to unsecured
credit in the period immediately following default.

10Some assets are exempt in a Chapter 7 bankruptcy filing and can be retained by the filer. However,
the nature and value of exempt assets vary across US states, being quite low in some states and quite high
in others. For simplicity, we ignore this variation and assume that no exemptions are permitted. We also
do not address Chapter 13 bankruptcy filings in this paper. In a Chapter 13 filing, debtors can retain their
assets in return for a promise to repay some portion of the total obligation from their future earnings.
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2. The household begins next period with a record of bankruptcy. Let ht ∈ {0, 1} denote
the “bankruptcy flag” for a household in period t, where ht = 1 indicates in period t
a record of a bankruptcy filing in the past and ht = 0 denotes the absence of any such
record. In what follows, we will refer to h as simply the household’s credit record, with
the record being either clean (h = 0 ) or tarnished (h = 1). Thus, a household that
declares bankruptcy in period t, starts period t+ 1 with ht+1 = 1.

3. A household that begins a period with a record of bankruptcy cannot get new loans.11

Also, a household with a record of bankruptcy experiences a loss equal to a fraction
0 < γ < 1 of earnings, a loss intended to capture the pecuniary costs of a bad credit
record.12

4. There is an exogenous probability 1− λ that a household with a record of bankruptcy
will have its record expunged in the following period. That is, a household that starts
period t with ht = 1 will start period t+ 1 with ht+1 = 0 with probability 1− λ. This
is a simple, albeit idealized, way of modeling the fact that a bankruptcy flag remains
on an individual’s credit history for only a finite number of years.

2.2 Preferences and Technologies

At any given time there is a unit mass of households. Each household is endowed with one
unit of time. Households differ in their labor efficiency et ∈ E = [emin, emax] ⊂ IR++ and in
certain characteristics st ∈ S, where S is a finite set. There is a constant probability (1− ρ)
that any household will die at the end of each period. Households that do not survive are
replaced by newborns who have a good credit rating (ht = 0), zero assets (`t = 0 ), and
with labor efficiency and characteristics drawn independently from the probability measure
space (S × E,B(S × E), ψ) where B(·) denotes the Borel sigma algebra and ψ denotes the
joint probability measure. Surviving households independently draw their labor efficiency
and characteristics at time t from a stochastic process defined on the measurable space
(S×E,B(S×E)) with transition function Φ(et|st)Γ(st−1, st) where Φ(et|st) is a conditional
density function and Γ(st−1, st) is a Markov matrix. We assume that for all st, the probability
measure defined by Φ(et|st) is atomless.

There is one composite good produced according to an aggregate production function
F (Kt, Nt) where Kt is the aggregate capital stock that depreciates at rate δ and Nt is

11We interpret the assumption that firms do not lend to households with a record of a bankruptcy filing in
their credit history as a legal restraint on firm behavior. In the context of our model, financial intermediaries
value this restriction because it prevents individual lenders from diluting the punishment from default. In
Chatterjee, Corbae, and Rios-Rull (2004) we present a dynamic adverse selection model in which default
provides an imperfect signal about a household’s type and as a result defaulters may find it prohibitively
costly to borrow.

12There are pecuniary costs of a bad credit rating – such as higher auto insurance premia. For an explicit
analysis of pecuniary costs stemming from a loss of reputation in credit market, see Chatterjee, Corbae, and
Rios-Rull (2007).
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aggregate labor in efficiency units in period t. We make the following assumptions about
technology:

Assumption 1. For all Kt, Nt ≥ 0, F satisfies: (i) constant returns to scale; (ii) diminish-
ing marginal returns with respect to the two factors; (iii) ∂2F/∂Kt∂Nt > 0; (iv) Inada
conditions with respect to Kt, namely, limKt→0 ∂F/∂Kt = ∞ and limKt→∞ ∂F/∂Kt =
0; and (v) ∂F/∂Nt ≥ b > 0.

The composite good can be transformed one-for-one into consumption, investment, and
medical services. As described in detail later, unforeseen medical expenditure is an oft-cited
reason for Chapter 7 bankruptcy filing.

Taking into account the possibility of death, the preferences of a household are given by
the expected value of a discounted sum of momentary utility functions:

E0

{
∞∑

t=0

(βρ)t U (ct, η(st))

}
, (1)

where 0 < β < 1 is the discount factor, ct is consumption and η(st) is a preference shock in
period t. We make the following assumptions on preferences.

Assumption 2. For any given s, U (·, η(s)) is strictly increasing, concave, and differentiable.
Furthermore, there exist s and s in S such that for all c and s, U(c, η(s)) ≤ U(c, η(s)) ≤
U(c, η(s)).

Consumption of medical services does not appear in the utility function because we
treat this consumption as nondiscretionary.13 Furthermore, we assume that consumption
of medical services does not affect the productive efficiency of the household. When they
occur, the household is presented with a hospital bill ζ(st). We assume that each surviving
household has a strictly positive probability of experiencing a medical expense. Specifically,
there exists ŝ ∈ S for which ζ(ŝ) > 0 and Γ(st−1, ŝ) > 0 for all st−1.

2.3 Market Arrangements

We assume competitive factor markets. The real wage per efficiency unit is given by wt ∈
W = [wmin, wmax] with wmin > 0. The rental rate on capital is given by rt.

The addition of a default option necessitates a departure from the conventional modeling
of borrowing and lending opportunities. In particular, we posit a market arrangement where

13Alternatively, we could assume that unless the medical expenditure is incurred the household receives
−∞ utility.
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unsecured loans of different sizes for different types of households are treated as distinct
financial assets. This expansion of the “asset space” is required to correctly handle the
competitive pricing of default risk, a risk that will vary with the size of the loan and household
characteristics. In our model a household with characteristics st can borrow or save by
purchasing a single one-period pure discount bond with a face value in a finite set L ⊂ IR.
The set L contains 0 and positive and negative elements. We will denote the largest and
smallest elements of L by `max > 0 and `min < 0, respectively. We will assume that
FK(`max, emin)− δ > 0.

A purchase of a discount bond in period t with a nonnegative face value `t+1 means
that the household has entered into a contract where it will receive `t+1 ≥ 0 units of the
consumption good in period t+1. The purchase of a discount bond with a negative face value
`t+1 and characteristics st means that the household receives q`t+1,st · (−`t+1) units of the
period-t consumption good and promises to deliver, conditional on not declaring bankruptcy,
−`t+1 > 0 units of the consumption good in period t + 1; if it declares bankruptcy, the
household delivers nothing. The total number of financial assets available to be traded is
NL ·NS, where NX denotes the cardinality of the set X. Let the entire set of NL ·NS prices
in period t be denoted by the vector qt ∈ IRNL·NS

+ . We restrict qt to lie in a compact set
Q ≡ [0, qmax]

NL·NS where 1 ≥ qmax ≥ 0. In the section on steady state equilibrium the upper
bound on q will follow from assumptions on fundamentals.

Households purchase these bonds from financial intermediaries. We assume that both
losses and gains resulting from death are absorbed by financial intermediaries. That is, a
household that purchases a negative face value bond honors its obligation only if it survives
and does not declare bankruptcy, and, symmetrically, an intermediary that sells a positive
face value discount bond is released from its obligation if the household to which the contract
was sold is not around to collect. We assume that there is a market where intermediaries
can borrow or lend at the risk-free rate it. Also, without loss of generality, we assume that
physical capital is owned by intermediaries who rent it to composite goods producers. There
is free entry into financial intermediation and intermediaries can exit costlessly by selling all
their capital.

The hospital sector takes in the composite good as an intermediate input and transforms
it one-for-one into medical services. In our model, as in the real world, some households may
default and not pay their medical bills ζ(st). We assume that if some proportion of aggregate
medical bills is not paid back due to default, then hospitals supply medical services in the
amount ζ(st)/mt to households with characteristic st where the markup mt > 1 is set to
ensure zero profits.

2.4 Decision Problems

The timing of events in any period are: (i) idiosyncratic shocks st and et are drawn for
survivors and newborns; (ii) capital and labor are rented and production of the composite
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good takes place; (iii) household default and borrowing/saving decisions are made, and
consumption of goods and services takes place. In what follows, we will focus on steady-
state equilibria where wt = w, rt = r, it = i, and qt = q.

2.4.1 Households

We now turn to a recursive formulation of a household’s decision problem. We denote any
period t variable xt by x and its period t+ 1 value by x′.

In addition to prices, the household’s current period budget correspondenceB`,h,s,d(e; q, w)
depends on its exogenous state variables s and e, its beginning of period asset position `,
and its credit record h. It will also depend on the household’s default decision d ∈ {0, 1},
where d = 1 indicates that the household is exercising its default option and d = 0 indicates
that it’s not. Then B`,h,s,d(e; q, w) has the following form:

1. If a household with characteristics s has a good credit record (h = 0) and does not exercise
its default option (d = 0) then

B`,0,s,0(e; q, w) = {c ∈ IR+, `
′ ∈ L : c+ q`′,s `

′ ≤ e · w + `− ζ(s)}. (2)

We take into account the possibility that the budget correspondence may be empty in this
case. In particular, if the household is deeply in debt, earnings are low, new loans are
expensive, and/or medical bills are high, then the household may not be able to afford
nonnegative consumption. As discussed below, allowing the budget correspondence to be
empty permits us to analyze both voluntary and “involuntary” default.

2. If a household with characteristics s has a good credit record (h = 0) and net liabilities
(`− ζ < 0) and exercises its default option (d = 1), then

B`,0,s,1(e; q, w) = {c ∈ IR+, `
′ = 0 : c ≤ e · w}. (3)

In this case, net liabilities disappear from the budget constraint and no saving is possible
in the default period. That is we assume that during a bankruptcy proceeding a household
cannot hide or divert funds owed to creditors.

3. If a household with characteristics s has a bad credit record (h = 1) and net liabilities
are nonnegative (`− ζ ≥ 0) then

B`,1,s,0(e; q, w) = {c ∈ IR+, `
′ ∈ L+ : c+ q`′,s `

′ ≤ (1− γ)e · w + `− ζ(s)}, (4)

where L+ = L ∩ IR+. With a bad credit record, the household is not permitted to borrow
and is subject to pecuniary costs of a bad credit record.

4. If a household with characteristics s has a bad credit record ( h = 1) and (`− ζ < 0) then

B`,1,s,1(e; q, w) = {c ∈ IR+, `
′ = 0 : c ≤ (1− γ) e · w}. (5)
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A household with a bad credit record and a net medical liability pays only up to its assets,
cannot accumulate new assets, and begins the next period with a bad credit record. When
the budget set is empty, these assumptions correspond to giving the household another
Chapter 7 discharge. For this reason we denote this case by setting d = 1.14 For simplicity,
we continue to make these assumptions even when the budget set is not empty.15

To set up the household’s decision problem, define L to be all possible (`, h, s)-tuples,
given that only households with a good credit record can have debt and let NL be the
cardinality of L. Then, L ≡ {L−− × {0} × S}∪{L+ × {0, 1} × S} ,where L−− = L\L+. Let
v`,h,s(e; q, w) denote the expected lifetime utility of a household that starts with (`, h, s) and
e and faces the prices q and w and let v(e; q, w) be the vector {v`,h,s(e; q, w) : {`, h, s} ∈ L}
in the set V of all continuous (vector-valued) functions v : E ×Q×W → IRNL .

The household’s optimization problem can be described in terms of a vector-valued oper-
ator (T v)(e; q, w) = {(Tv)(`, h, s, e; q, w) : (`, h, s) ∈ L} which yields the maximum lifetime
utility achievable if the household’s future lifetime utility is assessed according to a given
function v(e; q, w).

Definition 1. For v ∈ V , let (Tv)(`, h, s, e; q, w) be defined as follows:

1. For h = 0 and B`,0,s,0(e; q, w) = ∅:

(Tv) (`, 0, s, e; q, w) = U(e · w, η(s)) + βρ

∫
v0,1,s′(e

′; q, w) Φ(e′|s′) Γ(s, ds′) de′.

2. For h = 0, B`,0,s,0(e; q, w) 6= ∅, and `− ζ(s) < 0:

(Tv) (`, 0, s, e; q, w) = max

{
maxc,`′∈B`,0,s,0

U(c, η(s)) + βρ
∫
v`′,0,s′(e

′; q, w)Φ(e′|s′)Γ(s, ds′)de′,
U(e · w, η(s)) + βρ

∫
v0,1,s′(e

′; q, w)Φ(e′|s′)Γ(s, ds′)de′

}
.

3. For h = 0, B`,0,s,0(e; q, w) 6= ∅, and `− ζ(s) ≥ 0:

(Tv) (`, 0, s, e; q, w) = max
c,`′∈B`,0,s,0

U(c, η(s)) + βρ

∫
v`′,0,s′(e

′; q, w)Φ(e′|s′)Γ(s, ds′)de′.

4. For h = 1 and `− ζ(s) < 0:

(Tv) (`, 1, s, e; q, w) = U(e · w(1− γ), η(s)) + βρ

∫
v0,1,s′(e

′; q, w) Φ(e′|s′)Γ(s, ds′)de′.

14U.S. law does not allow a household to file for Chapter 7 again within 6 years of having filed a Chapter
7 bankruptcy. Instead, such a household can only file for a Chapter 13. Since we do not consider Chapter 13
in this paper, we simply assume that these households receive another Chapter 7 discharge of net liabilities.

15In the computational work that follows this latter case almost never arises. That is, when `− ζ(s) < 0
the budget set is invariably empty because when medical liabilities occur they are large relative to earnings
of households with h = 1.
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5. For h = 1 and `− ζ(s) ≥ 0:

(Tv) (`, 1, s, e; q, w) = max
c,`′∈B`,1,s,0

U(c, η(s)) + βρ

[
λ
∫
v`′,1,s′(e

′; q, w)Φ(e′|s′)Γ(s, ds′)de′

+(1− λ)
∫
v`′,0,s′(e

′; q, w)Φ(e′|s′)Γ(s, ds′)de′

]
.

The first part of this definition says that if the household has debt and the budget set
conditional on not defaulting is empty, the household must default. In this case, the expected
lifetime utility of the household is simply the sum of the utility from consuming its current
earnings and the discounted expected utility of starting next period with no assets and a bad
credit record. The second part says that if the household has net liabilities and the budget
set conditional on not defaulting is not empty, the household chooses whichever default
option yields higher lifetime utility. In the case where both options yield the same utility,
the household may choose either. The difference between default under part 1 and default
under part 2 is the distinction between “involuntary” and “voluntary” default. In the first
case, default is the only option, while in the second case it’s the best option. The third part
applies when a household with a good credit record has no net liabilities. In this case, the
household does not have the default option and simply chooses how much to borrow/save.16

The final two parts apply when the household has a bad credit record and hence no debt.
It distinguishes between the case where it has some net liability (which arises from a large
enough liability shock) and the case where it does not. In the first case, the household is
permitted to partially default on its liabilities as described earlier. In the second case the
household simply chooses how much to save.

Theorem 1 (Existence of a Recursive Solution to the Household Problem). There
exists a unique v∗ ∈ V such that v∗ = T (v∗). Furthermore: (i) v∗ is bounded and
increasing in ` and e; (ii) a bad credit record reduces v∗; (iii) the optimal policy cor-
respondence implied by T (v∗) is compact-valued and upper hemi-continuous; and (iv)
provided u(0, s) is sufficiently low, default is strictly preferable to zero consumption
and optimal consumption is always strictly positive.

Because certain actions involve discrete choice, T (v∗) generally delivers an optimal pol-
icy correspondence instead of a function. Given property (iii) of Theorem 1, the Measur-
able Selection Theorem (Theorem 7.6 of Stokey, Lucas, and Prescott (1989)) guarantees
the existence of measurable policy functions for consumption c∗`,h,s(e; q, w), asset holdings

`
′∗
`,h,s(e; q, w), and the default decision d∗`,h,s(e; q, w).

The default decision rule along with the probabilistic erasure of a bankruptcy flag on the
household’s credit record implies a mapping H∗

(q,w) : (L×E)×{0, 1} → [0, 1] which gives the
probability that the household’s credit record next period is h′. The mapping H∗ is given

16We don’t permit households to default on liabilities ζ when `− ζ ≥ 0. This is without loss of generality
since all assets of a household can be seized during a bankruptcy filing (no exempt assets).
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by:

H∗
(q,w)(`, h, s, e, h

′ = 1) =


1 if d∗`,h,s(e; q, w) = 1
λ if d∗`,h,s(e; q, w) = 0 and h = 1
0 if d∗`,h,s(e; q, w) = 0 and h = 0,

H∗
(q,w)(`, h, s, e, h

′ = 0) =


0 if d∗`,h,s(e; q, w) = 1

1− λ if d∗`,h,s(e; q, w) = 0 and h = 1
1 if d∗`,h,s(e; q, w) = 0 and h = 0.

Then we can define a transition function GS∗(q,w) : (L × E) × (2L × B(E)) → [0, 1] for a
surviving household’s state variables given by

GS∗(q,w)((`, h, s, e), Z) (6)

=

∫
Zh×Zs×Ze

1{`′∗`,h,s(e;q,w)∈Z`} H
∗
(q,w)(`, h, s, e, dh

′) Φ(e′|s′)de′ Γ(s, ds′)

where Z ∈ 2L × B(E) and Zj denotes the projection of Z on j ∈ {`, h, s, e} and where 1. is
the indicator function. Since a household in state (`, h, s, e) could die and be replaced with
a newborn, we can define a transition function GN : (L × E) × (2L × B(E)) → [0, 1] to a
newborn’s initial conditions given by

GN((`, h, s, e), Z) =

∫
Zs×Ze

1{(`′,h′)=(0,0)}ψ(ds′, de′). (7)

Combining these, we can define the transition function G∗
(q,w) : (L×E)×(2L×B(E)) → [0, 1]

for the economy as a whole by

G∗
(q,w)((`, h, s, e), Z) = ρGS∗(q,w)((`, h, s, e), Z) + (1− ρ)GN((`, h, s, e), Z). (8)

Finally, given the transition function G∗, we can describe the evolution of the distribution
of households µ across their state variables (`, h, s, e) for any given prices (q, w) by use of an
operator Υ. Specifically, let M(L×E, 2L×B(E)) denote the space of probability measures.
For any probability measure µ ∈ M(L × E, 2L × B(E)) and any Z ∈ 2L × B(E), define
(Υ(q,w)µ)(Z) by

(Υ(q,w)µ)(Z) =

∫
G∗

(q,w)(`, h, s, e, Z)dµ. (9)

Theorem 2 (Existence of a Unique Invariant Distribution). For any (q, w) ∈ Q ×
W and any measurable selection from the optimal policy correspondence, there exists
a unique µ(q,w) ∈M(L × E, 2L × B(E)) such that µ(q,w) = Υ(q,w)µ(q,w).
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2.4.2 Characterization of the Default Decision

Since the option to default is the novel feature of this paper, it’s useful to establish some
results on the manner in which the decision to default varies with a household’s level of
earnings and with its level of debt. We will characterize the default decision in terms of the
the maximal default set D

∗
`,h,s(q, w). This set is defined as follows: for h = 0 and `− ζ(s) < 0

it consists of the set of e’s for which either the budget set B`,0,s,0(e; q, w) is empty or the value
from not defaulting does not exceed the value from defaulting; for h = 1 and `− ζ(s) < 0 it
consists of the entire set E. The maximal default set will coincide with the set of e for which
d∗`,h,s(e; q, w) = 1 if households that are indifferent between defaulting and not defaulting
choose always to default.

Theorem 3 (The Maximal Default Set Is a Closed Interval). If D
∗
`,h,s(q, w) is non-

empty, it is a closed interval.

The intuition for this result can be seen in the following way. Suppose that there are
two efficiency levels, say e1 and e2 with e1 < e2, for which it is optimal for the household to
default on its debt. Now consider an efficiency level ê that’s intermediate between e1 and
e2. Suppose that the household prefers to maintain access to the credit market at ê even
though it defaults at a higher earnings level e2. It seems intuitive then that the reason for
not defaulting at the lower earnings level associated with ê must be that the household finds
it optimal to consume more than its earnings and incur even more debt. On the other hand,
the fact that the household defaults at the efficiency level e1 but maintains access to the
credit market at the higher efficiency level ê suggests that the reason for not defaulting at the
earnings level associated ê must be that the household finds it optimal to consume less than
its earnings and reduce its level of indebtedness. Since the household cannot simultaneously
be consuming more and less than the earnings level associated with ê, it follows that the
household must default at the efficiency level ê as well.

Theorem 4 (Maximal Default Set Expands with Indebtedness). If `0 > `1, then
D
∗
`0,h,s(q, w) ⊆ D

∗
`1,h,s(q, w).

The result follows from the property that v∗`,0,s(e; q, w) is increasing in ` and the utility
from default is independent of the level of net liabilities. Figure 1 helps to visualize this.

2.4.3 Firms

Firms producing the composite good face a static optimization problem of choosing nonneg-
ative quantities of labor and capital to maximize F (Kt, Nt)−w ·Nt − r ·Kt. The necessary
conditions for profit maximization imply (with equality if the optimal Nt and Kt are strictly
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Figure 1: Typical Default Sets Conditional on Household Type

positive) that

w ≥ ∂F (Kt, Nt)

∂Nt

and r ≥ ∂F (Kt, Nt)

∂Kt

. (10)

2.4.4 Financial Intermediaries

The intermediary chooses the number a`t+1,st ≥ 0 of type (`t+1, st) contracts to sell and the
quantity Kt+1 ≥ 0 of capital to own for each t to maximize the present discounted value of
current and future cash flows

∞∑
t=0

(1 + i)−tπt, (11)

given K0 and a`0,s−1 = 0. The period t cash flow is given by

πt =

 (1− δ + r)Kt −Kt+1

+
∑

(`t,st−1)∈L×S ρ(1− p`t,st−1)a`t,st−1 (−`t)
−
∑

(`t+1,st)∈L×S q`t+1,sta`t+1,st(−`t+1)

 (12)
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where p`t+1,st is the probability that a contract of type (`t+1, st), where `t+1 < 0, experiences
default and it is understood that p`t+1,st = 0 for `t+1 ≥ 0.17 Note that the calculation of cash
flow takes into account that some borrowers will not survive to repay their loans and some
depositors will not survive to collect on their deposits.18

If a solution to the intermediary’s problem exists, then optimization implies

i ≥ r − δ, (13)

q`t+1,st ≤
ρ

1 + i
if `t+1 ≥ 0, (14)

and

q`t+1,st ≥
ρ

1 + i
(1− p`t+1,st) if `t+1 < 0. (15)

If the optimal Kt+1 is strictly positive, then (13) holds with equality. Similarly, if any
optimal a`t+1,st is strictly positive, the associated condition (14) or (15) holds with equality.
Furthermore, any nonnegative sequence

{
Kt+1, a`t+1,st

}∞
t=0

implies a sequence of risk-free
bond holdings {Bt+1}∞t=0 by the intermediary given by the recursion

Bt+1 = (1 + i)Bt + πt, (16)

where B0 = 0.

2.4.5 Hospital Sector

Hospital revenue received from a household in state `, h, s,and e, is given by

(1− d∗`,h,s(e; q, w))ζ(s) + d∗`,h,s(e; q, w) max{`, 0}.

Observe that if a household has positive assets but negative net (after medical shock) li-
abilities and defaults, the hospital receives `. If the household’s assets are negative and it

17Note that households with `t+1 ≥ 0 may still default on their medical liabilities if those liabilities are
sufficiently high.

18Here, and in the household’s decision problem, we assumed that a household enters into a single contract
with some firm. This simplifies the situation in that a household’s end-of-period asset holding is the same as
`′, the size of the single contract entered into by the household. However, this is without loss of generality
in the following sense. Let households write any collection of contracts {`′k ∈ L} as long as `′ =

∑
k `

′k ∈ L.
Consistent with the procedures of a Chapter 7 bankruptcy filing, assume that a household has the option
to either (i) default on all negative face value subcontracts (i.e., loans) or (ii) not default on any of them.
In the case of default, assume that creditor-firms can liquidate any positive face value subcontracts held by
the household and use the proceeds to recover their loans in proportion to the size of each loan. With these
bankruptcy rules in place, the price charged on any subcontract in the collection {`′k ∈ L} must be the price
that applies to the single contract of size `′. Consequently, as long as credit suppliers can condition their
loan price on total end-of-period debt position of a household, there is a market arrangement in which the
household is indifferent between writing a single contract or a collection of subcontracts with the same total
value. Parlour and Rajan (2001) analyze equilibrium in a two-period model of unsecured consumer debt
when such conditioning is not possible.
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defaults, the hospital receives nothing. As noted before, for a bill of ζ, the hospital’s resource
cost is given by ζ/m. Thus, hospital profits in period t are given by∫ [

(1− d∗`,h,s(e; q, w))ζ(s) + d∗`,h,s(e; q, w) max{`, 0} − ζ(s)/m
]
dµt (17)

where µt is the distribution of households over L×E at time t. In steady state, m must be
consistent with zero profits for the hospital sector.

3 Steady-State Equilibrium

In this section we define and establish the existence of a steady-state equilibrium and char-
acterize some properties of the equilibrium loan price schedule. The proof of existence uses
Brouwer’s FPT for a continuous function on a compact domain. Nevertheless, the proof
is not straightforward. The nature of the difficulty – which is related to the possibility of
default – is discussed later in this section.

Definition 2. A steady-state competitive equilibrium is a set of strictly positive prices
w∗, r∗, i∗, a nonnegative loan-price vector q∗, a nonnegative default frequency vec-
tor p∗ = (p∗`′,s)`′∈L,s∈S, a nonnegative hospital mark-up m∗, strictly positive quan-
tities of aggregate labor and capital N∗, K∗, a nonnegative vector of quantities of
contracts a∗ = (a∗`′,s)`′∈L,s∈S, bond holdings by the intermediary B∗, decision rules
`′∗`,h,s(e; q

∗, w∗), d∗`,h,s(e; q
∗, w∗), c∗`,h,s(e; q

∗, w∗) and a probability measure µ∗ such that:

(i) `′∗`,h,s(e; q
∗, w∗), d∗`,h,s(e; q

∗, w∗) and c∗`,h,s(e; q
∗, w∗) solve the household’s optimiza-

tion problem;

(ii) N∗, K∗ solve the firm’s static optimization problem;

(iii) K∗, a∗ solve the intermediary’s optimization problem;

(iv) p∗`′,s =
∫
d∗`′,0,s′(e

′; q∗, w∗)Φ(e′|s′)Γ(s; ds′)de′ for `′ < 0 and p∗`′,s = 0 for `′ ≥ 0
(intermediary consistency);

(v)
∫ [

(1− d∗`,h,s(e; q
∗, w∗))ζ(s) + d∗`,h,s(e; q

∗, w∗) max{`, 0} − ζ(s)/m∗] dµ∗ = 0 (zero
profits for the hospital sector);

(vi)
∫
e dµ∗ = N∗ (the labor market clears);

(vii)
∫

1{(`′∗`,h,s(e;q
∗,w∗)=`′}µ

∗(d`, dh, s, de) = a∗`′,s, ∀(`′, s) ∈ L × S (each loan market

clears);

(viii) B∗ = 0 (the bond market clears);

(ix)
∫
c∗`,h,s(e; q

∗, w∗)dµ∗+
∫ ζ(s)

m∗ dµ
∗+ δK∗ = F (K∗, N∗)−γw∗ ∫ eµ∗(d`, 1, ds, de) (the

goods market clears);
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(x) µ∗ = µ(q∗,w∗) where µ(q∗,w∗) = Υ(q∗,w∗)µ(q∗,w∗) (µ∗ is an invariant probability mea-
sure).

We will use the above definition to derive a set of price equations whose solution implies
the existence of a steady state. Conditions (ii) and (iii) in the definition imply the following
equations. Since N∗ and K∗ are strictly positive, the first order conditions for the firm (10)
and the intermediary (13) imply:

w∗ =
∂F (K∗, N∗)

∂N∗ , r∗ =
∂F (K∗, N∗)

∂K∗ , i∗ = r∗ − δ. (18)

For a∗`′,s > 0, the intermediary first order conditions (14) or (15) imply

q∗`′,s =
ρ(1− p∗`′,s)

1 + i∗
. (19)

For a∗`′,s = 0 we will look for an equilibrium where the intermediary is indifferent between
selling and not selling the associated (`′, s) contract. Then (19) holds for these contracts as
well.

Condition (viii) implies the following equation. From the recursion (16), bond market
clearing (viii) implies cash flow (12) can be written(1− δ + r∗)K∗ −

∑
(`,s−1)∈L×S

ρ(1− p∗`,s−1
)a∗`,s−1

`

−
K∗ −

∑
(`′,s)∈L×S

q∗`′,sa
∗
`′,s`

′

 = 0

or using (18) and (19)

(1− δ + r∗)

K∗ −
∑

(`,s−1)∈L×S

q∗`,s−1
a∗`,s−1

`

−
K∗ −

∑
(`′,s)∈L×S

q∗`′,sa
∗
`′,s`

′

 = 0

where (`, s−1) denotes a loan size and characteristics pair from the previous period. There-
fore, bond market clearing in steady state implies

K∗ =
∑

(`′,s)∈L×S

q∗`′,sa
∗
`′,s`

′. (20)

It can be shown that the goods market clearing condition (ix) is implied by the other
conditions for an equilibrium.19 Thus, we can summarize an equilibrium by the following set

19This is a nontrivial accounting exercise given that our environment admits default on loans and medical
bills. For reasons of space we omit a proof here. The proof is available in the supplementary material section
for this paper on the Econometrica website.
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of four equations. The first two are price equations that incorporate household optimization
(i), intermediary consistency (iv), labor market clearing (vi), loan market clearing (vii), and
(20) into (18) and (19) to yield:

w∗ = FN

 ∑
(`′,s)∈L×S

`′q∗`′,s

∫
1{(`′∗`,h,s(e;q

∗,w∗)=`′}µ
∗(d`, dh, s, de),

∫
e dµ∗

 (21)

q∗`′,s =



ρ

1+FK

(∑
(`′,s)∈L×S `′q∗

`′,s
∫

1{`′∗
`,h,s

(e;q∗,w∗)=`′}µ
∗(d`,dh,s,de),

∫
e dµ∗

)
−δ

for `′ ≥ 0

ρ
(
1−

∫
d∗

`′,0,s′ (e
′;q∗,w∗)Φ(e′|s′)Γ(s;ds′)de′

)
1+FK

(∑
(`′,s)∈L×S `′q∗

`′,s
∫

1{`′∗
`,h,s

(e;q∗,w∗)=`′}µ
∗(d`,dh,s,de),

∫
edµ∗

)
−δ

for `′ < 0

(22)

The other two equations are given by (v) and (x).

Proving the existence of a steady-state equilibrium reduces to proving that there is a fixed
point to equations (21) and (22) where the invariant distribution µ∗ is itself a fixed point
of a Markov process whose transition probabilities depend on the price vector. Provided
the aggregate production function has continuous first derivatives (and these derivatives
satisfy certain boundary conditions) a solution to this nested fixed point problem will exist
(as a simple consequence of the Brouwer’s FPT) if µ∗ is continuous with respect to the
price vector. Given a continuum of households, a sufficient condition for the continuity of
µ∗ is that the set of households that are indifferent between any two courses of action be
of (probability) measure zero. The assumption that the efficiency shock e is drawn from a
distribution with a continuous cdf goes a long way toward ensuring this but, surprisingly, not
all the way. Even with this assumption we cannot rule out that a continuum of households
may be indifferent between defaulting and paying back.20 To work around this problem, in
the appendix we first establish the existence of a steady-state equilibrium for an environment
in which there is an additional bankruptcy cost that is paid in the filing period. The form
of this cost ensures that the set of households that are indifferent between defaulting and
paying back is finite and thereby restores the continuity of the invariant distribution with
respect to the price vector.21 We then take a sequence of steady-state equilibria in which the
filing-period bankruptcy cost converges to zero and establish that the limit of this sequence
is a steady-state equilibrium for the environment of this paper.

The equilibrium loan price vector has the property that all positive face-value loans
(household deposits) bear the risk-free rate and negative face-value loans (household bor-
rowings) bear a rate that reflects the risk-free rate and a premium for the objective default
probability on the loan. Given the risk-free rate, which in equilibrium will depend on µ∗,

20This case will occur if a household that is indifferent between defaulting and paying back finds it optimal
to consume its endowment when paying back. Then, ceteris paribus, households with slightly higher or
slightly lower e’s will also be indifferent between defaulting and paying back.

21This form of additional bankruptcy cost is α · (e− emin) · w where α < 1.
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default probabilities (and hence loan prices) do not depend on µ∗. This is because free entry
into financial intermediation implies that cross-subsidization across loans of different sizes is
not possible; i.e., it’s not possible for intermediaries to charge more than the cost of funds
on small low-risk loans in order to offset losses on large higher-risk loans. For if there were
positive profits in some contracts that were offsetting the losses in others, intermediaries
could enter the market for those profitable loans.

Theorem 5 (Existence) A steady-state competitive equilibrium exists.

For a finite r∗, it is possible that there are contracts (`′ < 0, s) whose equilibrium price
q∗`′,s = 0. Even in this case, intermediaries are indifferent as to how many loans of type (`′, s)
they “sell”; “selling” these loans doesn’t cost the intermediary anything (since the price is
zero) and it (rationally) expects the loans to generate no payoff in the following period.
From the perspective of a household, taking out one of these free loans buys nothing in the
current period but saddles the household with a liability. Since the household can do better
by choosing `′ = 0 in the current period, there is no demand for such loans either.

We now deal with the limits of the set L, for a given s. Models of precautionary savings
have the property that when βρ(1 + r∗ − δ) < 1 there is an upper bound on the amount
of assets a household will accumulate. This upper bound arises because as wealth gets
larger, the coefficient of variation of income goes to zero, and hence the role of consumption
smoothing vanishes.22 Since ours is also a model of precautionary saving, the same argument
applies and `max exists. With respect to the debt limit, `min, it can be set to any value less
than or equal to [emax · wmax] [(1 + r∗ − δ)/(1− ρ+ r∗ − δ)]. This expression is the largest
debt level that could be paid back by the luckiest household facing the lowest possible interest
rate and is the polar opposite of the one in Huggett (1993), Aiyagari (1994), and Athreya
(2002). As we show in the next theorem, for any s, a loan of this size or larger would have
a price of zero in any equilibrium. Hence, as long as the lower limit is at least as low as
− [emax · wmax] [(1 + r∗ − δ)/(1− ρ+ r∗ − δ)], it will not have any effect on the equilibrium
price schedule. We now turn to characterizing the equilibrium price schedule.

Theorem 6 (Characterization of Equilibrium Prices) In any steady-state competitive
equilibrium: (i) q∗`′,s = ρ(1 + r∗ − δ)−1 for `′ ≥ 0; (ii) if the grid for L is suffi-
ciently fine, there exists `0 < 0 such that q∗`0,s = ρ(1 + r∗ − δ)−1; (iii) if the set
of efficiency levels for which a household is indifferent between defaulting and not
defaulting is of measure zero, 0 > `1 > `2 implies q∗`1,s ≥ q∗`2,s; (iv) when `min ≤
− [emax · wmax] [(1 + r∗ − δ)/(1− ρ+ r∗ − δ)] , q∗`min,s = 0.

The first property simply says that firms charge the risk-free rate on deposits. The second
property says that if the grid is taken to be fine enough, there is always a level of debt for

22See Huggett (1993) and Aiyagari (1994) for a detailed argument.
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which it is never optimal for any household to default. As a result, competition leads firms
to charge the risk-free rate on these loans as well. The third property says that the price on
loans falls with the size of loans, i.e., the implied interest rate on loans rises with the size of
the loan. The final property says that the price on loans eventually become zero; i.e., for any
household the price on a loan of size [emax · wmax] [(1 + r∗ − δ)/(1− ρ+ r∗ − δ)] or larger is
always zero in every equilibrium. In other words, the equilibrium delivers an endogenous
credit limit for each household with characteristics s.

4 Mapping the Model to U.S. Data

We now establish that our framework gives a plausible account of the overall facts on
bankruptcy and credit. The challenging part is to account simultaneously for the high
frequency of default and for significant levels of unsecured debt – high frequency of default
makes unsecured debt very expensive, which deters consumer borrowing. We found that two
realistic features account for aggregate default and credit statistics. First, not all unsecured
consumer debt is a result of borrowing from financial intermediaries – some of it is in the
nature of an “involuntary” loan resulting from reasons such as large medical bills. Second,
marital disruption is often cited as a reason for filing – not necessarily related to earnings
shocks. In our model we take into account the possibility of “involuntary” loans through our
modeling of nondiscretionary medical expenses and we take into account private life-events
(such as divorce) as a possible trigger for default through the preference shock. There is a
third feature of the real world that we believe to be important as well but have not mod-
eled in the interests of keeping the dimensionality of the state space lower: that many U.S.
households hold both unsecured debt and (non-exempt) assets – a fact that no doubt lowers
the default premium on unsecured loans and makes them less expensive. We skirt this issue
by focusing on the net asset positions of households but (as explained below) this impairs
our ability to explain some aspects of the data.

We map two versions of our model economy to the data differing by which idiosyncratic
shocks are included. In both versions, the household characteristic s is simply the triplet
(ξ, η, ζ), where ξ denotes a shock that controls the probability distribution of labor efficiency
e, η is a multiplicative preference shock, and ζ is the medical expense shock. We think of
ξ as socioeconomic status (or occupation) upon which the distribution of household labor
efficiencies depend. In the first version, which we label Baseline model economy, we restrict
s = (ξ, 1, 0), so that the only idiosyncratic shocks are to socioeconomic status, efficiency, and
death. We use the Baseline model for illustration purposes because it is simpler and in the
vein of other incomplete market macro models like that of Aiyagari (1994). In the second
version, labeled Extended model economy, we include the idiosyncratic shocks to preferences
and medical liabilities. We use the Extended model economy for the quantitative analysis.
We use the reasons for bankruptcy cited by the Panel Study of Income Dynamics (PSID)
survey participants to determine targets for the fraction of consumer debt, the fraction of
indebted households, and the fraction of people filing for bankruptcy that should plausibly
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be accounted for by the two versions. Plausibility in this context means that the model
should explain the debt and default statistics without generating counterfactual predictions
for macroeconomic aggregates and for earnings and wealth distributions.

4.1 Model Specification

4.1.1 The Baseline Model Economy (Earnings shocks only)

The Baseline model economy has 17 parameters. These parameters are listed below in
separate categories with the number of parameters in each category appearing in parentheses.

Demographics (1) The probability of survival is ρ (which implies that the mass of new
entrants is 1− ρ).

Preferences (2) We assume standard time-separable constant relative risk aversion pref-
erences that are characterized by two parameters, the discount rate, β, and the risk aversion
coefficient, σ.

Technology (3) There are two parameters that determine the properties of the production
function: the exponent on labor in the Cobb-Douglas production function, θ, and the depre-
ciation rate, δ. We also place in this category the fraction of lost earnings while a household
has a bankruptcy on its credit record, γ.

Legal system (1) The legal system is characterized by the average length of the exclusion
from access to credit, λ.

Earnings process (10) The process for earnings requires the specification of a Markov
chain for s = ξ and of the distribution of e conditional on ξ. We use a three-state Markov
chain Γ that we loosely identify with “super-rich” (ξ1), “white-collar” (ξ2), and “blue-collar”
(ξ3). The persistence of the latter two states ensures that earnings display a sizable positive
autocorrelation. The first state provides the opportunity and incentive for a high concen-
tration of earnings and wealth (see Castañeda, Dı́az-Giménez, and Ŕıos-Rull (2003)). This
specification requires 6 parameters in the Markov transition matrix but we reduce it to 4 by
setting the probability of moving from blue-collar to super-rich and vice versa to zero. For
the distribution of labor efficiency shocks we need 6 more parameters, 5 of which pertain
to the upper and lower limits of the range of e for each type (units do not matter and that
frees up one parameter) and one additional parameter to specify the shape of the cdf of e.
We assume the following one-parameter functional form for the distribution function:∫ y

eξ
min

Φ(e|ξ) = P [e ≤ y|ξ] =

[
y − eξ

min

eξ
max − eξ

min

]ϕ

. (23)
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4.1.2 The Extended Model Economy (Earnings, Preference, and Liability Shocks)

In this economy, we keep the Baseline model shocks while adding a multiplicative shock to
the utility function and a medical liability shock. The preference shock takes two values
η ∈ {1, η > 1} and we assume that η = η cannot happen twice in a row. This implies the
need to specify two parameters. The liability shock ζ ∈ {0, ζ > 0} can take on only two
values independent of all other shocks and is i.i.d over time. Therefore, the Markov process
Γ for s = (ξ, η, ζ) has 3× 2× 2 = 12 states.

4.2 Data Targets

We select model parameters to match three sets of statistics: aggregate statistics, earnings
and wealth distribution-related statistics, and statistics on debt and bankruptcy. The targets
– which appear in Tables 3 and 4 – contain relatively standard targets for macroeconomic
variables and statistics of the earnings and wealth distribution obtained from the 2001 SCF
(selected points of Lorenz curves, the Gini indices, and the mean to median ratios). We target
the autocorrelation of earnings of all agents except those in the highest earnings group to
0.75.23

We now turn to the debt and bankruptcy targets and discuss them in more detail since
they are novel. First, according to the Fair Credit Reporting Act, a bankruptcy filing stays
on a household’s credit record for 10 years. This fact is used in our model to calibrate the
length of exclusion from the credit market. Second, according to the Administrative Office
of the U.S. Courts, the total number of filers for personal bankruptcy under Chapter 7 was
1.087 million in 2002. According to the Census Bureau, the total population above age 20
in 2002 was 201 million. Therefore, the ratio of people who file to total population over
age 20 is 0.54%. Third, since in our model households can only save or borrow, we use the
2001 Survey of Consumer Finances to obtain the consolidated asset position of households.
Only people with negative net worth are considered to be debtors. We exclude households
with negative net worth larger than 120% of average income since the debts are likely to be
due to entrepreneurial activity that our model abstracts from. These households are a very
small fraction of the SCF (comprising only 0.13% of the original sample of SCF 2001).24

The average net negative wealth of the remaining households is $631.46, which divided by
per household GDP of $94, 077 is 0.0067. Thus, we take the target debt-to-income ratio to
be 0.67%. Fourth, after excluding the few households with debt more than 120% of average
income, 6.7% of the households in the 2001 SCF had negative net worth.25

The last three statistics are the relevant bankruptcy and debt targets for the Extended

23The PSID data set that can be used to compute autocorrelation of earnings does not include the highest
earners.

24The average amount of debt for this group is $100, 817, or 145% of the average income and their income
is relatively high.

25We also note that 2.6% of the households had zero wealth in the 2001 SCF.
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Table 1: Reasons for Filing for Bankruptcy (PSID, 1984-95)

1 Job loss 12.2%
2 Credit misuse 41.3%
3 Marital disruption 14.3%
4 Health-care bills 16.4%
5 Lawsuit/Harassment 15.9%

Source: Chakravarty and Rhee (1999)

Table 2: Debt and Bankruptcy Targets for Each Model Economy

Economy U.S. Baseline Extended
Reasons covered 1,2,3,4,5 1,2 1,2,3,4,5
Percent of all bankruptcies 100% 53.5% 100%
Percent of households filing 0.54% 0.29% 0.54%
Debt-to-income ratio 0.67% 0.36% 0.67%
Percent of households in debt 6.7% 3.6% 6.7%

Note: The numbers in the “Reasons covered” row are associ-
ated to the number in the previous table.

model since it includes all important motives for bankruptcy. The Baseline model does
not include all motives; consequently its appropriate target values are a fraction of their
data values. According to Chakravarty and Rhee (1999) the PSID classified the reasons
for bankruptcy filings into five categories and we report their findings in Table 1. Among
the five reasons listed, we associate the first two (job loss and credit misuse) with earnings
shocks; marital disruption with preference shocks; and the final two (health-care bills and
lawsuits/harassment) with liability shocks.26 Given these associations, we allocate the total
volume of debt, the fraction of households in debt, and the fraction of filings according to
the fraction of people citing the above reasons. For instance, given that 53.5% of households
cited reasons we associate with earnings shocks, we assume that the fraction of filings cor-
responding to this reason is 0.29% (i.e., 0.535 × 0.0054 = 0.0029). We report these targets
specific to each of the model economies in Table 2.

26We think of marital disruption as leading to higher nondiscretionary spending on the part of each partner,
which in turn increases the marginal utility of discretionary spending. A high value for the multiplicative
shock to preferences is meant to capture this effect.
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Table 3: Baseline Model Statistics and Parameter Values

Statistic Target Model Parameter Value

Targets determined independently
Average years of life 40 40 ρ 0.975
Coefficient of risk aversion 2.0 2.0 σ 2.000
Labor share of income 0.64 0.64 θ 0.640
Depreciation rate of capital 0.10 0.10 δ 0.100
Average years of punishment 10 10 λ 0.100

Targets determined jointly: Inequality
Earnings Gini index 0.61 0.61 Γ2,3 0.219
Earnings mean/median 1.57 1.95 Γ3,3 0.964
Percentage of earnings of 2nd quintile 4.0 4.3 ϕ 0.470
Percentage of earnings of 3rd quintile 13.0 10.5 e1max/e

3
min 21263.9

Percentage of earnings of 4th quintile 22.9 20.3 e1min/e
3
min 14335.7

Percentage of earnings of 5th quintile 60.2 63.5 e2max/e
3
min 116.3

Percentage of earnings of top 2-5% 15.8 17.3 e2min/e
3
min 39.2

Percentage of earnings of top 1% 15.3 15.3 e3max/e
3
min 30.5

Autocorrelation of earnings 0.75 0.74
Wealth Gini index 0.80 0.73
Wealth mean/median 4.03 3.30
Percentage of wealth of 2nd quintile 1.3 3.0
Percentage of wealth of 3rd quintile 5.0 6.3
Percentage of wealth of 4th quintile 12.2 15.2
Percentage of wealth of 5th quintile 81.7 75.1
Percentage of wealth of top 2-5% 23.1 13.6
Percentage of wealth of top 1% 34.7 34.2

Targets determined jointly: Savings, Debt and Default
Prorated percentage of defaulters 0.29 0.29 β 0.917
Prorated percentage in debt 3.6 4.6 γ 0.019
Capital-output ratio 3.08 3.08 Γ1,1 0.020
Prorated debt-output ratio 0.0036 0.0036 Γ2,1 0.001
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4.3 Moments Matching Procedure

The Baseline model economy has 17 parameters, which we classify into two groups. The first
group consists of 5 parameters, each of which can be pinned down independently of all other
parameters by one target. The survival rate ρ is determined to match the average length of
adult life, which we take to be 40 years, a compromise for an economy without population
growth or changes in marital status. The labor share of income is 0.64, which determines θ.
The depreciation rate δ is 0.10, which is consistent with a wealth to output ratio of 3.08 (its
value according to the 2001 Survey of Consumer Finances) and the consumption to output
ratio of 0.70. The transition probability λ, which governs the average length of time that a
bankruptcy remains on a person’s credit record is set to 0.1, consistent with the Fair Credit
Reporting Act. The coefficient of relative risk aversion σ is fixed at 2.

The 12 parameters in the second group – including the discount rate β, the cost of
having a bad credit record γ, 4 parameters governing the transition of type characteristics
Γ, 5 parameters defining the bounds of efficiency levels for the type characteristics, and 1
parameter characterizing the shape of the distribution function of the efficiency shocks in (23)
ϕ – are determined jointly by minimizing the weighted sum of squared errors between the
targets and the corresponding statistics generated by the model. The targets that we choose
are listed in Table 3 and include the main macroeconomic aggregates, the properties of
earnings and wealth inequality and the main statistics of debt and default (the percentage
of defaulters, the percentage in debt, and the debt to output ratio). Our weighting matrix
puts more emphasis on matching the debt and bankruptcy filing targets than on earnings
and wealth distribution targets. The Extended model economy has 16 parameters; the same
12 as the Baseline economy plus 2 preference shock parameters (size and probability) and 2
liability shock parameters (again size and probability).

4.4 Computation of the Steady State

Computation of the equilibrium requires three steps: an inner loop, where the decision
problem of households given parameter values and prices (including loan prices) is solved;
a middle loop, where market-clearing prices are obtained; and an outside loop – or esti-
mation loop – where parameter values that yield equilibrium allocations with the desired
(target) properties are determined. We use a variety of (almost) off-the-shelf techniques,
powerful software (Fortran 90) and hardware (26 processors Beowulf cluster) to accomplish
our task. Space considerations preclude a more detailed discussion of the computational
“tricks” employed to improve the speed and accuracy of calculations. We confirmed our
findings by recomputing equilibria with standard methods that do not speed the process.
The computational task of simulating equilibrium model moments is extremely burdensome:
each equilibrium requires computing thousands of equilibrium loan prices – recall that we
have to solve for equilibrium loan price schedules – and it has taken thousands of computed
equilibria to find satisfactory configurations of parameter values.
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4.5 Results

Table 3 reports the target statistics and their counterparts in the Baseline model economy
as well as the implied parameter values while Table 4 reports the same information for the
Extended model economy. Focusing on the the Extended economy, note that it success-
fully replicates the macro and distributional targets. The capital-output ratio is exactly as
targeted and so is the earnings Gini. The wealth Gini is somewhat lower than in the data
but as Figures 2 and 3 show, the overall fit of the model along these dimensions is quite
good. Turning to the debt and bankruptcy targets, the Extended model economy replicates
successfully the percentage of defaulters and the debt-to-income ratio. It also successfully
replicates the relative importance of the reasons cited for default. However, the percentage
of households in debt is lower than the target. This discrepancy is hard to eliminate be-
cause in the model households that borrow are very prone to default implying a high default
premium on loans. This increases interest rates on loans and reduces the participation of
households in the credit market.27 One important difference between the model and the U.S.
economy is that a typical indebted household has both liabilities and assets. The presence of
non-exempt assets reduces the incentives to default and lowers interest rates and thereby in-
creases borrowing.28 The Baseline model economy also closely replicates the relevant targets
with the exception of the percentage of households in debt.29

5 Properties of the Model Economies

5.1 Distributional Properties

Figure 4 shows the histogram of the wealth distribution in the Extended model, excluding
the long right tail which comprises about 18% of the population. For households with a
good credit record, the model generates a pattern of the wealth distribution that is typical
of overlapping generations models. There is a significant fraction of households with zero
wealth, many of whom are newborns. After that, the measure of households with each level
of assets grows for a while (most households accumulate some savings) before starting to
slowly come down for much larger levels of wealth. There is also a relatively large fraction
of households with small amounts of debt relative to average income and there are some
households with debt in the neighborhood of one-half of average income. There are no

27There are also some other factors that may account for this discrepancy. There are 3.2% of households
with exactly zero assets due in part to the discrete nature of periods (all newborns have zero wealth); this
makes the number of indebted people in the model lower than it ought to be. Also, upon being hit by either
a liability or a preference shock, households default immediately, while in the data it takes longer.

28This difference is also the reason we do not target interest rate statistics. In the model all borrowers have
negative net worth paying very high interest rates. In the real world many borrowers also own non-exempt
assets and the interest rate they pay presumably reflects this fact. To target interest rates in a meaningful
way would require a model in which households hold both assets and liabilities.

29In this case the percentage is somewhat higher in the model relative to the target. But this discrepancy
could reflect an inaccurate target.
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Table 4: Extended Model Economy: Statistics and Parameter Values

Statistic Target Model Parameter Value

Targets determined independently
Average years of life 40 40 ρ 0.975
Coefficient of risk aversion 2.0 2.0 σ 2.000
Labor share of income 0.64 0.64 θ 0.640
Depreciation rate of capital 0.10 0.10 δ 0.100
Average years of punishment 10 10 λ 0.100

Targets determined jointly: Inequality
Earnings Gini index 0.61 0.61 Γ1,1 0.019
Earnings mean/median 1.57 2.12 Γ2,1 0.001
Percentage of earnings in 2nd quintile 4.0 4.1 Γ2,3 0.222
Percentage of earnings in 3rd quintile 13.0 9.7 Γ3,3 0.969
Percentage of earnings in 4th quintile 22.9 20.2 ϕ 0.387
Percentage of earnings in 5th quintile 60.2 64.0 e1max/e

3
min 14599.2

Percentage of earnings in top 2-5% 15.8 18.0 e1min/e
3
min 7661.5

Percentage of earnings in top 1% 15.3 15.3 e2max/e
3
min 70.9

Autocorrelation of earnings 0.75 0.74 e2min/e
3
min 23.8

Wealth Gini index 0.80 0.73 e3max/e
3
min 18.0

Wealth mean/median 4.03 3.22
Percentage of wealth in 2nd quintile 1.3 3.0
Percentage of wealth in 3rd quintile 5.0 6.3
Percentage of wealth in 4th quintile 12.2 15.0
Percentage of wealth in 5th quintile 81.7 75.4
Percentage of wealth in top 2-5% 23.1 14.6
Percentage of wealth in top 1% 34.7 32.3

Targets determined jointly: Savings, Debt and Default
Percentage of defaulters 0.54 0.54 β 0.913
Percentage in debt 6.7 5.0 γ 0.035
Percentage of defaults due to divorces 0.077 0.074 Prob of η̄ 0.012
Percentage of defaults due to hospital bills 0.17 0.17 η̄ 16.80
Capital-output ratio 3.08 3.08 Prob of ζ̄ 0.003
Debt-output ratio 0.0067 0.0068 ζ̄ 1.150
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Figure 2: Earnings Distributions for the U.S. and Extended Model
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Figure 3: Wealth Distributions for the U.S. and Extended Model
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Figure 4: Wealth Histogram in the Extended Model

households borrowing more than 60% because the amount of current consumption derived
from borrowing declines beyond this level of debt due to steeply rising default premia.30

Households with a bad credit record consist mostly of households with very few assets. No
one in this group has debt because these households are precluded from borrowing. The
right tail of this distribution is relatively long, indicating that some households remain with
a bad credit record for many periods and have relatively high earnings realizations.

5.2 Bankruptcy Filing Properties

Figure 5 shows default probabilities in the Extended model on loans taken out in the current
period, conditional on whether households are blue collar or white collar and on whether
they are hit by the preference or the liability shock in the next period.31 We wish to make
four points. First, the probability of filing for bankruptcy is higher for blue collar than
white collar households for every level of debt. This is a natural consequence of white collar
households receiving higher earnings on average than blue collar households. For instance,
at a debt level of average income no white collar worker is expected to default while all blue
collar workers are expected to default. Second, the default probabilities for both types of
households are rising in the level of debt, which is consistent with Theorem 4. Third, no
one is expected to file for bankruptcy with a level of debt near zero, which is consistent with
Theorem 6.ii. In particular, even the blue collar households are not expected to default if

30This point is discussed in more detail in Section 5.5.
31For instance, in Figure 5 the line associated with “Blue Collar Agents” plots the value of∫
d∗`′,0,s′(e′; q∗, w∗)Φ(e′|s′)de′ where s′ = {ξ′3, 1, 0}; the line associated with “White Collar Agents: Liability

Shock” is the same expression with s′ = {ξ′2, 1, ζ̄}.

29



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2  0

P
ro

ba
bi

lit
y 

of
 D

ef
au

lt

Wealth / Average Income

White Collar Agents
White Collar Agents: Preference Shock

White Collar Agents: Hospital Bill Shock
Blue Collar Agents

Blue Collar Agents: Preference Shock
Blue Collar Agents: Hospital Bill Shock

Figure 5: Default Probabilities by Household Types in the Extended Economy
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their debt is less than about one-tenth of average income unless they are hit by the liability
shock. Fourth, the threshold debt level below which there is no default for white collar
households that are not hit by the liability or preference shocks is around four-thirds of
average annual income, and a fraction of white collar households hit by the liability shock
do not default.

Table 5: Earnings and Bankruptcies: Fractions of Agents that Default

Over total population Over population in debt
Economy Baseline Extended Baseline Extended Extended

w/o Hosp. with Hosp.

1st quintile 0.48% 0.75% 9.2% 10.7% 13.7%
2nd quintile 0.48% 0.75% 9.2% 10.7% 13.7%
3rd quintile 0.48% 0.75% 9.2% 10.7% 13.6%
4th quintile 0.03% 0.36% 4.2% 7.0% 10.0%
5th quintile 0.00% 0.09% 0.0% 0.4% 3.2 %
Total 0.29% 0.54% 6.4% 7.9% 10.8%

Table 5 shows the number of people filing for bankruptcy by earning quintiles as a fraction
of the entire population and as a fraction of those in debt. Across the two economies, the
conditional probability of bankruptcy for households in the lowest three earnings quintiles is
very similar but declines sharply in the fourth quintile, and there are few defaulters in the
top quintile (nobody defaults in the top quintile of the Baseline economy while some do in
the Extended economy – recall that the liability shock is large and can hit all agents). The
last two columns of the Table show the difference made by the liability shocks by comparing
the fraction of those in debt due to past debts alone that default (fourth column) or the
fraction of those in debt due to all reasons including this period’s liability shocks. In the
Extended model economy 0.27% of households get hit by the liability shock of which 0.17%
default. The aggregate size of the liability shock (or aggregate medical services) is 0.58% of
output, while actual medical expenditure is 0.31% of output (implying via equation (17) that
the markup m is 87%). An additional aspect of default behavior that is not evident in these
tables is that in every case households below some earnings threshold default. Although the
theory allows for a second (lower) threshold below which people pay back, that does not
happen in the equilibrium of these calibrated economies.
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5.3 Properties of Loan Prices

Since household type is quite persistent, the lower probabilities of bankruptcy of white collar
households translate into their having a lower default premium (higher q) than blue collar
households. Figure 6 shows the price of loans conditional on the the loan size for white- and
blue collar households who have not been hit with either the preference or liability shocks.32

For a debt level of less than one-tenth of average income, the price schedule appears flat. As
shown in Figure 5, for these levels of debt blue collar households default with probability
one only if hit by a liability shock. Similarly, white collar households default only if hit by
a liability shock, but they do not default with probability one. Instead, the probability of
default rises as the loan size increases from zero. Because the probability of liability shocks
is very small, the slight decline in loan prices implied by these default patterns is not evident
in Figure 6. For higher levels of debt the loan price schedule for a white collar household
is above that of blue collar households. This is because type shocks are persistent and, as
evident in Figure 5 white collar workers are less likely to default than blue collar workers. For
white collar households, the kink at a level of debt of approximately 1.4 of average income
results from the fact that for this and lower debt levels, white collar households default only
if hit by the preference or liability shock. For higher levels of debt, white collar households
default also if earnings realizations are low. The average interest rate on loans (weighted
by the number of households in debt) is 30.96%, implying an average default premium of
29.27%.33

5.4 Accounting for Debt and Default

These properties of default and loan price schedules indicate different roles of blue collar and
white collar households in accounting for aggregate filing frequency and consumer debt. Blue-
collar households receive (on average) lower earnings every period and frequently borrow in
order to smooth consumption. On the other hand, if they receive a sequence of bad earnings
shocks they find it beneficial to file for bankruptcy and erase their debt. Since they are more
likely to default, blue collar households have to pay a relatively high default premium and
the premium soars as the size of the loan increases. As a result blue collar households borrow
relatively frequently in small amounts and constitute the majority of those who go bankrupt.
But because they borrow small amounts they account for only a small portion of aggregate
consumer debt. In contrast, white collar households face a lower default premium on their
loans because they earn more on average. Therefore they borrow a lot more than blue collar
households when they suffer a series of bad earnings shocks. The households with large
amounts of debt in our Extended model consist of these white collar households. As long

32For instance, the line for “White Collar Agents” is q`,s where s = {ξ2, 1, 0}.
33If we weight by the amount of debt for each debtor, the average loan interest rate is 55.97%, substantially

higher than the average rate paid per household because there are a small number of households who borrow
a large amount at very high interest rates. This is consistent with the histogram of household wealth shown
in Figure 4.
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Table 6: The Extended Model versus the Bewley and Aiyagari Economies

Economy Extended Bewley economy Aiyagari economy
Availability of loans Yes No Yes
Default premium Yes – No
Output (normalization) 1.00 1.00 1.00
Total asset 3.08 3.12 2.90
Total debt 0.0068 – 0.13
Percentage that file 0.54% – –
Percentage with bad credit record 4.23% – –
Percentage in debt 4.99% – 26.84%
Rate of return of capital 1.69% 1.55% 2.41%
Avg loans rate (persons-weighted) 30.96% – 2.41%

as these households remain white collar they maintain access to credit markets. But they
file for bankruptcy if their employment status changes to blue collar because they then face
an extremely high default premium on their debt. This story resembles the plight of some
members of the American middle class who borrowed a lot because they were considered to
be earning a sufficient amount but filed for bankruptcy following a big persistent adverse
shock to their earning stream. To summarize, in our model blue collar households account
for a large fraction of bankruptcies, and a large fraction of households in debt while white
collar households account for the large level of aggregate consumer debt.

5.5 A Comparison with Standard Exogenous Borrowing Limits

We conclude this section by comparing our results with the two extremes typically assumed
in general equilibrium economies with heterogeneous agents: either agents are completely
prevented from borrowing (the Bewley (1983) economy) or there is full commitment and
hence agents can borrow up to the amount they can repay with probability one (the Aiyagari
(1994) economy). Table 6 compares the steady states of the Bewley and Aiyagari economies
with our Extended model economy. A critical difference between these three models is the
form of the borrowing limit. The Bewley borrowing limit is exogenously set at zero. For the
Aiyagari economy we assume that only those households who are hit with a liability shock
and cannot consume a positive amount without default are permitted to default.34

As is apparent from the table, aggregate asset holdings in our economy are closer to

34The results are essentially the same under this assumption as in the case of the Baseline model, where
no one is permitted to default. In this alternative model, the wealth-to-output ratio is 2.88.
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the Bewley model than the Aiyagari model. In terms of aggregate wealth-to-output ratio,
the Extended model accounts for (or economizes on) 18%(=(3.12-3.08)/(3.12-2.90)) of the
difference in the wealth-to-income ratios between the Bewley and Aiyagari economies. In
terms of debt, there is only about 5% of the debt of the Aiyagari economy and in terms of
the percentage of households in debt, the Extended model economy has 19% of the number
of borrowing households in the Aiyagari economy.

Table 7 shows the endogenous borrowing limits for each of the three earnings types (super-
rich, white collar, and blue collar) for the model economies. In the Extended model there

Table 7: Comparison of Borrowing Limits

Earnings type 1 (Super-rich) 2 (White-collar) 3 (Blue-collar)

Bewley economy 0.00 0.00 0.00
Aiyagari economy 3.56 1.70 1.70
Extended model B1(s) 1280 1280 5.35
Extended model B2(s) 12.08 1.00 0.14

1 Unit is proportion to the average income of the respective economy.
1 For all economies, borrowing limits for agents that are not hit by either

the preference shock or the hospital bills shock are shown.

are two kinds of borrowing limits. One is the smallest loan size for which the corresponding
price q is zero, conditional on the type of household. We denote this borrowing limit B1(s).
Formally, B1(s) = −max {` ∈ L− : q`,s = 0}. The other borrowing limit, B2(s), is the level
of debt for which ` ·q`,s is maximum. Formally, B2(s) = −argmax`∈L−{` ·q`,s}. No one would
want to agree to pay back more than this amount because they would be receive less for such
a commitment today: this happens because the default premium on the loan rises rapidly
enough to actually lower the product ` · q`,s. This borrowing limit for blue collar households
(0.14 of average income) is less than one-tenth of Aiyagari’s limit (1.70 of average income).
From the histogram of the wealth distribution presented earlier we know there is a mass
of borrowers at this debt level. This mass of households is constrained by the B2(s) limit.
Since blue collar households are the ones most likely to be in need of loans, the Extended
economy imposes a stricter borrowing constraint for a subset of the population than the
Aiyagari economy.
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5.6 Borrowing Constraints and Consumption Inequality

Borrowing constraints have important implications for consumption inequality. Table 8
shows the earnings and consumption inequality of the Extended economy compared to the
Bewley and Aiyagari economies. In all economies the degree of consumption inequality is
substantially lower than the degree of earnings inequality since the households use savings
to smooth consumption fluctuations. However, there are some differences in consumption
inequality across the three economies. The standard deviation of log consumption of the
Extended economy is about 2% higher than for the Aiyagari economy. On the other hand,
the standard deviation of log consumption in the Extended economy is 2% lower than in
the Bewley economy. This shows that while the Extended economy may look more like
the Bewley economy in terms of its borrowing characteristics it still manages to reduce half
of the difference between the Bewley and the Aiyagari economy in terms of consumption
inequality.

Table 8: Consumption and Earnings Inequality

Std Dev Quintiles
of log 1st 2nd 3rd 4th 5th

Extended model
Earnings 1.159 2.1% 4.1% 9.7% 20.2% 64.0%
Consumption 0.677 6.5% 10.4% 13.5% 20.1% 49.5%

Bewley economy
Earnings 1.159 2.1% 4.1% 9.7% 20.2% 64.0%
Consumption 0.691 6.4% 10.5% 13.6% 20.1% 49.4%

Aiyagari economy
Earnings 1.159 2.1% 4.1% 9.7% 20.2% 64.0%
Consumption 0.658 7.2% 9.8% 12.8% 19.9% 50.3%

6 Policy Experiment

Given that our model matches the relevant U.S. statistics on consumer debt and bankruptcy,
it is possible to examine the consequences of a change in regulation that affects unsecured
consumer credit. Here we evaluate a recent change to the bankruptcy law, which limits
“above-median-income” households from filing under Chapter 7. We assume that agents
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cannot file for bankruptcy if their income in the model economy is above the median (around
34% of average output) and repaying the loan would not force consumption to be negative.35

In our Extended economy this means that white collar agents cannot default as their income
is above the median. Table 9 reports the changes in the model statistics with this policy for
two cases. In the first case, the real return on capital is held fixed at the pre-policy-change
level (which is what we mean by “No” general equilibrium effect), while in the second case
the real return is consistent with a post-policy-change general equilibrium. We focus on the
numbers with the full general equilibrium effects but note that such effects are very small.

6.1 Effects on Allocations

The first thing to note is that the aggregate implications of the policy are very small in terms
of total savings and the number of filers, but quite substantial in terms of total borrowing
(which almost doubles) and the average interest rate charged on loans which is reduced
by more than one-half. The first panel of Figure 7 shows the default probabilities in the
Extended model for blue and white collar workers. Notice that the units in the horizontal
axis is much larger than the units in Figure 5, indicating the strong limits imposed on
default by the means-testing policy. The second panel compares the default probabilities
for those that were not hit by either the liability or the preference shock in the Extended
Economy with and without the means-testing policy. The default probabilities for blue collar
workers are reduced substantially and for a certain range it is reduced to zero. The default
probabilities for white collar households fall only for very large volumes of debt. As a result,
the loan price schedules shift up (the default premium schedules shift down) for both types
of households, as shown in Figure 8. Even though the change in default probability for the
white collar households is not substantial, the default premia on loans to both white- and
blue collar households drop substantially. This is because for both types of households there
is a positive probability of being blue collar in the next period.

Table 9 presents the changes in aggregate statistics resulting from this policy. Most inter-
estingly, the number of bankruptcy filings barely changes even though the default probability
schedule conditional on type shifts down for each type of household. This occurs because
the percentage of households in debt increases dramatically in response to lower interest
rates on loans. Specifically, the percentage of households in debt goes up by more than 60%,
from 5.0% to 8.2%. Total debt almost doubles, implying that on average households take on

35The law is more complicated than our experiment. A person cannot file under Chapter 7 (and effectively
would have to pursue Chapter 13) if all of the following three conditions are met: (1) The filer’s income is
at least 100 percent of the national median income for families of the same size up to four members; larger
families use median income for a family of four plus an extra $583 for each additional member over four.
(2) The minimum percentage of unsecured debt that could be repaid over 5 years is 25 percent or $5000,
whichever is less. (3) The minimum dollar amount of unsecured debt that could be repaid over 5 years is
$5000 or 25%, whichever is less. We summarize these criteria by restricting filing to those with lower than
median earnings as long as not doing so results in negative consumption. The alternative would be to keep
increasing the liabilities for a few more periods. Our choices are consistent with the law which allows, for
instance, a household with high medical liabilities to file even if their income is above median.
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Table 9: Allocation Effects of Means-Testing in the Extended Model

Economy Extended Bankruptcy restriction
Max earnings for filing ∞ Median income
General equilibrium effect – No Yes
Output (normalization) 1.00 1.00 1.00
Total asset 3.08 3.03 3.05
Total debt 0.0068 0.0129 0.0128
Percentage that file 0.54% 0.53% 0.53%
Percentage with bad credit record 4.23% 4.14% 4.13%
Percentage in debt 4.99% 8.24% 8.17%
Rate of return of capital 1.69% 1.69% 1.80%
Avg loans rate (persons-weighted) 30.96% 12.90% 13.04%

bigger loans.

6.2 Effects on Welfare

In assessing the welfare effects of any policy change one must take into account the transi-
tion path to the new steady state. This is a daunting computational task when taking into
account the general equilibrium effects on the rate of return and on wages (the closed econ-
omy assumption). Our findings that the long-run effects of either the small open economy
assumption or the closed economy assumption reported in Table 9 indicate that the welfare
calculation based on the small open economy assumption is not only interesting in itself but
also quite close to what would prevail in a closed economy. Obviously, our welfare analysis
compares allocations with and without the implementation of the means-testing policy under
the same initial conditions – the wealth and credit record distribution in the steady state of
the Extended model economy without means-testing.

An important additional consideration arises in our environment when conducting welfare
analysis: There are multiple agent types and, therefore, there will not be agreement among
types as to the desirability of a policy change. Consequently, some form of aggregation is
necessary. We use two aggregation criteria. The first criterion is the percentage of households
that are made better off by the policy change and thus support it. The second criterion is
the average gain as measured by the average of the percentage increase in consumption each
household would be willing to pay in all future periods and contingencies so that the expected
utility from the current period in the initial steady state equals that of the equilibrium
associated with the new policy. Because of our assumption on the functional form of the
momentary utility function, the consumption equivalent welfare gain for a household of type
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(`, h, s) can be computed as:

100

([∫
ṽ`,h,s(e; q, w)Φ(e|s)de∫
v`,h,s(e; q, w)Φ(e|s)de

] 1
1−σ

− 1

)
, (24)

where ṽ`,h,s is the value function in the equilibrium associated with the new policy.

Table 10: Welfare Effect of Means-Testing

Shock Preference Shock Liability Shock Total
Hit Not Hit Not

Proportion of households 0.012 0.988 0.003 0.997 1.000
Average % gain in flow consumption
With bad credit record 0.52 0.80 0.75 0.80 0.80
With good credit record and debt 32.35 6.64 0.35 6.95 6.93
With good credit record and no debt 3.56 1.37 0.76 1.40 1.39
Total 4.75 1.60 0.74 1.64 1.64
% of households in favor of reform
With bad credit record 100.0 100.0 100.0 100.0 100.0
With good credit record and debt 91.4 100.0 96.8 99.9 99.9
With good credit record and no debt 100.0 100.0 98.0 100.0 100.0
Total 99.6 100.0 98.0 100.0 100.0

Table 10 reports the desirability of the policy change for the two aggregation criteria.
First of all, we see that the welfare benefits of the policy reform are large – about 1.6%
of average consumption – as measured by the utilitarian average of consumption-equivalent
gains. We also see that the policy reform receives almost unanimous support: around 0.01%
of households oppose it. The largest gains accrue to those with a good credit record and
debt. A possible explanation of why this is such a good policy is that means-testing takes
away the right to default in situations where the size of the utility gain from defaulting are
positive but not very high. Therefore, most people prefer to give this option up in exchange
for lower interest rates (of course, people who oppose it are those with above-median earnings
and a lot of debt – i.e., individuals for whom the policy binds strongly – but there are not
many of them).36

36In an earlier version of this paper, which employed a somewhat different calibration, we explored another
policy experiment where we reduced the mean exclusion time from borrowing following default from 10 to 5
years. For details, see Appendix B of http://www.phil.frb.org/files/wps/2005/wp05-18.pdf
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7 Conclusions

In this paper we accomplished four goals. First, we developed a theory of default that
is consistent with U.S. bankruptcy law. In the process we characterized some theoretical
properties of the household’s decision problem and proved the existence of a steady-state
competitive equilibrium. A key feature of the model is that it treated different-sized consumer
loans taken out by households with observably different characteristics as distinct financial
assets with distinct prices. Second, we showed that the theory is quantitatively sound in
that it is capable of accounting for the main facts regarding unsecured consumer debt and
bankruptcy in the U.S. along with U.S. facts on macroeconomic aggregates and facts on
inequality characteristics of U.S. earnings and wealth distributions. Third, we explored the
implications of an important recent change in the bankruptcy law that limits the Chapter
7 bankruptcy option to households with below-median earnings. We showed that the likely
outcome of this change will be a decrease in interest rates charged on unsecured loans, an
increase in both the volume of debt and the number of borrowers without having necessarily
having an increase in the number of bankruptcies. Furthermore, our measurements indicated
that the changes will be big – for instance, the volume of net unsecured debt may almost
double. Finally, we constructed measures of the welfare effects of the policy change. From
the point of view of average consumption, our calculations indicate that the benefits of the
change are large: on the order of 1.5 percent of average consumption. From the point of view
of public support, we found that almost all households support the change. In terms of future
research, two issues seem important. First, analyzing environments in which households have
some motive for simultaneously holding both assets and liabilities is likely to improve our
understanding of the unsecured consumer credit market. Second, incorporating unobserved
differences among households with regard to willingness to default is also likely to improve
our understanding of what happens to a household’s credit opportunities after bankruptcy
and, therefore, to the costs of default, especially if we take into account that individuals with
bad credit scores can still have access to credit.
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A Appendix

For reasons given in the text, the appendix generalizes the environment in the paper to include a
bankruptcy cost α · (e − emin) · w with α ∈ [0, α] = A where α < 1 to be paid only at the time
of default. This requires us to expand the space on which the operator T is defined to include A
and modify the operator T for case 2 (where the household chooses whether to default or not) in
Definition 1 to be:

(Tv) (`, 0, s, e;α, q, w) =

max
{

maxc,`′∈B`,0,s,0
u(c, s) + βρ

∫
v`′,0,s′(e′, α; q, w)Φ(e′|s′)Γ(s, ds′)de′,

u([e− α · (e− emin)] · w, s) + βρ
∫
v0,1,s′(e′, α; q, w)Φ(e′|s′)Γ(s, ds′)de′

}
,

where to conserve on notation we let u(c, s) denote U(c, η(s)).

A.1 Results for Theorems 1 and 2

The following restriction formalizes the assumption concerning u(0, s) in part (iv) of Theorem 1.

Assumption A1. For every s ∈ S,

u ((1− γ)emin · wmin, s)− u(0, s)

>

(
βρ

1− βρ

)
[u (emax · wmax + `max − `min, s)− u ((1− γ)emin · wmin, s)] .

Definition A1. Let V be the set of all continuous (vector-valued) functions v : E×A×Q×W →
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RNL such that:

v`,h,s(e;α, q, w) ∈
[
u[emin · wmin(1− γ), s]

(1− βρ)
,
u(emax · wmax + `max − `min, s)

(1− βρ)

]
, (25)

`0 ≥ `1 ⇒ v`0,h,s(e;α, q, w) ≥ v`1,h,s(e;α, q, w), (26)

e0 ≥ e1 ⇒ v`,h,s(e0;α, q, w) ≥ v`,h,s(e1;α, q, w) (27)

v`,0,s(e;α, q, w) ≥ v`,1,s(e;α, q, w), (28)

u(emin · wmin(1− γ), s) + βρ

∫
v0,1,s′(e′, α; q, w)Φ(e′|s′)Γ(s, ds′)de′ (29)

> u(0, s) + βρ

∫
v`max,0,s′(e′, α; q, w)Φ(e′|s′)Γ(s, ds′)de′.

Lemma A1. V is non-empty. With ‖v‖ = max`,h,s

{
supe,α,q,w∈E×A×Q×W |v`,h,s(e;α, q, w)|

}
as the

norm, (V, ‖·‖) is a complete metric space.

Proof. To prove V is non-empty pick any constant vector-valued function satisfying (25). Such a
function is continuous and clearly satisfies (26)-(28). Since it is a constant function, (29) reduces
to the requirement that u(emin(1− γ) ·wmin, s)−u(0, s) > 0 which is satisfied by virtue of emin(1−
γ) · wmin > 0 and the strict monotonicity of u(·, s). To prove (V, ‖·‖) is complete, let C be the
set of all continuous (vector-valued) functions from E × A × Q ×W → RNL . Then, (C, ‖.‖) is a
complete metric space. Since any closed subset of a complete metric space is also a complete metric
space it is sufficient to show that V ⊂ C is closed in the norm ‖.‖. Let {vn} be a sequence of
functions in V converging to v, i.e., limn→∞ ‖vn − v∗‖ = 0. If v∗ violates any of the range and
monotonicity properties of V, there must be some vn, for n sufficiently large, that violates those
properties as well. But that would contradict the assertion that vn belongs to V for all n. Hence,
v∗ must satisfy all the range and monotonicity properties (25)-(28). To prove that v∗(e;α, q, w) is
continuous simply adapt the final part of the proof of Theorem 3.1 in Stokey, Lucas, and Prescott
(1989) to a vector-valued function. �

We now turn to properties of the operator T . It is convenient to have notation for the value of
consumption for any action {`′, d} ∈ L×{0, 1} (including actions that imply negative consumption).
We will denote consumption for a household with `, h, s who takes actions `′, d by c`

′,d
`,h,s(e;α, q, w).

Then, c0,1
`,0,s(e;α, q, w) ≡ [emin + (1− α)(e− emin)] · w > 0, c0,1

`,1,s(e;α, q, w) ≡ e(1 − γ) · w > 0,

c`
′,0

`,h,s(e;α, q, w) ≡ w · e(1 − γh) + ` − ζ(s) − q`′,s`
′. Observe that the value of consumption for

{`′, 0} can be negative.

It is also convenient to define the expected utility of a person who starts next period with
`′, h′, s′: ω`′,h′,s(v) ≡

∫
v`′,h′,s′(e

′;α, q, w)Φ(e′|s′)Γ(s, ds′ )de′. Observe that ω is defined for a given
v and so depends on α, q, w. In what follows, we will sometimes make this dependence explicit.
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Using similar notation, for any given pair of discrete actions {`′, d} ∈ L×{0, 1}, we define lifetime
utility as follows: (i) For h = 0, `−ζ(s) ≥ 0, φ`′,0

`,0,s(e, α, q, w;ω(v)) ≡ u
(
max

{
c`
′,0

`,0,s(e;α, q, w), 0
}
, s
)
+

βρω`′,0,s(v); (ii) For h = 0, `− ζ(s) < 0, φ0,1
`,0,s(e, α, q, w;ω(v)) ≡ u

(
c0,1
`,0,s(e;α, q, w), s

)
+βρω0,1,s(v)

and φ`′,0
`,0,s(e, α, q, w;ω(v)) ≡ u

(
max

{
c`
′,0

`,0,s(e;α, q, w), 0
}
, s
)

+βρω`′,0,s(v); (iii) For h = 1, `−ζ(s) ≥

0, φ`′,0
`,1,s(e, α, q, w;ω(v)) ≡ u

(
max

{
c`
′,0

`,1,s(e;α, q, w), 0
}
, s
)

+ βρ×[
λω`′,1,s(α, q, w; v) + (1− λ)ω`′,0,s(v)

]
; (iv) Finally, for h = 1, `− ζ(s) < 0, φ0,1

`,1,s(e, α, q, w;ω(v)) ≡
u
(
c0,1
`,1,s(e;α, q, w), s

)
+ βρω0,1,s(v).

Then we have:

Lemma A2. For any (`′, d), φ`′,d
`,h,s(e, α, q, w;ω(v)) is continuous in e, α, q, and w.

Proof. Observe that c`
′,d

`,h,s(e;α, q, w) are each continuous functions of e, α, q, and w and u is a
continuous function in its first argument. Further, ω`′,h′,s(v) is continuous in α, q and w because
v ∈ V and integration preserves continuity. �

Lemma A3. For v ∈ V, (T v)(e;α, q, w) is continuous in e, α, q, and w.

Proof. By Lemma A2, φ`′,d
`,h,s(e, α, q, w;ω(v)) is continuous. Hence, max`′,d φ

`′,d
`,h,s(e, α, q, w;ω(v)) is

also continuous in e, α, q, and w. Then it is sufficient to establish that ∀`, h, s ∈ L,

(Tv)(`, h, s, e;α, q, w) = max
`′,d

φ`′,d
`,h,s(e, α, q, w;ω(v)).

If the maximum is over feasible (`′, d), (Tv)(`, h, s, e;α, q, w) = max`′,d φ
`′,d
`,h,s(e, α, q, w;ω(v)). Fur-

thermore, for infeasible (`′, d) the payoff φ`′,d
`,h,s(e, α, q, w;ω(v)) is assigned a value that is always

(weakly) dominated by some feasible `′, d. This follows because by property (29) the utility from
consuming nothing today and starting next period with `max and a good credit record (the highest
utility possible with an infeasible action) is less than the utility from consuming emin ·wmin (1− γ)
today and starting next period with zero assets and a bad credit record (the lowest utility possible
with a feasible action). �

Corollary to Lemma A3. For any v ∈ V, the consumption implied by (Tv)(`, h, s, e;α, q, w) is
strictly positive.

Proof. The exact same argument as in Lemma A3 can be used to establish that a feasible choice
involving zero consumption is always strictly dominated by a feasible choice involving positive
consumption. �

Lemma A4. Given Assumption A1, T is a contraction mapping with modulus βρ.

Proof. We first establish that T (V) ⊂ V.

For v ∈ V, T is continuous by Lemma A3.

To establish that T preserves the boundedness property (25), note that since q`min,s ∈ [0, 1],
consumption can never exceed emax · wmax + `max − `min. Therefore, (Tv)(`, h, s, e;α, q, w) ≤
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(1− βρ)−1 u(emax · wmax + `max − `min, s). And, since α < 1, c = (1 − γ)emin·wmin is feasible
for all `, h,s,e, α, q,and w. Therefore (Tv)(`, h, s, e;α, q, w)≥ 1

(1−βρ) u ((1− γ)emin · wmin, s) . Hence

(T v)(e;α, q, w)

∈
[

1
(1− βρ)

u ((1− γ)emin · wmin, s) ,
1

(1− βρ)
u (emax · wmax + `max − `min, s)

]NL

.

To establish that T preserves the monotonicity property (26), consider a household with a given
h, s and two different asset holdings `0 > `1. (i) If 0 > `0 then for d ∈ {0, 1}, B`1,0,s,d(e;α, q, w) ⊆
B`0,0,s,d(e;α, q, w) and the result follows; (ii) if `0 ≥ 0 > `1 and `0 ≥ ζ(s) then B`1,0,s,d(e;α, q, w) ⊆
B`0,0,s,0(e;α, q, w) and the result follows from using (28); (iii) if `0 ≥ 0 > `1 and `0 < ζ(s) then
B`1,0,s,d(e;α, q, w) ⊆ B`0,0,s,d(e;α, q, w) and the result follows; (iv) if `1 ≥ 0 and `1 < ζ(s) ≤ `0 then
B`1,h,s,d(e;α, q, w) ⊆ B`0,h,s,0(e;α, q, w) and the result follows from using (28); and (v) if `1 ≥ 0 and
`1 ≥ ζ(s) then B`1,h,s,0(e;α, q, w) ⊆ B`0,h,s,0(e;α, q, w) and the result follows.

To establish that T preserves the monotonicity property (27), consider a household with
a given `, h, s and two different efficiency levels e0 > e1. Since α < 1, B`,h,s,d(e1;α, q, w) ⊆
B`,h,s,d(e0;α, q, w) and the result follows.

To establish that T preserves the monotonicity property (28), consider a household with a given
`, s and two different credit records. (i) If ` − ζ(s) < 0, B`,1,s,1(e;α, q, w) ⊆ B`,0,s,d(e;α, q, w) and
the result follows; (ii) if `− ζ(s) ≥ 0, B`,1,s,0(e;α, q, w) ⊆ B`,0,s,0(e;α, q, w) the result follows from
using (28).

To establish that T preserves the “default at zero consumption” property (29), by Assumption
A1 and the fact that T satisfies the boundedness property it follows that

u ((1− γ)emin · wmin, s)− u(0, s) > β ρ [(Tv)(`max, 0, s, e;α, q, w)− (Tv)(0, 1, s, e;α, q, w)] .

Re-arranging gives:

u ((1− γ)emin · wmin, s) + β ρ (Tv)(0, 1, s, e;α, q, w) > u(0, s) + β ρ (Tv)(`max, 0, s, e;α, q, w).

Next we establish that T is a contraction with modulus βρ. The first step is to establish
the analogue of the Blackwell monotonicity and discounting properties. Monotonicity: Let v,
v′ ∈ V and v(e;α, q, w) ≤ v′(e;α, q, w) for all e, α, q, w. From the definition of the T operator
it’s clear that (T v) ≤ (T v′). Discounting: It’s also clear that for any κ ∈ RNL

+ , [T (v + κ)]
(e;α, q, w) = (T v)(e;α, q, w) + β ρ κ. To prove that T is a contraction mapping, simply adapt the
final part of the proof of Theorem 3.3 in Stokey, Lucas, and Prescott (1989) to a vector-valued
function. This establishes that T is a contraction mapping with modulus βρ. �

Theorem 1 (Existence of a Recursive Solution to the Household Problem). There ex-
ists a unique v∗ ∈ V such that v∗ = T (v∗). Furthermore: (i) v∗ is bounded and increasing in `
and e; (ii) a bad credit record reduces v∗; (iii), the optimal policy correspondence implied by
T (v∗) is compact-valued and upper hemi-continuous; and (iv) provided u(0, s) is sufficiently
low, default is strictly preferable to zero consumption and consumption is strictly positive.
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Proof. Existence and uniqueness of v∗, as well as properties (i), (ii), and (iv) follow directly from
Lemmas A1, A3, A4, and the Corollary to Lemma A3. To prove part (iii) define the optimal policy
correspondence to be

χ`,h,s(e;α, q, w) = {(c, `′, d) ∈ B`,h,s,d(e;α, q, w) :(c, `′, d) attains v∗`,h,s(e;α, q, w)}.

To establish the first part of (iii), note that the correspondence χ`,h,s(e;α, q, w) is bounded
because c is bounded between 0 and emax · wmax + `max − `min, and (`′, d) ∈ L × {0, 1}. To
prove that χ`,h,s(e;α, q, w) is closed, let {cn, `′n, dn} be a sequence in χ`,h,s(e;α, q, w) converg-
ing to (c, `′, d). Since (`′, d) are elements of finite sets, ∃η such that ∀n > η, (`′n, dn) = (`′, d).

Given that (cn, `
′
, d) attains v∗`,h,s(e;α, q, w), ∀n > η we have cn = c`

′
,d

`,h,s(e;α, q, w). Therefore,

c = c`
′
,d

`,h,s(e;α, q, w) and (c, `′, d) ∈ χ`,h,s(e;α, q, w). To establish the second part of property (iii), let
{`n, hn, sn, en, αn, qn, wn} → (`, h, s, e, α, q, w). Since L is finite we can fix (`n, hn, sn) = (`, h, s) and
simply consider en, αn, qn, wn → e, α, q, w. Let {cn, `′n, dn} ∈ χ`,h,s(en;αn, qn, wn). Since the corre-

spondence is compact-valued, there must exist a subsequence {cnk
, `′nk

, dnk
} converging to (c, `′, d).

Furthermore, since `′ and d take on only a finite number of values, ∃ η such that ∀nk > η we have
(cnk

, `′nk
, dnk

) =
(
c`
′
,d

`,h,s
(enk

;αnk
, qnk

, wnk
), `′, d

)
. Then by optimality φ`

′
,d

`,h,s
(enk

, αnk
, qnk

, wnk
;ω∗(αnk

, qnk
, wnk

)) =

v∗
`,h,s

(enk
;αnk

, qnk
, wnk

) and by continuity of φ`
′
,d

`,h,s
, v∗

`,h,s
and ω∗ w.r.t. e, α, q and w we have

φ`
′
,d

`,h,s
(e, α, q, w;ω∗(α, q, w)) = v∗

`,h,s
(e;α, q, w). Therefore

(
c = c`

′
,d

`,h,s
(e;α, q, w), `′, d

)
∈ χ`,h,s(e;α, q, w)

and the correspondence is u.h.c. �

Theorem 2 (Existence of a Unique Invariant Distribution). For (α, q, w) ∈ A × Q ×W
and any measurable selection from the optimal policy correspondence, there exists a unique
µ(α,q,w) ∈M(L × E, 2L × B(E)) such that µ(α,q,w) = Υ(α,q,w)µ(α,q,w).

Proof. By the Measurable Selection Theorem, there exists an optimal policy rule that is
measurable with respect to any measure in M(L×E, 2L×B(E)). Therefore, G∗

(α,q,w) is well-defined.
To establish this lemma we then simply need to verify thatG∗

(α,q,w) satisfies the conditions stipulated
in Theorem 11.10 of Stokey, Lucas, and Prescott (1989). The first condition is that G∗

(α,q,w) satisfies
Doeblin’s condition (which states that there is a finite measure ϕ on (L×E, 2L×B(E)), an integer
I ≥ 1, and a number ε > 0, such that if ϕ(Z) ≤ ε, then G∗I

(α,q,w)((`, h, s, e), Z) ≤ 1 − ε, for all
(`, h, s, e)). It is sufficient to show that GN satisfies the Doeblin condition (see Exercise 11.4.g of
Stokey, Lucas, and Prescott (1989)). Observe that since GN is independent of (`, h, s, e), we can
pick ϕ(Z) = GN((`, h, s, e), Z) . Then GN satisfies the Doeblin condition for I = 1 and ε < 1

2 .
Second, we need to show that if Z is any set of positive ϕ -measure, then for each (`, h, s, e), there
exists n ≥ 1 such that G∗n

(α,q,w)((`, h, s, e), Z) > 0. To see this, observe that if ϕ(Z) > 0, then
GN((`, h, s, e), Z) > 0 for any (`, h, s, e). Therefore, G∗1

(α,q,w)((`, h, s, e), Z) > 0. �

A.2 Results for Theorems 3 and 4

We turn now to the proof of Theorem 3. We give a formal definition of the maximal default set
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and then establish two key lemmas. The maximal default D∗
`,h,s(α, q, w) = {e : v∗`,h,s(e;α, q, w) =

φ0,1
`,h,s(e, α, q;ω

∗)}, where ω∗ is ω(v∗).

Lemma A5. Let ê∈ E\D∗
`,0,s(0, q, w), e > ê, and ` − ζ(s) < 0. If e ∈ D

∗
`,0,s(0, q, w), then

c∗`,0,s(ê; 0, q, w) > ê · w.

Proof. Since ê ∈ E\D∗
`,0,s(0, q, w) ,

u
(
c∗`,0,s(ê; 0, q, w), s

)
+ βρω∗`′∗`,0,s(ê;0,q,w),0,s(0, q, w) > u(ê · w, s) + βρω∗0,1,s(0, q, w). (30)

Let ∆ = (e− ê) · w > 0. The pair {c = c∗`,0,s(ê; 0, q, w) + ∆, `′ = `′∗`,0,s(ê; 0, q, w)} clearly belongs in
B`,0,s,0(e; 0, q, w). Then by optimality, utility obtained by not defaulting when labor efficiency is e
must satisfy the inequality

u (c̃`,0,s,0(e; 0, q, w), s) + βρω∗˜̀′
`,0,s,0(e;0,q,w),0,s

(0, q, w) ≥ u(c, s) + βρω∗`′,0,s(0, q, w), (31)

where c̃`,0,s,0(e; 0, q, w) and ˜̀′
`,0,s,0(e; 0, q, w) are the optimal choices of c and `′ conditional on not

defaulting. Since e ∈ D ∗
`,h,s(0, q, w),

u (c̃`,0,s,0(e; 0, q, w), s) + βρω ˜̀′
`,0,s,0(e;0,q,w),0,s(0, q, w) ≤ u(e · w, s) + βρω∗0,1,s(0, q, w). (32)

By (31) and the fact that ê · w + ∆ = e · w, (32) can be rewritten

u(c, s) + βρω∗`′,0,s(0, q, w) ≤ u(ê · w + ∆, µ) + βρω∗0,1,s(0, q, w). (33)

Then (33) minus (30) implies

u(c, s) + βρω∗`′,0,s(0, q, w)− u
(
c∗`,0,s(ê; 0, q, w), s

)
− βρω∗`′∗`,0,s(ê;0,q,w),0,s(0, q, w)

< u(ê · w + ∆, s) + βρω∗0,1,s(0, q, w)− u(ê · w, s)− βρω∗0,1,s(0, q, w). (34)

Or, by definition of (c, `′),

u
(
c∗`,0,s(ê; 0, q, w) + ∆, s

)
− u

(
c∗`,0,s(ê; 0, q, w), s

)
< u(ê · w + ∆, s)− u(ê · w, s).

Since u(·, s) is strictly concave, the last inequality implies c∗`,0,s(ê; 0, q, w) > ê · w. �

Lemma A6. Let ê ∈ E\D∗
`,0,s(0, q, w), e < ê, and ` − ζ(s) < 0. If e ∈ D

∗
`,0,s(0, q, w), then

c∗`,0,s(ê; 0, q, w) < ê · w.

Proof. Since ê ∈ E\D∗
`,0,s(0, q, w) ,

u
(
c∗`,0,s(ê; 0, q, w), s

)
+ βρω∗`′∗`,0,s(ê;0,q,w),0,s(0, q, w) > u(ê · w, s) + βρω∗0,1,s(0, q, w). (35)

Let ∆ = (ê − e) · w > 0. Consider the quantity c∗`,0,s(ê; 0, q, w) − ∆. If c∗`,0,s(ê; 0q, w) − ∆ ≤ 0
then it must be the case that c∗`,0,s(ê; 0, q, w) < ê · w because ê · w − ∆ = e · w > 0. So, we
only need to consider the case where c∗`,0,s(ê; 0, q, w) −∆ > 0. The pair {c = c∗`,0,s(ê; 0, q, w) −∆,
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`′ = `′∗`,0,s(ê; 0, q, w)} clearly belongs in B`,0,s,0(0, q, w). Then by optimality, utility obtained by not
defaulting when labor efficiency is e must satisfy the inequality

u (c̃`,0,s,0(e; 0, q, w), s) + βρω∗˜̀′
`,0,s,0(e;0,q,w),0,s

(0, q, w) ≥ u(c, s) + βρω∗`′,0,s(0, q, w), (36)

where, once again, c̃`,0,s,0(e; 0, q, w) and ˜̀′
`,0,s,0(e; 0, q, w) are the optimal choices of c and `′ condi-

tional on not defaulting. Since e ∈ D∗
`,0,s(0, q, w),

u (c̃`,0,s,0(e; 0, q, w), s) + βρω∗˜̀′
`,0,s,0(e;0,q,w),0,s

(0, q, w) ≤ u(e · w, s) + βρω∗0,1,s(0, q, w). (37)

By (36) and the fact that ê · w −∆ = e · w , ( 37) can be rewritten

u(c, s) + βρω∗`′,0,s(0, q, w) ≤ u(ê · w −∆, s) + βρω∗0,1,s(0, q, w). (38)

Then (38) minus (35) implies

u(c, s) + βρω∗`′,0,s(0, q, w)− u
(
c∗`,0,s(ê; 0, q, w), s

)
− βρω∗`′∗`,0,s(ê;0,q,w),0,s(0, q, w)

< u(ê · w −∆, s) + βρω∗0,1,s(0, q, w) − u(ê · w, s) − βρω∗0,1,s(0, q, w).

Or, by definition of (c, `′),

u
(
c∗`,0,s(ê; 0, q, w), s

)
− u

(
c∗`,0,s(ê; 0, q, w)−∆, s

)
> u(ê · w, s)− u(ê · x−∆, s). (39)

Since u(·, s) is strictly concave, the last inequality implies c∗`,0,s(ê; 0, q, w) − ∆ < ê · w − ∆, or,
c∗`,0,s(ê; 0, q, w) < ê · w. �

Theorem 3 (The Maximal Default Set Is a Closed Interval). IfD∗
`,0,s(0, q, w) is non-empty,

it is a closed interval.

Proof. First, consider the case h = 0. If ` − ζ(s) ≥ 0, then D
∗
`,0,s(0, q, w) =∅. If ` − ζ(s) < 0,

let eL = infD∗
`,0,s(0, q, w) and eU = supD∗

`,0,s(0, q, w). Since D∗
`,0,s(0, q, w) ⊂ E , which is bounded,

both eL and eU exist by the Completeness Property of R . If eL = eU , the default set contains
only one element e = eL = eU and the result is trivially true. Suppose, then, that eL < eU . Let
ê ∈ (eL, eU ) and assume that ê /∈D∗

`,0,s(0, q, w) . Then there is an e ∈D∗
`,0,s(0, q, w) such that

e > ê (if not, then eU = ê which contradicts the assertion that ê ∈ (eL, eU )). Then, by Lemma
A5, c∗`,0,s(ê; 0, q, w) > ê · w. Similarly, there is an e ∈D∗

`,0,s(0, q, w) such that e < ê. Then, by
Lemma A6, c∗`,0,s(ê; 0, q, w) < ê · w. But c∗`,0,s(ê; 0, q, w) cannot be both greater and less than ê · w.
Hence, the assertion ê /∈D∗

`,0,s(0, q, w) must be false and (eL, eU ) ⊂D∗
`,0,s(0, q, w). To show that

eU ∈D∗
`,0,s(0, q, w), pick a sequence {en} ⊂ (eL, eU ) converging to eU . Then, v∗`,0,s(en; 0, q, w) −

u(en ·w, s) = βρω∗0,1,s(0, q, w) for all n. Since eU is clearly in E, by the continuity of v∗`,0,s(e; 0, q, w)
and u , it follows that limn→∞{v∗`,0,s(en; 0, q, w) − u(en · w, s)} = v∗`,0,s(eU ; 0, q, w) − u(eU · w, s).
Since every element of the sequence {v∗`,0,s(en; 0, q, w)− u(en ·w, s)} is equal to βρω∗0,1,s(0, q, w), it
must be the case that v∗`,0,s(eU ; 0, q, w)− u(eU ·w, s) = βρω∗0,1,s(0, q, w). Hence, eU ∈D∗

`,0,s(0, q, w).
By analogous reasoning, eL ∈D∗

`,0,s(0, q, w). Hence, [eL, eU ] ⊆D∗
`,0,s(0, q, w). But by the definition

of eL and eU , D
∗
`,0,s(0, q, w) ⊂ [eL, eU ]. Hence [eL, eU ] =D∗

`,0,s(0, q, w). Next consider the case h = 1.
If `− ζ(s) ≥ 0, then D∗

`,0,s(0, q, w)= ∅. If `− ζ(s) < 0, then D∗
`,0,s(0, q, w)= E. �
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Theorem 4 (Maximal Default Set Expands with Indebtedness). If `0 > `1, then
D
∗
`0,0,s(0, q, w)⊆ D

∗
`1,h,s(α, q, w).

Proof. Suppose e ∈ D
∗
`0,0,s(0, q, w). Since v∗`,0,s(e;α, q, w) is increasing in `, v∗`0,0,s(e;α, q, w) ≥

v∗`1,0,s(e;α, q, w). But v∗`0,0,s(e;α, q, w) = u(e ·w, s)+βρω∗0,1,s(α, q, w). Since default is also an option
at `1, it must be the case that v∗`1,0,s(e;α, q, w) = u(e · w, s) + βρω∗0,1,s(α, q, w). Hence any e in

D
∗
`0,0,s(0, q, w) is also in D∗

`1,0,s(0, q, w). �

A.3 Results for Theorems 5 and 6

We now turn to the proof of existence of equilibrium. For the environment with α > 0, all conditions
in Definition 2 remain the same except for the goods market clearing condition (ix) which we now
call (ixA)∫

c∗`,h,s(e;α, q
∗, w∗)dµ∗ +K∗ +

∫
ζ(s)
m∗ dµ

∗

= F (N∗,K∗) + (1− δ)K∗ − γw∗
∫
eµ∗(d`, 1, ds, de)

− αw∗
∫

(e− emin) · d∗`,0,s(e;α, q
∗, w∗)µ∗(d`, 0, ds, de).

We state without proof the following (the proof is available in the supplementary material section
of this article on the Econometrica website):

Lemma A7. The goods market clearing condition (ixA) is implied by the other conditions for an
equilibrium in Definition 2.

Next, we establish the important result that for α > 0 the set of (`, h, s, e) for which a household
is indifferent between two courses of action is finite. Since the probability measure associated with
a finite set is zero this result allows us to ignore behavior of households at “indifferent points” and
simplifies the proof of existence of an equilibrium.

Given (`, h, s), define the set of e for which a household is indifferent between any two dis-

tinct feasible actions (`′, d) and (`′, d) as I(`′,d),(`
′
,d)

`,h,s (α, q, w) ≡ {e ∈ E : φ(`′,d)
`,h,s (e;α, q, w, ω∗) =

φ
(`
′
,d)

`,h,s (e;α, q, w, ω∗)} ∩ {e ∈ E : c(`
′,d)

`,h,s (e;α, q, w) ≥ 0, c(`
′
,d)

`,h,s (e;α, q, w) ≥ 0}.

Lemma A8. (i) I(`′,0),(`
′
,0)

`,h,s (α, q, w;ω∗) contains at most one element and (ii) if α > 0, then

I
(`′,0),(0,1)
`,0,s (α, q, w;ω∗) contains at most two elements.

Proof. (i) Let e ∈ I
(`′,0),(`

′
,0)

`,h,s (α, q, w). Since ω∗`′,0,s(α, q, w) 6= ω∗
`
′
,0,s

(α, q, w), it follows that ∆ ≡

u(w ·e(1−γh)+`−ζ(s)−q`′,s`′, s)−u(w ·e(1−γh)+`−ζ(s)−q`′,s`
′
, s) 6= 0. Therefore, consumption

under each of the two actions must be different. Since u(·) is strictly concave, an equal change in
consumption from these two different levels must lead to unequal changes in utility. Therefore, for
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y 6= 0 we must have that u(w · [e+y](1−γh)+ `− ζ(s)− q`′,s`′, s)−u(w · [e+y](1−γh)+ `− ζ(s)−
q
`
′
,s
`
′
, s) 6= ∆. Hence there can be at most one e for which φ`′,0

`,0,s(e, q, w;ω∗) = φ`
′
,0

`,0,s(e, q, w;ω∗).

(ii) Let e ∈ I(`′,0),(0,1)
`,0,s (α, q, w) and let y > 0.

(a): Suppose that u(w·e+`−ζ(s)−q`′,s`′, s)−u(w·[emin + (1− α)(e− emin)] , s) = ∆ ≥ 0. Given
α > 0, it follows that u′(w · [e+ y] + `− ζ(s)− q`′,s`

′, s) < u′(w · [emin + (1− α)(e+ y − emin)] , s).
Now observe that u(w · [e+ y]+`−ζ(s)−q`′,s`′, s) is u(w ·e+`−ζ(s)−q`′,s`′, s)+

∫ y
0 u

′(w · [e+ x]+
`−ζ(s)−q`′,s`′, s)dx and u(w · [emin + (1− α)(e+ y − emin)] , s) is u(w · [emin + (1− α)(e− e)] , s)+∫ y
0 u

′(w · [emin + (1− α)(e+ x− emin)] , s)dx. Therefore, u(w · [e+ y] + `− ζ(s)− q`′,s`
′, s)− u(w ·

[emin + (1− α)(e+ y − emin)] , s) < ∆. Hence e + y /∈ I
(`′,0),(0,1)
`,0,s (α, q, w). On the other hand, it’s

possible that there is a z > 0 such that e − z ∈ I
(`′,0),(0,1)
`,0,s (α, q, w). If so,

∫ z
0 u

′(w · [e− x] + ` −
ζ(s)− q`′,s`

′, s)dx =
∫ z
0 u

′(w · [emin + (1− α)(e− x− emin)] , s)dx. Since ∆ ≥ 0, we have u′(w · e+
`− ζ(s)− q`′,s`′, s) < u′(w · [emin + (1− α)(e− emin)] , s). Therefore, w · [e− z] + `− ζ(s)− q`′,s`′ <
w · emin + (1 − α)(e − z − emin). Then, given α > 0 u(w · [e− z − y] + ` − ζ(s) − q`′,s`

′, s) − u(w ·
[emin + (1− α)(e− z − y − emin)] , s) 6= ∆ because would be taking more consumption away from
the l.h.s. than from the r.h.s. when the l.h.s. already has less. Therefore, I(`′,0),(0,1)

`,0,s (α, q, w) can
have at most two elements.

(b) Suppose that u(w · e + ` − ζ(s) − q`′,s`
′, s) − u(w · [emin + (1− α)(e− emin)] , s) = ∆ < 0.

Then, given α > 0, u′(w · [e− y] + ` − ζ(s) − q`′,s`
′, s) < u′(w · [emin + (1− α)(e− y − emin)] , s).

By an argument analogous to the first part of (a) we can establish that e− y /∈ I(`′,0),(0,1)
`,0,s (α, q, w).

On the other hand, it is possible that there is a z > 0 such that e + z ∈ I
(`′,0),(0,1)
`,0,s (α, q, w). If so,

then u′(w · [e+ x] + ` − ζ(s) − q`′,s`
′, s)dx =

∫ z
0 u

′(w · [emin + (1− α)(e+ x− emin)] , s)dx. By an
argument analogous to the second part of (a) we can establish that w · [e+ z] + `− ζ(s)− q`′,s`′ >
w · [emin + (1− α)(e+ z − emin)] . Therefore, given α > 0, u(w · [e+ z + y] + `− ζ(s)− q`′,s`

′, s)−
u(w · [emin + (1− α)(e+ z + y − emin)] , s) 6= ∆ because we would be giving more consumption to
the l.h.s than to the r.h.s. when the l.h.s. already has more. Therefore, I(`′,0),(0,1)

`,0,s (α, q, w) can have
at most two elements. �

Define E`′,d
`,h,s(α, q, w) ≡ {e ∈ E : `′∗`,h,s(e; q, w) = `′, d∗`,h,s(e; q, w) = d} to be set of E that re-

turns (`′, d) as the optimal decision (when the household has `, h, s). Define ES`′,d
`,h,s(α, q, w) ≡{

e ∈ E :
[
φ`′,d

`,h,s(e, q, w;ω∗)−max
(˜̀′,d̃) 6=(`′,d)

φ
˜̀′,d̃
`,h,s(e, q, w;ω∗)

]
> 0
}

to be the set of e for which
(`′, d) is strictly better than any other action.

Lemma A9. For α > 0, E`′,d
`,h,s(α, q, w)\ES`′,d

`,h,s(α, q, w) is a finite set.

Proof. Observe that
{
E`′,d

`,h,s(α, q, w)\ES`′,d
`,h,s(α, q, w)

}
⊆ ∪

(˜̀′,d̃) 6=(`′,d)
I

(`′,d),(˜̀′,d̃)
`,h,s (α, q, w). Since the

sets I(`′,d),(˜̀′,d̃)
`,h,s (α, q, w) are finite by Lemma A8, the result follows. �

Lemma A10. Let Z ∈ 2L×B(E) and (`n, hn, sn, en, αn, qn, wn) → (`, h, s, e, α, q, w). If α > 0 then
for all but a finite set of (`, h, s, e): (i) `′∗`,h,s(en;αn, qn, wn) → `′∗`,h,s(e;α, q, w) and d∗`,h,s(en;αn, qn, wn) →
d∗`,h,s(e;α, q, w), and (ii) limn→∞G∗

(αn,qn,wn)(`n, hn, sn, en, Z) = G∗
(α,q,w)(`, h, s, e, Z).
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Proof. Since L is finite, it follows that there is some η such that for all n ≥ η, (`n, hn, sn) = (`, h, s).
Without loss of generality, we simply consider the sequence (en, αn, qn, wn) → (e, α, q, w). (i) Con-
sider the set of efficiency levels ES`,h,s(α, q, w) for which the household strictly prefers some action

(`′, d) i.e., ES`,h,s(α, q, w) =
{
e : e ∈ ∪(`′,d)ES

`′,d
`,h,s(α, q, w)

}
. For e ∈ ES`,h,s(α, q, w) consider the

sequence
{
`′∗`,h,s(en;αn, qn, wn), d∗`,h,s(en;αn, qn, wn)

}
. The sequence lies in a compact and finite

subset of R2 so we can extract a subsequence {nk} converging to (`′, d). Furthermore, there is an
η such that for nk ≥ η, (`′∗`,h,s(enk

;αnk
, qnk

, wnk
), d∗`,h,s(enk

;αnk
, qnk

, wnk
)) = (`′, d). Therefore, for

nk ≥ η, φ`
′
,d

`,h,s(enk
;αnk

, qnk
, wnk

, ω∗) =
v∗`,h,s(enk

;αnk
, qnk

, wnk
). Taking limits of both sides and using continuity of φ and v∗ established in

Lemma A2 and Theorem 1 respectively, φ`
′
,d

`,h,s(e;α, q, w, ω
∗) = v∗`,h,s(e;α, q, w). Since e ∈ ES`,h,s(α, q, w),

(`′, d) = (`′∗`,h,s(e;α, q, w), d∗`,h,s(e;α, q, w)). Since the set of efficiency levels for which there is indif-

ference can be expressed as ∪(`′,d)

{
E`′,d

`,h,s(α, q, w)\ES`′,d
`,h,s(α, q, w)

}
, by Lemma A9 this set is finite

and the result follows. (ii) Follows from the definition of G∗
(α,q,w)(`, h, s, e, Z) and part (i). �

The next step is to establish the weak convergence of the invariant distribution µ(α,q,w) w.r.t
α, q and w. Theorem 12.13 of Stokey, Lucas, and Prescott (1989) provide sufficient conditions under
which this holds. However, if the household is indifferent between two courses of action at (`, h, s, e),
the probability measure G∗

(α,q,w)((`, h, s, en), ·) need not converge weakly to G∗
(α,q,w)((`, h, s, e), ·) as

en → e so condition (b) of the Theorem is not satisfied. To get around this problem, we use
Theorem 12.13 to establish the weak convergence of an invariant distribution π(α,q,w)(`, h, s) with
the property that µ(α,q,w)(`, h, s, e) = π(α,q,w)(`, h, s)Φ(e|s). Since Φ(e|s) is independent of (α, q, w),
the weak convergence of µ(α,q,w) w.r.t (α, q, w) follows.

We begin by constructing a finite state Markov chain over the space (`, h, s). Let

P ∗
(α,q,w)

[
(`, h, s), (`′, h′, s′)

]
≡
∫

E
G∗

(α,q,w)((`, h, s, e),
(
`′, h′, s′, E

)
)Φ(e|s)de. (40)

Then by (8), (6), (7), and the fact that
∫
E Φ(e′|s′)de′ = 1 =

∫
E Φ(e|s)de, we have

P ∗
(α,q,w)

[
(`, h, s), (`′, h′, s′)

]
=

[
ρ
∫
E 1{`′∗`,h,s(e;α,q,w)=`′}H

∗
(α,q,w)(`, h, s, e, h

′)Γ(s, s′)Φ(e|s)de
+(1− ρ)

∫
E 1{(`′,h′)=(0,0)}ψ(s′, de′)

]
. (41)

It is easy to verify that P ∗
(α,q,w) is a transition matrix and therefore defines a Markov chain on the

space (`, h, s).

Lemma A11. P ∗
(α,q,w) induces a unique invariant distribution π(α,q,w) on (L, 2L).

Proof. The proof follows by applying Theorem 11.4 in Stokey, Lucas, and Prescott (1989). Let
ŝ ∈ S be such that ψ(ŝ, E) > 0. Since newborns must be of some type, such an ŝ exists. Then
P ∗

(α,q,w) [(`, h, s), (0, 0, ŝ)] ≥ (1− ρ)ψ(ŝ, E) > 0, ∀`, h, s. Therefore ε =∑
(`′,h′,s′)

{
min(`,h,s) P [(`, h, s), (`′, h′, s′)]

}
≥ (1 − ρ)ψ(ŝ, E) > 0 which satisfies the requirement of

Theorem 11.4 (for N = 1). �
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Lemma A12. If (αn, qn, wn) ∈ A × Q ×W is a sequence converging to (α, q, w) ∈ A × Q ×W
where αn, α > 0, then the sequence π(αn,qn,wn) converges weakly to π(α,q,w).

Proof. The proof follows by applying Theorem 12.13 in Stokey, Lucas, and Prescott (1989). Part
a of the requirements follows since L is compact. Part b requires that P ∗

(αn,qn,wn) [(`n, hn, sn), ·]
converges weakly to P ∗

(α,q,w) [(`, h, s), ·] as (`n, hn, sn, αn, qn, wn) → (`, h, s, α, q, w). By Theorem
12.3d of Stokey, Lucas, and Prescott (1989) it is sufficient to show that for any (`′, h′, s′),
limn→∞ P ∗

(αn,qn,wn) [(`n, hn, sn), (`′, h′, s′)] = P ∗
(α,q,w) [(`, h, s), (`′, h′, s′)] . Since L is finite, without

loss of generality consider the sequence (αn, qn, wn) → (α, q, w). But from (40),
limn P

∗ (`′, h′, s′, E)) of e converges almost everywhere to the measurable function
G∗

(α,q,w)((`, h, s, e), (`
′, h′, s′, E)) of e. Since G∗

(αn,qn,wn)((`, h, s, e), (`
′, h′, s′, E)) ≤ 1, requirement (b)

follows from the Lebesgue Dominated Convergence Theorem (Theorem 7.10 in Stokey, Lucas, and
Prescott (1989)). Part c requires that for each (α, q, w), P ∗

(α,q,w) induce a unique invariant measure;
this follows from Lemma A11.

Lemma A13. µ(α,q,w)(`, h, s, e) = π(α,q,w)(`, h, s)Φ(e|s).

Proof. Define m(α,q,w)(`, h, s) by µ(α,q,w)(`, h, s, e) ≡ m(α,q,w)(`, h, s)Φ(e|s)and let Z ′ = `′ × h′ ×
s′ × J ′. Let

µ(α,q,w)(`, h, s, e) ≡ m(α,q,w)(`, h, s)Φ(e|s). (42)

Then

µ(α,q,w)(Z
′) = (Υ(q,w)µ(q,w))(Z

′)

=
∫ [

ρ
∫
E 1{`′∗`,h,s(e;α,q,w)=`′}H

∗
(α,q,w)(`, h, s, e, h

′)Φ(de|s)Γ(s, s′)
∫
J ′ Φ(e′|s′)de′

+(1− ρ)1{(`′,h′)=(0,0)}
∫
J ′ ψ(s′, de′)

]
m(α,q,w)(d`, dh, ds)

(43)

where the first equality follows as a consequence of µ∗ being a fixed point and the second equality
follows from the definitions in (9), (42), and from recognizing

∫
E Φ(de|s) = 1.

Letting J ′ = E in (43)

µ(α,q,w)(`
′, h′, s′, E)

=
∫ [ {

ρ
∫
E 1{`′∗`,h,s(e;α,q,w)=`′}H

∗
(α,q,w)(`, h, s, e, h

′)Φ(de|s)Γ(s, s′)
}

+
{
(1− ρ)

∫
E 1{(`′,h′)=(0,0)}ψ(s′, de′)

} ]
m(α,q,w)(d`, dh, ds)

=
∫
P ∗

(α,q,w)

[
(`, h, s), (`′, h′, s′)

]
m(α,q,w)(d`, dh, ds)

where the first equality uses
∫
E Φ(e′|s′)de′ = 1 and the second follows by definition (41).

But by (42)

µ(α,q,w)(`
′, h′, s′, E) ≡ m(α,q,w)(`

′, h′, s′)
∫

E
Φ(e′|s′)de′ = m(α,q,w)(`

′, h′, s′).
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Therefore,

m(α,q,w)(`
′, h′, s′) =

∫
P ∗

(α,q,w)

[
(`, h, s), (`′, h′, s′)

]
m(α,q,w)(d`, dh, ds).

which implies that m(α,q,w)(`′, h′, s′) is the fixed point of the Markov chain whose transition function
is P ∗

(α,q,w). Hence m(α,q,w)(`, h, s) = π(α,q,w)(`, h, s) and the result follows. �

Lemma A14. If (αn, qn, wn) ∈ A × Q ×W is a sequence converging to (α, q, w) ∈ A × Q ×W
where αn, α > 0, then the sequence µ(αn,qn,wn) converges weakly to µ(α,q,w).

Proof. Since Φ(e|s) is independent of (α, q, w), the result follows from Lemmas A12 and A13. �

Lemma A15. Let α > 0, K(α,q,w) ≡
∑

(`′,s)∈L×S `
′q`′,s

∫
1{(`′∗`,h,s(e;α,q,w)=`′}µ(α,q,w)(d`, dh, s, de),

N(α,q,w) ≡
∫
edµ(α,q,w), and p(α,q,w)(`′, s) ≡

∫
d∗`′,0,s′(e

′;α, q, w)Φ(e′|s′)Γ(s; ds′)de′. Then (i) K(α,q,w),
(ii) N(α,q,w), (iii) p(α,q,w)(`′, s) are continuous with respect to (α, q, w).

Proof. To prove (i) note that by Lemma A13,
∫
L×H×E 1{(`′∗`,h,s(e;αn,qn,wn)=`′}µ(αn,qn,wn)(d`, dh, s, de) =∑

`,h

∫
E 1{(`′∗`,h,s(e;αn,qn,wn)=`′}Φ(de|s)π(αn,qn,wn)(`, h, s). By Lemma A12, limn π(αn,qn,wn)(`, h, s) =

π(α,q,w)(`, h, s). By Lemma A10, 1{`′∗`,h,s(e;αn,qn,wn)=`′} → 1{`′∗`,h,s(e;α,q,w)=`′} except possibly for a fi-
nite number of points in E. By the Lebesgue Dominated Convergence Theorem (Stokey, Lucas, and
Prescott (1989) Theorem 7.10), limn

∫
E 1{(`′∗`,h,s(e;αn,qn,wn)=`′}Φ(de|s) =

∫
E 1{(`′∗`,h,s(e;α,q,w)=`′}Φ(de|s).

Then, since K(αn,qn,wn) is the sum of a finite number of products each of which converge, the sum
converges as well. To prove (ii) simply apply Lemma A14. To prove (iii) note that by Lemma A10
d∗`,h,s(e;αn, qn, wn) → d∗`,h,s(e;α, q, w) except possibly for a finite number of points in E. By LDCT,
limn

∫
E×S d

∗
`′,0,s′(e

′;αn, qn, wn)Φ(e′|s′)Γ(s; ds′)de′ =
∫
E×S d

∗
`′,0,s′(e

′;α, q, w)Φ(e′|s′)Γ(s; ds′)de′. �

With these lemmas in hand we are ready to prove the existence of a steady-state equilibrium
for the case where α > 0. Once this is done, the existence of equilibrium for the α = 0 case will be
accomplished via a limiting argument. Define the vector-valued function whose fixed point gives
us a candidate equilibrium price vector. At this point, we need to be explicit about the upper and
lower bounds of the sets W and the upper bound of the set Q.

Assumption A2. Assume that qmax = ρ (1 + FK(`max, emin)− δ)−1 , wmin = b and wmax =
FN (`max, emin).

Note that our earlier assumption that `max is such that FK(`max, emin) > δ guarantees that qmax

is strictly positive.

Let Ωα : Q×W → RNL·NS+1 be given by 37

Ωα(q, w) ≡

 Ωα
`′≥0,s(q, w)

Ωα
`′<0,s(q, w)
Ωα

w(q, w)

 (44)

where

Ωα
`′≥0,s(q, w) =

{
ρ
(
1 + FK

(
K(α,q,w), N(α,q,w)

)
− δ
)−1 for K(α,q,w) > 0

0 for K(α,q,w) ≤ 0
,

37w can always be made to exceed w by placing assumptions on the production technology.
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Ωα
`′<0,s(q, w) =

{
ρ
(
1− p(α,q,w)(`′, s

)
)
(
1 + FK

(
K(α,q,w), N(α,q,w)

)
− δ
)−1 for K(α,q,w) > 0

0 for K(α,q,w) ≤ 0
,

and

Ωα
w(q, w) =

{
FN

(
K(α,q,w), N(α,q,w)

)
for K(α,q,w) > 0

FN

(
0, N(α,q,w)

)
for K(α,q,w) ≤ 0

.

A fixed point of this function is an equilibrium price vector provided an m∗ ≥ 1 can be found for
which condition (v) in Definition 2 is satisfied.

Lemma A16. For α > 0, there exists (q∗, w∗) ∈ Q×W such that (q∗, w∗) = Ωα(q∗, w∗).

Proof. The set Q ×W is compact. By Assumption A2, Ωα(q, w) ⊂ Q ×W. To see this, observe
that by Assumption 1(iii) FK(`max, emin) is the lowest marginal product of capital possible in this
economy and therefore, qmax is the highest price on deposits possible. The lower bound on wages
is the lower bound on the marginal product of labor in Assumption 1(v) and the upper bound
on wages is, by Assumption 1(iii) again, the highest marginal product of labor possible in this
economy.

Next we need to establish that Ωα(q, w) is continuous in q and w. Note that N(α,q,w) is always
strictly positive since it is bounded below by emin. First, consider (α, q, w) such that K(α,q,w) > 0
and let (qn, wn) → (q, w). By Lemma A15 and continuity of FK and FN , it follows that Ωα(qn, wn) →
Ωα(q, w). Second, consider (α, q, w) such that K(α,q,w) < 0. Then for any ε > 0 there exists η such
that for all n ≥ η,

ρ
(
1 + FK

(
K(α,qn,wn), N(α,qn,wn)

)
− δ
)−1 ≤ ρ

(
1 + FK

(
K(α,qn,wn), emin

)
− δ
)−1

< ε

Therefore, since ε can be made arbitrarily small, Ωα
`′<0,s(qn, wn) → 0 = Ωα

`′<0,s(q, w) and Ωα
`′≥0,s(qn, wn) →

0 = Ωα
`′≥0,s(q, w). Furthermore, there exists η such that for all n ≥ η, Ωα

w(qn, wn) = FN (0, N(α,qn,wn)).
Therefore, by Lemma A15 and continuity of FN , it follows that Ωα

w(qn, wn) → Ωα
w(q, w). Third, con-

sider (α, q, w) such thatK(α,q,w) = 0. Then Ωα
`′<0,s(qn, wn) → 0 = Ωα

`′<0,s(q, w) and Ωα
`′≥0,s(qn, wn) →

0 = Ωα
`′≥0,s(q, w) by an argument similar to the above case where K(α,q,w) < 0. Furthermore, for

any ε > 0 there exists η such that for all n ≥ η, K(α,qn,wn) < ε and hence

FN

(
ε,N(α,qn,wn)

)
≥ Ωα

w(qn, wn) ≥ FN

(
0, N(α,qn,wn)

)
.

Therefore, by Lemma A15 and continuity of FN , it follows that

FN

(
ε,N(α,q,w)

)
≥ lim

n→∞
Ωα

w(qn, wn) ≥ FN

(
0, N(α,q,w)

)
.

Since ε can be arbitrarily small, it follows that Ωα
w(qn, wn) → FN

(
0, N(α,q,w)

)
= Ωα

w(q, w).

The result follows from Brouwer’s Fixed Point Theorem. �

Lemma A17. `max ≥ K(α,q∗,w∗) > 0.

Proof. If K(α,q∗,w∗) = 0, then q∗`′,s = 0 for all `′ by (44). Hence, the optimal decision for house-
holds with ` ≥ 0 is to choose `′ = `max and the optimal decision for households with ` < 0
is either to choose default today and choose `max tomorrow or to pay back and choose `max
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today. Therefore, within at most one period the invariant distribution will have all its mass
on points with (`max, h, s, e). Hence K(α,q∗,w∗) = `max. But this implies that Ωα

`′≥0,s(0, w
∗) =

ρ
(
1 + FK

(
`max, N(0,w∗)

)
− δ
)−1

> 0, which yields a contradiction. Hence K(α,q∗,w∗) > 0. Since the
asset holding of each household is bounded above by `max, it follows that `max ≥ K(α,q∗,w∗). �

Lemma A18. There exists a steady-state competitive equilibrium with α > 0.

Proof. For α > 0, we know there exists (q∗, w∗) = Ωα(q∗, w∗) by Lemma A16. Then provided (v)
is satisfied, all the conditions for a competitive steady-state equilibrium in Definition 2 are satisfied
by construction of Ωα. Observe that if the hospital sector has strictly positive revenue in the steady
state, that is∫ [

(1− d∗`,h,s(e;α, q
∗, w∗))ζ(s) + d∗`,h,s(e;α, q

∗, w∗) max{`, 0}
]
dµ∗ > 0, (45)

then we can always choose m∗ ≥ 1 to satisfy condition (v). Since we have assumed that ev-
ery surviving household has a strictly positive probability of experiencing a medical expense and
K(α,q∗,w∗) > 0 by Lemma A17, (45) is satisfied. �

We now turn to the proof of existence of equilibrium when α = 0. This proof is constructive.
We take a sequence of equilibrium steady states for strictly positive but vanishing cost α and from
this sequence construct equilibrium prices and decision rules that work for the α = 0 case.

To do this, we will need the following definitions. For a given pair of optimal decision rules
(`′∗`,h,s(e;α, q, w), d∗`,h,s(e;α, q, w)) define the (optimal) probability of choosing (`′, d) given (`, h, s)

and (α, q, w) as x(`′,d)
`,h,s (α, q, w) ≡

∫
E 1{`′∗`,h,s(e;α,q,w)=`′,d∗`,h,s(e;α,q,w)=d}Φ(de|s). Further, define the 2 ·

NL · NL-element vector of choice probabilities by x(α, q, w) ≡ {x(`′,d)
`,h,s (α, q, w) ∀ (`, h, s) ∈ L and

(`′, d) ∈ L× {0, 1}}.

Let a sequence of costs αn → 0 with αn > 0. For each αn, let (q∗n, w
∗
n) ∈ Q×W be an equilibrium

price vector whose existence is guaranteed by Lemma A18. Since Q × W is compact, we can
extract a subsequence (q∗nk

, w∗nk
) converging to (q, w) ∈ Q ×W. Let the corresponding sequence

of measurable optimal decision rules and the sequence of optimal choice probability vectors be
`′∗`,h,s(e;αnk

, q∗nk
, w∗nk

), d∗`,h,s(e;αnk
, q∗nk

, w∗nk
) and x(αnk

, q∗nk
, w∗nk

). Since each term in the sequence
{x(αnk

, q∗nk
, w∗nk

)} is in [0, 1]2·NL·NL we can extract another convergent subsequence converging to
some x ∈ [0, 1]2·NL·NL . Denote this subsequence of {nk} by {m}.

Thus, we have a sequence {αm, q
∗
m, w

∗
m}, where q∗m and w∗m are equilibrium prices, converg-

ing to (0, q̄, w̄) and a corresponding sequence of optimal decision rules with choice probabilities
x

(`′,d)
`,h,s (αm, q

∗
m, w

∗
m) converging to x̄(`′,d)

`,h,s ). In Lemma 20 we construct, using information on choice
probabilities along the sequence, measurable decision rules that are optimal for (0, q, w) and which
deliver the limiting choice probabilities x.

Recall that the set of e for which (`, d) is the optimal action given (α, q, w) is denotedE(`′,d)
`,h,s (α, q, w)

and the set of e for which (`′, d) is the strictly optimal action given (α, q, w) is denoted ES(`′,d)
`,h,s (α, q, w).

Let I(`′,d)
`,h,s (α, q, w) be the set E(`′,d)

`,h,s (α, q, w)\(ES(`′,d)
`,h,s (α, q, w)), i.e., the set of e for which (`′, d) is

an optimal action and for which there is also some other action that is equally good. Further, let
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ED
(`′,d)
`,h,s (α, q, w) to be the set E\

(
ES

(`′,d)
`,h,s (α, q, w) ∪ I(`′,d)

`,h,s (α, q, w)
)
, i.e., the set of e for which the

action (`′, d) is strictly dominated by some other action.

The next lemma bounds the measure of the sets (why?) ES
(`,d)
`,h,s(0, q̄, w̄) and ED

(`′,d)
`,h,s (0, q̄, w̄).

For convenience, denote ES(`,d)
`,h,s(0, q̄, w̄) by ES(`,d), ED(`,d)

`,h,s(0, q̄, w̄) by ED(`,d), ES(`,d)
`,h,s(αm, q

∗
m, w

∗
m)

by ES(`,d)
m , E(`,d)

`,h,s(αm, q
∗
m, w

∗
m) by E(`,d)

m and I(`,d)
`,h,s(0, q̄, w̄) by I(`,d). And denote

∫
1{e∈A}(e)Φ(de|s)

by Φs(A). Then we have:

Lemma A19. For all (`, h, s) ∈ L the following hold (i) Φs(ES
(`′,d)) ≤ x̄

(`′,d)
`,h,s , (ii) Φs(ED

(`′,d)) ≤[
1− x̄

(`′,d)
`,h,s

]
, and (iii)

∑
`′∈L Φs(ES

(`′,0)) + Φs(ES
(0,1)) + Φs(I

(0,1)) = 1 =
∑

`′∈L x̄
(`′,0)
`,h,s + x̄

(0,1)
`,h,s .

Proof. See the supplementary material section of this article on the Econometrica website.

Lemma A20. For all (`, h, s) ∈ L there exist measurable functions c`,h,s(e), `′`,h,s(e), and d`,h,s(e)

for which the implied choice probabilities
∫
E 1{`′`,h,s(e)=`′,d`,h,s(e)=d}Φ(de|s) = x

(`′,d)
(`,h,s) and the triplet(

c`,h,s(e), `′`,h,s(e), d`,h,s(e)
)
∈ χ`,h,s(e; 0; q, w).

Proof. See the supplementary material section of this article on the Econometrica website.

We now establish the analogs of Lemma A12, A14, and A15 for the sequence {αm, q
∗
m, w

∗
m}

converging to (0, q, w).

Lemma A21. Let π(0,q,w) be the invariant distribution of the Markov chain P defined by the
decision rules (`′`,h,s(e), d`,h,s(e)). Then the sequence π(αm,q∗m,w∗

m) converges weakly to π(0,q,w).

Proof. See the supplementary material section of this article on the Econometrica website.

Lemma A22. Let µ(0,q,w) be the invariant distribution corresponding to the decision rules `′`,h,s(e)
and d`,h,s(e). Then, the sequence µ(αm,q∗m,w∗

m) converges weakly to µ(0,q,w).

Proof. Since Φ(e|s) is independent of (α, q, w), the result follows from Lemmas A13 and A21. �

Lemma A23. Let K(0,q,w) ≡
∑

(`′,s)∈L×S `
′q`′,s

∫
1{(`′`,h,s(e)=`′}µ(0,q,w)(d`, dh, s, de), N(0,q,w) ≡∫

edµ(0,q,w), and p(0,q,w)(`′, s) ≡
∫
d`′,0,s′(e′)Φ(e′|s′)Γ(s; ds′)de′. Then (i) limmK(αm, q

∗
m, w

∗
m) =

K(0,q,w), (ii) limmN(αm, q
∗
m, w

∗
m) = N(0,q,w), and (iii) limm p(αm,q∗m,w∗

m)(`′, s) = p(0,q,w)(`′, s).

Proof. See the supplementary material section of this article on the Econometrica website.

Since the choice probabilities along the sequence satisfy all equilibrium conditions and the
constructed decision rules imply the limiting choice probabilities, it is straightforward to establish
that all equilibrium conditions are satisfied by the constructed decision rules as well. Therefore the
pair (q̄, w̄) is an equilibrium price vector when α = 0.

Theorem 5 (Existence). A steady-state competitive equilibrium exists.

Proof. For the sequence {q∗m, w∗m} converging (q, w), let
(
`′`,h,s(e), d`,h,s(e), c`,h,s(e)

)
be the decision
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rules whose existence is guaranteed in Lemma A20. Using q, w, `′`,h,s(e), d`,h,s(e), c`,h,s(e) we will
construct a collection

{q, w, `′`,h,s(e; q, w), d`,h,s(e; q, w), c`,h,s(e; q, w), r, i, p,m,N,K, a,B, µ}

that satisfies all the conditions of steady-state equilibrium in Definition 2.

Given q, w, the conditions we satisfy by construction are:

(i) c`,h,s(e; q, w) = c`,h,s(e), `
′
`,h,s(e; q, w) = `′`,h,s(e), and d`,h,s(e; q, w) = d`,h,s(e). By Lemma

A19 these decision rules solve the household’s optimization problem for α = 0, q = q,and w = w.

(x) µ = µ(q,w) = Υ(q,w)µ(q,w) (where Υ is based on (`′`,h,s(e; q, w), d`,h,s(e; q, w));

(vi) N =
∫
edµ;

(vii) a`′,s =
∫

1(`
′
`,h,s(e; q, w) = `′}µ(q,w)(d`, dh, s, de);

(viii) K =
∑

(`′,s)∈L×S q`′,s`
′ ∫ 1

(`
′
`,h,s(e;q,w)=`′}µ(q,w)(d`, dh, s, de);

(v) m =
[∫ [

(1− d`,h,s(e; q, w))ζ(s) + d`,h,s(e; q, w) max{`, 0}
]
dµ(q,w)

]−1 ·
∫
ζ(s)dµ(q,w);

(iib) r = ∂F (K,N)

∂K
.

(iv) p`′,s =
∫
d`′,0,s′(e′; q, w)Φ(e′|s′)Γ(s; ds′)de′ for `′ < 0 and p`′,s = 0 for `′ ≥ 0.

The conditions we must verify are:

(iia)

w =
∂F (K,N)

∂N
.

Since (αm, q
∗
m, w

∗
m) are equilibrium prices and K(αm,q∗m,w∗

m) > 0 by Lemma A17, then for all m :

f(w∗m,K(αm,q∗m,w∗
m), N(αm,q∗m,w∗

m)) ≡ w∗m − FN

(
K(αm,q∗m,w∗

m), N(αm,q∗m,w∗
m)

)
= 0.

Observe that f is continuous in all arguments because FN is continuous. Therefore

lim
m→∞

f(w∗m,K(αm,q∗m,w∗
m), N(αm,q∗m,w∗

m)) = w − FN

(
K,N

)
= 0

since by Lemma A23 we know limm→∞
(
K(αm,q∗m,w∗

m), N(αm,q∗m,w∗
m)

)
=
(
K(0,q,w), N(0,q,w)

)
=
(
K,N

)
by construction.

(iii)

q`′,s =
ρ(1− p`′,s)
1 + r − δ

.

Since (αm, q
∗
m, w

∗
m) are equilibrium prices and K(αm,q∗m,w∗

m) > 0 by Lemma A17, then for all m and
`′ ≥ 0 :

f
((
q∗`′≥0,s

)
m
,K(αm,q∗m,w∗

m), N(αm,q∗m,w∗
m)

)
≡
(
q∗`′≥0,s

)
m
− ρ

(
1 + FK

(
K(αm,q∗m,w∗

m), N(αm,q∗m,w∗
m)

)
− δ
)−1 = 0.
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Observe that f is continuous in all arguments because FK is continuous. Therefore, by Lemma
A23 again

lim
m→∞

f
((
q∗`′≥0,s

)
m
,K(αm,q∗m,w∗

m), N(αm,q∗m,w∗
m)

)
= q`′≥0,s − ρ

(
1 + FK

(
K,N

)
− δ
)−1 = 0.

Similarly,

f
((
q∗`′<0,s

)
m
,K(αm,q∗m,w∗

m), N(αm,q∗m,w∗
m)

)
≡
(
q∗`′<0,s

)
m
−
ρ
(
1−

∫
d∗`′,0,s′(e

′, αm, q
∗
m, w

∗
m)Φ(de′|s′)Γ(s; ds′)

)
1 + FK

(
K(αm,q∗m,w∗

m), N(αm,q∗m,w∗
m)

)
− δ

= 0.

By the choice of d`,h,s(e; q, w) and Lemma A20,

lim
m→∞

∫
d∗`′,0,s′(e

′, αm, q
∗
m, w

∗
m)Φ(de′|s′) =

∫
d`,h,s(e; q, w)Φ(de′|s′).

Therefore by Lemma A23

lim
m→∞

f
((
q∗`′<0,s

)
m
,K(αm,q∗m ,w∗

m), N(αm,q∗m ,w∗
nk

)

)
= q`′<0,s −

ρ
(
1−

∫
d`,h,s(e; q, w)Φ(de′|s′)Γ(s; ds′)

)
1 + FK

(
K,N

)
− δ

= 0.

Finally, since the collection satisfies all conditions for an equilibrium except condition (ixA), it
follows from Lemma A7 that (ixA) is satisfied as well. �

Theorem 6 (Characterization of Equilibrium Prices) In any steady-state competitive equi-
librium: (i) q∗`′,s = ρ(1+r∗−δ)−1 for `′ ≥ 0; (ii) if the grid for L is sufficiently fine, there exists
`0 < 0 such that q∗`0,s = ρ(1+r∗−δ)−1; (iii) if the set of efficiency levels for which a household
is indifferent between defaulting and not defaulting is of measure zero, 0 > `1 > `2 implies
q∗`1,s ≥ q∗`2,s; (iv) when `min ≤ − [emax · wmax] [(1 + r∗ − δ)/(1− ρ+ r∗ − δ)] , q∗`min,s = 0.

Proof. (i) Follows from condition (iii) in the definition of competitive equilibrium; (ii) Let the grid
be fine enough so that there is at least one `0 < 0 for which wmin · emin + `0 > 0. For a household,
the utility from defaulting on a loan of size `0 can be expressed as:

u(e · w, s) + βρ

∫
u
(
c∗0,1,s′(e

′; q∗, w∗), s′
)
Φ(de′|s′)Γ(s, ds′)

+ (βρ)2
∫ [

λω∗`′∗
0,1,s′ (e

′;q∗,w∗),1,s′(q
∗, w∗) + (1− λ)ω∗`′∗

0,1,s′ (e
′;q∗,w∗),0,s′(q

∗, w∗)
]

Φ(de′|s′)Γ(s, ds′)

Since wmin · emin + `0 > 0, an alternative to not defaulting is to pay off the loan, consume the
remaining endowment, and in the following period set consumption equal to

c∗0,1,s′(e
′; q∗, w∗) + γe′.
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The utility from this course of action is:

u(e · w + `0, s) + βρ

∫
u
(
c∗0,1,s′(e

′; q∗, w∗) + γe′, s′
)
Φ(de′|s′)Γ(s, ds′)

+ (βρ)2
∫
ω∗`′∗

0,1,s′ (e
′;q∗,w∗),0,s′(q

∗, w∗)Φ(de′|s′)Γ(s, ds′).

In view of (28), the utility-gain from not defaulting must be at least as large as

u(e · w + `0, s)− u(e · w, s)

+ βρ

∫ [
u
(
c∗0,1,s′(e

′; q∗, w∗) + γe′, s′
)
− u

(
c∗0,1,s′(e

′; q∗, w∗), s′
)]

Φ(de′|s′)Γ(s, ds′). (46)

Since consumption is bounded above by emax ·wmax + `max− `min and the u(·, s) is strictly concave
for each s , the integral in the above expression is bounded below by∫

[u(emax · wmax + `max − `min + γe′, s′)− u(emax · wmax + `max − `min, s
′)]Φ(de′|s′)Γ(s, ds′).

Notice that the above integral is strictly positive and independent of the fineness of the grid for L.
Therefore, since u(·, s) is continuous, the expression in (46) will be strictly positive if `0is sufficiently
close to zero. Hence, for a sufficiently fine grid there exists an `0 < 0 for which defaulting is not
optimal and q∗`0,s = ρ(1 + r∗ − δ)−1; (iii) If the set of efficiency levels for which a household is
indifferent between defaulting and not defaulting is of measure zero, by Theorem 4 (the maximal
default set expands with liabilities) it follows that d∗`2,0,s(e, q

∗, w∗) ≥ d∗`1,0,s(e, q
∗, w∗) for all e except,

possibly, for those in a set of Φ(e|s)-measure zero. Therefore∫
d∗`2,0,s(e, q

∗, w∗)Φ(de|s) = p`2,s ≥ p`1,s =
∫
d∗`1,0,s(e, q

∗, w∗)Φ(de|s)

and the result follows; (iv) Set `min ≤ − [emax · wmax] [(1 + r∗ − δ)/(1− ρ+ r∗ − δ)] . If a household
has characteristics s, loan `min and endowment e · w then its consumption, conditional on not
defaulting, is bounded above by e ·w+ `min − ζ(s) + max`′∈L{−q∗`′,s · `′}. Since e ·w ≤ emax ·wmax,
−ζ(s) ≤ 0, and max`′∈L{−q`′,s · `′} ≤ −ρ/(1 + r∗ − δ) · `min, consumption conditional on not
defaulting is bounded above by emax ·wmax + `min−ρ/(1+ r∗− δ) · `min ≤ 0. This means either that
the set B`min,0,η,0(e, q) is either empty or that the only feasible consumption is zero consumption.
In the first case default is the only option and in the second case it’s the best option by (29).
Therefore in any competitive equilibrium q∗`min,s must be zero. �
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1 A Quantitative Theory of Unsecured Consumer Credit With Risk of
Default, Supplementary Material: Proofs of Lemmas 7, 19-21, and
23

This document provides the proof of Lemma 7 and the proofs of Lemmas 19-21 and 23 which
were omitted from the Appendix to the main article. The notation is the same as that used
in the Appendix and equation numbers refer to equations in this document or to equations
in the main article or in the Appendix to the main article.

Lemma A7. The goods market clearing condition (ixA) is implied by the other conditions
for an equilibrium in Definition 2.
Proof: First note that the household budget sets (2)-(5) imply

c∗`,h,s(e; α, q∗, w∗) + q∗`′∗`,h,s(e;α,q∗,w∗),s · `′∗`,h,s(e; α, q∗, w∗) ·
[
1− d∗`,h,s(e; α, q∗, w∗)

]
=

[
e (1− γh)− α(e− emin)(1− h) · d∗`,h,s(e; α, q∗, w∗)

]
· w∗ + (`− ζ(s)) ·

[
1− d∗`,h,s(e; α, q∗, w∗)

]
.

Then aggregating over all households yields∫ {
c∗`,h,s(e; α, q∗, w∗) + q∗`′∗`,h,s(e;α,q∗,w∗),s`

′∗
`,h,s(e; α, q∗, w∗)

[
1− d∗`,h,s(e; α, q∗, w∗)

]
dµ∗

}
+

∫ {
ζ(s)

[
1− d∗`,h,s(e; α, q∗, w∗)

]}
dµ∗

=

∫ {[
e (1− γh)− α(e− emin)(1− h) · d∗`,h,s(e; α, q∗, w∗)

]
· w∗ + ` ·

[
1− d∗`,h,s(e; α, q∗, w∗)

]}
dµ∗.

(47)

Condition (v) along with (47) imply∫ {
c∗`,h,s(e; α, q∗, w∗) + q∗`′∗`,h,s(e;α,q∗,w∗),s`

′∗
`,h,s(e; α, q∗, w∗)

[
1− d∗`,h,s(e; α, q∗, w∗)

]
dµ∗

}
+

∫ {
ζ(s)

[
1− d∗`,h,s(e; α, q∗, w∗)

]}
dµ∗

=

∫ {[
e (1− γh)− α(e− emin)(1− h) · d∗`,h,s(e; α, q∗, w∗)

]
· w∗ + ` ·

[
1− d∗`,h,s(e; α, q∗, w∗)

]}
dµ∗

+

∫ {[
1− d∗`,h,s(e; α, q∗, w∗)

]
ζ(s) + d∗`,h,s(e; α, q∗, w∗) max{`, 0} − ζ(s)/m∗} dµ∗

or ∫ {
c∗`,h,s(e; α, q∗, w∗) + q∗`′∗`,h,s(e;α,q∗,w∗),s`

′∗
`,h,s(e; α, q∗, w∗)

[
1− d∗`,h,s(e; α, q∗, w∗)

]}
dµ∗ +

∫
ζ(s)

m∗ dµ∗.

=

∫ {[
e (1− γh)− α(e− emin)(1− h) · d∗`,h,s(e; α, q∗, w∗)

]
· w∗ + ` ·

[
1− d∗`,h,s(e; α, q∗, w∗)

]}
dµ∗

+

∫ {
d∗`,h,s(e; α, q∗, w∗) max{`, 0}

}
dµ∗ (48)
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Since d∗`,h,s(e; α, q∗, w∗) = 1 implies `′∗`,h,s(e; α, q∗, w∗) = 0, it follows that the product of
`′∗`,h,s(e; α, q∗, w∗) and d∗`,h,s(e; α, q∗, w∗) is 0 for all `, h, s, e. Hence, the left hand side of (48)
can be written∫

c∗`,h,s(e; α, q∗, w∗)dµ∗ +

∫
q∗`′∗`,h,s(e;α,q∗,w∗),s`

′∗
`,h,s(e; α, q∗, w∗)dµ∗ +

∫
ζ(s)

m∗ dµ∗.

Next the first term on the right hand side can be written

w∗
[∫

edµ∗ − γ

∫
eµ∗(d`, 1, ds, de)− α

∫
(e− emin) · d∗`,0,s(e; α, q∗, w∗)µ∗(d`, 0, ds, de)

]
Finally, the remaining term on the right hand side of (48) can be written∑

`,s

`

∫
(1− d∗`,h,s(e; α, q∗, w∗))µ∗(`, dh, s, de) +

∑
`≥0,s

∫
d∗`,h,s(e; α, q∗, w∗)`µ∗(`, dh, s, de)

=
∑
`,s

`

∫
µ∗(`, dh, s, de)−

∑
`<0,s

`

∫
d∗`,h,s(e; α, q∗, w∗)µ∗(`, dh, s, de)

=
∑
`>0,s

`

∫
µ∗(`, dh, s, de) +

∑
`<0,s

`

∫
(1− d∗`,h,s(e; α, q∗, w∗))µ∗(`, dh, s, de) (49)

Next, observe that for x 6= 0, we have from (x), (6), and (vii)∫
µ∗(x, dh′, s̃, de′; q∗, w∗)

= ρ

∫ [
1{(`,h,s,e):(`′∗`,h,s(e;α,q∗,w∗)=x}

∑
h′

H∗(`, h, s, e;h′)
∫

E
Φ(e′|σ)de′Γ(s;σ)

]
dµ∗

= ρ

∫ [
1{(`,h,s,e):(`′∗`,h,s(e;α,q∗,w∗)=x}Γ(s;σ)

]
µ∗(d`, dh, ds, de)

= ρ
∑

s

a∗x,sΓ(s; s̃),

where for ease of notation we have replaced s−1 with s̃. Hence, the first term in (49):∑
x>0,s̃

x

∫
µ∗(x, dh, s̃, de) =

∑
x>0,s̃

xρ
∑

s

a∗x,sΓ(s; s̃)

= ρ
∑

x>0,s

xa∗x,s

∑
s̃

Γ(s; s̃)

= ρ
∑

x>0,s

xa∗x,s

Now consider the second term in (49):∫
(1− d∗x,h,s̃(e;α, q

∗, w∗))µ∗(x, dh, s̃, de)

=
∫
µ∗(x, dh, s̃, de)−

∫
d∗x,h,s̃(e;α, q

∗, w∗)µ∗(x, dh, s̃, de)
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We can re-write the latter part of this expression as∫
d∗x,h,s̃(e;α, q

∗, w∗)µ∗(x, dh, s̃, de;α, q∗, w∗) =

ρ

∫ [
1{(`,η,s,ε):(`′∗`,η,s(ε;q

∗,w∗)=x}
∑

h

H(`, η, s, ε;h)
∫

E
d∗x,h,s̃(e;α, q

∗, w∗)Φ(e|s̃)deΓ(s; s̃)

]
µ∗(d`, dη, ds, dε).

Since x < 0, it follows that η = 0 and h = 0 so thatH(`, 0, s, ε; 0) = 1 andH(`, 0, s, ε; 1) = 0,∀`, s, ε.
Therefore∫

d∗x,h,s̃(e;α, q
∗, w∗)µ∗(x, dh, s̃, de;α, q∗, w∗)

= ρ

∫ [
1{(`,0,s,ε):(`′∗`,0,s(ε;q

∗,w∗)=x}

∫
E

∑
h

H(`, 0, s, ε;h)d∗x,h,s̃(e;α, q
∗, w∗)Φ(e|s̃)deΓ(s; s̃)

]
µ∗(d`, 0, ds, dε)

= ρ

∫ [
1{(`,0,s,ε):(`′∗`,0,s(ε;q

∗,w∗)=x}

∫
E
d∗x,0,s̃(e;α, q

∗, w∗)Φ(e|s̃)deΓ(s; s̃)
]
µ∗(d`, 0, ds, dε).

Let p∗s̃x =
∫
E d

∗
x,0,s̃(e;α, q

∗, w∗)Φ(e|s̃)de be the probability of default on a loan of size x by households
with characteristic s̃. Then∫

d∗x,h,s̃(e;α, q
∗, w∗)µ∗(x, dh, s̃, de;α, q∗, w∗)

=
∑

s

ρ

∫ [
1{(`,0,s,e):(`′∗`,0,s(e;α,q∗,w∗)=x}p

∗s̃
x Γ(s; s̃)

]
µ∗(d`, 0, s, de;α, q∗, w∗)

= ρ
∑

s

p∗s̃x Γ(s; s̃)a∗x,s.

The second equality follows from (vii) recognizing that µ∗(Z) = 0 for all Z ∈ L−−×{1}×S×B(E).
Thus the second part of (49) can be written∑

x>0,s̃

x

∫
µ∗(x, dh, s̃, de) +

∑
x<0,s̃

x

∫
(1− d∗x,h,s̃(e;α, q

∗, w∗))µ∗(x, dh, s̃, de)

= ρ
∑

x>0,s

xa∗x,s + ρ
∑

x<0,s

xa∗x,s −
∑

x<0,s

xρ
∑

s̃

p∗s̃x Γ(s; s̃)a∗x,s

= ρ

 ∑
x>0,s

xa∗x,s +
∑

x<0,s

xa∗x,s(1− p∗x,s)

 .
Thus, re-writing (48) we have∫

c∗`,h,s(e;α, q
∗, w∗)dµ∗ +

∫
q∗`′∗`,h,s(e;α,q∗,w∗),s`

′∗
`,h,s(e;α, q

∗, w∗)dµ∗ +
∫
ζ(s)
m∗ dµ

∗

= w∗
∫
edµ∗ − γw∗

∫
eµ∗(d`, 1, ds, de)− αw∗

∫
(e− emin) · d∗`,0,s(e;α, q

∗, w∗)µ∗(d`, 0, ds, de)

+ ρ
∑
`,s

`a∗`,s(1− p∗`,s).
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But ∫
q∗`′∗`,h,s(e;α,q∗,w∗),s`

′∗
`,h,s(e;α, q

∗, w∗)dµ∗ =
∑
`′

∫
1{(`,h,s,e):(`′∗`,h,s(e;α,q∗,w∗)=`′}q`′,s`

′µ∗(d`, dh, ds, de)

=
∑
`′,s

q∗`′,sa
∗
`′,s`

′

= K∗

where the last inequality follows from (20). Another implication of (20) is

(1 + r∗ − δ)K∗ = ρ
∑

(`′,s)∈L×S

(1− p∗`′,s)a
∗
`′,s`

′.

Thus, we have∫
c∗`,h,s(e;α, q

∗, w∗)dµ∗ +K∗ +
∫
ζ(s)
m∗ dµ

∗

= w∗N∗ − γw∗
∫
eµ∗(d`, 1, ds, de) + (1 + r∗ − δ)K∗

= F (N∗,K∗) + (1− δ)K∗ − γw∗
∫
eµ∗(d`, 1, ds, de)− αw∗

∫
(e− emin) · d∗`,0,s(e;α, q

∗, w∗)µ∗(d`, 0, ds, de).

So that the goods market clears. �

Lemma A19. (i) Φs(ES
(`′,d)) ≤ x̄

(`′,d)
`,h,s (ii) Φs(ED

(`′,d)) ≤ (1−x̄(`′,d)
`,h,s ) and (iii)

∑
`′∈L Φs(ES

(`′,0))+

Φs(ES
(0,1)) + Φs(I

(0,1)) = 1 =
∑

`′∈L x̄
(`′,0)
`,h,s + x̄

(0,1)
`,h,s .

Proof. To prove (i) we first establish that ES(`′,d) ⊆ ∪∞m=1

(
∩k≥mES

(`′,d)
k

)
. Consider ê ∈ ES(`′,d).

Then φ(`′,d)
`,h,d)(ê; 0, q̄, w̄)−max( ˜̀′,d̃) 6=(`′,d) φ

( ˜̀′,d̃)
`,h,d (ê; 0, q̄, w̄) > 0. By Lemma A2 it follows that there exists

N(ê) such that for all m ≥ N(ê), φ(`′,d)
`,h,d)(ê;αm, qm, wm) −max( ˜̀′,d̃) 6=(`′,d) φ

( ˜̀′,d̃)
`,h,d (ê;αm, qm, wm) > 0.

Therefore, ê ∈ ∩k≥N(ê)ES
(`′,d)
k . Hence we must have ê ∈ ∪∞m=1

(
∩k≥mES

(`′,d)
k

)
. Next, observe

that for each m, ∩k≥mES
(`′,d)
k is Borel measurable since it is a countable intersection of Borel

measurable sets. Therefore, Φs(ES
(`′,d)) ≤ Φs

(
∪m

(
∩k≥mES

(`′,d)
k

))
= limm→∞Φs(∩k≥mES

(`′,d)
k ).

The last equality follows because the sets ∩k≥mES
(`′,d)
k are increasing in m. Next, observe that

Φs(∩k≥mES
(`′,d)
k ) ≤ Φs(ES

(`′,d)
m ) = x

(`′d)
`,h,s(αm, q

∗
m, w

∗
m), where the last equality follows from Lemma

A8 which implies the set E
(`′,d)
m ∩

(
ES

(`′,d)
m

)c
is finite and therefore of Φs-measure 0. Thus,

limm→∞Φs(∩k≥mES
(`′,d)
k ) ≤ limm→∞ x

(`′,d)
`,h,s (αm, q

∗
m, w

∗
m) = x̄

(`′,d)
`,h,s . Therefore Φs(ES

(`′,d)) ≤ x̄
(`′,d)
`,h,s .

This establishes (i).

To prove (ii) we first establish that ED(`′,d) ⊆ ∪∞m=1

(
∩k≥mED

(`′,d)
k

)
. Consider ê ∈ ED

(`′,d).

Then φ(`′,d)
`,h,d)(ê; 0, q̄, w̄)−max( ˜̀′,d̃) 6=(`′,d) φ

( ˜̀′,d̃)
`,h,d (ê; 0, q̄, w̄) < 0. By Lemma A2, there exists N(ê) such
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that for all m ≥ N(ê), φ(`′,d)
`,h,d)(ê;αm, qm, wm) − max( ˜̀′,d̃) 6=(`′,d) φ

( ˜̀′,d̃)
`,h,d (ê;αm, qm, wm) < 0. There-

fore, ê ∈ ∩k≥N(ê)ED
(`′,d)
k . Hence we must have ê ∈ ∪∞m=1

(
∩k≥mED

(`′,d)
k

)
. Next, observe that

for each m, ∩k≥mED
(`′,d)
k is Borel measurable since it is a countable intersection of Borel mea-

surable sets. Therefore, Φs(ED
(`′,d)) ≤ Φs

(
∪m

(
∩k≥mED

(`′,d)
k

))
= limm→∞Φs(∩k≥mED

(`′,d)
k ).

The last equality follows because the sets ∩k≥mED
(`′,d)
k are increasing in m. Next, observe that

Φs(∩k≥mED
(`′,d)
k ) ≤ Φs(ED

(`′,d)
m ) = 1 − x

(`′d)
`,h,s(αm, q

∗
m, w

∗
m), where the last equality follows from

Lemma A8 which implies
(
E

(`′,d)
m

)c
∩

(
ED

(`′,d)
m

)c
is a finite set and therefore of Φs-measure

0. Thus limm→∞Φs(∩k≥mES
(`′,d)
k ) ≤ limm→∞[1 − x

(`′,d)
`,h,s (αm, q

∗
m, w

∗
m)] = 1 − x̄

(`′,d)
`,h,s . Therefore

Φs(ED
(`′,d)) ≤ 1− x̄

(`′,d)
`,h,s . This establishes (ii).

To prove (iii), consider the set
(
∪`′∈LES

(`′,0) ∪ ES(0,1) ∪ I(0,1)
)c

. A member of this set is any
e for which there is more than one optimal action none of which involve default. By Lemma A8
this is a finite set and therefore of Φs-measure 0. Hence Φs

(
∪`′∈LES

(`′,0) ∪ ES(0,1) ∪ I(0,1)
)

= 1.

Since any pair of sets in the union is disjoint, it follows that
∑

`′∈L Φs(ES
(`′,0)) + Φs(ES

(0,1)) +

Φs(I
(0,1)) = 1. Next, consider the set

(
∪`′∈LES

(`′,0)
m ∪ ES(0,1)

m

)c
. A member of this set is any e for

which there is more than one optimal action. By Lemma A8 again this is a finite set. Therefore
Φs

(
∪`′∈LES

(`′,0)
m ∪ ES(0,1)

m

)
= 1. Since any pair of sets in this union is disjoint, it follows that∑

`′∈L Φs(ES
(`′,0)
m ) + Φs(ES

(0,1)
m ) = 1. Since ES(`′,d)

m and E(`′,d)
m can differ by at most a finite set of

points (by Lemma A8), it follows that
∑

`′∈L x
(`′,0)
`,h,s (αm, q

∗
m, w

∗
m) + x

(0,1)
`,h,s(αm, q

∗
m, w

∗
m) = 1. Taking

limits on both sides yields
∑

`′∈L x̄
(`′,0)
`,h,s + x̄

(0,1)
`,h,s = 1. This establishes (iii). �

Lemma A20. For all (`, h, s) ∈ L there exist measurable functions c`,h,s(e), `′`,h,s(e), and d`,h,s(e)

for which the implied choice probabilities
∫
E 1{`′`,h,s(e)=`′,d`,h,s(e)=d}Φ(de|s) = x

(`′,d)
(`,h,s) and the triplet(

c`,h,s(e), `′`,h,s(e), d`,h,s(e)
)
∈ χ`,h,s(e; 0; q, w).

Proof. The decision rules are constructed for two mutually exclusive cases. First, consider the case
where Φs(Ī(0,1)) = 0. For this case construct the decision rules as follows. Assign to action (`′, d)
all e such that e ∈ ES(`′,d). This step leaves unassigned the set I0,1 ∪

(
∪`′∈LI

(`′,0)
)
. To complete

the assignment, assign all elements of I0,1 to (0, 1) and assign any remaining elements to actions
in any manner provided that each element is assigned to an action only once and an element is
assigned to an action (`′, d) only if it belongs to I(`′,d). Since ES(`′,d) are disjoint, the assignment
maps each e to exactly one action (`′, d). Let `′`,h,s(e) and d`,h,s(e) be the resulting decision rules
for `′ and d and let c`,h,s(e) be the decision rule for c implied by the household budget constraint
given `′`,h,s(e) and d`,h,s(e).

We will now establish that these decision rules are measurable, optimal and imply the limiting
choice probability vector x̄. To establish measurability it is sufficient to establish that for each action
(`′, d) the set {e : `′`,h,s(e) = `′ and d`,h,s(e) = d} is Borel measurable. For (0, 1), the corresponding
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set is the union of ES(0,1) and I
(0,1) both of which are Borel measurable and therefore the union

is Borel measurable. Furthermore, Φs

(
{e : `′`,h,s(e) = 0 and d`,h,s(e) = 1}

)
= Φs

(
ES

(0,1)
)

since

Φs(I
(0,1)) = 0. For (`, 0), the corresponding set is the union of ES(`′,0), which is Borel measurable,

and some subset of I(`′,0). By Lemma A8, I(`′,0) is a finite set and therefore any subset of it is Borel
measurable. Hence {e : `′`,h,s(e) = `′ and d`,h,s(e) = 0} is also a union of Borel measurable sets and

therefore Borel measurable. Furthermore, Φs

(
{e : `′`,h,s(e) = `′ and d`,h,s(e) = 0}

)
= Φs

(
ES

(`′,0)
)

since Φs(I
(`,0)) = 0 (being a finite set). The decision rules are optimal by construction. Finally, note

that by Lemma A19(iii) we have
∑

`′∈L[Φs(ES
(`,0))− x̄(`′,0)

`,h,s ]+[Φs(ES
(0,1))− x̄(0,1)

`,h,s ] = 0. By Lemma

A19(i) each term in this sum is nonnegative. It follows immediately that Φs(ES
(`′,d)) = x̄

(`′,d)
`,h,s .

Hence, Φs

(
{e : `′`,h,s(e) = `′ and d`,h,s(e) = d}

)
= Φs

(
ES

(`′,d)
)

= x̄
(`′,d)
`,h,s .

Next, consider the case where Φs(I
(0,1)) = δ > 0. The assignment has to distribute members

I
(0,1) in such a way that choice probabilities induced by the assignment are the limiting choice

probabilities x̄. To begin, we first claim that there must exist exactly one action (ˆ̀′, 0) for which

I
(0,1) = I

(ˆ̀′,0). Suppose there were two such actions (ˆ̀′, 0) and (˜̀′, 0). Then, I(ˆ̀′,0),(˜̀′,0)
`,h,s (0, q̄, w̄) ⊇

I
(0,1) implying that I(ˆ̀′,0),(˜̀′,0)

`,h,s (0, q̄, w̄) has strictly positive measure which, by Lemma A8, is im-
possible.

Next, we claim that Φs(ES
(0,1))+Φs(I

(0,1))+Φs(ES
(ˆ̀′,0)) = x̄

(0,1)
`,h,s + x̄

(ˆ̀,0)
`,h,s. To see this, suppose

that Φs(ES
(0,1))+Φs(I

(0,1))+Φs(ES
(ˆ̀′,0)) < x̄(0,1)+x̄(ˆ̀,0). But by Lemma A19(iii) this implies that∑

`′ 6=ˆ̀′ Φs(ES
(`′,0)) >

∑
`′ 6=ˆ̀′ x̄

(`′,0)
`,h,s , which contradicts the bound in Lemma A19(i). Suppose then

that Φs(ES
(0,1))+Φs(I

(0,1))+Φs(ES
(ˆ̀′,0)) > x̄(0,1)+x̄(ˆ̀,0). By Lemma A19(iii)

∑
`′ 6=ˆ̀′ Φs(ES

(`′,0)) <∑
`′ 6=ˆ̀′ x̄

(`′,0)
`,h,s . But this implies

∑
`′ 6=ˆ̀′ [1 − Φs(ES

(`′,0))] >
∑

`′ 6=ˆ̀′ [1 − x̄
(`′,0)
`,h,s ], which contradicts the

bound in Lemma A19(ii). This establishes the claim.

We can now proceed with the assignment. To (`′, d) distinct from (0, 1) or (ˆ̀′, 0), assign all e
such that e ∈ ES

(`′,0). Next, partition the set I(0,1) into two disjoint (measurable) sets I1 and I2

such that Φs

(
ES

(ˆ̀,0) ∪ I1
)

= x̄
(ˆ̀,0)
`,h,s and Φs

(
ES

(0,1) ∪ I2
)

= x̄
(0,1)
`,h,s (since Φs is atomless such a

partition exists). Finally, assign in any manner all remaining elements provided that each element
is assigned to an action only once and an element is assigned to an action (`′, d) only if it belongs
to I(`′,d).

These assignments assign each e to exactly one action (`, d) and therefore imply decision rules
`′`,h,s(e), d`,h,s(e) and, via the household budget constraint, c`,h,s(e). The measurability of these
decision rules can be established by expressing the sets {e : `′`,h,s(e) = `′ and d`,h,s(e) = d} as
unions of measurable sets as was done for the first case. By construction, the decision rules are
optimal. Finally, note that by our earlier claim

∑
`′ 6=ˆ̀′ [Φs(ES

(`′,0)) − x̄
(`′,0)
`,h,s ] = 0. By Lemma

A19(i) each term in this sum is nonnegative and, therefore, Φs(ES
(`′,0)) = x̄

(`′,0)
`,h,s for `′ 6= ˆ̀′. Hence,
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Φs

(
{e : `′`,h,s(e) = `′ and d`,h,s(e) = d}

)
= Φs

(
ES

(`′,d)
)

= x̄
(`′,d)
`,h,s where the first equality uses the

fact that the set {e : `′`,h,s(e) = `′ and d`,h,s(e) = d} differs from the set ES`′,d) by at most a

finite set of points. Finally, by construction Φs

(
{e : `′`,h,s(e) = ˆ̀′ and d`,h,s(e) = 0}

)
= x̄

(ˆ̀′,0)
`,h,s and

Φs

(
{e : `′`,h,s(e) = 0 and d`,h,s(e) = 1}

)
= x̄

(0,1)
`,h,s . �

We now establish the analogs of Lemma A12 and A15 for the sequence {αm, q
∗
m, w

∗
m} converging

to (0, q, w).

Lemma A21. Let π(0,q,w) be the invariant distribution of the Markov chain P defined by the
decision rules (`′`,h,s(e), d`,h,s(e)). Then the sequence π(αm,q∗m,w∗

m) converges weakly to π(0,q,w).

Proof. We apply Theorem 12.13 in Stokey, Lucas, and Prescott (1989). Part a of the requirements
follows since L is compact. Part b requires that P ∗(αm,q∗m,w∗

m) [(`n, hn, sn), ·] converge weakly to
P (0;q,w) [(`, h, s), ·] as (`n, hn, sn, αm, q

∗
m, w

∗
m) → (`, h, s, 0, q, w). By Theorem 12.3d of Stokey, Lucas,

and Prescott (1989) it is sufficient to show that for any (`′, h′, s′),

lim
k→∞

P ∗(αm,q∗m,w∗
m)

[
(`n, hn, sn), (`′, h′, s′)

]
= P (0;q,w)

[
(`, h, s), (`′, h′, s′)

]
.

By definition

P ∗(αm,q∗m,w∗
m)

[
(`, h, s), (`′, h′, s′)

]
=

[
ρ

∫
E 1{`′∗`,h,s(e;αm,q∗m,w∗

m)=`′}H
∗
(αm,q∗m,w∗

m)(`, h, s, e, h
′)Φ(de|s)Γ(s, s′)

+(1− ρ)
∫
E 1{(`′,h′)=(0,0)}ψ(s′, de′)

]
and

H∗
(q,w)(`, h, s, e, h

′ = 1) =


1 if d∗`,h,s(e; q, w) = 1
λ if d∗`,h,s(e; q, w) = 0 and h = 1
0 if d∗`,h,s(e; q, w) = 0 and h = 0

,

H∗
(q,w)(`, h, s, e, h

′ = 0) =


0 if d∗`,h,s(e; q, w) = 1

1− λ if d∗`,h,s(e; q, w) = 0 and h = 1
1 if d∗`,h,s(e; q, w) = 0 and h = 0

.

By construction, the Markov chain P is

P
[
(`, h, s), (`′, h′, s′)

]
=

[
ρ

∫
E 1{`′`,h,s(e)=`′}H

∗
(0,q,w)(`, h, s, e, h

′)Φ(de|s)Γ(s, s′)
+(1− ρ)

∫
E 1{(`′,h′)=(0,0)}ψ(s′, de′)

]
where H∗

(0,q,w)(`, h, s, e, h
′) is determined by d`,h,s(e).

Since L is finite, without loss of generality consider the sequence (αm, q
∗
m, w

∗
m) → (0, q, w). Since

the second term on the r.h.s. is independent of (α, q, w), it is sufficient to consider the limiting
behavior of the integral∫

E
1{`′∗`,h,s(e;αm,q∗m,w∗

m)=`′}H
∗
(αm,q∗m,w∗

m)(`, h, s, e, h
′)Φ(de|s).
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For h = 0 and h′ = 0, this integral in P ∗ is∫
E

1{`′∗`,h,s(e;αm,q∗m,w∗
m)=`′,d∗`,h,s(e;αm,q∗m,w∗

m)=0}Φ(de|s) = x
(`′,0)
(`,0,s)(αm, q

∗
m, w

∗
m)

and in P it is∫
E

1{`′`,0,s(e)=`′}H
∗
(0,q,w)(`, 0, s, e, 0)Φ(de|s) =

∫
E

1{`′`,0,s(e)=`′,d`,0,s(e)=0}Φ(de|s).

By Lemma A20 we have

lim
k→∞

x
(`′,0)
(`,0,s)(αm, q

∗
m, w

∗
m) = x

(`′,0)
(`,0,s) =

∫
E

1{`′`,h,s(e)=`′,d`,h,s(e)=0}Φ(de|s).

Hence

lim
k→∞

P ∗(αm,q∗m,w∗
m)

[
(`, 0, s), (`′, 0, s′)

]
= P (0;q,w)

[
(`, 0, s), (`′, 0, s′)

]
.

The remaining cases can be dealt with in exactly the same way. We simply note here which
choice probabilities are involved in each case and omit the details.

For h = 0 and h′ = 1, the integral in P ∗ is∫
E

1{`′∗`,0,s(e;αm,q∗m,w∗
m)=`′,d∗`,0,s(e;αm,q∗m,w∗

m)=1}Φ(de|s) = x
(`′,1)
(`,0,s)(αm, q

∗
m, w

∗
m).

For h = 1 and h′ = 0, the integral in P ∗ is

(1− λ)
∫

E
1{`′∗`,1,s(e;αm,q∗m,w∗

m)=`′,d∗`,1,s(e;αm,q∗m,w∗
m)=0}Φ(de|s) = x

(`′,0)
(`,0,s)(αm, q

∗
m, w

∗
m).

For h = 1 and h′ = 1, the integral in P ∗ is∫
E

[
1{`′∗`,1,s(e;αm,q∗m,w∗

m)=`′,d∗`,1,s(e;αm,q∗m,w∗
m)=1}

+λ1{`′∗`,1,s(e;αm,q∗m,w∗
m)=`′,d∗`,1,s(e;αm,q∗m,w∗

m)=0}

]
Φ(de|s) =

[
x

(`′,1)
(`,1,s)(αm, q

∗
m, w

∗
m)

+λx(`′,0)
(`,1,s)(αm, q

∗
m, w

∗
m)

]
.

�

Lemma A23. Let K(0,q,w) ≡
∑

(`′,s)∈L×S `
′q`′,s

∫
1{(`′`,h,s(e)=`′}µ(0,q,w)(d`, dh, s, de), N(0,q,w) ≡∫

edµ(0,q,w), and p(0,q,w)(`′, s) ≡
∫
d`′,0,s′(e′)Φ(e′|s′)Γ(s; ds′)de′. Then (i) limmK(αm, q

∗
m, w

∗
m) =

K(0,q,w), (ii) limmN(αm, q
∗
m, w

∗
m) = N(0,q,w), and (iii) limm p(αm,q∗m,w∗

m)(`′, s) = p(0,q,w)(`′, s).

Proof. To prove (i), note that we know by Lemma A13,∫
L×H×E

1{(`′∗`,h,s(e;αm,q∗m,w∗
m)=`′}µ(αm,q∗m,w∗

m)(d`, dh, s, de)

=
∑
`,h

∫
E

1{(`′∗`,h,s(e;αm,q∗m,w∗
m)=`′}Φ(de|s)π(αm,q∗m,w∗

m)(`, h, s)
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By Lemma A20

lim
nk→∞

∫
E

1{(`′∗`,h,s(e;αm,q∗m,w∗
m)=`′,d∗`,h,s(e;αm,q∗m,w∗

m)=d}Φ(de|s)

=
∫

E
1{(`′`,h,s(e)=`′,d`,h,s(e)=d}Φ(de|s).

Since ∫
E

1{(`′∗`,h,s(e;αm,q∗m,w∗
m)=`′}Φ(de|s)

=
∑

d∈{0,1}

∫
E

1{(`′∗`,h,s(e;αm,q∗m,w∗
m)=`′,d∗`,h,s(e;αm,q∗m,w∗

m)=d}Φ(de|s),

then

lim
nk→∞

∫
E

1{(`′∗`,h,s(e;αm,q∗m,w∗
m)=`′}Φ(de|s)

=
∑

d∈{0,1}

∫
E

1{(`′`,h,s(e)=`′,d`,h,s(e)=d}Φ(de|s) =
∫

E
1{(`′`,h,s(e)=`′}Φ(de|s).

Next, by Lemma A21,

lim
n→∞

π(αm,q∗m,w∗
m)(`, h, s) = π(0,q,w)(`, h, s).

Therefore limnk→∞K(αm,q∗m,w∗
m) = K(0,q,w). To prove (ii) simply apply Lemma A21. To prove (iii),

note that by Lemma A20

lim
nk→∞

∫
E
d∗`′,0,s′(e

′;αm, q
∗
m, w

∗
m)Φ(de′|s′) =

∫
E
d`′,0,s′(e′)Φ(de′|s′).

Thus,

lim
m→∞

∫
E×S

d∗`′,0,s′(e
′;αm, q

∗
m, w

∗
m)Φ(de′|s′)Γ(s; ds′)

=
∫

E×S
d`′,0,s′(e′)Φ(de′|s′)Γ(s; ds′).

�
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